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ABSTRACT The three dimensional printing method is currently on stage of rapid development to realize
complex nature of structure in simpler and feasible ways. In this paper, we proposed a 3D printed wideband
antenna structure with high performance to improve the characteristics properties of feed source by
eliminating the use of expensive superstates. A 60 mm × 60 mm × 22.5 mm wideband structure was first
fabricated from VERO CMYK material through Multijet 3D printing method where the bottom layer are
copper painted so as to realize the higher permittivity layer. The proposed structure is maintained at 16 mm
(0.64λ) above the ground plate of 60 mm × 60 mm × 1 mm, which is feed by WR-75 waveguide. The
proposed antenna is designed to have a wide operating bandwidth from 10 to 15 GHz, which cover Ku-band
frequency range. Directivity enhancement is obtained over a large bandwidth by using high permittivity
material for Layer 1 and lower permittivity material for Layer 2 and Layer 3. The resulting antenna prototype
demonstrates a directivity bandwidth product (DBP) of 3012.79 and DBP per unit area (DBP/A) of 523.06,
where directivity and gain are found to be higher than 15 dBi over the entire operating frequency band.
The total area of the new antenna prototype is 2.4λ× 2.4λ× 0.9λ (4.16λg × 4.16λg × 1.56λg), and overall
electrical height is 1.54λ at the design frequency of 12 GHz. The proposed prototype weight 36 g and overall
system have weight of 118 g, which is light in weight. The measured VSWR is less than 2, which signifies
wideband characteristics of overall system.

INDEX TERMS Microwave communication, radiation patterns, three dimensional (3D) printing, wide band.

I. INTRODUCTION
Wideband antennas plays a crucial role in modern and future
wireless communication systems due to its high data rate,
low cost and its operation in different frequencies for various
wireless transmission functions. This results in several chal-
lenges in antenna design, such as antenna space limitation,
design flexibility [1], [2]. The study of wideband antenna is
been an exciting arena for researchers particularly with the
use of dielectric slabs as observed in a prototype Electro-
magnetic Band gap (EBG) structure studied in [3], four layer
composite superstructure applied in EBG resonator anten-
nas (ERAs) [4], all dielectric superstrate with variation of
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permittivity values across the design surface [5], two stacked
dielectric slabs integrated with a wideband all dielectric
single layer partially reflecting superstructure (PRS) with a
transverse permittivity gradient (TPG) [6], compact wide-
band resonant cavity antennas (RCAs) with PRS made out
of single dielectric material [7], RCAs with printed copper
patches on its surface [8], [9]. The use of these dielec-
tric slabs are relatively expensive and it is challenging in
the design fabrication process of these structures. The phe-
nomenon of refracted wave variation are shown by metasur-
faces in [10], [11], and [12], which signifies the importance
to steer radiated beam direction. Similarly, to propose the
approach for wideband nature, several lens design concepts
are studied [13], [14], [15]. Broadband three dimensional
approximate transformation optics lens is designed with
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multilayered dielectric plates by drilling holes in [16] whose
height is of about 40 mm with relatively greater dimen-
sions. Compact wideband and high gain GRIN metamaterial
lens antenna system is proposed in [17] which utilizes three
rectangular splited metallic strips that are etched on both
side of substrate resulting in the thick layer of metamate-
rial. Interestingly, additive manufacturing have been growing
its significance to realize the complex nature of structural
design [18] and in polarization transformation from linear
to circular [19]. Luneburg lens [20], Eaton lens [21], Flat
Hyperbolic lens [22], 3D printed dielectric planar lens [23]
are fabricated from 3D printing approach which are rela-
tively bigger in size. Furthermore, multilayered cylindrical
3D printed dielectric lens antenna is proposed in [24], which
shows relatively lower gain with in the range from 11.2 to
12.6 dB along with height of 52.5 mm. Considering these
aspect of scenario, we have proposed a 3D printable wide-
band miniaturized prototype that could be operated in entire
Ku-band, which signifies wideband properties. The Ku-band
is considered as an significant band of frequencies that are
utilized inmodern satellite communication [25], [26]. The 3D
printing approach as such FusedDepositionModeling (FDM)
have been utilize to design several prototypes [27], [28], [29],
[30], [31], [32], [33], [34] and are increasing in its applicabil-
ity to realize more complex type of structure. This work sig-
nifies the alternative approach to replace expensive dielectric
superstrate and need for computer numerical control machin-
ing that uses variety of cutting tools as well as the use of
copper spray technique to realize higher permittivity surface.
The use of metal spray on 3D printed part have been studied
in [35], which depicts higher gain over wide bandwidth.
In this work, multilayer superstate is designed with cubes as
an unit cell that are holded by three perpendicular cylindrical
rods from 3D printing technology, which has many advan-
tages compared with the traditional fabrication methods such
as being easier to prototype complicated designs in terms of
low cost and low weight. The proposed PRS based antenna is
simple, multilayer that is suitable for manufacturing through
standard bench top 3D printers. There is the dual resonator
approach in PRS based antenna, however, it doesnot require
any spacing to be added between each of the layers [3], [36].
The novelty of proposed approach are reduction in profile of
overall antenna as well as simplified manufacturing process
suitable for rapid prototyping. The proposed antenna can be
applied to have light weight prototype for maintaining com-
munication links in microwave and satellite communication
network where proposed antenna could provide wide band
operation thus maintaining efficient communication channel
with minimum packet loss. Following sections are organized
as: Design procedure for considered unit cell is explain in
section ‘‘Consideration for the Design of unit cell’’. Sim-
ilarly, the obtained phase analysis are depicted in section
‘‘Analysis of Aperture Phase distribution’’. The obtained
radiation patterns and characteristics plots along with com-
parison table are discussed in section ‘‘Numerical Results

