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Abstract: The microgrid (MG) is a popular concept to handle the high penetration of distributed
energy resources, such as renewable and energy storage systems, into electric grids. However,
the integration of inverter-interfaced distributed generation units (IIDGs) imposes control and
protection challenges. Fault identification, classification and isolation are major concerns with IIDGs-
based active MGs where IIDGs reveal arbitrary impedance and thus different fault characteristics.
Moreover, bidirectional complex power flow creates extra difficulties for fault analysis. This makes
the conventional methods inefficient, and a new paradigm in protection schemes is needed for IIDGs-
dominated MGs. In this paper, a machine-learning (ML)-based protection technique is developed
for IIDG-based AC MGs by extracting unique and novel features for detecting and classifying
symmetrical and unsymmetrical faults. Different signals, namely, 400 samples, for wide variations
in operating conditions of an MG are obtained through electromagnetic transient simulations in
DIgSILENT PowerFactory. After retrieving and pre-processing the signals, 10 different feature
extraction techniques, including new peaks metric and max factor, are applied to obtain 100 features.
They are ranked using the Kruskal–Wallis H-Test to identify the best performing features, apart from
estimating predictor importance for ensemble ML classification. The top 18 features are used as
input to train 35 classification learners. Random Forest (RF) outperformed all other ML classifiers for
fault detection and fault type classification with faulted phase identification. Compared to previous
methods, the results show better performance of the proposed method.

Keywords: machine learning; AC microgrid protection; fault detection; fault type classification;
faulted phase identification; feature extraction; peaks metric; max factor

1. Introduction

New DG (Distributed Generation) technologies are being developed, and more DGs
are entering the distribution system as the conventional power grid approaches its max-
imum capacity and concerns about the glasshouse gas emissions by traditional power
plants grow. This has allowed microgrids to emerge as an essential element of the modern
distribution system. While it offers many advantages, there are a number of concerns to be
resolved, among which fault protection is a major challenge. Protection devices in existing
DN (Distribution network) consist of non-directional overcurrent (OC) protective relays,
reclosers, fuses and sectionalisers [1] and are mostly radial. The protection schemes were
initially designed for the unidirectional flow of power, but with the increase in bidirec-
tional power flow, coordination between fault protection devices can be compromised [2],
especially when the microgrid is in an autonomous (AUTO) mode of operation. Addition-
ally, achieving correct selectivity and sensitivity poses a great challenge in the practical
application of microgrids [3]. As a result, conventional protection techniques will not
offer satisfactory protection in the future. Moreover, future intelligent grids will require
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precise single- and double-pole tripping to boost overall resilience and economic benefits.
This requires correct fault type classification (FTC) and faulted phase (FP) identification to
avoid tripping of healthy phases in fault events [4].

A common tool for analysing non-stationary, noisy, aperiodic, transient and inter-
mittent signals is wavelet transform (WT). WT can examine the signal in time-frequency
domains which give it superiority over Fourier and short-time Fourier transform [5].
WT unhides features within the original signal for detailed analysis. Additionally, applying
machine learning (ML) to detect and classify faults offers a promising solution.

To detect microgrid islanding and fault disturbances, Refs. [6,7] proposed methods
based on WT. Both studies used Daubechies (dB) as the mother wavelet. The former
considered only the negative-sequence component, dB5 and line-to-line (LL) faults, while
the latter considered the positive- and zero-sequence component, dB10 and double-line-
to-ground (LLG) faults. After extracting the signal, discrete wavelet transform (DWT) is
applied to decompose it. By detecting variations in different parameters and comparing
them to the pre-fault or threshold values, it is claimed that islanded mode and power
quality issues can be identified. Furthermore, a DT-based protection scheme is proposed
in [8] for FD and FTC. For FE, Discrete Fourier transform is used to extract features from
voltage and current phasors.

