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Abstract. Topic models are natural language processing models that
can parse large collections of documents and automatically discover their
main topics. However, conventional topic models fail to capture how such
topics change as the collections evolve. To amend this, various researchers
have proposed dynamic versions which are able to extract sequences of
topics from timestamped document collections. Moreover, a recently-
proposed model, the dynamic embedded topic model (DETM), joins such
a dynamic analysis with the representational power of word and topic
embeddings. In this paper, we propose modifying its word probabilities
with a temperature parameter that controls the smoothness/sharpness
trade-off of the distributions in an attempt to increase the coherence of
the extracted topics. Experimental results over a selection of the COVID-
19 Open Research Dataset (CORD-19), the United Nations General De-
bate Corpus, and the ACL Title and Abstract dataset show that the
proposed model, aptly nicknamed DETM-tau, has been able to improve
the model’s perplexity and topic coherence for all datasets.

Keywords: Topic models · neural topic models · dynamic topic models · dy-
namic embedded topic model· deep neural networks.

1 Introduction

Topic models are natural language processing (NLP) models which are able to
extract the main topics from a given, usually large, collection of documents. In
addition, topic models are able to identify the proportions of the topics in each
of the individual documents in the given collection, which can be useful for their
categorization and organization. As a machine learning approach, topic models
are completely unsupervised and, as such, they have proved a very useful tool
for the analysis of large amounts of unstructured textual data which would be
impossible to tackle otherwise. Thanks to their flexibility and ease of use, topic
models have found application in domains as diverse as finance [8,18], news [25],
agriculture [9], social media [1, 18], healthcare [2, 22,27] and many others.

Among the topic models proposed to date, latent Dirichlet allocation (LDA)
[7] is broadly regarded as the most popular. Its simple, fundamental assumption
is that every word in each document of the given collection is associated with a
specific “topic”. In turn, a topic is represented simply as a dedicated probability
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distribution over the words in the given vocabulary. Completed by a Dirichlet
prior assumption over the topic proportions of each document, LDA has proved
at the same time accurate and efficient. However, conventional topic models such
as LDA are unable to analyse the sequential evolution of the topics over differ-
ent time frames. This could be important, instead, for collections that exhibit
substantial evolution over time. For instance, a collection of COVID-19-related
articles may predominantly display topics such as “outbreak” and “patient zero”
in its early stages, “lockdowns” and “vaccine development” in later stages, and
“vaccination rates” and “boosters” in the present day.

To analyze the topics over time, one could in principle just partition the doc-
ument collection into adequate “time slices” (e.g., months or years), and apply
a conventional topic model separately over each time slice. However, this would
fail to capture the continuity and the smooth transitions of the topics over time.
For this reason, Lafferty and Blei in [13] have proposed a dynamic topic model
(DTM) which is able to extract the topics from each time slice while taking into
account the topics’ continuity and temporal dynamics. Motivated by the repre-
sentational power of word embeddings in NLP, Diang et al. in [10] have recently
proposed a dynamic embedded topic model (DETM) which integrates DTM with
embedded word representations. Since word embeddings can be pre-trained in
a completely unsupervised way over large amounts of text, an embedded model
such as DETM can take advantage of the information captured by the word
embeddings’ pre-training.

However, a common limitation for all these topic models is that they cannot
be easily tuned to explore improvements of the performance evaluation measures.
For this reason, in this paper we propose adding a tunable parameter (a “tem-
perature”) to the word distributions of DETM to attempt increasing the model’s
performance. We have tested the proposed model, aptly nicknamed DETM-tau,
over three diverse and probing datasets: a time-sliced subset of the COVID-19
Open Research Dataset (CORD-19) [24], the United Nations (UN) General De-
bate Corpus [3], and the ACL Title and Abstract Dataset [5], comparing it with
the best dynamic topic models from the literature such as DTM and DETM.
The experimental results show that the proposed model has been able to achieve
higher topic coherence and also lower test-set perplexity than both DTM and
DETM in all cases.

The rest of this paper is organized as follows: the related work is presented
in Section 2, including a concise review of the key topic models. DETM is re-
capped in Section 3.1, while the proposed approach is presented in Section 3.2.
The experiments and their results are presented in Section 4. Eventually, the
conclusion is given in Section 5.

