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Abstract. Sharding has been considered a promising approach to im-
proving blockchain scalability. However, multiple shards result in a large
number of cross-shard transactions, which require a long confirmation
time across shards and thus restrain the scalability of sharded blockchains.
In this paper, we convert the blockchain sharding challenge into a graph
partitioning problem on undirected and weighted transaction graphs that
capture transaction frequency between blockchain addresses. We pro-
pose a new sharding scheme using the community detection algorithm,
where blockchain nodes in the same community frequently trade with
each other. The detected communities are used as shards for node al-
location. The proposed community detection-based sharding scheme is
validated using public Ethereum transactions over one million blocks.
The proposed community detection-based sharding scheme is able to re-
duce the ratio of cross-shard transactions from 80% to 20%, as compared
to baseline random sharding schemes, and retain the ratio of around 20%
over the examined one million blocks.
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1 Introduction

Scalability is one of the well-known bottlenecks in the development of blockchain
technology. The scalability of a blockchain refers to its ability to process more
transactions per unit of time. Many blockchain platforms, such as Bitcoin [1]
and Ethereum (ETH) [2] (about seven transactions per second for Bitcoin and
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about fifteen for Ethereum), are inefficient in processing transactions per unit of
time. Blockchain platforms process transactions much slower than VISA, which
processes 56,000 transactions per second [3]. The scalability of blockchain has
been studied extensively to increase transaction rates [4]. Shading technology
is the most potential technology to improve blockchain scalability among many
scaling schemes. For blockchains to become scalable, various sharding solutions
have been introduced in [5–9].

Sharding is implemented on-chain, making it part of the layer-1 scaling so-
lution [4]. Scaling on layer 1 has two directions, vertical scaling and horizontal
scaling [10,11]. Vertical scaling of a chain involves increasing the transaction ca-
pacity within each block or shortening the block period. Vertical scaling increases
transaction throughput, but it requires more bandwidth from nodes. As a re-
sult, vertical scaling methods are not feasible for nodes with limited bandwidth.
Sharding is a horizontal scaling scheme that divides the blockchain into multiple
parts. Each independent chain only responds to its transaction mining. As the
number of shards increases, transaction throughput increases linearly [12].

Blockchain sharding increases transaction throughput, but cross-shard trans-
actions also increase during sharding. Due to excessive cross-shard transactions,
the sharding technique cannot scale efficiently in the blockchain [13]. Transac-
tions between senders and recipients on different shards are termed cross-shard
transactions, while intra-shard transactions are transactions within the same
shard. Cross-shard transactions require multi-phase protocols to verify their au-
thenticity. A multi-phase protocol typically consists of a prepare and a commit
phase [14]. Since cross-shard transactions take longer to process and require more
processing power than intra-shard transactions, sharding in the blockchain is not
as effective in improving scalability when cross-shard transactions are involved.
In [6], more than 95% of transactions are cross-shard transactions. Thus, reduc-
ing cross-shard transactions with efficient shard allocation strategies is a direct
way to optimize sharding.

This paper intends to reduce the transactions between shards by allocating
frequent blockchain node pairs to the same shard. We transform the problem
of obtaining the least number of cross-shard transactions into a graph partition
problem. A weighted and undirected graph is constructed using the number of
transactions between nodes. Then, we propose generating the community re-
sult for assigning nodes to shards using a community detection algorithm. We
demonstrate our scheme by testing its reliability and determining that cross-
shard transactions are reduced to 20%. The following is a summary of our con-
tributions.

– We convert the blockchain sharding challenge into a graph partitioning prob-
lem. The sharding optimization can be transformed into the community de-
tection problem, where nodes are tightly linked with nodes in the same
community and loosely connected with nodes in other communities.

– We propose a new sharding scheme using community-detection algorithms.
The scheme is achieved by designing an undirected and weighted graph to
capture transactions where the weight of an edge represents the number of
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transactions between the endpoints. The graph is then divided into commu-
nities by running the community-detection algorithm, and each community
forms a shard.

