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ABSTRACT Obtaining outstanding electricity theft detection (ETD) performance in the realm of advanced
metering infrastructure (AMI) and smart grids (SGs) is quite difficult due to various issues. The issues include
limited availability of theft data as compared to benign data, neglecting dimensionality reduction, usage of
the standalone (single) electricity theft detectors, etc. These issues lead the classification techniques to low
accuracy, minimum precision, low F1 score, and overfitting problems. For these reasons, it is extremely
crucial to design such a novel strategy that is capable to tackle these issues and yield outstanding ETD
performance. In this article, electricity theft happening in SGs is detected using a novel ETD approach.
The proposed approach comprises recursive feature elimination (RFE), k nearest neighbor oversampling
(KNNOR), bidirectional long short term memory (BiLSTM), and logit boosting (LogitBoost) techniques.
Furthermore, three BILSTM networks and a LogitBoost model are combined to make a BILSTM-LogitBoost
stacking ensemble model. Data preprocessing and feature selection followed by data balancing and electricity
theft classification are the four major stages of the model proposed for ETD. It is obvious from the simulations
performed using state grid corporation of China (SGCC)’s electricity consumption (EC) data that our
proposed model achieves 96.32% precision, 94.33% F1 score, and 89.45% accuracy, which are higher than
all the benchmarks employed in this study.

INDEX TERMS K nearest neighbor oversampling approach, bidirectional long short term memory, Logit-
Boosting, deep learning, machine learning, stacking ensemble model, electricity theft detection, smart grid.

I. INTRODUCTION

Once electricity is produced by electricity generation plants,
it is transmitted to consumers in a two hop process, i.e., trans-
ferred using high voltage transmission lines to the substations
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and then using low voltage distribution lines from substation
to consumers. It is a reality that the amount of electric power
generated at generation side and received at the consumer end
are never the same. It means that the energy generated by
the generators is always greater than the energy received by
the consumers [1]. This mismatch in energy leads to imbal-
ance between supply and demand. Different works have been
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performed to tackle this imbalance like load scheduling, load
forecasting, etc., [2], [3]. The deficiency in energy is unavoid-
able when energy flows using power transmission lines, con-
ductors, transformers, and substation equipment [4]. The gap
between the quantities of energy generated by generators
and energy received by consumers is called distribution and
transmission loss [5]. The categorization of the loss is further
made into two types of losses: non technical and technical [6].
Technical losses (TLs) are unavoidable because they happen
due to the electric energy dissipation in conductors, compo-
nents employed for power transmission lines, transformers,
etc., [4], [7]. Whereas, non technical losses (NTLs) can be
avoided because they happen due to faulty meters, meter
installation error, error in meter parameterization, and elec-
tricity theft [1], [8]. Electricity theft is a major reason of NTLs
that dissipates a great amount of electricity. According to [9],
80% of the NTLs are caused due to electricity theft.

The term electricity theft is referred to as the illegal usage
of electric energy in the unavailability of any contract or
manipulation of the meter’s data to either minimize or not
pay the consumed electricity’s bills [1]. It is commonly per-
formed by electricity thieves using meter’s bypassing, tam-
pering, direct tapping, and putting of magnetic component
inside the meter to slow down its process of measuring the
energy consumption (EC). Electricity theft leads to a substan-
tial amount of revenue losses in developed as well as devel-
oping nations of the world. On the whole, the world suffers
a loss of more than $96 billion yearly due to the electricity
theft [10]. According to [11],in 2015, Russia lost $5.1 billion,
Brazil lost $10.5 billion, and India lost $16.2 billion due to
electricity theft.

Currently, huge amount of studies are available in the liter-
ature for detecting electricity theft. Traditionally, electricity
theft detection (ETD) was performed by physically check-
ing the bypassed transmission cables, comparing the data of
benign and theft consumers’ meters, in person checking for
problematic meter installation, etc., [12], which are highly
inefficient, tedious, time-consuming, laborious, and costly
tasks.

With the emergence of smart grids (SGs), the electric util-
ities find new weapons to fight electricity theft. An SG is
the integration of information and communication technology
(ICT) with conventional power grid [13]. With the combi-
nation of ICT, SGs find the quality to perform bidirectional
communication between utility and consumer using advanced
metering infrastructure (AMI). In this way, smart meters
(SMs) are being integrated in AMI to collect EC data, elec-
tricity price information, grid’s status information, etc., [12].
This data is useful for researchers to develop novel schemes
for electricity price prediction [14], demand response man-
agement [15], energy scheduling for demand side manage-
ment [16], [17], and demand side load forecasting [18].
In addition, recently, authors in [19], [20], [21], [22], [23],
[24], and [25], prove that conducting data analysis task in SGs
assist in detecting energy theft. However, following are some
limitations in these ETD approaches.
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1) Some of the approaches use a single and standalone
machine learning (ML) or deep learning (DL) scheme
for ETD, therefore, they obtain low ETD accuracy
values.

2) Dimensionality reduction is ignored that results in low
ETD performance.

3) Class imbalanced problem is not considered, which
leads the model to generate false results for minority
class and overfitting.

4) Some approaches employ random undersampling
(RUS) to deal with data imbalanced problem. It ran-
domly removes the majority class elements and leads
the model to loss of important data, which further
results in underfitting problem.

Therefore, in this research article, we focus on designing a
novel ETD approach to efficiently address the above men-
tioned problems. We propose a BILSTM-LogitBoost ensem-
ble model, which is the combination of bidirectional long
short term memory (BiLSTM) network and logit boosting
(LogitBoost) models to pinpoint the electricity theft in SGs.
This model combines the benefits of both ML and DL models
that consequently gives better performance results in ETD.
The novelty of the proposed work is as follows. BILSTM-
LogitBoost model is designed and applied for ETD in SGs.
Moreover, k nearest neighbor oversampling (KNNOR) tech-
nique is applied in ETD domain to balance the EC data.
Furthermore, the major contributions towards the research
community made in the underlying work are enlisted below.

o The electricity theft happening in the SGs is detected
using a novel BiLSTM-LogitBoost stacking ensemble
model. The model consists of multiple BILSTM net-
works and a LogitBoost model.

o The data imbalanced problem is tackled by KNNOR
approach.

« Dimensionality reduction is performed using RFE; a fea-
ture selection (FS) method. It effectively selects those
features that are much relevant in prediction of the
output.

« Dropout layer is added to the proposed model. In our
case, overfitting happens due to the imbalanced data
based classification and model’s complexity. There-
fore, KNNOR and Dropout regularization methods are
employed to balance the data by minority class’ over-
sampling and probabilistically turning off some of the
nodes (neurons) of the network, respectively. Turning
off some neurons probabilistically results in model’s
complexity reduction, which consequently prevents the
model from overfitting. Furthermore, balancing the data
using KNNOR also avoids overfitting problem because
when a model is trained using balanced data, it no more
generates biased (one sided) results towards the major-
ity class as models generate when training using imbal-
anced class data.