2 Related Work

In this section, we review the topic models that are closely related to the proposed
work, such as latent Dirichlet allocation (LDA), dynamic topic models, and topic
models based on word and topic embeddings.
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Let us consider a document collection, D, with an overall vocabulary con-
taining V distinct words. In LDA, the generic n-th word in the d-th document
can be noted as wd,n, and simply treated as a categorical variable taking values
in index set [1 . . . V ]. One of the key assumptions of LDA is that each such word
is uniquely assigned to a corresponding topic, zd,n, which is another categori-
cal variable taking values in set [1 . . .K], where K is the number of topics that
we choose to extract from the collection. In turn, each topic has an associated
probability distribution over the words in the vocabulary, βk, k = 1 . . .K, which
accounts for the word frequencies typical of that specific topic. The full model
of LDA can be precisely formulated and understood in terms of the following
generative model, which is a model able to generate “synthetic” documents by
orderly sampling from all the relevant distributions:

– For the d-th document, draw a K-dimensional vector, θd, with its topic
proportions:

– θd ∼ Dir(θd|α)

– For each word in the d-th document:

– Draw its topic: zd,n ∼ Cat(θd)

– Draw the word from the topic’s word distribution:
– wd,n ∼ Cat(βzd,n)

In the above model, the first step for each document is to sample its topic
proportions, θd, from a suitable Dirichlet distribution, Dir(θd|α). Once the topic
proportions are given, the next step is to sample all of the document’s words,
by first sampling a topic, zd,n, from categorical distribution 1 Cat(θd), and then
sampling the corresponding word, wd,n, from the word distribution indexed by
zd,n, Cat(βzd,n).

Overall, LDA is a computationally-efficient model that can be used to accu-
rately extract the topics of a given training set of documents, and simultaneously
identify the topic proportions of each individual document. LDA can also be ap-
plied to a given test set ; in this case, the parameters of the Dirichlet distribution,
α, and the word distributions, β, are kept unchanged, and only the topic propor-
tions for the given test documents are inferred. LDA has also spawned a large
number of extensions and variants, including hierarchical versions [12, 16], se-
quential versions [21], class-supervised versions [21], sparse versions [19, 26, 28],
and many others. However, the extensions that are closely relevant to our work
are the dynamic topic model (DTM) [13], the embedded topic model (ETM) [11],
and the dynamic embedded topic model (DETM) [10]. We briefly review DTM
and ETM hereafter, while we recap DETM in greater detail in Section 3.

DTM is a topic model that captures the evolution of the topics in a corpus of
documents that is sequentially organized (typically, along the time dimension).
1 Otherwise known as the multinomial distribution. The recent literature on varia-

tional inference seems to prefer the “categorical distribution” diction.



4 Anonymous submission

The corpus is first divided up into “time slices” (i.e., all the documents sharing
the same time slot), and then the topics are extracted from each slice taking
into account a dynamic assumption. For reasons of inference efficiency, DTM
uses a logistic normal distribution, LN (θ|α), instead of a Dirichlet distribution
to model the topic proportions of the individual documents. In addition, the
samples of the logistic normal distribution are obtained by explicitly sampling a
Gaussian distribution of equivalent parameters, and then applying the softmax
operator, σ(·), to the Gaussian samples. The sequential dependencies between
the time slices are captured by a simple dynamical model:

αt ∼ N (αt−1, δ2I)

βt ∼ N (βt−1, σ2I)
(1)

where αt are the parameters of the logistic normal distribution over the topics
at time t, and βt is the matrix of all the word distributions (in logit scale), also
at time t. The rest of the generative model for slice t can be expressed as:

– For the d-th document, draw its topic proportions (logit scale):

– θd ∼ N (αt, a2I).

– For each word in the d-th document:

– Draw its topic: zd,n ∼ Cat(σ(θd))

– Draw the word from the topic’s word distribution:
– wd,n ∼ Cat(σ(βzd,n))

DTM has proved capable of good empirical performance, and its inference
is provided by efficient variational methods [13]. However, both LDA and DTM
might lead to poor modelling in the presence of very large vocabularies, espe-
cially if the corpus is not sufficiently large to allow accurate estimation of the
word probabilities. A possible mollification consists of substantially pruning the
vocabulary, typically by excluding the most common and least common words.
However, this carries the risk of excluding important terms a priori. The em-
bedded topic model (ETM) [11] aims to overcome the limitations of categorical
word distributions such as those of LDA and DTM by leveraging word embed-
dings [4, 15].