On the other hand, ML-based microgrid fault protection methods are proposed
in [9,10]. Wavelet Packet Transform and Multiresolution decomposition of WT are
respectively used to pre-process the current and voltage signals to extract features based on
negative sequence components and total harmonics distortion (THD) to train and evaluate
the ML classifier. Likewise, a microgrid fault identification and classification method is
proposed in [11], which processes line current using Haar wavelet to generate various
coefficients. Detail coefficient d3 was selected to calculate different features to train the
decision tree (DT) to detect and classify faults. Additionally, a Brownboost (BB) ensemble
approach is used for FD and FTC in [12]. Hilbert–Huang transform is adopted for feature
extraction from signals. Signals used are the current differential between the two ends of
the line.

Similarly, a combination of Maximal Overlap Discrete Wavelet Transform and Extreme
Gradient Boost is applied for FD and FTC in [13]. FejerKorovkin is used as the mother
wavelet to extract features from the three-phase current and its zero-sequence current
component. Further, Ref. [14] proposed a technique for identifying various fault types in a
microgrid by applying DWT to calculate the wavelet coefficients that are fed to different ML
classifiers. Conversely, a high impedance fault detection approach using empirical wavelet
transform is proposed in [15]. Different time-frequency components are first acquired using
the WT to decompose the differential coefficient of wavelet energy. Feature components
with the highest permutation entropy are then selected, which are used to identify high
impedance faults.

In Ref. [16], the authors used actual fault signals instead of normalising and ex-
tracting features. Although this gives high efficiency, a significant drawback of using the
raw signals instead of transforming them into numerical features is that the ML model
becomes prone to overfitting. Similarly, using a large number of features increases
processing time. Hence, there is a need to extract unique features that result in high
accuracy.

From the literature, it can be noticed that WT is commonly used for feature extraction.
The main shortcoming of protection schemes using WT for feature extraction for ML is
selecting an optimal mother wavelet basis function. Applying various mother wavelets
to the signal may produce a variety of outcomes [17–19] that can cause protection system
misoperation. Additionally, the type of chosen mother wavelet significantly impacts DWT,
producing quite varied outcomes. Moreover, fault inception angle and sampling rate affect
DWT response. As a result, most DWT-based protection techniques or derived features
are efficient for specific parameters and cannot be generalised without using a different
mother wavelet [20]. Figure 1 demonstrates the WT shortcoming by comparing the root-
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mean-square error (RMSE) for the reconstructed current signals using all the approximate
and detail coefficients of a few wavelets for a low-resistance LG fault on phase A.
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Figure 1. RMSE for the reconstructed signals using all the coefficients of different wavelets.

The RMSE seems to be negligible when all the approximate and detail coefficients are
used to reconstruct the signal, but it is not feasible to use all the coefficients. When only
one of the detail level coefficients corresponding to maximum relative energy is used to
reconstruct the signal, there is a significant change in RMSE for different wavelets. Figure 2
shows a comparison of Level 9 detail coefficient of a current signal IphA and reconstructed
signal for a low resistance LG fault on phase A using Symlets 5 (Sym5) as MW.
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Figure 2. IphA and Sym5 reconstructed signal using Level 9 detail coefficient for a low resistance LG
fault on phase A.

When only Level 9 detail coefficient is used to reconstruct the signal, comparison of
RMSE for different wavelets is shown in Figure 3.

Unlike most researchers who have used WT to extract features, this research proposes
new feature extraction methods and examines dimensionality reduction techniques, statis-
tical tools, and impulsive and signal processing metrics to extract unique features for ML
classifiers, to overcome the challenges associated with the selection of the optimal mother
wavelet.
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Figure 3. RMSE for the reconstructed signals using Level 9 detail coefficient of different wavelets.

The most common type of asymmetrical faults is a line-to-ground fault (LG),
accounting for 65 to 70% of all faults in an electric power system, followed by LLG faults
that occur around 15 to 20% of the time, while LL faults make up 5 to 10% of all faults [21].
Symmetrical faults (LLL) are rare but the most severe of all electrical faults [22]. All these
different types of faults are detected and classified in this paper, which is an extension of
the research work published in [23].