and Discussion’’. Finally, concluding remarks are presented
in section ‘‘Conclusion’’.

II. CONSIDERATION FOR THE DESIGN OF UNIT CELL
The analysis to propose wideband prototype begins with
the study of cubes as an unit cell. The lateral dimension of
cubes varies from minimum of 0.5 mm3 (0.02λ) to max-
imum of 7.5 mm3 (0.3λ) that are holded by three per-
pendicular cylindrical rods of diameter 0.65 mm (0.026λ).
The design frequency is 12 GHz (λ = 25 mm), which is
middle frequency of operating WR-75 waveguide. The fre-
quency is chosen in order to have higher directivity over
wide bandwidth in small footprint. The ground plane and
PRS have equal lateral dimensions of 2λ × 2λ (where,λ is
wavelength at design frequency). Two ports 1 and 2 are
kept at h = 12.5 mm (λ/2) distance far from top and bot-
tom surface of cylindrical rod as shown in Figure 1(a).
We have studied the transmission coefficient parameters
of cubes with two different dielectric constant values of
3 and 10. The transmission coefficient is represented by, τ ,
whereas reflection coefficient is denoted by, ∂ . The reflection
coefficient of analysed unit cell is below −10 dB. These
cubes are placed in Reference Plane 1 at level of h1 =
12.5 mm (λ/2), in defined aperture position as per the need
of required phase φRP1 (x,y) so as to obtain the uniform
phase variation φRP2 (x,y) in Reference Plane 2. The Ref-
erence Plane 2 lies closer to top surface of proposed wide-
band prototype, which is at 3.125 mm (λ/8) and overall
h2 = 25.63 mm (1.03λ). The diagram for relative placement
of layers in defined positions are shown in Figure 1(b),
where Layer 1 cubes are obtained from dielectric constant
value of 10 where as Layer 2 and Layer 3 cubes are analyzed
from dielectric constant value of 3. The PRS is placed at
a height, h1 = 12.5 mm (λ/2), above the ground plane,
which is made out of aluminum. To feed the cavity-formed
between ground plane and PRS, a rectangular slot with
dimension 19.1 mm × 9.5 mm, is cut out in middle of
ground plane. This slot, which acts as primary excitation
source for proposed antenna, is then interfaced with a stan-
dard WR-75 waveguide-to-coax transition. The PRS of the
antenna is required to provide necessary transmission magni-
tude (|S21|>0.8) to provide the necessary gain enhancement
by creating an effective resonant cavity between itself and
ground plane. The gain bandwidth of antenna and quality of
radiation patterns can, however, be further improved, by uti-
lizing more than one reflective layer or so-called multiple-
resonators within PRS [3]. For this purpose, proposed PRS
shown in Figure 1(b) is composed of three layers. Each of the
layers is made out of 8× 8 unit-cells, whereas each unit-cell
is a cube.

