

Groundwater self-supply safety and associated risk factors for faecal contamination in urban Indonesia

Franziska Genter, Gita Lestari Putri, Mochamad Adhiraga Pratama, Cindy Priadi, Juliet Willetts, Tim Foster

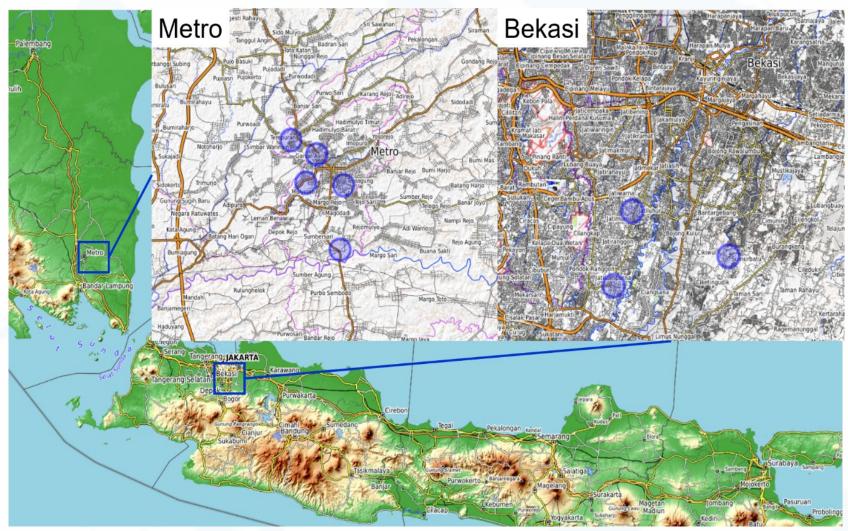
University of Technology Sydney University of Indonesia

Self-supply

- Owned, invested, managed by household
- On-premises
- 41 million people in urban Indonesia

Safely-managed? Accessible on-premises, but free from contamination?

To what extent is groundwater self-supply free from faecal contamination?
What are risk factors of faecal contamination in self-supply at source and point-of-use?



Study area

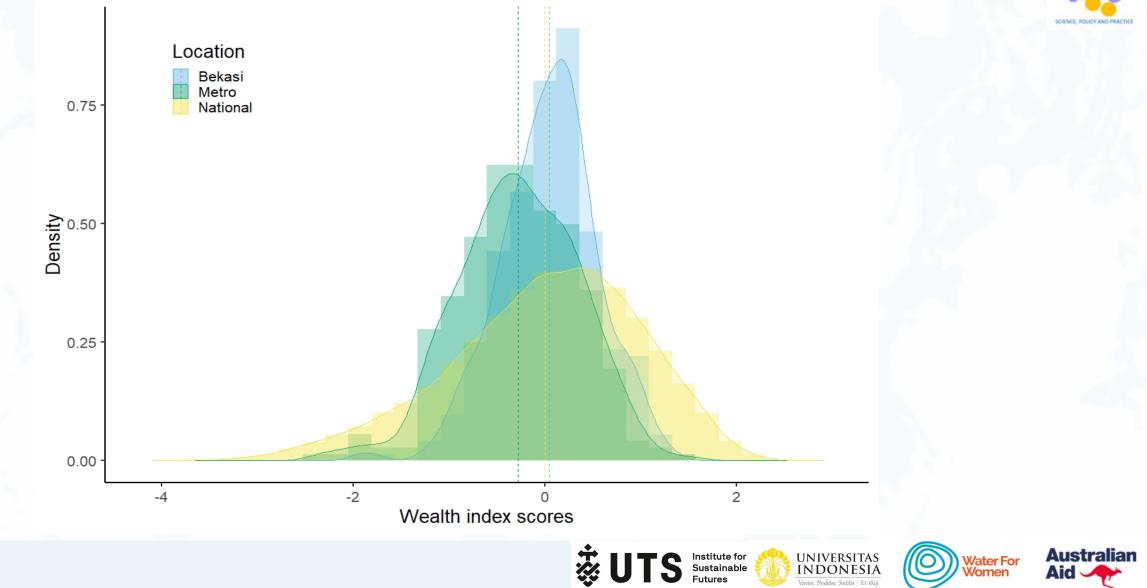
Bekasi

- Jatirangga
- Jatiluhur
- Sumur Batu

Metro

Institute for Sustainable Futures

- Hadimulyo Barat
- Rejomulyo
- Iringmulyo
- Ganjarasri
- Karangrejo



UNC WATER AND HEALTH CONFERENCE 2021 SCIENCE, POLICY AND PRACTICE

Wealth distribution

Data collection

Household survey and sanitary inspection300 households in Bekasi and Metro

Water quality

	Water samples		Point-of-use samples
Bekasi	n=240	n=222	n=79
Metro	n=296	n=271	n=92

Faecal indicator bacteria *Escherichia coli (E.coli)*IDEXX Colilert-18 and Quanti-Tray/2000 system

Season

- Bekasi: Feb-Mar 2020, wet season
- Metro: Oct-Nov 2020, dry season

<image>

Methods

Predictors of faecal contamination Indirect factor Indirect factor Wealth Wealth • Hazard factor Hazard factor Sanitation systems (number and distance) *E.coli* concentration in water source ٠ Animals **Pathway factor Pathway factor** Well protection (borehole, unprotected and Transport (Piped conveyance vs. manual protected dug well) collection Infrastructure (borehole depth, concrete platform, • Treatment and storage (coverage container) • lifting device) Faecal contamination at source Faecal contamination at point-of-use Adapted from Cronin et al. 2017