– Validated by comprehensive experiments on Ethereum transaction data, the
proposed sharding scheme can significantly reduce the number of cross-shard
transactions, e.g., from 80% to 20%, compared with popular random shard-
ing schemes. Experiment results also confirm the stability of the proposed
sharding scheme.

This paper is organized as follows. Section II introduces related blockchain shard-
ing works. Section III depicts the proposed community detection-based sharding
scheme. The experiment results are presented in Section IV, followed by conclu-
sions in Section V.

2 Related Work

Assigning nodes to shards is commonly accomplished by adding Distributed
Randomness Generation (DRG) protocols to enhance the randomness of the as-
signment process. Elastico [5], Omniledger [6], and RapidChain [7] all use DRG
protocols to randomly allocate nodes to shards. In [5], nodes are assigned to a
shard according to the last few bits of the solution of the Proof of Work (PoW)
puzzle. The PoW puzzle is derived from the combination of the epoch random-
ness, which is generated with a DRG protocol [15], node identity, and nonce.
Kokoris et al. [6] develope Omniledger, a distributed ledger where validators are
randomly assigned to shards and synchronize the previous shard state. Each
shard has a leader who is elected by a verified random function. The leader gen-
erates a randomness output for deriving a random permutation with other nodes
by initiating the RandHound DRG [16] protocol. In subsequent allocations, no
more than 1

3 nodes at the beginning of the permutation are shuffled randomly to
other shards. As with [5,6], Zamani et al. [7] propose a sharding-based blockchain
protocol RapidChain. RapidChain uses different random allocation methods for
nodes. In [7], the reference committee (a special shard) uses the Feldman Ver-
ifiable Secret Sharing (VSS) DRG [17] protocol to generate unbiased random
outputs. The PoW puzzles are generated by random outputs and need to be
solved by the nodes to join the system. Each node is then randomly assigned
to each shard by a member of the reference committee executing Commensal
Cuckoo rule [18]. With the Commensal Cuckoo, each node is mapped in a ran-
dom position of Interval [0, 1) based on its identity by a hash function. Interval
[0, 1) are then divided into regions representing shards. As new nodes are added,
existing nodes in the same region are moved to new random regions.

Without a DRG protocol, node allocation to shards can also be achieved
according to addresses’ prefixes, such as Monoxide [8]. In addition to allocat-
ing nodes to shards based on addresses, nodes can be divided by voting from
other nodes. For instance, Chainspace [9] permits nodes to move between shards
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based on the votes of other nodes. Through a smart contract called Manage-
Shards, voting is carried out. By deploying different shards on different chan-
nels, Fabric [19, 20] address sharding can be achieved. A trusted entity is used
for cross-shard transactions.

Nodes can be assigned to shards using effective partitioning methods for
reducing cross-shard transactions. Classical graph partitioning algorithms like
Kernighan-Lin [21] can be used to optimize the sharding process. The Kernighan-
Lin algorithm divides a graph into two communities of known size and exchanges
any two vertices between them to obtain two communities with the smallest cut
set size. The Kernighan-Lin algorithm causes multiple partitions since it divides
two communities at once. Nevertheless, a multi-partitioned system will increase
algorithm complexity.

Existing blockchain sharding schemes, including random sharding, voting-
based sharding, and channel-based sharding, have not tried to improve the scala-
bility of sharded blockchains by reducing the number of cross-shard transactions.
Graph partitioning and community detection algorithms are promising to reduce
cross-shard transactions but have yet to be developed for blockchain sharding
schemes, especially for blockchains craving high scalability.