« Extensive simulations are performed on a huge real
time EC dataset. Simulation results report that our
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BiLSTM-LogitBoost stacking ensemble model fol-
lowed by KNNOR and RFE gives better ETD perfor-
mance than existing models.

The remaining sections of the article are presented in the
following sequence. Section II provides the related work
while Section IIT highlights the problem statement. Proposed
system model for ETD, simulation results, and conclusion
are presented in Section IV, Section V, and Section VI,
respectively.

Il. RELATED WORK

Research in the field of ETD in SGs has recently become a
very hot topic for the researchers to leverage various tech-
niques for performing ETD. The classification of these tech-
niques can be done into three major classes: hardware based
class, data mining based class, and hybrid (hardware and data
mining) based class.

Hardware based class of ETD [26], [27], [28], [29] need
some specialized hardware components, such as sensors,
microcontrollers, and circuits to resolve ETD in SGs. These
techniques are made to detect energy theft caused due to
the SMs’ and distribution power lines’ physical interference.
In this way, they are unable to detect cyber attacks on energy
SMs. Cyber attack on energy SMs is a type of energy theft in
which the EC readings is altered by SMs’ hacking [11]. For
example, in [26], hardware class based method is employed
to detect electricity theft. The authors use temperature sensors
for NTL estimation and detection. Moreover, in [27], energy
theft is detected using transformer overloading. Once detec-
tion of overloading at transformer is done, a relay circuit is
leveraged to turn off the transformer. In this way, electricity
theft is discouraged. However, besides the incapability of
these methods in cyber attacks’ detection, they are also costly
because of deployment and maintenance of the specialized
hardware components in these methods.

Hybrid (hardware and data mining) based class techniques
for ETD [19], [30], [31] use both data mining (ML and DL)
and hardware related methods to detect NTLs. For instance,
in [19], the authors employ support vector machine (SVM)
for ETD in SGs. The distribution transformer meters’ are
also leveraged to identify the areas with high probability of
electricity theft, and pinpointing the doubtful consumers by
noticing anomalies in EC patterns. However, the authors use
a standalone ML classifier for ETD that is why maximum
FPR value is obtained. Moreover, the authors in [30], work on
detection of new and complex type of electricity theft, called
colluded NTL in which several electricity thieves collaborate
to perform electricity fraud. An observer meter is deployed
to maintain EC readings of multiple households located in a
community. To ensure the safety of observer meter from phys-
ical and cyber attacks, the interference-resistant and surveil-
lance camera devices are employed, respectively. In addi-
tion, a mathematical model is designed to use data from
SMs and an observer meter to detect the SMs with tam-
pered EC data. However, due to the requirement of special
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hardware components in the hybrid category, extra cost is
incurred for the deployment and maintenance of hardware
devices.

As previous both categories of ETD techniques are highly-
expensive, therefore, many researchers have moved towards
the third category that is data mining based ETD tech-
niques [11], [20], [21], [22], [23], [32], [33], [34], [35], [36],
[37], and [38], to handle the problem of electricity theft
in SGs. Authors in [11] propose a deep model for elec-
tricity theft and non-theft consumers’ classification in SGs.
The problems of not a number (NaN) values and imbal-
anced data are tackled using interpolation and synthetic data
points generation methods, respectively. Principal compo-
nent analysis technique is used for dimensionality reduction.
In addition, bayesian optimization is leveraged to enhance
the ETD performance by tuning the model’s hyperparam-
eters. Moreover, adaptive moment estimation (Adam) opti-
mizer is used to optimize model’s parameters to obtain better
results. The SGCC dataset is used in this study for anal-
ysis. Performance parameters used in the study are AUC,
accuracy, Matthews correlation coefficient (MCC), F1 score,
precision, and recall. Moreover, these parameters are cal-
culated in time, frequency, and hybrid domains. However,
bayesian optimizer is employed for hyperparameters’ opti-
mization, which requires more computational time to gener-
ate candidate solutions. Besides, in [20], the authors propose
a deep stacked autoencoder with long short term memory
(LSTM) based structure for detection of anomaly in EC read-
ings. The deep autoencoder is considered to help in recog-
nizing the complex patterns in data while LSTM is consid-
ered to capture long sequences of the long term time series
EC data. Additionally, a sequential grid search optimizer is
leveraged for hyperparameters’ optimization. The proposed
and benchmark models’ training and testing are performed
using Irish EC dataset. It is done to detect ETD in SGs.
However, stochastic features’ generation is neglected. Fur-
thermore, an LSTM based DL model is designd in [21] to
correctly classify electricity theft consumers. Consumption
data from real SGCC dataset is used for analysis purpose.
However, single and standalone techniques are used. Hence,
low accuracy and high FPR are obtained.

In [22], authors develop a combined DL model to detect
NTL in SGs. Hybrid DL model consists of multi layer per-
ceptron (MLP) and LSTM models. LSTM is employed for
the analysis of EC data while MLP is leveraged to use and
analyse the non-sequential information. The proposed hybrid
model is trained and tested using Spain’s Endesa dataset to
detect NTLs in SGs. However, the problem of data imbalance
isignored. In [23], a bagging ensemble random forest (RF) is
employed for detecting electricity theft. Moreover, a stacked
autoencoder is leveraged to extract important features in order
to improve ETD performance of the RF classifier. Irish and
Chinese EC datsets are used for theft analysis. Moreover,
the data is balanced using RUS. However, RUS leads the
proposed classifier to the problem of underfitting. Further-
more, the authors in [32] propose a deep model with low
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FPR, known as (LFPR-DNN). Gradient descent optimizer
is leveraged to update model’s weights. Besides, focal loss
function is used to reduce the influence of imbalanced data
on ETD performance. Two-phase training of the proposed
LFPR-DNN is considered. In the first phase, grid search is
leveraged for hyperparameters’ optimization. Whereas, in the
second phase, the particle swarm optimization is used for
tuning. I addition, the Irish EC dataset is used for analysis
purpose to detect electricity theft. However, grid search is
used that needs extremely high time complexity for hyper-
parameters’ tuning.

Furthermore, the authors in [33]develop an efficient elec-
tricity theft detector wherein an autoencoder is employed
for dimensionality reduction while bidirectional gated recur-
rent unit (BiGRU) is leveraged for final classification of
electricity theft and normal consumers. Moreover, BiGRU
is employed to recognize the drift patterns by its learn-
ing ability of long-time temporal dependency. Furthermore,
the dropout regularization technique is leveraged to deal
with the proposed model’s overfitting issue. SGCC dataset
is considered for the proposed model’s training and test-
ing. Moreover, SGCC data is balanced applying six syn-
thetic theft attacks on honest data. Besides, in [34], an ensem-
ble gradient boosting electricity theft detector is proposed.
The proposed detector consists of categorical, extreme, and
light gradient boosting techniques. Irish smart EC data is used
for electricity theft analysis. Stochastic features are gener-
ated to enhance theft detection rate and FPR values of afore-
mentioned three theft detectors. Moreover, feature extraction
is also done using weighted feature importance function to
decrease time and space complexities of the theft detectors’
training. However, the fine tuning of hyperparameters rel-
evant to the proposed boosting ensemble theft detectors is
neglected.