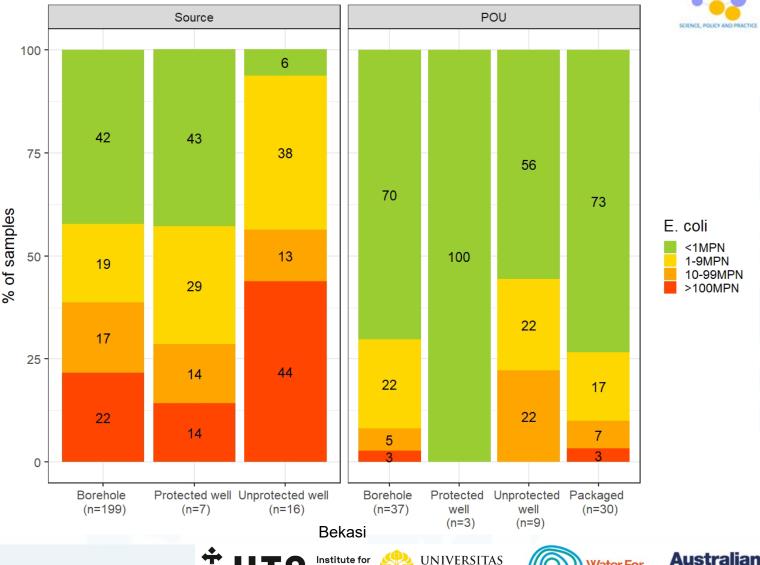
Water For

UNIVERSITAS Indonesia Australian

Aid

Methods

Improved water quality at point-of-use


E.coli presence >1 MPN

Bekasi

- 60% (n=134/222) Source:
- 29% (n=23/79) POU:
- Paired samples Wilcoxon: p<0.001

Metro

- 72% (n=195/271) Source:
- POU: 32% (n=29/92)
- Paired samples Wilcoxon: p<0.001

Institute for

Sustainable

INDONESIA

%

Water For

Women

Aid

Water quality varies by wealth

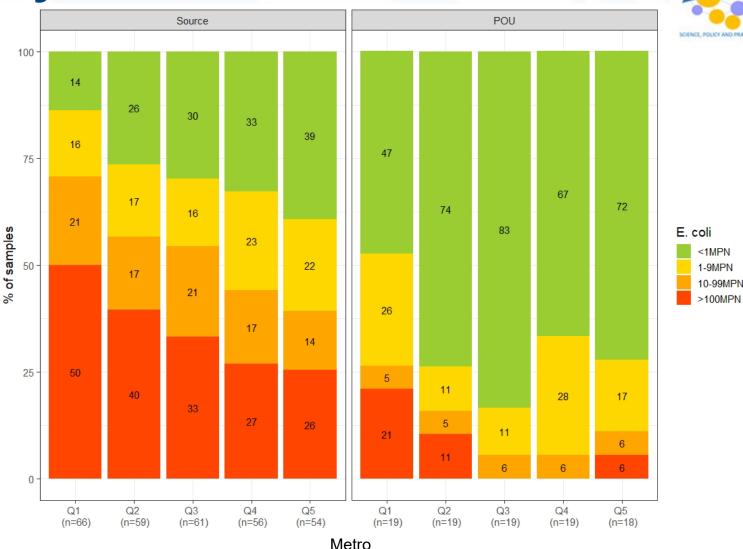
Wealth and water quality

Spearman's rank

rho=0.025, p=0.704

rho=-0.150, p=0.150

Bekasi


=

- Source:
- POU:

Metro

- Source:
- POU:

rho=-0.240, **p<0.001** rho=-0.150, p=0.150

Univariate analysis: Significant risk factors

		Source	Point-of-use			
Bekasi	Risk factor	OR [95% CI]	p-value	Risk factor	OR [95% CI]	p-value
>1 MPN	Well type	10.96 [2.16-200.05]	0.022	Source quality	1.02 [1.01-1.05]	0.035
>100 MPN	Well type Borehole depth	2.82 [0.96-8.01] 0.95 [0.90-1.00]	0.051 0.044			
Metro						
	Well type Wealth Lifting device	4.08 [2.27-7.41] 0.25 [0.09-0.61] 3.88 [1.25-17.10]	<0.001 0.003 0.036			
>100 MPN	Well type Wealth Lifting device	5.62 [2.76-12.72] 0.34 [0.15-0.76] 2.27 [1.08-4.85]	<0.001 0.010 0.032			

Ţ

Multivariate analysis: Significant risk factors

	Source					Point-of-use				
	All self-supply			Boreholes			Dug wells			
Bekasi	Risk factor	OR [95% CI]	p-value	Risk factor	OR [95% CI]	p-value		Risk factor	OR [95% CI]	p-value
>1 MPN	Well type	12.37 [2.40-227.21]	0.016					Source quality	1.02 [1.01-1.05]	0.032
>100 MPN	Well type	3.16 [1.06-9.21]	0.034	Depth	0.94 [0.89-0.99]	0.026				
Metro										
>1 MPN	Well type	3.64 [1.96-6.80]	<0.001							
>100 MPN		5.00 [2.38-11.60] 0.52 [0.29-0.91]				0.021 0.049				

F

Ţ

Conclusion

Self-supply water quality:

- Faecal contamination of self-supply sources
- Widespread boiling practice improves water quality at point-of-use

Predictors of faecal contamination:

- Source water: Wealth, source type, borehole depth, water lifting device, concrete platform
- Point-of-use: Source water quality

Implications:

- Financial support to invest in better self-supply infrastructure
- Education about water quality, proper water treatment and storage
- Monitoring of self-supply water quality at source and point-of-use
- Role of self-supply vs. municipal piped systems

Acknowledgement

- Enumerators, Universitas Indonesia
- Universitas Muhammadiyah Metro
- Angela Harris, NCSU
- Water for Women Fund/DFAT
- Participants, households Bekasi and Metro