3 Proposed Community Detection-based Sharding
Scheme
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Fig. 1. The flow diagram of the proposed Re-sharding system comprises the follow-
ing four stages. 1○ Graph generation: generate an adjacency matrix according to the
number of transactions between nodes. 2○ Community detection: run the community
detection algorithm to identify node communities so that nodes frequently exchange
with nodes in the same community and transact less with nodes in different commu-
nities. 3○ Community-based sharding: allocate nodes to shards according to detected
communities, where nodes in the same community are in the same shard, and imple-
ment the sharding result. 4○ Chain extension: extend the chains in parallel.
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We propose a novel blockchain sharding scheme using the community detec-
tion algorithm. An adjacency matrix representing transactions (TXs) between
node pairs is used as the input parameter for the system model we presented.
Our model uses the Louvain algorithm in community detection [22] to obtain
communities that respond to the sharding result. All nodes are assumed to be
trustworthy in the model. Under our assumption, cross-shard transactions are
reduced to a lower frequency based on our model. Therefore, our community
detection-based sharding model is more suitable for permissioned chains since
security issue is out of scope. Notations used in this paper are collected in Tab. 1.

The blockchain sharding network is reviewed as an undirected weighted graph
G = (V,E). The set of vertices V represents node addresses, and the set of edge
E represents the transaction number between node pairs. This G is incorporated
into the community detection algorithm using the adjacency matrix format.

Table 1. notation and definition in the blockchain sharding system.

Notation Description
N Set of nodes
C Set of community
S Set of shard
Bp An epoch of blocks
Et t-th block epoch
r The cut weight ratio
A The adjacency matrix of the transaction graph
s The number of shards
ϕi The number of Intra-shard transactions
ϕc The number of Cross-shard transactions
ρ Threshold for the cross-shard transaction ratio

Fig. 1 illustrates the sharding system we use to reduce Rc. This system per-
forms four stages: Graph generation, Community detection, Community-based
sharding, and Chain extension. The following Eq. 1 calculates the ratio of cross-
shard transactions.

Rc =
ϕc

ϕi + ϕc
. (1)

STAGE 1: Graph generation (Alg. 1 lines 1-7). The model generates
an adjacency matrix A based on the number of transactions between nodes. As
shown in Alg. 1, the adjacency matrix is initialized with zero. The algorithmic
flow starts with obtaining the dataset of the node N that sends and receives
transactions from the selected block epoch. Then, node dataset N are sorted
based on the number of transactions to a sorted node dataset Ns. An adjacency
matrix A is generated after traversing all node sets. The size of the A depends
on the node number. The i-th row and the j-th column in matrix ai,j represents
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Algorithm 1: Community-based sharding
▷ Sharding(Bp, s)
Input:
Bp: An epoch of blocks;
s: The number of shards.

Output:
S: Shards with nodes;
r: The cut weight ratio.

1 A = 0
2 N ←GetAllNodes(Bp)

// Sort nodes according to the number of transactions.

3 Ns ←Sort(N , TX)
4 for i ≤ |Ns| do
5 for j ≤ |Ns| do
77 ai,j ←CountTX(Bp, Ni, Nj)

8 C ← CommunityDetection(A, s)
// Calculate the cut weight ratio, which is the sum of weights of the edges crossing

the communities divided by the sum of weights of all edges.

9 r ← CalculateCutRatio(A, C)
10 S ← MapNodesToCommunities(Ns, C)
11 return S, r

▷ ShardsExtension()
Input:

ρ: The threshold of cross-shard TX ratio;
s: The number of shards.

12 while True do
13 ShardsBlockMining()
14 if Shard heights reach an epoch then
15 Bp ←Blocks in the latest period
16 ϕi ←CountIntraShardTX(Bp)
17 ϕc ←CountCrossShardTX(Bp)
18 if ϕc

ϕi+ϕc
> ρ then

19 S, r=Sharding(Bp, s)
// Reallocated nodes to new shards.

20 ReAllocateNodes(S)
21 ρ← max(ρ, r)
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the number of transactions between nodes Ni and Nj . Matrix diagonal elements
represent the number of transactions between nodes and themselves.

STAGE 2: Community detection (Alg. 1 lines 8-9). The community
detection algorithm generates a community set C using an adjacency matrix A
and a fixed number of shards s as input parameters. An algorithm for detecting
communities facilitates more frequent exchanges between nodes within a commu-
nity and less exchange between nodes from different communities. To measure
the quality of the sharding result, we define a cut weight ratio r. Cut weight
ratio is calculated by dividing the sum of edge weights crossing communities by
the sum of all edge weights.