A boosting ensemble (CatBoost) with feature engineering
is employed in [35] for ETD in SGs. The SGCC data is
used for the training and testing of the technique proposed
for ETD. besides, k nearest neighbor (KNN) interpolation
method is used for filling the missing data. Furthermore,
the imbalance between data is tackled using a hybrid over
and undersampling technique (SMOTE-Tomek). A feature
extraction and scalable hypothesis method is leveraged to
obtain reduced dimensions from the dataset. However, fine
tuning of hyperparameters is ignored that leads a classifier
to the local optimal stagnation and low ETD performance.
Futhermore, in [36], an ensemble based DL electricity theft
detector is developed. The proposed model is the combina-
tion of multiple DL models and the outputs of the multiple
DL models are passed to the majority voting classifier to
calculate the final classification result. The DL model used
in the proposed model is gated recurrent unit (GRU). The
EC samples from residential energy disaggregation dataset
(REDD) are employed for theft analysis in SGs. Further-
more, in [37], fourteen classification techniques (including
stacking and maximum voting ensembles) are employed
with six data balancing (DB) techniques to finalize the best
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combination that detects NTLs in SGs. Finally, a combined
synthetic minority oversampling technique and edited nearest
neighbor (SMOTE-ENN) technique in combination with the
stacking classifier is considered to be the best performer for
ETD in SGs. Moreover, the EC data from SGCC dataset
is leveraged for analysis purpose. Moving ahead, authors
in [38] propose theft attacks, LSTM, and GRU (TLGRU)
model for ETD. TLGRU consists of synthetic six theft
attacks based DB, LSTM based feature extraction, and GRU
based classification. Furthermore, proposed model’s training
and testing is done via the SGCC daily dataset. Proposed
TLGRU is compared with the benchmark schemes in which
the proposed model proves to be the best performer. How-
ever, fine tuning of the hyperparameters of the proposed
TLGRU model is neglected. Besides, Table 1 presents an
overview of the existing literature in terms of achievements,
data analysed, performance measures, and limitations [38].
There are some other articles that use data mining tech-
niques. However, they do not use them for ETD but for
cyber attack and intrusion detection to secure internet of
things networks, such as [50], [51], [52], and [53]. In [50],
the authors use RF, extreme gradient boosting (XGBoost),
and KNN techniques for cyber attacks’ detection. Whereas,
in [51], the authors employ a distributed stacking ensemble
model using fog computing for intrusion detection that com-
bines XGBoost, KNN, and gaussian naive bayes techniques
at level-1. At level-2, the results of the first level classifiers
are passed to random forest that acts as a second level learner
to perform final classification. In [52], the authors employ
convolutional neural network (CNN) for anomaly based
intrusion detection to protect internet of things networks.
A deep learning (DL) scheme, namely sparse evolutionary
training-multi layer perceptron, is used for multiple cyber
security attacks’ detection in [53] for industrial internet of
things.

lll. PROBLEM STATEMENT

The authors in [19] and [21] employed SVM and LSTM
classifiers for detecting NTL in SGs, respectively. However,
these are standalone ML and DL classifiers; therefore, they
achieved low ETD performance. Furthermore, dimensional-
ity reduction is ignored in both [19] and [21] that results in
curse of dimensionality issue. The issue consequently maxi-
mizes the model’s complexity and minimizes theft detection
accuracy. Furthermore, the authors in [22] proposed a hybrid
DL model for ETD. It performs well in terms of ETD. How-
ever, the data imbalanced problem is ignored that leads the
classifier to biasness (skewness) towards the majority class
data (in our case, majority class is normal consumers’ class
that contains 91.47% records of the whole dataset). Besides,
if class imbalanced issue is not properly tackled, it results in
model overfitting. In addition, in [23], the data imbalanced
problem is dealt using RUS method. However, in RUS tech-
nique, the data of the majority class is randomly deleted due
to which important data is lost that leads the classifier to
underfitting.
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TABLE 1. Overview of the existing literature.

Models used Achievements Data analysed Evaluation measures Problems
Extreme gradient | To enhance ETD perfor- | Endesa AUC, precision-recall and | High computational time
boosting [8] mance execution time
Wide and deep CNN | To secure SGs by detect- | SGCC daily data AUC and MAP Data imbalance issue
[12] ing electricity theft
Consumption pattern | To improve ETD perfor- | SEAI TPR, FPR and BDR No feature extraction
based ETD [19] mance
Hybrid LSTM-MLP | To overcome NTLs Endesa AUC, precision, recall and | Data imbalance issue
neural network [22] precision-recall-AUC
Stacked sparse | To tackle NTLs SGCC hourly data | FPR, TPR and AUC Inadequate evaluation
denoising metrics
autoencoder [39]
Bagging (RF, ET) and | To detect energy theft in | CER Precision, AUC and accu- | Ensemble techniques are
boosting  (CatBoost, | power grids racy computationally complex
XGBoost, AdaBoost,
LGB) ensemble
schemes [40]
DT-KSVM [41] To decrease power losses SEAI AUC and accuracy Inadequate  performance
metrics
RF [42] To detect NTL behavior Hebei province AUC and accuracy No feature extraction
Semi supervised au- | To reduce NTLs by em- | SGCC daily data Accuracy, TPR, FPR, pre- | Inappropriate
toencoder [43] ploying semi-supervised cision, recall and F1 score | hyperparameter tuning
data
Random To reduce NTLs Honduras F1 score, MCC, precision, | Loss of important infor-
undersampling recall, AUC and accuracy mation due to RUS
boosting [44]
Combined CNN and | To detect abnormal EC SGCC daily data F1 score, MCC, precision, Classes overlap due to
LSTM [45] profiles of consumers recall and accuracy SMOTE
Ensemble bagged tree | To minimize NTLs MEPCO Accuracy, sensitivity, | Curse of dimensionality
[46] specificity, F1 score and
FPR
Functional encryption | To detect ET by preserv- | CER Highest difference (HD), | High computational com-
based privacy- | ing consumers’ privacy FPR, DR and accuracy plexity due to improper
preserving ETD [47] hyperparameter optimiza-
tion
Privacy-preserving To perform ETD while | CER HD, DR and FPR Improper hyperparameter
ETD [48] maintaining consumers’ tuning
privacy
Multiple linear regres- | To overcome NTLs Neighborhood Accuracy, sensitivity and | Curse of dimensionality
sion model [49] area network | specificity
dataset

IV. PROPOSED SYSTEM MODEL FOR ELECTRICITY THEFT
DETECTION

This section comes up with a complete and detailed
solution for ETD in SGs. The solution contains multiple sub-
modules, such as data preprocessing, FS, DB, and classi-
fication. All these sub-modules are graphically abstracted
in our proposed system model for ETD, shown in Fig. 1.
All of the aforementioned sub-modules along with the used
techniques are comprehensively discussed in the following
subsections. Furthermore, Fig. 2 provides the proposed sys-
tem model’s flowchart wherein the working of the model is
given.

