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Abstract—The Software Defined Network paradigm deviates
from traditional networks by logically centralising and physically
separating the control plane from the data plane. In this work,
we present the idea of a modular, agent-based SDN controller.
We first highlight issues with current SDN controller designs,
followed by a description of the proposed framework. We present
a prototype for our design to demonstrate the controller in action
using a few common use-cases. We continue the discussion by
highlighting areas that require further research.

Index Terms—Multi-agent systems, modular SDN controller,
SDN, OpenFlow

I. INTRODUCTION

Software Defined Networks separate and consolidate the
data plane’s control functions into a control plane. A data
plane is a collection of interconnected forwarding devices,
mostly switches. The control plane primarily consists of a
core controller module to communicate with the data plane,
Southbound interface(SBI), Northbound interface(NBI) and
Northbound Applications(NBAs). While NBIs and NBAs are
diverse, defacto SBI is the OpenFlow [1] protocol. Controllers
use the OpenFlow(OF) protocol to communicate with forward-
ing devices.

A controller core handles connections with switches, re-
ceives messages from switches and registers them as events
for further handling. The core dispatches messages to various
applications. Network functions such as layer2 switching,
layer3 routing, and load balancing are some examples of
NBAs. NBI act as a communication channel between the
controller core module and applications. Pyretic [2],Frenetic
[3] and Procera [4] are some examples of NBIs.

The control plane instructs the OpenFlow switch on packet
handling by exchanging messages. The switches store received
instructions in local flow tables as flow rules, match all in-
coming packets against these rules, and execute corresponding
actions. Without a matching flow rule, the switch forwards the
packet to the controller for processing. NBAs running on the
controller process the incoming packet, create a flow rule and
configure this rule in the OpenFlow switch.

In Physically centralised control plane, controller and ap-
plications run on a physical node while managing switches.
This setup quickly leads to scalability and security issues [5].
Ryu [6], NOX [7], NOX-MT [8], Floodlight [9] and Beacon
[10] are examples of physically centralised controllers. In
Physically distributed control plane, multiple control entities

handle the data plane. These entities are either clustered
or interconnected to share global information. Some of the
examples of such controllers are ONOS [11], ONIX [12],
HyperFlow [13] and OpenDayLight [14]. Logically centralised
controllers such as HyperFlow, ONIX, ONOS, and OpenDay-
Light synchronise network-wide view amongst all controller
instances using a variety of state dissemination mechanisms.
Logically distributed controller architectures such as DISCO
[15] have each controller instance managing a subset of the
data plane and communicating relevant information with other
instances. Distributed architectures need to deal with issues
around consistency [5].

In this work, we present a modular, agent-based SDN
controller. We first describe the motivation behind our work,
followed by a description of the proposed framework. We then
discuss two use cases and present a prototype to demonstrate
the controller in action. We continue the discussion by high-
lighting areas that require further research.

Some issues with existing SDN controller architectures are:

A. Issues
1) SBI Dependent: OpenFlow [1] has become synonymous

with SDN. Such an association is beneficial for standar-
dising SBI; nevertheless results in severe dependency on
a single SBI and hinders innovation. SDN applications
and OpenFlow are heavily intertwined. The absence of
a singular SBI to manage hybrid networks consisting
of various forwarding devices, both OpenFlow switches
and traditional network devices(wired and wireless), leads
to multiple controller planes. By decoupling applications
from OpenFlow, alternative applications and SBIs may be
explored independently for a logically centralised control
plane for hybrid networks.

2) Flexible resource allocation and application isolation:
Monolithic software is a self-contained software applica-
tion with tightly interdependent and coupled components
that work as a single entity [16]. There is no flexible
isolated allocation of resources to components in such a
system. Unfortunately, most of the SDN controllers are
monolithic by design [17] [18] [19] with tight coupling
between applications and controller core. An organic
organisation of such a system with diverse roles and
functions is to separate the functions into communicating
modules with dedicated resources.



3) Application portability: Consider POX [20] and Ryu
[6] controllers. Both controllers are python-based SDN
controllers; nevertheless, applications written for the POX
controller cannot run on the Ryu controller and vice
versa. Poor application portability is due to the non-
standardisation of NBIs. Applications should be indepen-
dent of the underlying controller platform.

4) Code Redundancy and Reuse: Most SDN applications
perform a standard set of actions such as exchanging
packets with data plane, parsing and un-parsing OF pack-
ets and storing network information creating redundant
code. Such essential functions should be consolidated into
modules allowing code re-usability.