In design frequency, variation of cube sizes results in
change of magnitude and phase values of transmission
coefficient as shown in Figure 2. The material Dk3, with
dielectric constant 3 have greater transmission magnitude
above 0.95 but phase range is obtainable from 00 to 800.
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FIGURE 1. (a) Unit Cell under consideration (b) System diagram for the placement of proposed
wideband prototype.

Interestingly, material Dk10, with dielectric constant
10 shows transmission magnitude of about 0.95 that remain
constant for cube size of 5.5 mm3 afterward it drops signifi-
cantly from 0.97 to 0.68 and then increases to about 0.92 for
maximum cube size. Similar pattern in observed in case of
phase variation where it varies from 800 to 00 till the cube
size reach to 5.5mm3 and marked increase in phase to 3300 is
seen which gradually drop to 2250. This variation is due to
cube being more reflective as its size reaches to 5.5 mm3.
The full stack of three-unit cells will not be suitable to
analyze because of different materials under consideration
for each layer. Individual layer of cube is analyzed to generate
uniform phase distribution starting from higher permittivity
in bottom layer to lower permittivity in successive two layers.
The independently simulated cube’s result for transmission
coefficient magnitude and phase is shown in Figure 2 with
respective material under consideration, which signifies the
response of each stack. The normalized phase distribution
is used to maintain the respective cubes in defined aperture
positions.

FIGURE 2. Simulated Distribution of Transmission Coefficient Magnitude
and Phase plots for two different materials.

III. ANALYSIS OF APERTURE PHASE DISTRIBUTION
Initially, we have started with noting phase above
WR-75 waveguide only, which shows greater phase variation

of about 2100. This phase is corrected to about 490 after
placement of cubes in Layer1 which are obtained from
Dk10 at 12.5 mm (λ/2) distance away from feed source.
Furthermore, phase is corrected to 370 by placing cubes
obtained from Dk3 in Layer 2. Finally, cubes of Dk3 are kept
in Layer 3 to have fine adjustment in phase variation. The
overall variation of phase distribution are shown in Figure 3.

A. PLACEMENT OF RELATIVE CUBES ACROSS THE
APERTURE
Unlike in previous multi-layer PRSs, there are no effective
gaps between layers, thus reducing overall profile. Note that
blocks in any one layer have a fixed size, and this size of
unit-cell blocks determines overall reflectivity provided by
that layer. The reflective properties of unit-cells were studied
using superstrate reflection model [37]. The pictorial diagram
for the top, side and perspective views of proposed structure
is shown in Figure 4.