Many improvements have been made. Previously, only LG faults were classified for
faulted phase and variations in fault resistance. Nine signals, line-to-line voltage, phase
voltage and short-circuit currents for phases A, B and C were used. Although these signals
were enough to classify LG faults, they were not enough for FD. Since there was only
LG fault classification, no data was collected to detect the fault and no-fault conditions.
A small dataset was used with manual parameter tuning, which can not match the au-
tomated optimisation, using every possible variation in order to improve performance.
Additionally, features were selected using an iterative process instead of using FS tech-
niques. The main contributions of this paper are:

• A large amount of data is collected for varying fault conditions and no-fault cases.
A new 400 × 500 × 10 microgrid fault dataset is built for 400 scenarios, each with
500 samples for 10 signals.

• Two new feature extraction (FE) techniques, Peaks Metric and Max Factor, are formu-
lated and applied.

• Eight other FE methods, most of which have not been used for microgrid fault detec-
tion and classification, are investigated for suitability.

• A new 400 × 10 × 10 dataset with unique features for fault detection and classification
in AC microgrids is built for 400 cases, 10 FE techniques and 10 signals.

• Various feature ranking techniques have been used to reduce the number of predictors.
35 ML algorithms with optimal hyperparameters have been trained to find the models
with the highest possible accuracy for the fewest possible predictors.

• Validation of the trained models is carried out by using unseen data for making
predictions.

After the introduction, Section 2 describes the test microgrid model used to record sig-
nals through electromagnetic transient (EMT) simulations for wide variations in operating
conditions. Different techniques, including new factors proposed for extracting features,
are presented in Section 3. Section 4 presents the methods used for feature selection. The
proposed method for detecting and classifying faults is described in Section 5. The results
and analysis are summarised in Section 6. Section 7 presents the conclusion and future
work.
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2. Test Microgrid and Simulations

The low voltage AC test microgrid simulated in DIgSILENT PowerFactory shown in
Figure 4 is a part of a radial distribution system operating at 415 V, 50 Hz. It is connected
to the main grid through an 11 kV/415 V transformer. There are three DG sources, two
photovoltaic (PV) systems, which are inverter-interfaced distributed generators (IIDGs)
and a synchronous generator-based microturbine to maintain microgrid stability in AUTO
mode by providing sufficient damping component and rotational inertia. A commercial
load is connected to Bus 1, and domestic loads are connected to Bus 2 and 3. Bus 2 is
the point of common coupling (PCC). The circuit breaker after the transformer is used for
switching between the two microgrid operational modes.
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Figure 4. Test Microgrid.

Data is recorded through EMT simulations for 400 cases. For every case, simulations
are carried out for 0.05 s with a step size of 0.0001 s to obtain 500 observations for each
of the 10 signals. The signals include three phase voltage (VphABC) in kV , three phase
current (IphABC) and short-circuit current (IshABC) in kA and frequency (Freq) in Hz.

Simulations are carried out for ten faults to collect data for fault detection (FD) and
FTC with FP. Apart from variations in fault resistance, reactance, inception angles, number
of cycles and locations, all faults are simulated for grid-connected (GC) and AUTO mode to
identify the variations in fault current level and other signals. Three cases are used for the
LG faults: bolted fault with 0 Ω resistance, low resistance ground fault with 5 Ω resistance,
and high resistance fault with a value of 400 Ω. For all other faults, the first case (C1) has no
fault resistance or reactance. The second case (C2) has a resistance of 0.1 Ω and a 0.001 Ω
reactance. The third and last case (C3) has a resistance of 0.1 Ω and a comparatively greater
reactance of 1 Ω.