Finally, by separating data from NBAs, knowledge can
be formalised and reasoned using knowledge representation
languages such as OWL [21].

B. Contributions
To summarise, existing SDN control plane architectures are
monolithic processes. [16] defines monolithic application as
a single, self-contained unit where components are intercon-
nected and interdependent, resulting in a tightly coupled code.
Popular controllers such as ONOS and ODL are monolithic
[17] [18] [19]. Due to such tight coupling, monolithic software
is heavily technology stack dependent and does not isolate
resources leading to inefficient resource allocation. Most cur-
rent SDN controllers are heavily tied with OpenFlow as SBI
hinders the development and adaptation of alternate SBIs.
Common applications such as L2 forwarding are not portable
across controller platforms, thus consuming human effort to
rebuild the same applications across multiple platforms.

An alternate approach for monolithic architecture is a mod-
ular design where software is decomposed into micro-services
or agents. Modular controller design allows flexible allocation
of resources such as CPU and memory to applications and
controller core. The modular design also makes distributed
deployment on edge devices and the cloud possible. A single
component performs SBI-specific functions, and applications
executing generic network functions irrespective of SBI can be
built( e.g. pathfinding). In this work, we recast the controller
into modules by consolidating network activities into agents.
These agents communicate with other agents to perform a net-
work function such as forwarding packets, handling congestion
or addressing link failures while monitoring the network in
parallel.

II. ARCHITECTURE

We now describe a modular, agent-based SDN controller
architecture MASDN (MultiAgent SDN) based on our earlier
work [22]. A Multi-agent system is a group of homogeneous
or heterogeneous agents operating cooperatively with or com-
peting against each other [23]. Agents are autonomous and
capable of perception and action in the environment. MASDN
controller departs from monolithic design and consists of
multiple social and rational agents. Each agent is isolated and

communicates with other agents using Inter-Process Commu-
nication(IPC) or TCP. The controller core is an agent in the
multi-agent system communicating with agents that run NBAs.
Thus, NBAs no longer are tied to a specific SBI. The agent
system can be deployed centrally on a single physical machine
or distributed across multiple devices (physical, virtual (e.g.
containers)) while using a shared knowledge base to maintain
consistent information. Finally, multi-agent systems are a clas-
sic case of distributed artificial intelligence. We pave the way
for a cognitive SDN control plane by enabling learning and
reasoning capabilities in some agents. The proposed modular
architecture is presented in Fig.1b.

By unwrapping the complexity of the SDN control plane,
we categorise the controller’s functionality (controller core,
SBI, NBAs and NBI) into a set of essential functions. Broadly,
the functions are a) connecting and maintaining connections
with the data plane, b) computing flow rules and c) updating
flow rules on the data plane. In SDN, the controller core
maintains connectivity with the data plane, and NBAs compose
flow rules based on their internal logic. NBAs themselves
are tied up with OpenFlow protocol to receive and send
packets. We thus start by disassociating applications from
OpenFlow and consolidating application functions into agents.
For instance, an SBI agent (in this case, OpenFlow agent) and
data plane communicate using OpenFlow. Similarly, different
agents implement different network functions for provisioning
flows, building topology, maintaining infrastructure informa-
tion, monitoring the network, maintaining a global network
state, and managing the network to address network abnormal-
ities such as a link down incidence and congestion, amongst
others.

Thus, the agents in MAS SDN controller are categorised
into

1) South Bound agents to interact with the data plane.
2) Provisioning agents to provision new flows, using L2 and

L3 information.
3) Monitoring agents to monitor and maintain a network

state in Knowledge Base.
4) Management agents to manage the network and handle

network abnormalities by either rerouting flows to alle-
viate congestion and restore normality after a link failure
or adjusting the TCP congestion window to maintain
fairness amongst TCP flows and other management func-
tions.

5) Knowledge layer stores a global network state in Knowl-
edge Base.

Fig.1b shows a high-level architecture of the agent system.

III. AGENTS AND INTERACTIONS

We now present agents of the MASDN controller. The
agents are broadly sub-grouped into layers based on their high-
level functions. This agent system is expandable to include
additional agents for network security and handling of non-
OF devices.



(a) Existing SDN controller architecture

(b) Proposed agent-based modular architecture

Fig. 1: MASDN architecture

A. Southbound Interface Layer
This layer consists of agents that function as a southbound
interface. Currently, this layer has an OpenFlow agent to
handle OpenFlow packets.