In ETM, each distinct word in the vocabulary is represented as a point in
a standard word embedding space (typically, 300-1024D). Each topic, too, is
represented as a point (a sort of “average”) in the same embedding space. The
compatibility between a word and a topic is then simply assessed by their dot
product, and the probability of the word given the topic is expressed as in a
common logistic regression classifier. The full generative model of ETM can be
given as:
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– For the d-th document, draw its topic proportions (logit scale):

– θd ∼ N (0, I)

– For each word in the d-th document:

– Draw its topic: zd,n ∼ Cat(σ(θd))

– Draw the word from the topic’s word distribution:
– wd,n ∼ Cat(σ(ρ⊤ηzd,n))

In the above, we have noted as ρ the word embedding matrix, which contains
the embeddings of all the words in the given vocabulary. Assuming a dimension-
ality of L for the embedding space, ρ’s size is L× V . In turn, with notation ηk
we have noted the embedding of the k-th topic. Therefore, the dot product ρ⊤ηk
evaluates to a V -dimensional vector which, suitably normalised by the softmax,
returns the probabilities for the word distribution of topic k.

The ETM is a powerful topic model that joins the advantages of LDA with
the well-established word embeddings. The main benefit brought by the word
embeddings is that they can be robustly pre-trained using large amounts of
unsupervised text from a relevant domain (potentially, even the collection itself).
During training of the ETM, a user can choose to either 1) use the pre-trained
word embeddings, keeping them fixed, or 2) load them as initial values, but
update them during training. In alternative, a user can also choose to update the
word embeddings during training, but initialise them from arbitrary or random
values (in this case, not taking advantage of pre-training). Dieng et al. in [11]
have shown that the ETM has been able to achieve higher topic coherence and
diversity than LDA and other contemporary models. While the ETM, like LDA,
is limited to the analysis of static corpora, it can also be extended to incorporate
dynamic assumptions. This is the aim of the dynamic embedded topic model
(DETM) that we describe in the following section.

3 Methodology

In this section, we first describe our baseline, the dynamic embedded topic model
(3.1), and then we present the proposed approach (3.2).

3.1 The dynamic embedded topic model

The dynamic embedded topic model (DETM) joins the benefits of DTM and
ETM, allowing the model to capture the topics’ evolution over time while lever-
aging the representational power of word embeddings. The dynamic assumption
over the topic proportions is the same as for the DTM:

αt ∼ N (αt−1, δ2I) (2)

but a dynamic prior is now assumed over the topic embeddings:



6 Anonymous submission

Table 1. Key sizes of the datasets used for the experiments.

Dataset Training set Validation set Test set Timestamps Vocabulary
CORD-19TM 15,300 900 1,800 18 70,601
UNGDC 1,96,290 11,563 23,097 46 12,466
ACL 8,936 527 1,051 31 35,108

ηt ∼ N (ηt−1, γ2I) (3)

The rest of the generative model for slice t is:

– For the d-th document, draw its topic proportions (logit scale):

– θd ∼ N (αt, a2I).

– For each word in the d-th document:

– Draw its topic: zd,n ∼ Cat(σ(θd))

– Draw the word from the topic’s word distribution:
– wd,n ∼ Cat(σ(ρ⊤ηtzd,n))

The training of DETM involves maximizing the posterior distribution over
the model’s latent variables, p(θ, η, α|D). However, maximizing the exact poste-
rior is intractable. Therefore, the common approach is to approximate it with
variational inference [6] using a factorized distribution, qv(θ, η, α|D). Its param-
eters, noted collectively as v, are optimized by minimizing the Kullback-Leibler
(KL) divergence between the approximation and the posterior, which is equiva-
lent to maximizing the following expectation lower bound (ELBO):

L(v) = E[log p(θ, η, α,D)− log qv(θ, η, α|D)] (4)

The implementation of qv relies on feed-forward neural networks to predict
the variational parameters, and on LSTMs to capture the temporal dependencies;
we refer the reader to [10] for details.

3.2 The proposed approach: DETM-tau

The fundamental evaluation measure for a topic model is the topic coherence
[14]. This measure looks at the “top” words in the word distribution of each
topic, and counts how often they co-occur within each individual document.
The assumption is that the higher the co-occurrence, the more “coherent” is the
extracted topic model.

However, topic models cannot be trained to optimize the topic coherence. In
the first place, the coherence is a counting measure that depends on the outcome
of a ranking operation (a top-K argmax), and it is therefore not differentiable
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in the model’s parameters. In the second place, it is evaluated globally over
the entire document set. As a consequence, alternative approaches based on
reinforcement learning [23] would prove excruciatingly slow, and would not be
able to single out and reward the contribution of the individual documents (the
so-called “credit assignment” problem [17]).