Waveforms of 10 signals: VphABC, IphABC, IshABC and Freq for a fault and three NF
cases are shown in Figure 5. Waveforms for LL-AB fault for case C3 in GC mode is shown in
Figure 5a. The NF case of loads switching on and off in AUTO mode is shown in Figure 5b;
the NF case of load switching off in GC mode is shown in Figure 5c; and the NF case of
MG switching from AUTO to GC mode is shown in Figure 5d.
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(a) LL-AB fault for C3 in GC mode
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(b) NF, Load switching in AUTO mode
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(c) NF, Load switching in GC mode
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(d) AUTO to GC mode switching

Figure 5. Ten signals for LL-AB Fault and NF conditions.

For FD, equal sets for different faults are categorised as Fault, while various cases
of normal operation, load switching and grig switching are classified as No Fault (NF).
On the other hand, FTC data has been organised to classify the fault type and FP. Data for
the NF conditions include simulations of connecting and disconnecting 5 kW, 50 kW and
200 kW load in both modes, switching from GC to AUTO and vice versa with and without
load switching. Additionally, simulations without any fault, load or grid switching are also
included to differentiate between a fault and NF conditions. Data collected for symmetrical
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faults include LLL, LLLN and LLLNG faults. Due to close similarity in collected signals, all
cases of symmetrical faults are categorised as LLL faults.

3. Feature Extraction

Feature extraction (FE) involves transforming raw data into numerical features while
retaining the information in the original data. This helps in preventing overfitting and
gives better results instead of applying ML to the raw data. Two novel FE techniques,
Peaks Metric and Max Factor are proposed and applied in this research. Additionally, the
suitability of using Standard Deviation, First and Second Principal Components [23], Total
Harmonic Distortion [10], Kurtosis, Crest Factor, Shape Factor and Skewness [24,25] to
extract useful features is investigated. A total of 100 unique features are obtained. Kurtosis,
Crest Factor, Shape Factor and Skewness are commonly used FE techniques for bearing
fault diagnosis but have not been applied before to detect and classify faults in an AC
microgrid to the best of the author’s knowledge.

Moreover, using Principal Component Analysis to detect and classify AC microgrid
faults is also not common and was previously proposed by the authors of this paper.

3.1. Standard Deviation

The standard deviation (STD), for a variable vector x composed of N scalar observa-
tions is defined as

STD(x) =

√
∑N

i=1(xi − x̄)2

(N − 1)
(1)

where x̄ is the mean of x:

x̄ =
1
N

N

∑
i=1

xi (2)

The variation in STD of VphB for random cases of NF and LL-AB fault is shown in
Figure 6. There is a notable difference between fault and NF features, which is desired for
training ML classifiers. If the features also called predictors are very closely distributed, the
probability of misclassification increases.
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Figure 6. STD of VphB for NF and fault cases.

3.2. Peaks Metric

Peaks Metric (PM) is a novel metric proposed in this research and is defined as the
ratio of the mean of the peak values x̄peaks in the signal to the mean x̄ of the signal.

PM(x) =
x̄peaks

x̄
(3)



Energies 2022, 15, 9397 8 of 19

where

x̄peaks =
1
N

N

∑
i=1

xpeaksi (4)

For C3, LL-AB fault in GC mode, the deviation in f req is shown in Figure 7.
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Figure 7. Freq deviation for C3, LL-AB fault in GC mode.

For the above observation, there are four peaks with values 50.8540, 50.5164, 50.7120
and 50.4684. The x̄peaks is 50.6377, while x̄ is 50.0130. For the above case, the value of PM
is 1.0125. The difference in PM of Freq for LL-AB fault and NF conditions is shown in
Figure 8.
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Figure 8. PM of Freq for fault and NF conditions.

The proposed PM considers all the peaks and takes their mean to represent the signal
better, instead of just using the max value. When a fault occurs, the peaks of the waveform
change before there is any significant change in the signal’s energy. Therefore the PM can
warn of faults when they first initiate.

3.3. Max Factor

Max Factor (MF) is the second novel metric proposed in this research and is the ratio
of maximum value xmax to the absolute value of mean |x̄| of the signal.

MF(x) =
xmax

|x̄| (5)

For a bolted LG fault on phase B in AUTO mode, three phase current signals IphABC are
shown in Figure 9, and the signal for IphB is shown separately in Figure 10 to demonstrate
the application of proposed metric MF.