1) OpenFlow agent
OpenFlow(OF) agent(OF agent) is a TCP server establish-

ing an OpenFlow communication session with the data plane.
OF agent maintains connections with the data plane, parses
incoming OpenFlow packets and shares this information with
other agents. OF agent also receives messages from other
agents, packs this information into OpenFlow packets and
forward this information to the data plane. OF agent runs two
event loops catering to the data plane and the agent system
for exchanging messages.

An OF agent handles both OpenFlow and non-OpenFlow
messages by identifying the recipient and forwarding the
message to the intended receiver. The agent handles OpenFlow
control messages such as hello, echo-request and feature-reply.
In the case of data packet messages such as packet-in or
port-status or messages to gather port and flow statistics, the
agent relies on other agents for processing. Interacting with
other/external agents to handle OpenFlow packets deviates
from traditional SDN controller applications.

Traditional controller applications process and consumes
OpenFlow packets. In contrast, the agent-based controller’s

OF agent passes packet handling job to other agents in
the agent system. While the reader might associate this be-
haviour with simply calling object methods, agents, unlike
class objects, are autonomous - that is, their methods are
not accessible to external entities and hence can reject or
process a request. OF agent’s decision on where to forward the
packet payload is based on the incoming packet’s payload type.
For instance, if packet-in message payload is a Link-Local
Discovery packet(LLDP), the agent forwards this information
to the Topology agent(Topo agent).

Similarly, the agent forwards the non-QoS IP packet re-
ceived due to the absence of flow rules (and the presence
of a table-miss entry on the data path) to IP Path agent for
provisioning. Port-stats messages are forwarded to the Port-
stats agent, and flow-stats messages are sent to the Flow-stats
agent. Port-status message is sent to the topology agent.

In a few instances, the agent receives an unsolicited message
from the data path, such as a change in a port’s status or the
removal of flows from the data path. A flow removed due to
timeout does not necessarily need action or reconfiguration
on the switch. Instead, the agent updates the knowledge base
with this information. Hence, OF agent forwards this packet
to the flow table agent, which updates the knowledge base. If
a port’s status changes from ’UP’ to ’DOWN’, the controller
needs to reroute all the affected flows without waiting for the
flow rules to timeout, requiring the OF agent to forward the
information to link down the agent.

Separating OpenFlow protocol from applications into
OF agent is an effective way of eliminating the dependency
of the SDN control plane on a singular SBI.

B. Provisioning layer
The primary function of agents in this layer is to proactively
find paths to configure flow rules for a new flow. Agents
performing switching, inter-VLAN routing, and load balancing
constitute this layer.

IP Path agent find paths to provision flows within a VLAN
as in a traditional network. The agent computes complete
end-to-end path and provides this information to OF agent.
Complete end-to-end path here refers to a set of all data
paths and corresponding out-ports to configure flow rules. IP
Path agent employs Dijkstra’s pathfinding algorithm to find
paths between source and destination IP addresses. The agent
periodically obtains a copy of topology from the KB agent.
KB agent also pushes a new copy of topology to IP Path agent
upon any change in topology.

C. Monitoring layer
Monitoring agents are a group of agents responsible for
monitoring the network and maintaining an updated network
state. This layer can further extend to include other monitoring
agents to monitor the health of OpenFlow data paths and other
non-OpenFlow devices.

The Topology agent(Topo agent) periodically(every fifteen
minutes) requests OF agent for updated topology. As men-
tioned earlier, OF agent uses LLDP to discover topology and



relays back to Topo agent. While a ’UP’ to ’DOWN’ port
status change does not trigger a complete discovery, a status
change from ’DOWN’ to ’UP’ triggers Topo agent to initialise
a complete link discovery.

Other agents in the monitoring layer are (a) the Port-stat
agent(Ps agent) for monitoring and collecting port counter
information of all ports every fifteen secs,(b) the Flow-
stat agent(Fsa agent) for querying flow statistics of flows
provisioned on a data paths’ ports and (c) Flow-table
agent(Fta agent) to receive flow-removed message and update
flow’s information in the knowledge base. While port statistics
are stored in the knowledge base, flow statistics need not be
stored in the knowledge base, instead are only used by the
rerouting agent to estimate the flow demand.

D. Management layer
While the agents in the monitoring layer collect, process and
store network information, agents in the management layer
consume this information to manage the network during a
network abnormality. Currently, we have implemented agents
to handle congestion and link failure.

Link-Down agent(LD agent) addresses link failures by up-
dating port and neighbour information in the knowledge base.