The preprocessing of the data acquired from the state grid
corporation of China (SGCC) dataset initiates the proposed
mode’s working. In this process, NaN values and outliers
are checked, and normalization is performed. Afterwards,
the FS is done using RFE technique. Then, the data splitting
is performed using training and testing parts, in which 80%
data is specified for training and 20% is specified for testing.
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Afterwards, the training data, i.e., (X_train,y_train)
is balanced using KNNOR and the testing data, i.e.,
(X _test, y_test) remains the same. After balancing the train-
ing data using KNNOR, it is represented by
(XK _train, yk_train). Afterwards, the balanced training data
(X_train, y_train) is passed to BILSTM-LogitBoost for fit-
ting and then (X _test) is passed to the model for classifica-
tion purpose. Finally, the classification labels generated by
BiLSTM-LogitBoost are stored into the (BLB_pred) vari-
able. At the end, the predicted labels (BLB_pred) and the
actual labels (y_test) are passed to the performance evaluation
process to measure the performance of our proposed system
model.

A. DATA PREPROCESSING

Preprocessing the EC data is a necessary step to be taken
for preparing the data by filling the NaN data, mitigating
outliers, and scaling the data to a specific range so that an
ML or DL classifier can easily learn from it. Therefore, our
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Feature selection

SI to fill NaN values

EC data
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—
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SGCC dataset
(42372)

Honest (38757)

Dishonest (3615) TSR to remove outliers

Preprocessed data

|

%o

!

RFE

MM to scale the data

Classification
S.4

0 LogitBoost | BIiLSTM 2
1 BiLSTM 3

Result

Train-tefst s plitter

Train: 80%
Test: 20%

Data baljancing
S.2,8.3,8.5

Balanced data

Stacking BiLSTM-LogitBoost

KNNOR

Limitations addressed Solutions proposed
L.1 Ignoring dimensionality reduction —— S.1 RFE

L.2 Imbalanced data » 5.2 KNNOR

L.3 Overfitting
L.4 Low accuracy

\ A

5.3 KNNOR and dropout regularization method
S.4 Stacking ensemble BILSTM-LogitBoost and RFE

L.5 Underfitting 5.5 KNNOR
FIGURE 1. Proposed ETD model.
TABLE 2. Dataset information. Equaﬁon 11[24].
Description Values M +3.std(X xi > M +3.std(X
Duration 01-01-2014 to 31-10-2016 fxia) = +3.51dX),  Xia . + 3.51d (X0, ()
Benign records 38757 Xias Otherwise.
Theft records 3615
Total records 42372 where a shows a slot, i.e., day in our case. i indicates the

proposed solution employs the simple imputer (SI) with mean
method [54], [55], min-max (MM) scaler [12], and three
sigmarule (TSR) [24] to preprocess the EC readings collected
from residential consumers of the Fujian province in China.
The EC data is collected by the SGCC [56], an electric util-
ity company in China. The EC data is collected from those
customers who have SMs installed in their residential places.
Table 2 comprises the SGCC dataset’s information.

The NaN values and outliers may exist in the dataset
due to transmission error, broken component, storage loss,
etc., [12], [57]. In our proposed system model, we leverage
SI to deal with the NaN readings. There are three impu-
tation strategies in SI: median, mean, and most_frequent
(mode) [55]. We selected the default strategy of SI, i.e., mean,
to impute the missing data in this study. Furthermore, TSR is
leveraged to deal with the outlier readings by implementing
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consumer number. x; , indicates the EC data of the ith number
consumer at the ath day. Where a = 1034 and i = 42372.
X is a dataframe that consists of multiple x; , EC readings.
M shows the average of X. std(X) indicates the standard
deviation for X. Furthermore, due to the sensitivity of DL
classifiers’ towards unscaled data, normalization is needed
that is performed using the MM scaler by implementing
Equation 2 [12].

f(xi,a) _ Xia min

Y 2
Xmax - Xmin

where X, represents the minimum value of X and Xy
shows the maximum EC reading of X.

B. FEATURE SELECTION

In this subsection, FS performed in the proposed work is
discussed. We employed a technique known as RFE to select
the most effective features for ETD in SGs.
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| SGCCdataset |

| Check the dataset for NaN data|

No
| Use ST method |
lYes
| Check the dataset for outliers |47
No

| Use TSR method |

| Check the data normalization |<7

Yes

Is data normalized?

| Use MM method |

}

Perform feature selection with RFE [«

| Testing data (20%)
Perform train-test splitting |

Training data (80%)

4

Balance the training data with KNNOR

(XK _train, yk_train)

Perform theft and normal consumers' (X_test)
classification with BILSTM-LogitBoost
(BLB_pred)
(y_test)

Performance evaluation

End

FIGURE 2. Flowchart of the proposed ETD system model.

FS is a task of feature engineering that is fulfilled by select-
ing only a small number of features (dimensions or columns)
from a large number of features [58]. In other words, it is

112954

a process of automatically selecting those features that have
a huge impact on the output [59]. Generally, there are three
advantages of performing FS: achieve high accuracy, mini-
mize overfitting, and minimize model’s training time.

In this paper, we are using SGCC dataset that contains a
broad range of EC data. As the dataset comprises a large
number of features, so its execution needs huge amount of
computational resources. We perform our simulations using
Google Colaboratory, which provides 12 GB of RAM to its
users. Besides, KNNOR method is used to balance the data
present in the dataset. KNNOR is a KNN based oversam-
pling approach, where KNN is a lazy learner. KNN performs
predictions during testing phase by calculating the distance
of each testing sample from all training samples and then
assigning a specific label to the testing sample. It is a highly
time-consuming and computationally complex process. Thus,
KNN needs a huge amount of computational resources to
perform prediction.

In addition, KNNOR needs large amount of computa-
tional resources to oversample and balance huge datasets
like SGCC. Therefore, in order to perform analysis on such
datasets without facing resource overloading issue, the num-
ber of rows and columns need to be decreased. In the pro-
posed work, the number of rows are reduced from 42372 to
10000 by maintaining the same class distribution ratio of theft
and normal classes as in the original dataset, i.e., 91.47%
normal consumers and 8.53% theft consumers. To reduce
the number of columns (features), we have many FS and
extraction techniques, such as RFE, RF, linear discriminant
analysis (LDA), principle component analysis, etc. In addi-
tion, some population based meta-heuristic techniques are
also recently employed for FS, such as black hole algorithm

[60] and binary jaya algorithm [61]. However, we choose
RFE to perform FS for its popularity due to its enhanced
effectiveness at picking those columns from the given dataset
that largely affect the results [59]. There are two significant
configuration choices to choose from when employing RFE
method for FS. The first one is selecting the number of fea-
tures (n_features_to_select) while the second one is selecting
an optimal algorithm for FS.