For this reason, in this work we attempt to improve the topic coherence by
utilizing a softmax with temperature [20] in the word distributions. The inclusion
of a temperature parameter can make the word distributions “sharper” (i.e. the
probability mass more concentrated in the top words, for temperatures < 1)
or smoother/more uniform (for temperatures > 1). We expect this to have an
impact on the final word ranking, as high temperatures will make mixing more
pronounced during training, while low temperatures may “freeze” the ranking
to an extent. With the addition of the temperature parameter, τ , the word
distributions take the form:

w ∼ Cat(σ(ρ⊤ηz/τ)) (5)

While parameter τ can be optimized with the training objective like all the
other parameters, we prefer using a simple validation approach over a small,
plausible range of values to select its optimal value.

4 Experiments and Results

4.1 Experimental set-up

For the experiments, we have used three popular document datasets: the COVID-
19 Open Research Dataset (CORD-19) [24], the United Nation General De-
bate Corpus (UNGDC) [3] and the ACL Title and Abstract Dataset (ACL) [5].
CORD-19 is a resource about COVID-19 and related coronaviruses such as SARS
and MERS, containing over 500,000 scholarly articles, of which 200,000 with full
text. For our experiments, we have created a subset organized in monthly time
slices between March 2020 and August 2021, limiting each slice to the first 1,000
documents in appearance order to limit the computational complexity. We refer
to our subset as CORD-19TM, and we release it publicly for reproducibility of
our experiments. UNGDC covers the corpus of texts of the UN General Debate
statements from 1970 to 2015 annotated by country, session and year. For this
dataset, we have considered yearly slices. The ACL dataset [5] includes 10,874
title and abstract pairs from the ACL Anthology Network which is a repository
of computational linguistics and natural language processing articles. For this
dataset, too, we have considered yearly slices, with the years spanning from 1973
to 2006 (NB: three years are missing). As in [10], the training, validation and test
sets have been created by splitting the datasets into 85%, 5% and 10% splits,
respectively. All the documents were preprocessed with tokenization, stemming
and lemmatization, eliminating stop words and words with document frequency
greater than 70% and less than 10%, as in [10].
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Table 2. Results on the CORD-19TM dataset with 20 topics

Model LDA DTM DETM DETM-tau
Perplexity — — 15548.8 14379.2
Coherence -0.049 0.114 0.059 0.129

Table 3. Results on the CORD-19TM dataset with 40 topics

Model LDA DTM DETM DETM-tau
Perplexity — — 14966.3 13129.7
Coherence -0.047 0.081 -0.043 0.093

As models, we have compared the proposed DETM-tau with: the original
DETM, DTM, and LDA applied separately to each individual time slice. As
performance metrics, we have used the perplexity and the topic coherence which
are the de-facto standards for this task. The perplexity is a measure derived
from the probability assigned by the model to a document set, and should be as
low as possible. It is typically measured over the test set to assess the model’s
generalization. The topic coherence is a measure of the co-occurrence of the
“top” K words of each topic within single documents, and should be as high as
possible. It is typically measured over the training set to assess the explanatory
quality of the extracted topics. Several measures for the topic coherence have
been proposed, and we use the NPMI coherence [14] with K = 10, as in [10]. As
number of topics, we have chosen 20 and 40 which are commonly-used values in
the literature. For the selection of the temperature parameter, τ , we have used
range [0.25 − 2.25] in 0.5 steps. All other hyperparameters have been left as in
the corresponding original models.

4.2 Results

Tables 2 and 3 show the results over the CORD-19TM dataset with 20 and 40
topics, respectively. In terms or perplexity, the proposed DETM-tau has neatly
outperformed the original DETM for both 20 and 40 topics (NB: the perplexity
is not available for the LDA and DTM models). In terms of topic coherence,
DETM-tau has, again, achieved the highest values. The second-best results have
been achieved in both cases by DTM, while DETM and LDA have reported
much lower scores. In particular, the very poor performance of LDA shows that
applying a standard topic model separately on each time slice is an unsatisfactory
approach, and musters further support for the use of dynamic topic models for
timestamped document analysis.