Reroute agent(RR agent) is notified by
KB agent(managing the knowledge base) of possible
network congestion. RR agent then identifies a subset of
affected flows to reroute on alternate paths. The agent
reasons the flow rerouting problem as a constraint satisfaction
problem, thus eliminating the possibility of shifting network
congestion to other network parts. We have discussed the
agent’s operation in our previous paper [24].

E. Knowledge
Agents in the agent system need a formal representation of
language for communication. An ontology of a domain is a
formal specification of concepts and relations in a domain
while defining vocabulary for interaction and implementation
[25].

Formal representation of knowledge allows automated rea-
soning, where reasoning is deducing new facts from existing
facts while identifying inconsistencies. Object-oriented pro-
gramming handle facts based on the domain-specific rules
programmed as methods and are incapable of reasoning or
identification of inconsistencies in data [26]. KB agent cap-
tures information about switches, links, ports, flows, flow
rules, flow tables and properties such as a link down and
congestion and flow association in the form of an OWL
[27] ontology. To visually demonstrate components of the
knowledge base, we use a handy tool- Protégé-2000 [28] to
present a high-level ontology representation in Fig.2.

F. Agent interactions
We now discuss interactions between agents and the informa-
tion they exchange in the context of three fundamental network
functions - provisioning, maintaining, and monitoring the
network. Messages exchanged between agents are of format

Fig. 2: Knowledge Base

< messagetype >::< information >. Please note that the
agent system can include additional agents and is not limited
to only these functions.

1) Provisioning flows
OF agent receives an packet-in message from the data

plane. Upon parsing the packet, relevant information(e.g.,
Source IP and Destination IP) is passed on to the IP
Path agent in format path::(srcaddr,dstaddr). IP Path agent
uses a recent copy of topology to compute a path and
responds to OF agent in format path::(srcaddr, dstaddr) ::
[(dpa, pra), (dpb, prb), ..., (dpn, prn)] where srcaddr is
source address, dstaddr is destination address, (dpi, prj) is
(dpid,outport) tuple of intermediate data path.

Every new flow configured triggers IP Path agent to push
this information to the knowledge base. Agent interactions
while provisioning a flow are shown in Fig.3.

Fig. 3: Provisioning a new flow

2) Monitoring network
Agents in the monitoring layer periodically trigger

OF agent and gather network information. Network informa-
tion includes various ports’ operational status, port counters
and topology information. Topo agent requests OF agent to



discover links; OF agent, in turn, generates a Link Layer
Discovery Protocol(LLDP) packets and relays this information
back to Topo agent. Similarly, OF agent relays port counters
gathered back to Ps agent. In Fig.4, we use ’mon agent’ as a
generic name for all agents in the monitoring layer.

Fig. 4: Monitoring network

3) Manage network resources
Two common network abnormalities are a) link failure and

b) congestion. In case of congestion, there is no explicit
notification from the data plane; KB agent identifies and flags
congested links to RR agent. In Fig. 5a, one can see KB agent
in action. Upon provided with a fact ’has TxBytes = 91234’ ,
the KB agent infers congestion(highlighted in yellow).

Upon receiving information from KB agent, RR agent
fetches flow stats by querying OF agent and attempts to
reroute flows to an alternate path within the constraints of
the available link bandwidth. Unlike network congestion, a
link-down incident is registered when LD agent receives a
port-down message from OF agent. LD agent updates the
internal network state stored in the knowledge base, as shown
in Fig.6a. LD agent fetches affected flows from the knowledge
base and reroutes affected flows. It has to be noted that
the system re-configures flows upon receiving a port-down
message and not a packet-in message.

IV. IMPLEMENTATION AND TESTING

The use-cases aim to demonstrate a multi-agent controller
in action as a centralised and distributed controller.

A. SetUp
This section presents a prototype of the proposed multi-
agent controller, MASDN. We chose Osbrain for ease of
quick prototyping. Osbrain [29] is a python based multi-agent
platform.

Agents use messaging queue- ZeroMQ [30] and Pyro4
[31] for communication. When deployed on a single physical
node, the agents communicate via Inter-Process Communi-
cation(IPC), otherwise use TCP in multi-node environments.
OF agent is a multi-threaded agent, running a ZMQ commu-
nication loop and an asyncio [32] event loop on dedicated
threads. While the ZMQ loop facilitates inter-agent messag-
ing, the asyncio event loop connects and handles incoming
OpenFlow messages from the data plane. OF agent uses a
lightweight python library PyOF [33] to parse OpenFlow
packets. This prototype uses OpenFlow v.1.3.