STAGE 3: Community-based sharding (Alg. 1 lines 10-11). Based
on the optimized outputs of the community set C from previous stages, sorted
nodes are assigned to the new communities and the filled shard set S is returned.
Filled shards set S with sorted nodes and a cut weight ratio r are returned at
the end of each epoch.

STAGE 4: Chain extension (Alg. 1 lines 12-21). As the new shards
return, each chain mines blocks and extend in parallel until it reaches the end
of an epoch. According to returned sharding results, the number of intra-chain
transactions ϕi and the number of cross-chain transactions ϕc are separately
counted. According to Eq. 1, the statistical results of both transactions are used
to calculate a ratio of cross-shard transactions Rc. We set a threshold ρ for
cross-shard transactions in our system. The threshold determines whether or
not a node needs to be reassigned during a block epoch Et. A node is not re-
allocated if Rc is less than the threshold. Otherwise, nodes are re-allocated to
other shards based on the community detection algorithm. Additionally, the
value of ρ is based on the largest Rc.

4 Experiments

4.1 Experiment Settings

An experimental framework is implemented in a local environment (MacBook
Pro with 2.5 GHz Quad-Core Intel Core i7 and 16GB memory) to evaluate a pro-
posed blockchain sharding scheme. We create a virtual machine using Conda on
Visual Studio Code and implement our framework in Python 3.10.44. Ethereum
block data ranging from 13.7 million to 15.04 million are downloaded and sorted
from the Ethereum public endpoint [23]. There are 1.34 million blocks in the
captured block range. Experiments are conducted on consecutive 100,000 blocks
randomly selected from captured block ranges. Our randomly selected block pe-
riod is between 14 million and 14.9 million. We divide the selected block period
into ten equal parts, each containing 10,000 blocks.
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4.2 Data Overview

We have 762,203 node addresses and 3,735,641 transactions during our first test
block epoch. The community detection algorithm uses the top 90 addresses 1

sending the most transaction numbers out of 762,203 addresses. We define K as
the number of addresses with the most transactions in subsequent tests. After
sorting the first 90 nodes, we see that the address with the most transactions be-
longs to OpenSea 2. In our first tested 10,000 blocks, OpenSea generated 154,879
transactions. Besides OpenSea, big companies like Coinbase 3 and Uniswap 4

also have large numbers of transactions on Ethereum. According to the adja-
cency matrix, 31 nodes do not have any transactions with any of the first 90
nodes. The row sum of all the 31 sender addresses in the matrix is zero. Thus
we remove these 31 addresses, and the top 90 most transacted addresses form a
59×59 adjacency matrix.

4.3 Sharding Analysis

The comparison between a community detection-based sharding method and
a random sharding method is shown in Fig. 2. In Fig. 2(a), the vertical axis
represents the number of cross-shard transactions, while the horizontal axis rep-
resents the Ethereum block sequence number. Fig. 2(b) differs from Fig. 2(a) in
that the vertical axis represents the ratio of cross-shard transactions, while the
horizontal axis remains the same. During the first block epoch, we divide the
59 addresses into four shards, which generate 76,369 transactions. As a result of
adopting the community detection algorithm, 65,703 transactions are intra-shard
transactions, and 10,666 are cross-shard transactions.

To compare with the community detection-based sharding scheme, we sim-
ulate a process of randomly assigning addresses, similar to the process of nodes
randomly assigned to varying shards in Omniledger [6]. Nodes can be randomly
allocated into shards of the same size. Alternatively, nodes can be randomly
divided into shards of different sizes. Therefore, we develop two methods for
randomly allocating nodes to shards in the experiments. Keeping each shard
with the same number of nodes is balanced sharding. Sharding with more or
fewer nodes in each shard is unbalanced.