Moreover, due to the availability of limited RAM, only
120 features are selected out of 1034 features using RFE to
successfully balance the dataset. If the number of selected
features is more than 120, the issue of session crash is
faced. Due to this, the first configuration choice is used
and the values of n_features_to_select is set to be 120.
It ensures successful FS, DB, classification and generating
ETD results. Initially, 120 features and 10000 records are
passed to the train-test splitter for dividing the dataset into
training split and testing split. Afterwards, the training data
having 8000 records and 120 features is passed to KNNOR
for DB.

C. DATA BALANCING
After performing FS using RFE, data splitting is per-
formed. The ratio of 80:20% is selected for splitting the

VOLUME 10, 2022



Pamir et al.: RFE Based Feature Selection and KNNOR Based Data Balancing for Electricity Theft Detection

IEEE Access

dataset into training and testing sets. Now, in this sub-
section, the DB module of the proposed system model is
discussed.

One of the challenging problems in detecting electricity
theft in SGs is imbalanced distribution of the class obser-
vations (data imbalanced problem) where a class has more
observations than another class. When DL and ML classi-
fiers are trained using datasets with such behavior, classifiers
become skewed towards the majority class (class owns more
observations) and neglect the minority class (class owns less
number of observations). Such situations negatively affect the
classifiers and lead it to the overfitting issue. In the exist-
ing literature, the imbalance between data classes is tack-
led by some researchers using RUS [23], AdaSyn [37], and
SMOTE [37], [62] techniques. However, RUS is prone to
underfitting problem. Whereas, SMOTE and AdaSyn are
prone to within class imbalance and small disjunct prob-
lems. Therefore, in this study, KNNOR [63] is used to tackle
the class imbalanced, overfitting, small disjunct, within class
imbalance, and underfitting problems. We replaced the RUS
(an undersampler) with KNNOR (an oversampler) to resolve
underfitting problem. RUS is a random undersampler that
performs DB by randomly discarding the data points from
the majority class, which causes the loss of important data
that results in an underfitting problem. Moreover, KNNOR
deals with the problems of with class imbalance and small
disjunct by focusing on the compactness and location of the
minority class as compared to the majority class. The EC data
is balanced using KNNOR for the first time in ETD domain
as per our knowledge.

KNNOR technique consists of the following three steps to
find out safe and critical spaces, and augment the minority
class’ data by generating synthetic samples.

1) Inthis step, minority class samples are sorted according
to distance to their k-th nearest neighbor. This empow-
ers the technique to reach the place with huge amount
of minority class samples. In this way, it ignores the
noisy and outlier data points.

2) In the second step, the sorted data points and their
relevant k-nearest neighbors are employed to artifi-
cially generate a sample. The action of new synthetic
points initiates with an initial data point and another
random point (discovered at random position between
the initial data sample and its first closest neighbor).
The newly discovered data point is now focused, and
another artificial point is randomly found between
initial’s second nearest neighbor and the newly dis-
covered data point. After n iterations, the data sam-
ple created is considered as synthetically generated
nominee.

3) Finally, in this step, the synthetically created nomi-
nee that is the output of step 2 is tested using KNN
classifier to explore if it is relevant to the minority
class (the class which is being oversampled) or not.
If it clears the test, it is maintained, otherwise, it is
discarded.
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The process flow of the KNNOR algorithm for data aug-
mentation is provided in Algorithm 1 [63].

Algorithm 1 KNNOR Based Data Augmentation
Input: Training set (X_train) that consists of majority
class data (X_trainy,q;) and minority class
data (X_trainy,;,), top distance threshold (d)%
of the sorted list of minority sample (Sorted,,in);
count of neighbors (K);
number of data samples to be generated (gen_count);
Output: Synthetic data point

1: Get the « value using Algorithm 2
2: while gen_count > 0 do
3: for each data point in (Sorted,,;;,) do
4: source = data point
5: for k closest neighbor n of data point do
6: new point=data point created at random
7: distance (0, o) on a line between source
8: and n
9: source = new point
10: end for
11: if new point is valid then
12: gen_count = gen_count-1
13: Add new data point to the augmented_data
14: if gen_count == 0 then
15: return augmented_data
16: end if
17: end if
18: end for

19: end while
20: return augmented_data

Algorithm 2 o Value Calculation Algorithm
Input Training dataset (X _train) that contains the
majority class data (X_train,,,;) and minority class
data (X _train,,;,);
Output o’s value

1: Overall_dist = distance between data points from
(X _trainy,;) to data points in (X _train,,)

2: Minimum_dist = Minimum (Overall_dist)

3: return Minimum_ dist

After dataset splitting into 80% training and 20% testing
parts, the the training samples (X _train) and their respective
labels (y_train) are balanced using KNNOR. Fig. 3 illustrates
the theft and normal classes’ distribution before KNNOR
implementation. Whereas, Fig. 4 shows theft and normal
classes’ frequency after KNNOR implementation. In Fig. 3,
7326 samples belong to the normal class and 674 samples
belong to the theft class. Afterwards, KNNOR is used to
oversample the theft class data until it becomes equal to the
normal class data. So now the classes are balanced in a way
that both the normal and theft classes contain the same num-
ber of records that is 7326, as shown in Fig. 4.
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FIGURE 3. Normal and theft classes’ distribution before KNNOR
implementation.
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FIGURE 4. Normal and theft classes’ distribution after KNNOR
implementation.

D. ELECTRICITY THEFT AND NON-THEFT CLASSIFICATION
In this subsection, the proposed deep and machine learn-
ing (ML) stacking ensemble model (BiLSTM-LogitBoost) is
discussed, which consists of two models BiLSTM [64] and
LogitBoost [65]. The details of the proposed model are given
in the below subsection.

1) BiLSTM-LogitBoost STACKING ENSEMBLE MODEL

To discuss BiLSTM, it is necessary to discuss LSTM first as
it is the basic version. LSTM was developed by Hochreiter
and Schmidhuber [66]. It is an impressive recurrent neural
network (RNN) model particularly invented to address the
gradient vanishing and gradient exploding problems that gen-
erally happen when learning the long duration dependen-
cies [67]. This is avoided by constant error carousel (CEC),
which keeps the error signal inside each cell. Actually, these
cells are RNNs with an impressive and attractive architecture
that CEC is expanded with added features, known as input
and output gates. These gates build a memory cell. The self
recurrent arrows present a feedback having lag of single time-
step. A vanilla LSTM consists of input, output, and forget
gates. These gates are employed to control the information
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flow in the cell. The cell maintains and remembers the data
in arbitrary time-intervals. The BiLSTM [64] model is the
enhanced version of the traditional LSTM [66].

LogitBoost [65] is a well-known boosting classifier that
can be employed for both binary and multiclass classification
tasks. The weak learners’ construction is one of the key ele-
ments in boosting techniques that affect their performances.
LogitBoost trains each weak learner, which we considered
in this paper, i.e., stump weak classifier, separately for every
single class.