Since the MASDN controller can be centralised or dis-
tributed, we tested both variations of deploying the controller.
Fig.7 shows multi-node deployment where the agents are

(a) KB agent inferring congestion

(b) end-to-end communication

Fig. 5: Handling congestion

(a) KB agent inferring a port is down

(b) end-to-end communication

Fig. 6: Handling Link down events

deployed on individual Raspberry Pi Model B [34] devices.
We emulated the topology in mininet [35].

B. Tests
We measured flow-provisioning latency using packet capture
timestamps in Wireshark [36]. To measure controller response
time(in milliseconds), we triggered five TCP flows and mea-
sured the flow-setup duration as the time elapsed between
each flow’s incoming packet-in message and outgoing flow-
mod message. The flow setup times for a set of twenty-five
runs for the modular controller, when configured on a single
machine(PS m), on Raspberry Pis(PS r), and Ryu(Ryu), are
captured in Fig. 8a.

Ryu performs relatively better than a modular controller.
Though inter-agent communication contributes to latency, we
also believe that enhancing OF agent’s design to handle
multiple simultaneous connections can reduce latency. Our



Fig. 7: Multi-node setup using Raspberry Pis

current scope of work does not presently address this. We will
include it in our future work to improve the response time of
the modular controller.

For the next test, Fig.8b, we calculated the time the con-
troller took to re-provision flows in case of link failures. The
latency is calculated based on the timestamp of the incoming
port-down message and the corresponding flow-mod message
sent by the controller.

Though the MASDN prototype handles link failures proac-
tively and steers traffic of affected flows at the prompt of
the port-down message, latency is still an issue that must be
addressed.

V. RELATED WORK

We now discuss some existing work towards the control
plane’s disintegration. Most of the existing modular SDN
control plane architecture designs adopt a micro-services ap-
proach, not an agent-based design like the proposed archi-
tecture. ZeroMQ [37] aims to distribute the control function
by moving some of the control features back to the data
plane. Network logic is split into lightweight control modules
executed on individual processes. µONOS [38] proposes a
new generation ONOS controller. The controller functions
are decomposed as microservices and deployed on the cloud.
µABNO [37] also proposes a microservices-based SDN con-
troller for optical networks. Components synchronise using
gRPC protocols. Comer [17] proposes micro-services-based
controller architecture to outsource packet processing to an
external entity using Apache Kafka [39]message distribution
platform [40] propose multi-agent system-based autonomic
network management is proposed with the actual implemen-
tation of agents left for future work. In our proposed work,
we present a prototype and demonstrate a multi-agent-based
SDN controller in action.

(a) flow setup time for five flows

(b) comparison for link-fail and recovery

Fig. 8: Preliminary test results

There has also been some recent work on the knowledge
representation front for SDN. Authors of [41], [42] propose
detailed ontology for SDN. Zhou [42] recursively fetches
network information to build a knowledge graph and employs
the SPARQL query engine to make inferences. [41] proposes
services to update the knowledge graph and employs SPARQL
to query knowledge. In the proposed work, we build a knowl-
edge base to detect inconsistencies in ontology and network
abnormalities such as link-down events and congestion events
while leaving functions like pathfinding and resolving network
abnormalities to agents.

VI. DISCUSSION AND CONCLUSION

This paper presented a novel way to build and deploy a
modular SDN controller. We believe that an SDN controller
redesigned as a multi-agent system provides the below advan-
tages:

1) a step towards Cognitive SDN: By enhancing agents
to learn, reason and communicate, we build intelligent
agents and take a step towards building a Cognitive SDN
control plane.

2) end-device and cloud-ready: A modular controller can be
both physically centralised and distributed. In this paper,
we have demonstrated both approaches. Furthermore,



we can containerise the agents as docker containers for
Cloud deployment. Since the agents communicate using
ZeroMQ, this is a potential deployment choice.

3) scalability and resources allocation: Adding new agents
to this prototype is relatively straightforward. Allocation
of dedicated resources to complex agents such as those
employing machine learning techniques to classify traffic
or predict loads is possible.

4) independent of OpenFlow: SBI layer can be extended
to accommodate the NETCONF [43] agent to manage
traditional networks in hybrid networks. All the agents
in SBI layer can communicate with other agents in the
agent system for decision-making.

A multi-Agent system does not come without challenges.
Unlike monolithic systems, distributed systems inherently have
higher latency based on the communication protocol. Also,
agent synchronisation is essential to maintain a consistent
network view. In our future work, we aim to address these
issues.
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