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Abstract: Parkinson’s disease (PD) is the most common form of Parkinsonism, which is a group of
neurological disorders with PD-like motor impairments. The disease affects over 6 million people
worldwide and is characterized by motor and non-motor symptoms. The affected person has trouble
in controlling movements, which may affect simple daily-life tasks, such as typing on a computer.
We propose the application of a modified SqueezeNet convolutional neural network (CNN) for
detecting PD based on the subject’s key-typing patterns. First, the data are pre-processed using
data standardization and the Synthetic Minority Oversampling Technique (SMOTE), and then a
Continuous Wavelet Transformation is applied to generate spectrograms used for training and testing
a modified SqueezeNet model. The modified SqueezeNet model achieved an accuracy of 90%,
representing a noticeable improvement in comparison to other approaches.

Keywords: Parkinson’s disease; neurodegeneration; early diagnosis; key typing; deep learning;
convolutional network

1. Introduction

Parkinson’s disease (PD) is a chronic and progressive movement disorder [1], being
the second most prevalent neurodegenerative disorder in the world. It is believed that the
disease affects over 1% of the world‘s population, with its prevalence expected to double
by 2030 [2]. The PD progression goes slowly, happening in several stages based on the
affected brain region [3]. The disease’s early symptoms manifest in the disease’s middle
stage, which correspond to a degeneration of 50%, or more, of the dopaminergic neuros in
the Substantia Nigra part of the human brain [4].

In clinical environments, the common process of a PD diagnosis is performed based
on the patient’s symptomatic history examination, where prodromal features, for instance,
rapid eye movement, sleep disorder, hyposmia, and constipation; movement impairments,
such as tremor, stiffness, and slowness [5]; psychological or cognitive disorders, such as,
for example, anxiety, depression, and cognitive decline [6]; and family history, because 5 to
15% of the cases manifest in a family-related form [7], are taken into account.

With the progress of technology, each day more Artificial Intelligence (AI)-based so-
lutions are allowing an automated recognition of many diseases [8–10], mainly a better
understanding of PD [11], allowing the early diagnostics of the disease. Each year, numerous
studies are published aiming to speed up the diagnosis [12] and management [13] of PD
in order to allow a better patient quality of life. The motor symptoms characteristic of the
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disease affect simple daily activities performed by patients, such as typing on a computer’s
keyboard [14,15]. In view of that, and aligned to the advances in AI-based solutions and
current computational power, researchers [16–18] are aiming to find new approaches capable
of detecting the motor impairments characteristic of PD [19].

In this study, we are focusing on the frequency aspect and how it influences the key-
board typing process by applying a convolutional neural network (CNN) on spectrograms
generated from key-typing features of individuals belonging to two classes: subjects with
PD and healthy (normal) individuals.

For the development of the proposed approach, the database [20] was applied as
the data source. The presented database consists of 214 fields from which 202 features
were extracted from 217 individuals from which 162 are PD patients and 55 are healthy
individuals. Dekelly, et al. [20] divided the computer keyboard into three regions, left (L),
right (R), and space (S), while measuring the pressure time on individual regions, such as
the pressure on consecutive regions. From the collected values, 202 features, such as the
flight time, mean pressure time, mean flight time, and others, were generated.

Due to the unbalanced nature of the dataset, a Synthetic Minority Oversampling
Technique (SMOTE) was applied, increasing the volume of the data to 324. The values were
then normalized using the MinMax technique and later applied to a Continuous Wavelet
Transformer (CWT) in order to obtain the spectrogram of the data. The resulting images
were applied to train a modified SqueezeNet model with seven fire modules and seven
MaxPooling2D modules placed interleaved with each other.

The main contributions of this article are:

• A new approach for detecting Parkinson’s disease based on modifying a SqueezeNet
CNN model.

• A new approach for detecting the symptoms of PD based on keyboard input, focusing
on converting the acquired data into images by converting the input values into
wavelets using a CWT in order to improve the results when detecting PD based on
deep learning, which is an alternative approach to [21].

This article is organized into the following sections:Section 2, where similar works are
described; Section 3, where the methods used are described; Section 4, where the obtained
results and their assessment are presented; and Section 5, where the main conclusions are
outlined and future work is suggested.