In this article, we choose to develop stacking ensemble
model for ETD in SGs. The reason is that it is the best
strategy among different modern approaches based on the
wining of numerous Kaggle and Netflix competitions for
solving classification problems [68]. Stacking ensemble is a
robust approach in which we can place multiple classifiers
at level-0 (also called base classifiers) and a single classifier
at level-1 (also called meta classifier) to obtain higher pre-
diction performance. Particularly, in our stacking ensemble
model, at level-0, three DL models are used, which are recent
and very rarely employed in ETD domain. at level-1, an ML
technique is employed, which is a novel technique and to our
knowledge, used for the first time for ETD in SGs. Level-1
classifier is employed to combine the outputs of the level-0
classifiers and generate the final electricity theft detection
results.

The base classifiers’ selection for stacking ensemble
model’s construction can be performed into three different
ways. Firstly, choose the heterogeneous (different) base mod-
els, secondly, use the same base models with different config-
urations, and thirdly, the same base models fitted on different
datasets [59]. In this paper, we choose the second option
to build BiLSTM-LogitBoost, which is also chosen by [69]
and [70] to build their stacking ensemble models. Conse-
quently, we develop a stacking ensemble model that consists
of multiple BILSTM (with different configurations) and a
single LogitBoost. Three BiLSTM networks are considered
as the base models and are used at level-0 while a single
LogitBoost classifier is considered as the meta classifier and
is used at level-1 of the proposed stacking ensemble model.
The number of Dense layers, Dropout layers, and neurons
are the internal configurations of the three BILSTM models,
which are differently chosen from each other to prepare level-
0 classifiers of our stacking model. The more details about
different configurations of the same BiLSTM model chosen
in this study are given in Algorithm 3. As the proposed model
is composed of three DL, i.e., three BILSTM and an ML clas-
sifier, i.e., LogitBoost, thus, we can also call it as a stacking
ensemble DL and ML model. The architecture and algorithm
of the stacking BILSTM-LogitBoost model are given in Fig. 5
and Algorithm 3, respectively.

V. DISCUSSION OF THE SIMULATION RESULTS

The proposed BiLSTM-LogitBoost stacking ensemble
model, proposed for ETD in SGs, is evaluated and discussed
in this section. Some recent benchmarks, such as SVM [19],
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TABLE 3. Confusion matrix.

Actual class

Theft consumer Benign consumer

Predicted class Theft consumer

TP FP

Benign consumer

FN TN

Level-0 classifiers
BiLSTM 1 i i
1 Level-1 classifier Classification result
0
BiLSTM 2 LogitBoost »>
/ 1
BILSTM 3 []

FIGURE 5. BiLSTM-LogitBoost stacking ensemble architecture.

[71], logistic regression (LR) [37], decision tree (DT) [37],
LSTM [21], [71], adaptive boosting (AdaBoost) [37],
BiLSTM [64], LogitBoost [65], and LSTM-AdaBoost [72]
are also implemented for ETD and their results are compared
with the proposed model. LogitBoost with n_estimators =
25 is employed as a benchmark technique to our proposed
model. The proposed model is trained and tested using the
real SGCC EC data. The implementation of the proposed
model is done using Tensorflow, Keras, and LogitBoost
libraries in Python programming language.

A. SIMULATIONS’ SETUP

Due to the limited resources of our local system, Google
Colaboratory is used to investigate the performance of our
model for ETD in SGs. Our proposed BiLSTM-LogitBoost
is implemented using the Tensorflow, Keras, and LogitBoost
libraries using Python programming language. In addition,
realistic EC data from SGCC dataset that belongs to the
electricity users of Fujian province in China is leveraged
for proposed model’s training and validation. The data com-
prises EC history of 42372 users for 2 years and 10 months
(01 Jan 2014 to 31 Oct 2016). In this data, 38757 consumers
are normal and the rest 3615 are abnormal consumers, given
in Table 2. However, for our model’s training and testing,
we computed 120 features out of 1034 using RFE method
and at random selected only 10000 records out of 42372,
the reasoning of which is mentioned in the subsection IV-B.
Furthermore, to come up with outstanding simulation results,
the proposed solution starts with data preprocessing. In this
step, SI, TSR, and MM schemes are leveraged to perform
data preprocessing, as already discussed in Subsection IV-A.
Afterwards, FS is performed using RFE method, already
given in Subsection IV-B. After that, the preprocessed data
with selected features is splitted into training and testing sub
datasets. The training part comprises 80% while the testing
part comprises 20% of the total dataset. In the next step, DB
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is performed using a novel KNNOR scheme, as discussed in
Subsection IV-C. Finally, the balanced data obtained from
KNNOR is passed to our proposed BiLSTM-LogitBoost
stacking ensemble model to perform classification task and
separate electricity thieves from non-thieves, as discussed in
detail in Subsection IV-D.

B. PERFORMANCE MEASURES

In this subsection, the parameters employed for evaluating
the proposed model’s performance are discussed. The SGCC
dataset is leveraged for ETD in this paper. The dataset con-
tains two classes, i.e., benign consumers and theft consumers.
So ETD is considered as a two class (binary) classification
problem. The initial results of classification techniques are
generally shown using a confusion matrix (CM) and then
further performance metrics are calculated using CM. The
CM is given in Table 3.

Elements of the CM matrix are discussed as follows. True
positive (TP) denotes that the theft consumers are accurately
classified as theft consumers by the classifier, false nega-
tive (FN) means theft users are falsely predicted as benign
users, false positive (FP) denotes that benign consumers are
wrongly classified as theft consumers, and true negative (TN)
means benign users are correctly predicted as benign users
by the classifier. In supervised ML, the trained models are
validated using their capability to successfully predict the
correct labels for unseen and unlabeled data. To successfully
accomplish this job, different performance evaluation param-
eters are available, as given in study [73]. On the other hand,
it is not practical to employ all of the performance metrics
mentioned in the study; therefore, in this paper, we employed
few metrics from them that are most relevant and widely used
in the recent literature of ETD [21], [71], [74]. Hence, the
proposed model’s performance evaluation is done via differ-
ent performance metrics. The mathematical formulas of these
metrics are provided in Equations 3-6 [37], [74].

o TP
Precision = ———, 3)
FP+ TP
TP
Recall = ———, @
FN 4+ TP
Recall x Precision
F1 score = 2 % —, (@)
Recall + Precision
TN + TP
Accuracy = (6)

FP+ TP+ FN + TN’

All of the selected performance measures are computed
using the elements available in the CM. Accuracy is the
ratio between the accurately predicted samples and total
records available in the dataset, F1 score is an important
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Algorithm 3 BiLSTM-LogitBoost Stacking Ensemble
Model

Input: Balanced dataset

Output: Electricity theft and non-theft classification

: Creating and compiling BiLSTM 1:

: model.add(Bidirectional(LSTM(100)))

: model.add(Dense(100))

: model.add(Flatten())

: model.add(Dropout(0.2))