In order to realize proposed wideband prototype, we have
considered three different layers and individual layers are
composed of four different rounds where designed cube sizes
are arranged in rectangular patterns due to its significance

FIGURE 3. Simulated overall phase distribution across the aperture of
proposed system.
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FIGURE 4. Overall view of proposed designed prototype (a) Top view
(b) Bottom view (c) Perspective view.

to improve characteristics properties of feed source [38].
The pictorial description for arrangement of several rounds
are described in [29]. We have used four different stacks
of unit-cells in each layer. The unit cell of single cube is
considered to generate respective layers for overall three
layers of proposed prototype. To signify the effect of these
unit cell over band of interest, we have plotted phase dis-
tribution from 10 to 15 GHz frequency band. The Rounds
signify arrangement of cubes across defined aperture posi-
tions in each layer starting from central position which is
Round 1 and successively moving towards the end portion
which is Round 4. In Layer 1, four different rounds as
Round 1, Round 2, Round 3 and Round 4 have cube sizes
of 7.5 mm3, 7 mm3, 4.5 mm3 and 4 mm3. Additionally,
in Layer 2, Round 1, Round 2, Round 3 and Round 4 have
cube sizes of 6mm3, 6.5mm3, 7.5mm3 and 7mm3. Similarly,
in Layer 3, Round 1, Round 2, Round 3 and Round 4 have
cube sizes of 7 mm3, 6.5 mm3, 6.5 mm3 and 6.5 mm3. The
size is linear dimension of cubes across its length, breadth
and height. Note, that the variation of cube sizes within each
layer can provide further degree of freedom in PRS. Since,
the proposed PRS is required to be suitable for manufacturing
through standard bench-top 3D printers, material selected for
Layer2 and Layer3 is Premix Preperm ABS300(permittivity
(εr ) = 3, loss tangent (tanδ) = 0.004) and that for Layer1
is Premix Preperm ABS1000(permittivity (εr ) = 10, loss
tangent (tanδ) = 0.003). The reflectivity(|S11|) computed
for each of these layers in 12 GHz, using CST-MWS time-
domain solver are −13.2 dB, −14.5 dB and −17.2 dB for
Layer1, Layer2 and Layer3 respectively in design frequency.
The overall system diagram is shown in Figure 5, which

FIGURE 5. Overall system setup and placement of proposed wideband
prototype above the feed source.

shows relative positions to note phase distributions alongwith
placement of proposed wideband prototype.

B. VARIATION OF PHASE DISTRIBUTION OVER DIFFERENT
FREQUENCIES
The phase distribution are noted near feed source in 3 mm
(0.12λ) distance above ground plane, which is the condition
of phase without placement of wideband prototype. Simi-
larly, phase is noted in 3.125 mm (0.125λ) just above top
surface of wideband prototype after its placement in 12.5 mm
(λ/2) above ground plane. The phase distribution shown in
Figure 6 and Figure 7 signifies uniform distribution across
defined aperture dimension. The phase variation is less than
50◦ over most of frequency of interest. The more sample of
phase distribution is added to signifies variation observed in
phase before and after the placement of proposed prototype
above feed WR-75 waveguide. The noted phase variation
without and with placement of proposed prototype above
ground plane for 10 GHz, 11 GHz, 12 GHz are shown in
Figure 6 (a), (c), (e) and Figure 6 (b), (d), (f) respec-
tively. Similarly, phase pattern noticed for 13 GHz, 14 GHz,
15 GHz without and with placement of proposed prototype
above ground plane are shown in Figure 7 (a), (c), (e) and
Figure 7 (b), (d), (f) respectively. The phase variation
obtained after calculation of difference in phase value from
centre and of end aperture position for 10 GHz, 11 GHz,
12 GHz, 13 GHz, 14 GHz and 15 GHz are respectively
211.74◦, 240.65◦, 270.45◦, 299.97◦, 329.53◦, 362.29◦ which
was calculated without the placement of proposed structure.
These values are further corrected, and more uniform phase
distribution are observed after placement of proposed struc-
ture. Thus, respective corrected phase values are 62.84◦,
162.76◦, 69.11◦, 187.96◦, 176.45◦, 133.02◦ for 10 GHz,
11 GHz, 12 GHz, 13 GHz, 14 GHz and 15 GHz frequen-
cies. The phase maps are not symmetric due to the effect of
proposed prototype and uniformity in phase variation is more
prominent for 12 GHz as it is the operating frequency and
over the wide band of frequencies more variation in phase
distribution is noticed.
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FIGURE 6. Aperture Phase distribution noted above the feed WR-75 waveguide without the proposed prototype (a) at 10 GHz,
(c) at 11 GHz, and (e) at 12 GHz and with the placement of the proposed prototype (b) at 10 GHz, (d) at 11 GHz, and (f) at 12 GHz.