2. Related Works

In this section, works developed based on similar approaches aiming to detect PD are
introduced and discussed.

Islam et al. [22] applied a four-convolutional and two fully connected layers model
to obtain the detection of PD based on spiral drawing. The CNN layers were responsible
for extracting the features of the used images and classifying them. The solution also
applied data augmentation, which improved its performance. As a result, they obtained an
accuracy of 96.64%.

On PD patients, the neurons of the SN region are deprived of their neuronal functions,
which causes a striatal dopamine deficiency. Thus, Sivaranjini et al. [23] proposed the usage
of Magnetic Resonance Imaging (MRI), which is able to capture the structural changes in
the brain caused by a dopamine deficiency, to train an AlexNet CNN model. The proposed
solution achieved 88.9% accuracy.

Gait information was used in [24] with a 1D CNN model (1D-Convnet) in order to
build a deep neural network (DNN) classifier. The proposed classifier processed 18 1D
signals originating from foot sensors attached to the subjects, which were responsible for
measuring the vertical ground reaction force (VGRF). The first part of the solution consisted
of 18 parallel 1D-Convnets that represented the system’s input. The second part was a
fully connected network responsible for merging the 18 signals in order to obtain a final
classification. As a result, 98.7% accuracy was obtained.
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Shivangi et al. [25] applied VGFR spectrum detector and voice impairment classifier
models to detect PD in its early stages. As input, two different approaches were tested.
The first one used as an input was a series of spectrograms generated from gait signals,
and in the second approach, a deep dense artificial neural network (ANN) of a voice
recording was used. The experiments performed demonstrated a higher accuracy for the
ANN-based approach, achieving an accuracy of 89.1% for the voice impairment classifier,
while the gait spectrogram images resulted in 88.1% accuracy.

A hybrid two-stage approach for detecting PD was proposed in [26]. The proposed
solution counted 514 spiral drawings made by PD-affected and healthy individuals. For the
purpose of diagnosis, a SqueezeNet CNN model was applied for extracting features of the
drawings, which were later classified using a Support Vector Machine (SVM). As a result,
the solution obtained 91.26% accuracy, leading to a good improvement when compared to
other solutions explored in the study.

In [27], CNN data acquired using sensors from the spiral drawing movement process
were applied. The inputs for the proposed CNN model consisted of a module of an
applied Fast Fourier’s transform (FFT) in the range of frequencies between 0 and 25 Hz.
The discrimination capability of different directions during the drawing movements on
the X and Y axes were analyzed to establish the best result. For its best result, the solution
presented 96.5% accuracy.

The HandPd dataset, which contains images of handwritten spirals and a Meander
template of PD and healthy individuals, was used by [28] in order to detect Parkinson’s
disease in its early stages. The images were applied to a transfer learning–deep learning
process which aimed to detect the disease. The proposed method obtained 98.24% accuracy
on the spiral image set and 98.11% on the Meander set.

In [29], three machine learning algorithms were applied on the collected data from the
spiral drawing process using a computer mouse in order to detect PD in its early stages.
To achieve this goal, three selected drawings were chosen, the Archimedes spiral, triangle,
and cube. As a result, 96% accuracy was obtained for the triangle drawing, 100% for the
cube drawing, and 100% for the spiral drawing and 100% sensitivity on all three patterns.
However, due to the small size of the dataset, the perfect results might have been a result
of over-fitting.

Handwritten spiral and wave drawings made by PD and healthy individuals were
used in [30] to train and test CNN models. The used dataset was composed of drawings
made by 55 individuals. As a result, 93.3% accuracy was obtained.

To detect PD, in [31], a Leap Motion device was used to acquire motion data from
volunteers while performing three motor tasks: finger tapping, finger opening–closing,
and pronation–supination of the hands. The input data were then used to train a one-
dimensional (1D) CNN model. The features learned by the CNN model were then applied
to three machine learning algorithms, mainly the KNN, SVM, DT, and RF. For its best result,
the solution achieved 85.1% accuracy.

In [32], a VGG-19 model was applied to detect PD. To train and test the proposed
solution, the Kaggle dataset was used, which contains 102 images of handwritten spirals
and 102 images of handwritten waves. The data were submitted to the process of pre-
processing, where they were resized and passed through a process of data augmentation.
As a result, the proposed solution achieved 88% accuracy and 89% sensitivity.