: model.add(Dense(1, activation="sigmoid’))

: model.compile(‘Adam’, ‘binary_crossentropy’)

: Creating and compiling BiLSTM 2:

: model.add(Bidirectional(LSTM(100)))

: model.add(Dropout(0.2))

: model.add(Dense(100))

12: model.add(Dropout(0.2))

13: model.add(Dense(100)

14: model.add(Flatten())

15: model.add(Dropout(0.2))

16: model.add(Dense(1, activation="‘sigmoid’))

17: model.compile(‘Adam’, ‘binary_crossentropy’)

18: Creating and compiling BiLSTM 3:

19: model.add(Bidirectional(LSTM(120)))

20: model.add(Dropout(0.2))

21: model.add(Dense(100))

22: model.add(Dropout(0.2))

23: model.add(Dense(100)

24: model.add(Dropout(0.2))

25: model.add(Dense(100)

26: model.add(Flatten())

27: model.add(Dropout(0.2))

28: model.add(Dense(1, activation="‘sigmoid’))

29: model.compile(‘Adam’, ‘binary_crossentropy’)

30: Making keras classifiers for the above models:

31: BiLSTM_clfl1=KerasClassifier(build_fn=BiLSTM]1,
epochs=15, batch_size= 32)

32: BiLSTM_clf2=KerasClassifier(build_fn=BiLSTM2,
epochs=15, batch_size= 32)

33: BiLSTM_clf3=KerasClassifier(build_fn=BiLSTM3,
epochs=15, batch_size= 32)

34: Combining the BiLSTM_clf1, BiLSTM_clf2, and BiL-
STM_ clf3 models:

35: intermediate=[BiLSTM_clf1,BiLSTM_clf2,
BiLSTM_cIf3]

36: Stacking three BILSTM and a LogitBoost models:

37: BiLSTM-LogitBoost=StackingClassifier(estimators=
intermediate, final_estimator=LogitBoost())

38: Fitting and prediction of BiLSTM-LogitBoost model:

39: BiLSTM-LogitBoost.fit(XK_train, yk_train)

40: BiLSTM-LogitBoost.predict(X_test)

O 00 N O LR W =

—_ =
_ o

metric that gives equal weight to both precision and
recall [37]. Moreover, precision and recall are computed
using the elements of the CM and their formulas are stated in
Equations 3 and 4.
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C. PROPOSED BilLSTM-LogitBoost MODEL
PERFORMANCE RESULTS

In this subsection, we tackle and validate the problems men-
tioned in Section II1, i.e., no dimensionality reduction is per-
formed that leads the classifier to the problems of overfitting
and low detection accuracy. Another issue is of imbalanced
data that results in biased results and overfitting. Another
limitation is that some authors employed RUS for balancing
data that randomly removes data samples of the majority class
and results in loss of important information and underfitting
issue. The last limitation we tackled in this work is that some
authors in the literature employed the standalone ML and DL
schemes that leads to low detection accuracy. In order to con-
duct detailed evaluation of the proposed approach, its analy-
sis is performed in multiple levels, i.e, BILSTM-LogitBoost
analysis with FS and BD steps versus BiLSTM-LogitBoost
without FS and DB steps, BiLSTM-LogitBoost with
KNNOR based DB versus BiLSTM-LogitBoost with other
DB techniques, BiLSTM-LogitBoost with KNNOR based
DB versus BiLSTM-LogitBoost with RUS based DB,
and the final level analysis is done between proposed
BiLSTM-LogitBoost model followed by KNNOR and RFE
versus other benchmarks.

In first level of the proposed model analysis, we perform
the comparison of results of the BiLSTM-LogitBoost stack-
ing model (without FS and DB) and BiLSTM-LogitBoost
with FS and DB, as depicted in Table 4 and Fig. 6. The
results depict that BILSTM-LogitBoost stacking model with-
out FS and DB steps achieves better results as compared to
the BiLSTM-LogitBoost stacking model with FS and DB
steps. The reason is that without considering DB, BiLSTM-
LogitBoost generates biased results and leads to overfitting
problems. It means that the model learns and ultimately mem-
orizes the normal class (represented by 0) data because model
has a huge amount of normal class data, i.e., 91.47% samples
for normal class. Whereas, it has very limited records (8.53%)
for theft class (represented by 1), therefore, it generates the
highest detection accuracy and falsely predicts the theft class
data as normal as well.

In second level analysis of the proposed model, the
BiLSTM-LogiBoost with KNNOR and other DB techniques
comparison is performed. Table 5 and Fig. 7 show the
analysis of our proposed model with KNNOR and other
oversampling methods to examine the importance of the
balanced and imbalanced class distributions. The simula-
tion results show that BiLSTM-LogitBoost stacking model
with KNNOR based DB yields the maximum results as
compared to ADASYN and SMOTE based DB techniques.
The reason is that SMOTE and ADASYN are prone to
the within class imbalance and small disjunct problems.
Moreover, SMOTE based DB leads the model to the
overfitting problem because it overflows (overpopulates)
the specific location by generating synthetic data instead
of generating it throughout the data. Therefore, KNNOR
based BiLSTM-LogitBoost outperforms the SMOTE and
ADASYN based BiLSTM-LogitBoost models. However,
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TABLE 4. Comparison of the proposed BiLSTM-LogitBoost with and without FS and DB steps.

Classifier Precision Recall or DR | F1 score Accuracy
BiLSTM-LogitBoost (Without FS and DB) | 0.9956 0.9143 0.9532 0.9110
BiLSTM-LogitBoost (With FS and DB) 0.9632 0.9241 0.9433 0.8945
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W FIGURE 7. Comparison of our proposed BiLSTM-LogitBoost with KNNOR

FIGURE 6. Comparison of the proposed BiLSTM-LogitBoost with and
without FS and DB steps.

imbalanced data based BiLSTM-LogitBoost beats all the
SMOTE, ADASYN, and KNNOR data balanincg based
BiLSTM-LogitBoost models. The reason is that imbalanced
data based BiLSTM-LogitBoost generates biased results.
It means that the model memorizes the normal class data and
gives the maximum detection accuracy. KNNOR-BiLSTM-
LogitBoost obtains better results than others balancing
techniques based BiLSTM-LogitBoost because KNNOR
efficiently solves the issues raised in SMOTE and ADASYN
schemes.

In third level analysis of the proposed model, the
BiLSTM-LogitBoost model with KNNOR and BiLSTM-
LogitBoost with RUS DB techniques’ comparison is done.
This comparison is actually done to validate that our proposed
KNNOR based BiILSTM-LogitBoost successfully tackled the
underfitting problem raised by the RUS DB based BiLSTM-
LogitBoost. Table 6 and Fig. 8 present that proposed KNNOR
DB based BiLSTM-LogitBoost technique yields the high-
est performance results as compared to the RUS DB based
BiLSTM-LogitBoost. The RUS based balanced samples do
not obtain good ETD performance results because it ran-
domly discards the samples of the majority class, which
results in loss of important data, and the loss of useful data
leads to underfitting issue.