Energies 2022, 15, 9397 9 of 19

0 50 100 150 200 250 300 350 400 450 500

Time (ms)

-1

-0.5

0

0.5

1

k
A

Iph
A

Iph
B

Iph
C
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Figure 10. IphB for a bolted LG fault on phase B in AUTO mode.

In Figure 10, the max value of the IphB is 1.2775, while |x̄| is 0.0108. For the above
case, the value of MF is 117.7036. For the no fault case, the max value of the IphB is 0.343,
while |x̄| is 0.026, resulting in MF of 13.273. The difference in MF of IphB for NF and LG-B
fault cases is shown in Figure 11.
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Figure 11. MF of IphB for NF and fault conditions.

3.4. Principal Component Analysis

Principal component analysis (PCA) is mainly applied to reduce dimensionality in
order to decrease the processing time and avoid overfitting the model [23]. The first step in
PCA is to calculate the covariance matrix. The covariance matrix (CM) of any two variables
x and y, is the matrix of pairwise covariance (cov) calculations between each variable.

CM =

[
cov(x, x) cov(x, y)
cov(y, x) cov(y, y)

]
(6)

where

cov(x, y) = ∑N
i=1(xi − x̄)∗(yi − ȳ)

N − 1
(7)

x̄ and ȳ are the mean values of x and y, respectively and ∗ denote the complex
conjugate. Eigenvalues are used to calculate the eigenvectors for the covariance matrix,
which are then used to extract patterns. The first eigenvector represents the eigenvalue
that has the highest variance. For the eigenvalue, which has the next highest variance, the
second eigenvector corresponds to it, and so on. The matrix that results is as follows...

E =
[

~ev1 ~ev2 . . ~evp
]

(8)
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Only the first and second eigenvectors are selected to obtain the first (pc1) and second
principal components (pc2).

E′ =
[

~ev1 ~ev2
]

(9)

The projection of the vectors onto the new base that is consistent with pc1 and pc2 is
used to represent the new features.

pc1,2 = E′ · [xi − x̄]T (10)

where xi and x̄ respectively represent the variable and the mean vector of the original data,
whereas pc1,2 represents new features. The difference in pc1 for VphA for NF and LLG-AB
fault scenarios is shown in Figure 12.
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Figure 12. pc1 of VphA for NF and fault scenarios.

3.5. Kurtosis

The Kurtosis (Kurt) of a signal x is defined in (12) [25].

Kurt(x) =
1
N ∑N

i=1(xi − x̄)4[
1
N ∑N

i=1(xi − x̄)2
]2 (11)

The Kurt of the normal distribution is 3. A fault in the system will change the value,
greater than or less than 3. The difference in Kurt for IphB for NF and LLL fault cases is
shown in Figure 13.
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Figure 13. Kurt of IphB for NF and fault cases.

3.6. Crest Factor

Crest Factor (CRES) is the ratio of the maximum absolute value to the RMS [25].

CRES(x) =
xm

xrms
(12)
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where xm is the maximum absolute value of the signal:

xm = max
i
|xi| (13)

and xrms is:

xrms =

√√√√ 1
N

N

∑
i=1
|xi|2 (14)

The CRES of a sinusoidal current waveform for purely resistive load is 1.414.
Figure 14 show the difference in CRES of IphA for NF and LLL fault condition.
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Figure 14. CRES of IphA for NF and fault conditions.

3.7. Shape Factor

Shape Factor (SF) is the ratio of RMS to the mean of the absolute value [24]. The SF is
independent of the signal dimensions, but it relies on the signal shape.

SF(x) =
xrms

1
N ∑N

i=1|xi|
(15)

Figure 15 show the difference in SF of VphC for NF and LL-CA fault cases.

1.1

1.12

1.14

1.16

1.18

1.2

1 5 9 13 17 21 25 29 33 37 41 45 49

Sh
ap

e 
Fa

ct
o

r 

Number of Cases

NF (VphC Features) LL-CA (VphC Features)

Figure 15. SF of VphC for NF and fault cases.