A new technique to detect PD based on wavelets-extracted features and machine
learning paradigms was presented in [16]. To achieve the aimed goal, the volunteers,
Parkinson’s patients and healthy individuals, were requested to perform typing tasks,
from which the flight time and hold time of each pressed key were used to generate the
used dataset. As a result, the study reported 100% accuracy.

Discriminating visual clues were extracted using CNN models from handwritten data
in [33] in order to detect PD. The proposed solution obtained 83% accuracy, proving to be a
good solution for the problem under study.



Biomedicines 2022, 10, 2746 4 of 15

In [34], an accuracy of more than 87% was obtained when detecting PD based on
handwriting dynamic data acquired from individuals when submitted to tasks defined to
measure their abilities related to writing skills by applying deep learning architectures.

The work presented in [35] used voice signals for detecting PD by applying 18 features
extraction techniques on the input signals, which were obtained from two microphone
channels of an acoustic cardioid and a smartphone. The proposed solution obtained 94.55%
accuracy in its best performance.

In summarizing, even with the high number of studies developed every year and
countless efforts to detect PD automatically, many models fail when applied in a real-life
environment, due to the complexity and variety of the disease symptoms. Table 1 offers an
overview of the results obtained by the identified similar studies.

Table 1. Summary of the identified related work.

Reference Input Data Algorithms Accuracy

[22] Spiral drawing CNN 96.64%
[23] MRI images AlexNet 88.9%
[24] Sensors signals DNN 98.7%
[25] Voice impairment ANNs 89.1%
[26] Spiral drawing SqueezeNet 91.26%
[27] Sensors signals CNN 96.5%
[28] Spiral drawing CNN 98.24%
[29] Spiral drawing ML 96%
[30] Drawing CNN 93.3%
[31] Leap Motion CNN 85.1%
[32] Spiral drawing VGG-19 88%
[16] Typing tasks ML 100%
[33] Handwritten CNN 83%
[36] Hand-drawn FOPF 74.63%
[34] Handwritten Deep Learning 87%

3. Methodology

In this section, the theoretical and methodological concepts needed to better under-
stand the proposed solution are presented.

3.1. Workflow

The main steps for the development of this study are presented in Figure 1, which
offers a visual summary of the procedures taken in this study.

Figure 1. Fluxogram of the proposed solution.
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The steps are summarized below:

1. Data preparation, with features selection, data balancing with SMOTE technique, and
data isolation (Sections 3.2 and 3.3).

2. Image generation applying the Continuous Wavelet Transform (Section 3.4).
3. The modified SqueezeNet structure is presented (Section 3.7).

3.2. Dataset

Keyboard Taps Data from Kaggle and MIT is a dataset developed by [21], composed of
key-pressing data collected from 227 healthy and PD-affected individuals from Canada,
United States, Australia, and United Kingdom. The author divided the computer keyboard
into 3 regions: the left region (L), right region (R), and space bar region (S), Figure 2.

Figure 2. Keyboard collection structure used to build the used experimental dataset.

The software developed in [21], Tappy, kept tracking the normal usage of the com-
puter’s keyboard by the volunteers of the study, storing the input data in text files, Figure 3,
which stored the individual‘s identification code (ID), the date (DT) and time (TM) when
the key was pressed, the pressing region (SD), the hold time (PT) in milliseconds (ms),
the region change (RC), the latency time (TR1), the flight time between subsequent keys
(TR2). Other features which were not considered for this study included disease manifesta-
tion side, body side which is most affected by the disease motor symptoms, and the disease
stage according to the Unified Parkinson’s Disease Rating Scale (UPDRS).

Figure 3. Structure of the used dataset.