In the final analysis of the proposed methodology, the
overall results considering all steps (FS, DB, and classifica-
tion) for the proposed as well as benchmarks are provided.
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and other DB methods.
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FIGURE 8. Comparison of the proposed BiLSTM-LogitBoost with KNNOR
and RUS DB methods.

In this step, in order to perform realistic evaluation of our
proposed stacking technique (followed by KNNOR AND
RFE) and benchmarks, all the schemes (BiLSTM-LogitBoost
and benchmarks) are fed with the same input. It means after
performing FS using RFE and DB using KNNOR, the data
is passed to the BILSTM-LogitBoost as well as other bench-
marks. Table 7 and Fig. 9 show that performance results of
the proposed stacking model are improved than all the bench-
marks in terms of precision, F1 score and accuracy. The rea-
son that our proposed ensemble stacking model outperforms
the standalone SVM, LR, DT, LSTM, AdaBoost, BiLSTM,
and LogitBoost models is that our model is a stacking
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TABLE 5. Comparison of our proposed BiLSTM-LogitBoost with KNNOR and other DB methods.

Classifier Precision Recall or DR | F1 score Accuracy
Imbalanced-BiLSTM-LogitBoost | 0.9879 0.9202 0.9529 0.9110
ADASYN-BIiLSTM-LogitBoost 0.4739 0.9589 0.6343 0.5025
SMOTE-BiLSTM-LogitBoost 0.7886 0.9429 0.8588 0.7640
KNNOR-BiLSTM-LogitBoost 0.9632 0.9241 0.9433 0.8945
TABLE 6. Comparison of the proposed BiLSTM-LogitBoost with KNNOR and RUS DB methods.
Classifier Precision Recall or DR | F1 score Accuracy
RUS-BiLSTM-LogitBoost 0.4069 0.9332 0.5667 0.4335
KNNOR-BiLSTM-LogitBoost 0.9632 0.9241 0.9433 0.8945
TABLE 7. Comparison of the BiLSTM-LogitBoost with other benchmarks.
Classifier Precision Recall or DR | F1 score Accuracy
SVM 0.9462 0.9224 0.9341 0.8785
LR 0.8698 0.9395 0.9033 0.8305
DT 0.9138 0.9306 0.9221 0.8595
LSTM 0.9242 0.9268 0.9255 0.8645
AdaBoost 0.9165 0.9246 0.9206 0.8560
BILSTM 0.9149 0.9271 0.9209 0.8570
LogitBoost 0.9346 0.9146 0.9245 0.8610
LSTM-AdaBoost 0.8962 0.9288 0.9122 0.8430
BiLSTM-LogitBoost 0.9632 0.9241 0.9433 0.8945
10 TABLE 8. Mapping table.
Limitations Solutions Validations
L.1 Ignoring | RFE techniqueisused | Table 7 and Fig. 9.
081 dimensionality for dimensionality re-
reduction [19], [21] duction
L.2 Imbalanced data | DB is performed us- | Table 5 and Fig. 7.
w 067 problem [22] ing KNNOR
3 L.3 Overfitting issue | KNNOR and dropout | Table 7 and Fig. 9
s [19], [21], and [22] regularization
0.4 4 L4 Low accuracy | RFE FS and | Table 7 and Fig. 9.
[19], [21] BiLSTM-LogitBoost
EEE Precision techniques
0.2 HEE Recall L5 Underfitting due | KNNOR Table 6 and Fig. 8.
BN F1 score usage of RUS for DB
EE Accuracy [23]
0.0 -

FIGURE 9. Comparison of the BiLSTM-LogitBoost with other benchmarks.

ensemble model that combines three BILSTM models with
different configurations at level-0 and one LogitBoost model
at level-1. That is why our ensemble model outperforms the
other single models with respect to different performance
metrics. This actually validates our claim. Secondly, our pro-
posed stacking ensemble model also beats another stacking
ensemble model, i.e., LSTM-AdaBoost in terms of various
performance metrics. The reason is that we selected the most
recent models in our stacking ensemble, i.e., BILSTM as
base learners and LogitBoost as a meta learner. Whereas,
the benchmark ensemble contains LSTM and AdaBoost clas-
sifiers as its base and meta classifiers, respectively, which
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are old and conventional techniques. Therefore, our pro-
posed stacking ensemble model beats the benchmark stacking
ensemble model. Finally, after simulation results’ compari-
son, it is proved that BILSTM-LogitBoost stacking ensemble
in combination with KNNOR and RFE is the outstanding
performer among all the benchmarks. It ensures that KNNOR
and RFE are well compatible with BiLSTM-LogitBoost as
compared to other benchmarks. Hence, it is proved that
our proposed BiLSTM-LogitBoost followed by KNNOR and
RFE is the best performing model for ETD in SGs. Further-
more, our proposed BiLSTM-LogitBoost stacking ensemble
model employs three BILSTM models at level-0 and a Logit-
Boost model at level-1. Moreover, the deep models are scal-
able [75], [76], [77] and can perform well on large amount of
data. In short, by increasing data samples, deep models’ per-
formance increases. Since we employed three deep models as
level-0 learners in our proposed model, we can say that our
proposed BiLSTM-LogitBoost is scalable and can be used for
any amount of data.
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The mapping table of the limitations, their respective solu-
tions, and validations is given in Table 8, where the limitations
tackled in the proposed work are denotedas L.1,L..2,L..3,L.4,
and L.5.

VI. CONCLUSION

In this article, we come up with an efficient and
effective stacking ensemble model ETD model, wherein
BiLSTM-LogitBoost is followed by the usage of KNNOR
and RFE trechniques. RFE is used for significant FS while
KNNOR is used for DB. Further, BILSTM-LogitBoost model
is designed to generate the final ETD results. Extensive
simulations are performed using SGCC data. The results
yield 96.32% precision, 94.33% F1 score, and 89.45% accu-
racy values. The values are greater than all the compared
benchmarks, which exhibits efficient performance of the pro-
posed model. Consequently, it is concluded that the proposed
BiLSTM-LogitBoost stacking ensemble model followed by
KNNOR and RFE gives greater ETD performance. Further-
more, our proposed model is trained using daily EC data,
which is considered as low frequency data as compared to the
hourly or minute-wise EC data. In this way, it maintains con-
sumers’ privacy. Moreover, the performance of our proposed
model is constrained when it comes to the detection of theft
in high frequency EC patterns since it is trained using low
frequency data. It happens to be a drawback of our proposed
approach. In future, to avoid such issue, we will consider
the high frequency EC data to train our model. In addition,
by having access to huge amount of computational resources,
we will consider more than one EC datasets with even more
dimensions and samples than SGCC dataset in order to obtain
a well generalized model. Moreover, in order to achieve
much better ETD accuracy, we will consider the hyperpa-
rameters’ tuning of BILSTM-LogitBoost model using a novel
meta-heuristic optimization algorithm.
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