As shown in Fig. 2(a), the proposed sharding scheme keeps the number of
cross-shard transactions around 10,000. Additionally, there is a transaction peak
of around 14.05 million blocks. In the peak block, the random balanced sharding
method generates 70,455 cross-shard transactions, while the unbalanced sharding
method generates 54,629 cross-shard transactions. Community detection-based
sharding generates only 14,972 cross-shard transactions, approximately one-fifth

1 Due to the limited computational capacity, the local computer can only handle up
to 90 addresses.

2 0x7be8076f4ea4a4ad08075c2508e481d6c946d12b, https://opensea.io/
3 0x503828976d22510aad0201ac7ec88293211d23da, https://www.coinbase.com/
4 0xd3d2e2692501a5c9ca623199d38826e513033a17, https://uniswap.org/
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(a) Cross-shard TX Number, Community Detection VS Random Allocation

(b) Cross-shard TX Ratio, Community Detection VS Random Allocation

Fig. 2. Testing Ethereum address in sharding framework under unbalanced random al-
location method, balanced random allocation method, and community detection-based
allocation method while fixing tested addresses number K = 90 and shard number
s = 4.
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of the number generated by random sharding. With our proposed sharding tech-
nique, the peaks of shard lines appear relatively flat because it is based on a com-
munity detection algorithm. Fig. 2(b) shows that random balanced and unbal-
anced sharding leads to a high ratio of cross-shard transactions, i.e., around 80%
and 60% respectively. Compared with random sharding with balanced shards,
the ratio of cross-shard transactions is reduced from 80% to 20% by implement-
ing the community-detected sharding rather than random sharding.

Fig. 3. Cross-shard TX ratio, the top 10 to 90 most traded addresses. Varying K
within{10, 30, 50, 70, 90}, and fixing s = 4.

We explore our proposed scheme by changing the numbers of addresses or
numbers of shards. According to Fig. 3, we demonstrate changes in the ratio of
cross-shard transactions when the number of addresses varies. Tab. 2 presents
the number of deleted addresses and the number of remaining addresses for each
K value.

We evaluate our proposed community detection-based sharding approach by
varying ETH most traded top K addresses from the range {10, 30, 50, 70, 90} and
fixing shard number s = 4. After traversing ten epochs, experiments on the ratio
of ϕc in Fig. 3 reveal an interesting pattern of change. We see that a decrease
in the ϕc occurs with an increase in K from 10 to 50, and an increase in the ϕc

occurs with an increase in K from 50 to 90. The ratio of cross-shards is lowest
when K = 50.
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Table 2. Testes ETH top K Addresses and Remaining Addresses

Tested ETH address number K=10 K=30 K=50 K=70 K =90

Deleted address number 3 9 14 21 31

Remaining address number 7 21 36 49 59

Fig. 4. Cross-shard TX ratio, while varying shards number within {4, 6, 8, 10}, and
fixing K = 90.

——

Fig. 5. Variation of cross-shard TX ratios in 1.3 million blocks.



12 Z. Zhang et al.

In addition to varying the top K, we test sharding performance by changing
the shard number s from the range {4, 6, 8, 10} and fixed K = 90. The observation
in Fig. 4 indicates that an increase in s leads to an increase in ϕc. Although the
s increases with ϕc, the s and the ϕc do not follow a linear relationship. A
significant change in the ratio of ϕc occurs when the s is increased from 4 to
6, followed by a continually smaller change as the s increases. Sharding results
show that fewer shards result in a lower ratio of cross-shard transactions. Also,
cross-shard transactions will reach upper bounds as more shards are added.

Fig. 5 shows the test results of our proposed sharding method from the
block range of 13.7 million to 15.04 million. We display the overall ratio of
cross-shard transactions during the tested period. Community detection-based
sharding reduces transactions between shards to 20% and stays stable.

5 Conclusion

We presented a community detection-based sharding scheme to reduce cross-
shard transactions. We converted blockchain data into an undirected and weighted
graph format and executed a community-detection algorithm to get communi-
ties. The assignment of nodes to communities represented the division of nodes
into shards. The superiority of this sharding approach was demonstrated by
evaluating it on a real-world Ethereum dataset. The community detection-based
sharding scheme reduced the ratio of cross-shard transactions to 20% and main-
tained stability.
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