For this study, an updated version based on the base structure of the database was
used, where 202 features were generated from regions L, R, and change in regions based on
the descriptive statistics, such as mean, standard deviation, and kurtosis, to generate the
following features:

• Flight time mean;
• Flight time standard deviation;
• Flight time kurtosis;
• Flight time skew;
• Flight time percentile 10th;
• Flight time percentile 20th;
• Flight time percentile 40th;
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• Flight time percentile 60th;
• Flight time percentile 70th;
• Flight time percentile 80th;
• Flight time percentile 90;
• Hold time mean;
• Hold time standard deviation;
• Hold time kurtosis;
• Hold time skew;
• Hold time percentile 10th;
• Hold time percentile 20th;
• Hold time percentile 40th;
• Hold time percentile 60th;
• Hold time percentile 70th;
• Hold time percentile 80th;
• Hold time percentile 90th;
• Latency time mean;
• Latency time standard deviation;
• Latency time kurtosis;
• Latency time skew;
• Latency time percentile 10th;
• Latency time percentile 20th;
• Latency time percentile 40th;
• Latency time percentile 60th;
• Latency time percentile 70th;
• Latency time percentile 80th;
• Latency time percentile 90th;
• Total count;
• Mean difference L/R hold time;
• Mean difference LR/RL latency time;
• Mean difference LL/RR latency time.

Those values were then stored as a csv file for the image generation process.

3.3. SMOTE

Unbalanced data are a recurrent issue in classification tasks, being found in numerous
applications [37]. To balance the data and overcome eventual issues caused by such nature of
the input set techniques, such as the Synthetic Minority Oversampling Technique (SMOTE),
are applied.

SMOTE generates data for the minority class by applying a K-nearest neighbors (K-
NN) approach, although, differently from other KNN-based oversampling approaches
where the synthetic values are randomly generated directing to its k-nearest neighbors,
the SMOTE technique consists of assigning weights to each neighbor direction, assigning
smaller weights for positions that can generate over generalization [38].

Mathematically, the SMOTE technique can be expressed by a given minority class
A, where for each x ∈ A the Euclidean distance between x and the other samples of A
are extracted. Later, a set for samples from N are randomly chosen from its K-nearest
neighbors, constructing a set A1.

For each xk inA1, Equation (1) is applied to generate a new oversampled set.

x′ = x + rand(0, 1) ∗ |x− xk| (1)

3.4. Continuous Wavelet Transform

Continuous Wavelet Transform (CWT) offers a straightforward approach for visual-
izing the signal behavior on frequency domain; CWT consists of a correlation measure
between a signal and multiple wavelets deriving from the base one. It can be obtained
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by changing the size of the analysis window, translating it on time, multiplying it by the
input signal, and integrating it across the time intervals. We can express such concept
mathematically by Equation (2), where dZ(a, b) represents the wavelet coefficient of the
continuous variable Z = {Z(t), t ∈ R} for a given scale a and shift b.

dZ(a, b) =
1√
a

∫
R

ψ(
t
a
− b)Z(t)dt =< ψλ, Z >L2(R) (2)

For discrete input signals, the discretized wavelet coefficient eZ(a, b) can be obtained
by applying the Riemman sum. Equation (3) is obtained, in such cases, when the function
ψ satisfies M ∈

∫
e∗. ∫

R
tmψ(t)dt = 0 for all m ∈ {0, 1, . . . , M} (3)

Given a signal x(t), its CWT is given by Equation (4), where W(λ, t) is the wavelet
coefficient. ψ(t) corresponds to the functional form of the reference wavelet and ψ∗ its
complex conjugate, λ corresponds to the scale responsible for changing the frequency being
measured by a given wavelet.

W(λ, t) =
∫ ∞

−∞
x(τ)ψ∗λ,t(τ)dτ. (4)

The functional form of the mother wavelet ψ can be represented by Equation (5)

ψλ,t(τ) =
1√
λ

ψ

(
τ − t

λ

)
(5)

3.5. Convolutional Neural Network

In a standard manner, a CNN, Figure 4, has an input layer, three convolutional layers,
two max-pooling layers, and one fully connected layer. An input layer receives the image
from which the pixels contribute to the output through a set of kernel filters, also known as
weights or mask. Typically, the applied filter is fixed, depending on the specified network
layer, the output being a result of bi-dimensional convolutional operations:

U = conv2d (X, W) (6)

where X corresponds to the input image, U the output image, and W the weight matrix or
2D filter matrix.

Figure 4. Common architecture of a Convolutional Neural Network.

A non-linear function σ is also added to the linear part of U layer, in that manner the
output is obtained:

zmn = σ(umn + b), or Z = σ(W ? X + B) (7)
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where σ represents the d activation function such as Sigmoid, B represents the bias for the
layer, and Z represents a feature map.