The uniformity in E-field phase distribution is observed
after the placement of proposed prototype above the feed
WR-75 waveguide as shown in Figure 8 (a), (b). This
figure shows additional phase profile impressed by place-
ment of proposed prototype which signifies the unifor-
mity in phase distribution. The field distribution is gen-
erated to be uniform for each layer as noted from
Figure 8 (b).

IV. NUMERICAL RESULTS AND DISCUSSION
This section describes fabrication and measurement results of
proposed wideband prototype along with its characteristics
plots.

A. DETAIL OF FABRICATION AND MEASUREMENT SETUP
The Multijet 3D printing technique is used to fabricate pro-
posed structure as it utilizes resin which mimic properties of
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FIGURE 7. Aperture Phase distribution noted above the feed WR-75 waveguide without the proposed prototype (a) at 13 GHz,
(c) at 14 GHz, and (e) at 15 GHz and with the placement of the proposed prototype (b) at 13 GHz, (d) at 14 GHz, and (f) at 15 GHz.

Premix Preperm ABS300. Multijet 3D printing have ability
to print small dimension object with resolution of about
0.01 mm. In contrast, Fused Deposition Modeling (FDM)
is not been able to print small size cubes along with sup-
porting cylindrical rods. Eventhough whole structure is fab-
ricated from resin, we have copper painted the lower Layer 1
considering that this layer shall shows characteristics per-
formance similar to Premix Preperm ABS1000. The use of

copper solution to Acrylonitrile Butadiene Styrene (ABS)
fabricated prototype is studied in [30], which was compared
with structure fabricated from Premix Preperm ABS1000 fil-
ament. The measurement setup is performed in NSI-700S-50
spherical near field measurement system at Australian
Antenna Measurement Facility, which is shown in Figure 9.
The attached figures show top surface of fabricated proto-
type, copper painted bottom surface and overall assembled
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TABLE 1. Comparison of proposed wideband prototype against the available 3D printed antenna structures.

FIGURE 8. Distribution of E-field (a) Waveguide only (b) After the
placement of proposed prototype above feed WR-75 Waveguide.

FIGURE 9. Measurement system showing the experimental setup of
proposed wideband prototype.

system, where proposed prototype is kept above feed WR-75
waveguide. Hence, it is compared against simulated results as
obtained from commercial software CST Microwave studio.
These are detailed in further sections, including radiation
plots and characteristics features.

B. DISTRIBUTION OF RADIATION PATTERNS OVER
WIDEBAND FREQUENCIES
The E-plane and H-plane radiation patterns of proposed sys-
tem are shown in Figure 10a–f for 10 GHz, 11 GHz, 12 GHz,
13GHz, 14GHz, and 15GHz frequencies respectively, which
shows narrow-beamwidth, broadside directed beam over 3dB
bandwidth. The 3dB angular width and Side Lobe Level
(SLL) in E- and H- planes are significantly improved after