3.8. Total Harmonics Distortion

The THD is the amount of distortion in the signal compared to the undistorted signal.
It is defined as the ratio of the square root of the summation of all harmonics squared (from
second harmonic) over the fundamental component [10]. THD is an essential measure in
power systems. A lower value gives lower peak currents, higher power factor and system
efficiency.

THD(x) =
√

∑∞
n=2 x2

n
x1

(16)
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where xn is the n-th harmonic of x and x1 is the fundamental component. THD difference
of VphC for NF and LG(C) fault cases is shown in Figure 16.
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Figure 16. THD of VphC for NF and fault cases.

3.9. Skewness

The skewness (Skew) shows the irregularity of signal distribution [25]. Distribution
symmetry can be impacted by faults resulting in an increased level of skewness.

Skew(x) =
1
N ∑N

i=1(xi − x̄)3[
1
N ∑N

i=1(xi − x̄)2
]3/2 (17)

The difference in Skew of phase C for NF and LLG(CA) fault conditions is shown in
Figure 17.
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Figure 17. Skew of VphC for NF and fault scenarios.

4. Feature Selection

Feature selection (FS) is the process of reducing features or predictors to provide the
best predictive power in modelling a set of data, as not all features are useful. The goal is
to find the fewest possible features with the highest possible accuracy. Finding the best
features essentially remains an iterative process and requires deep domain knowledge.
Feature selection aids in improving the speed and accuracy of prediction as it:

1. Prevents overfitting: modelling with many features can make the model more suscep-
tible to specific observations in training data.

2. Reduces model size: fewer features increase computational performance and require
less memory for embedded deployment.

Features are ranked using the Kruskal–Wallis H-Test (KW) [26] for FD and FTC with
FP. The top 18 features for FD are shown in Figure 18.
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Figure 18. Feature ranking for FD using KW.

Additionally, estimates of predictor importance for the classification ensemble meth-
ods are also computed by summing the estimates over weak learners in the ensem-
ble for each input predictor. A high value indicates that this predictor is important.
Predictor importance for FD using Bagged Trees (BT) ensemble, where bagging is short for
bootstrap aggregation [27], is shown in Figure 19.
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Figure 19. Predictor importance for FD using BT/RF.
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5. Methodology

By applying domain knowledge and FS methods, the top 18 features are selected
for FD, and the top 18 features are chosen for FTC with FP. Numerous ML algorithms
are trained and tested, as will be discussed in Section VI. Random Forest (RF) [28,29]
outperformed all other ML classifiers for FD and FTC with FP.

RF is an ensemble method similar to BT but differs in the growing phase. A subset of
features is randomly selected for each decision split in RF as shown in Figure 20.
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Figure 20. View of 4th Tree with 7 branches and 15 nodes.

In BT, at each node, all the features are candidates for splitting, which can result in the
same features giving the highest accuracy, being used at different nodes and for numerous
DTs, as shown in Figure 21. This causes overfitting in the model. On the contrary, in RF,
each tree is grown using a separate random subset of data; therefore, every decision tree
that makes up a RF is unique. RF has superior accuracy compared to BT, as it minimises
overfitting, while BT is better than a single decision tree.
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Figure 21. View of 20th Tree with 9 braches and 19 nodes.

For FD, the RF model with optimal hyperparameters grows 488 individual trees.
On the other hand, for FTC with FP, the optimised RF model has 271 trees. The trained RF
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models are deployed to detect and classify faults. Figure 22 presents a schematic diagram
of the proposed protection scheme.
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Figure 22. Proposed methodology.

The process starts with measuring local signals, followed by FE, fed to the trained RF
models. A trip signal is issued when a fault is detected by converting the data type of label
to the real-world numerical value. Furthermore, FTC with FP is displayed.