For a given 2D image (I), the convolution of the feature map (X) by the weight matrix
(W) in a given point (I(p, q)) is:

Up,q = (W ? X)p,q =
r−1

∑
m=0

c−1

∑
n=0

Wm,nXp−m,q−n (8)

3.6. SqueezeNet

Mentioned for the first time in [39], SqueezeNet consists of a network designed with
an architecture 50 times smaller than AlexNet network, although equally powerful and
3 times faster. SqueezeNet is vastly used in medical field due to its performance and fast
execution, as we can see in [40].

A SqueezeNet model is composed of a standalone convolutional layer, responsible for
receiving the input image, followed by 8 fire modules, and ending with a convolutional
layer, Figure 5. The network is characterized by a series of “squeeze”, composed by 1× 1
filters, and “expand”, composed by a series of 1× 1 and 3× 3 filters, layers. The joint of
both layers is named Fire module.

Figure 5. Architecture of a SqueezeNet model.

3.7. Modified SqueezeNet

During tests applying a SqueezeNet model, it was observed that such architecture
outperformed other applied models; however, the resulted metrics still presented inferior
values than those desired. In view of that, a set of trials was performed in changing the
original SqueezeNet architecture, aiming to maximize the performance of the network.
As a result of such trials, an improved architecture composed of 1 input layer, 1 batch
normalization layer, 7 Fire modules, Table 2, 6 pooling layers with a pool size of 2× 2, 1
global pooling layer, and 1 fully connected layer was generated(see Figure 6).
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Table 2. Fire modules.

Fire Module Squeeze Size Expand Size

Fire 1 24 48
Fire 2 48 96
Fire 3 64 128
Fire 4 64 256
Fire 5 64 128
Fire 6 48 96
Fire 7 24 48

Figure 6. Modified SqueezeNet structure.

3.8. Performance Evaluation

To evaluate the performance of the proposed solution, we use the confusion matrix for
the binary classification problem under study, which is presented in Table 3.

Table 3. Confusion matrix built for the binary classification problem under analysis.

Prediction
True Class +1 −1

+1 TP FP
−1 FN TN

Here, TP represents the number of true-positive samples, TN represents the number of true-negative samples, FP
represents the number of false-positive samples, and FN represents the number of false-negative samples.

Many performance measures can be obtained from the confusion matrix, such as:
Sensitivity, which is the rate of data correctly classified as positive observations;
Specificity, which is the rate of data correctly classified as negative observations.
F1-Score is applied to establish the performance of a binary classifier as the harmonic

mean of precision (PPV) and recall.
The validation loss (valid loss) is obtained by running the neural network forward

over the inputs (xi), comparing the outputs (ŷi) with the true values, i.e., the ground-truth
values, (yi) by applying a loss function defined as:

J =
1
N

i=1

∑
N

L(ŷi, yi) (9)
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where L represents the individual loss function based on the differences in predicted and
target values, and N the number of generated outputs.

4. Experiments and Results

This section will approach the computational and mathematical experiments per-
formed for the development of this work.

4.1. Data Preparation

The dataset was stored in a csv file, with 215 columns containing information, such
as the subject’s identification, and attributes, such as gender, state of Parkinson’s, tremors,
and diagnosis year. Initially, those values are excluded from the set of features from the
collection, once only the numerical values are relevant for this study.

The 201 data rows, each belonging to different individuals, are mapped and converted
into a single matrix M(217, 202), and the matrix’s points distribution can be seen in Figure 7.

Figure 7. Dataset points distribution according to health status.

Due to the highly unbalanced nature of the data, the matrix M is submitted to an
oversampling process where a SMOTE technique was applied with a random generation
seed of 42. This process results in a matrix M(321, 212), from which 160 are Parkinson’s
and 161 are healthy, as presented in Figure 8.

Figure 8. Oversampled dataset points distribution according to health status.