placement of proposed prototype above feed source. Consid-
ering feed WR-75 waveguide source only, in E-plane 3dB
angular width and side lobe level are 121.10, 54.70, 1140,
128.80, 128.80, 118.70;−14.1,−14.3,−13.8,−14.1,−15.5,
−17.1 dB respectivelywhere as inH-plane 3dB angular width
and Side Lobe Level are 73.60, 73.30, 68.70, 55.90, 52.10,
520; −14.6, −13.4, −13.7, −14.8, −16.1, −18.6 dB. The
radiated beam patterns becomes more smooth with less 3dB
angular width and lower side lobe level. After placement of
proposed wideband prototype above feed source, observed
3dB angular width and side lobe level in E-plane are 24.50,
20.20, 17.10, 16.30, 15.90, 13.90; −15, −12.1, −14, −10.3,
−11.3,−9.6 dB respectivelywhere as inH-plane 3dB angular
width and Side Lobe Level are 28.10, 23.20, 20.70, 210,
22.20, 19.10; −16.6, −16.9, −17.4, −13.7, −19, −18.5 dB.
The worst-case side-lobe levels noted in E- and H- planes,
respectively are −20 dB and −15 dB. In design frequency
of 12 GHz, observed cross polarization values are below
−7 dBi. However, most of values lies in between −15 dBi
to −35 dBi, which signifies better matching behavior in
operating frequency range.

C. CHARACTERISTIC PLOTS AND COMPARISON TABLE
Addition of successive layers improve characteristic of
WR-75 source as they are kept in λ/2 distance from it as
depicted in Figure 11. In operating frequency band aver-
age directivity is around 7.5 dBi. This is improved to more
than 12 dBi as Layer1 is kept above WR-75. Additionally,
based in phase distribution above Layer1, addition of Layer2
further improves directivity by around 2 dBi through out
the operating frequency band. Finally, addition of Layer3
resulted further improvement in directivity with around 1 dBi
over operating frequency band that resulted in directivity and
gain of above 15 dBi over entire frequency of interest. The
simulated gain and directivity are well matched against mea-
sured results, which signifies efficient operation of proposed
antenna prototype. The results obtained through these studies
predicted that proposed antenna has a VSWR 2:1 bandwidth
from 10 GHz to 15 GHz (50% of 3dB directivity Bandwidth)
as shown in Figure 12, where the simulated and measured
results are conformed to each other. The VSWR are generally
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FIGURE 10. Simulated and measured radiation patterns as observed with the use of the proposed designed surface above the feed
source are shown in Figure 10 (a-f) for 10 GHz, 11, GHz, 12 GHz, 13 GHz, 14 GHz, and 15 GHz frequencies.

higher from 2.5 to 2.8 around 17 to 18 GHz because of fre-
quency limitation of WR-75 waveguide. The performance of
WR-75 with and without proposed prototype is well matched
with simulated results in frequency band from 10 to 15 GHz,
so we have considered this frequency band for phase and

characteristics performance analysis. Similarly, comparison
of proposed antenna prototype with other structure is shown
in Table 1. This shows proposed 3D printed antenna prototype
generate smaller footprint area with higher peak directivity
and gain values across 10 to 15 GHz of operating frequency
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FIGURE 11. Distribution of simulated and measured directivity and gain
values.

FIGURE 12. Simulated and measured VSWR plots.

bands. Additionally, this prototype shows higher 3dB band-
width with lower side lobe levels across E- and H-planes,
which is light in weight.

V. CONCLUSION
We have presented an approach to improve broadside gain
of a simple ground-plane backed slot antenna, by showing
a multi-layer PRS that is suitable for manufacturing with
standard, bench-top 3D printers, which utilizes Multijet 3D
printing method. The effectiveness of proposed approach
is validated by numerically studying performance of a
PRS-based antenna in CST-MWS. The resulting antenna is
wideband in nature operating from 10 to 15 GHz (50% of 3dB
directivity Bandwidth) predicts an best-case improvement of
15 dBi in broadside directivity. In E-plane sidelobe level are
less than -20 dB through out the operating frequency band in

contrast to H-plane where it is below -15 dB. The weight of
overall proposed system is about 118 g, which shows system
is light in weight. Similarly, simulated and measured VSWR
plots are less than 2 over frequency of interest. This signifies
matching over operating frequency range that cover Ku-band
region.
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