Tables 4 and 5 show the results over the UNGDC and ACL datasets, respec-
tively. For these datasets, we have not carried out experiments with DTM as it
proved impractically time-consuming, and we omitted LDA outright because of
its non-competitive performance. On both these datasets, too, DETM-tau has
been able to achieve both lower perplexity and higher coherence than the original
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Table 4. Results on the UNGDC dataset with 20 and 40 topics

Model DETM DETM-tau DETM DETM-tau
# topics 20 40
Perplexity 3032.8 3023.5 2798.9 2782.0
Coherence 0.121 0.129 0.048 0.124

Table 5. Results on the ACL dataset with 20 and 40 topics

Model DETM DETM-tau DETM DETM-tau
# topics 20 40
Perplexity 5536.4 5421.1 4360.0 4169.6
Coherence 0.150 0.179 0.153 0.174

Table 6. Examples of topics extracted by DETM-tau from the CORD-19TM dataset
(20 topics) at different time slices.

Time slice Examples of topics
0 zikv cytokine proinflammatory resuscitation ferritin antitumor exosomes thoracic evidencebased patienten

cells infection cell virus blood disease protein tissue infected receptor
patients patient health clinical care hospital months disease years therapy

10 exosomes copd frailty mgml tavi absorbance biofilm sigmaaldrich evidencebased virulence
social education research health people services industry culture educational providers

macrophages antibacterial antioxidant kshv mmp lmics propolis sdgs inactivation hydrogel
patients studies health care patient clinical treatment disease population risk

17 nanoparticles proinflammatory bioactive antifungal inhospital coagulation angiogenesis inflammasome
cells cell blood disease tissue cancer infection protein proteins metabolism

patients health patient social education hospital clinical people care population

DETM. We believe that these results provide clear evidence of the importance
of controlling the sharpness-smoothness trade-off of the word distributions.

To explore the sensitivity of the results to the temperature parameter, τ ,
Fig. 1 plots the values of the perplexity and the topic coherence of DETM-tau
(CORD-19TM, 20 topics) for various values of τ , using DETM as the reference.
It is clear that setting an appropriate value is important for the model’s per-
formance. However, the plots show that the proposed model has been able to
outperform DETM for an ample range of values. In addition, Fig. 2 plots the
values of the perplexity and the topic coherence at successive training epochs.
The plots show that both metrics improve for both models as the training pro-
gresses. Given that the topic coherence is not an explicit training objective, its
increase along the epochs is remarkable and gives evidence to the effective design
of both models.

Eventually, we present a concise qualitative analysis of the extracted topics
through Table 6 and Fig. 3. Table 6 shows a few examples of the topics extracted
by DETM-tau from the CORD-19TM dataset (20 topics) at time slices 0, 10
and 17. Each topic is represented by its ten most frequent words. Overall, all the
examples seem to enjoy good coherence and descriptive power. For instance, the
first topic at time slice 0 could be titled “immune response analysis” or something
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Fig. 1. Perplexity and topic coherence for DETM-tau for various values of the tem-
perature parameter, τ (CORD-19TM, 20 topics). The value for DETM is used for
comparison.
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Fig. 2. Perplexity and topic coherence for DETM and DETM-tau at successive training
epochs (CORD-19TM, 20 topics).

Fig. 3. Evolution of the probability of a few, selected words within their topics for the
DETM-tau model with the CORD-19TM dataset, 20 topics.
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akin; the last topic at time slice 17 could be titled “population health”; and so
forth. Therefore, the automated categorization of the articles into such topics
seem to provide a useful, and completely unsupervised, analysis. In turn, Fig. 3
shows the temporal evolution of the frequency of a few, manually selected words
within their respective topics. The left-most topic, which we have labelled as
“virus name”, shows that referring to COVID-19 by the names “coronavirus” and
“sarscov” was popular during 2020; conversely, as of January 2021, the name
“covid” has become dominant. The right-most topic shows that words such as
“blood”, “infection” and “tissue” have decreased their in-topic frequency over
time, possibly in correspondence with an increased understanding of the disease.
These are just examples of the insights that can be obtained by dynamic topic
models.

5 Conclusion

This paper has presented a temperature-modified dynamic embedded topic model
for topic modelling of timestamped document collections. The proposed model
uses a softmax with temperature over the word distributions to control their
sharpness/smoothness trade-off and attempt to achieve a more effective param-
eterization of the overall topic model. Experiments carried out over three times-
tamped datasets (a subset of the CORD-19 dataset referred to as CORD-19TM,
the United Nation General Debate Corpus (UNGDC) and the ACL Title and
Abstract Dataset (ACL)) have showed that the proposed model, suitably nick-
named DETM-tau, has been able to outperform the original DETM model by
significant margins in terms of both perplexity and topic coherence. In addi-
tion, DETM-tau has performed remarkably above the other compared models.
A qualitative analysis of the results has showed that the proposed model has
generally led to interpretable topics, and can offer insights into the evolution of
the topics over time.
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