4.2. Image Dataset

The rows of matrix M are then isolated and separated into two sets of vectors, healthy
and parkinson, which are normalized with a MinMaxScale ranging the values in the interval
[0, 1]. The vectors are then applied to the image generation by applying scales in the interval
A = [0, 20] and the Morlet Wavelet following Equation (10). The sample images of the time
domain and frequency domain data can be seen in Figure 9.
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ψ(t) = exp−
t2
2 cos(5t) (10)

To increase the volume of the data, and thus improving the precision of the model,
the newly generated images are submitted to a data augmentation process, where the
morphological transformations rescale, rotation at the 0 to 40 range, horizontal flip, 0 to 0.2
height shift range, shear at 0 to 0.2 range, and zoom ranging from 0 to 0.2. Those processes
increased the input data volume from 217 to 712 images in both classes. The data were
then split into three datasets, train, test, and valid, used for training, testing, and validating
the model.

Figure 9. Examples of time and frequency domain data in the dataset.

4.3. Experimental Setting

For the development of this work, a Colab GPU, with 13 GB of RAM, running Ubuntu
18.04.3 LTS, was used. For the implementation of the proposed solution, the Python 3
programming language was used, and to assess its efficiency, metrics such as accuracy,
recall, F1-Score, and the binary confusion matrix were adopted.

4.4. Training

The training process was performed applying a batch size of 8 with images of 240×
240× 3, Figure 10, performing 20 steps per epoch in 35 epochs and applying the early stop by
valid loss method. This measures the validation loss obtained during each epoch, stopping
the process of training once the valid loss value reached a point lower than the established
threshold of 0.4, where the model reached an accuracy of 90% with a valid loss of 0.3353,
which was plotted in Figure 11, from which was possible to observe the convergence of the
valid loss and train loss during the training process.

Figure 10. Batch sample of images used for model training.



Biomedicines 2022, 10, 2746 12 of 15

Figure 11. Validation loss and model accuracy by epoch during the training process.

4.5. Results

For an easier view of the individual performance by class, the obtained metrics were
placed in Table 4 and later applied for the construction of the confusion matrix, Figure 12.

From the confusion matrix, it was possible to observe that from the 71 images applied
to test the final trained model, 35 belonging to the healthy class were correctly classified,
while 9 were wrongly classified as Parkinson’s disease. On the other hand, only 5 of the
35 images belonging to the Parkinson’s disease class were wrongly classified as healthy,
while 30 were correctly detected, thus achieving, on average, 90% accuracy with a 95%
confidence interval of [0.22, 0.4] and a mean of 0.3.

Figure 12. Confusion matrix for the validation process.
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Table 4. Summary of classes performance.

Class Accuracy Precision Recall F1-Score

Healthy 89% 89% 92% 90%
Parkinson 91% 89% 89% 90%

4.6. Comparison of Results

To compare the efficiency of our proposed model, which achieved 90% accuracy when
submitted to the validation set (validation accuracy), three other CNN models were trained
and validated, being SqueezeNet which achieved an accuracy of 72.53%, AlexNet with
an accuracy of 76.76%, and MobileNet V3 with an accuracy of 76.56%. The results are
summarized in Table 5.

Table 5. Comparison of obtained performance metrics.

Model Accuracy Precision Recall F1-Score Training Epochs

AlexNet 76% 77% 68% 72% 49
SqueezeNet 72% 68% 71% 70% 26
MobileNet V3 60% 54% 76% 63% 49
Modified SqueezeNet (proposed) 90% 89% 91% 90% 35

To assess the influence of the SMOTE technique in the proposed solution’s result,
the values with and without the SMOTE technique were compared, and the results are
presented in Table 6. The results show that SMOTE has allowed to improve the performance
of the classification.

Table 6. Comparison SMOTE technique.

SMOTE Status Epochs Accuracy Precision Recall F1-Score

With SMOTE 35 90% 89% 91% 90%
Without SMOTE 49 76% 77% 68% 72%

5. Conclusions

This study showed that altering the original structure of the SqueezeNet architecture,
aligned with the usage of the Continuous Wavelet Transform (CWT) for image generation,
can significantly improve the process of detecting Parkinson’s disease. The results of the
current study displayed that in terms of the used accuracy metrics, the intrinsic features
can be observed within the input key-typing data [21] which are responsible for the good
achieved performance. Therefore, a simple task such as key typing can help in the diagnosis
of Parkinson’s disease which affects millions of people worldwide.
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