6. Results and Analysis

The top 18 features are used as input to train 35 classification learners for FD and
FTC with FP. These include Classification Ensembles, Naive Bayes, Neural Networks,
Discriminant Analysis, Support Vector Machine (SVM), Classification Trees and k-nearest
neighbours (KNN) [30]. Ten-fold cross-validation (CV) is applied to the training dataset to
protect against overfitting. Hyperparameter tuning of all models is performed to improve
accuracy. Predictions are made using unseen data. The top 5 models with CV and test
accuracy for FD are shown in Table 1.

Table 1. Test accuracy of ML models with 18 features for FD.

Model CV Accuracy Test Accuracy

Optimized RF 100% 99.8%
Optimized GB 100% 99.1%

Gaussian Naive Bayes 100% 98.2%
Optimized KNN (Cosine) 97.9% 96.4%

Neural Network (Bilayered) 95.9% 93.5%

RF displayed the highest test accuracy. The accuracy of ML models with further reduc-
tion in the number of features for FD and FTC with FP is also investigated.
Model accuracy dropped sharply for less than 18 predictors. The best combination of
18 predictors for FD includes 3 predictors obtained by STD of VphABC, and 9 using pc1
of IshABC, IphABC and VphABC. The remaining 6 include CRES of IshABC, MF, PM and
CRES of Freq.

The Simulink Classification Ensemble Predict block with trained RF model is used
to validate the model predictions with trip signal issued when fault is detected. For a set
of 20 new observations, with alternating 5 NFs followed by fault cases, the model only
misclassified once, where it predicted a fault as an NF. The alternating trip signals for the
20 observations are shown in Figure 23.
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Figure 23. Fault as a NF detection and respective trip signal.

Likewise, for FTC with FP, the top 18 predictors are used to train 35 classification
learners. The top 5 models with 10-fold cross-validation and test accuracy are shown in
Table 2.

Table 2. Test accuracy of ML models with 18 features for FTC with FP.

Model CV Accuracy Test Accuracy

Optimized RF 100% 99.4%
Decision Tree (Fine) 99.3% 98.1%

Optimized SVM (Gaussian) 97.1% 94.9%
Neural Network (Wide) 95.2% 91.4%

Linear Discriminant 93.8% 89.3%

The best combination of 18 predictors for FTC with FP includes 6 obtained by STD
of VphABC and IphABC, and 9 using pc1 of IshABC, IphABC and VphABC. The remaining 3
include CRES of IshABC.

The test accuracy comparison of the proposed method with other FD and FTC methods
is shown in Figures 24 and 25.
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Figure 24. Accuracy comparison with other FD methods [8,10,12,13].
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Figure 25. Accuracy comparison with other FTC methods [8,10,12,13].

The results show excellent performance by the proposed protection scheme compared
to previous methods. Apart from achieving very high accuracy for FD and FTC with FP,
very high protection sensitivity is also attained for both modes of microgrid operation for
various fault types and cases.

7. Conclusions and Future Work

The FD methods based on WT feature extraction can be affected by the type of selected
mother wavelet, which may cause the protection system misoperation. Subsequently,
most WT based protection techniques are efficient for specific parameters and cannot be
generalised without using a different mother wavelet. To overcome this shortcoming of WT,
a new protection scheme for AC microgrids is developed in the proposed research. Novel
FE techniques, Peaks Metric and Max Factor are applied, apart from exploring other FE
methods to examine the suitability for detecting and classifying faults. After the signals are
pre-processed, the features are extracted and then the best performing features are selected
using FS techniques. Various ML classifiers are trained and tested. For FD and FTC, with
18 predictors, RF outperformed all other ML classifiers for FD and FTC with FP. Simulink
is used to validate the model predictions with a trip signal issued when a fault is detected.
Accurate FD, FTC with FP identification, and high protection sensitivity for wide variations
in operating conditions make the protection scheme superior to earlier methods.

Future work will integrate the proposed FD and FTC method into a multi-agent based
protection scheme for meshed microgrid and testing it on a real-time digital simulator to
evaluate the performance.
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