

MSF Brine Reject Dilution in the Forward Osmosis Process: Performance Analysis

by Daoud Khanafer

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

under the supervision of Dr Ali Altaee and Professor John L. Zhou

University of Technology Sydney Faculty of Engineering and Information Technology

December 2022

Certificate of Original Authorship

I, Daoud, declare that this thesis is submitted in fulfilment of the requirements for the award of the Doctor of Philosophy in the Faculty of Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Signature of student

Production Note: Signature removed prior to publication.

Date: December,2022

Acknowledgments

I would like to acknowledge and give my warmest thanks to my supervisor Dr Ali Altaee. The completion of this project could not have been possible without his continuous support and guidance.

Thank you also to the co-supervisor Professor John L. Zhou for his cooperation.

I would like to thank all those whose assistance proved to help in accomplish my work.

I cannot forget to acknowledge the Qatar Foundation for funding this project.

List of Publications

Khanafer, D., Yadav, S., Ganbat, N., Altaee, A., Zhou, J. and Hawari, A.H. 2021b. Performance of the Pressure Assisted Forward Osmosis-MSF Hybrid Desalination Plant. Water 13(9), 1245.

- **Khanafer, D.**, Ibrahim, I., Yadav, S., Altaee, A., Hawari, A. and Zhou, J. 2021a. Brine reject dilution with treated wastewater for indirect desalination. Journal of Cleaner Production, 129129.
- Ibrar, I., Altaee, A., Zhou, J.L., Naji, O. and Khanafer, D. 2020. Challenges and potentials of forward osmosis process in the treatment of wastewater. Critical Reviews in Environmental Science and Technology 50(13), 1339-1383.
- Yadav, S., Ibrar, I., Bakly, S., **Khanafer, D**., Altaee, A., Padmanaban, V., Samal, A.K. and Hawari, A.H. 2020. Organic fouling in forward osmosis: A comprehensive review. Water 12(5), 1505.
- SOLAR CO-GENERATION OF ELECTRICITY AND WATER, LARGE SCALE PHOTOVOLTAIC SYSTEMS - Desalination By Forward Osmosis: Failure, Success, and Future Expectations - Ibrar Ibrar, **Daoud Khanafer**, Sudesh Yadav, Salam Bakly, Jamshed Ali Khan, and Ali Altaee.

Patent Application: Ali Altaee, **Daoud Khanafer**, Alaa Hawari, A METHOD FOR SEAWATER SOFTENING WITH A COMMERCIAL ANOFILTRATION MEMBRANE IN THE FORWARD OSMOSIS. Application NO 63242097, 09-SEP-2021.

CERTIFICA	TE OF ORIGINAL AUTHORSHIP	I			
ACKNOWL	EDGMENTS				
LIST OF PL	JBLICATIONS				
LIST OF FIGURES					
LIST OF TA	ABLES	x			
ABBREVIA	TIONS	XI			
ABSTRAC	г	XII			
CUADTED					
		····· I			
1.1. BA		۲۲ ۸			
1.2. RE	SEARCH MYPOTHESIS	4 5			
1.3. No 1.4 Re	SEARCH OBJECTIVES AND GOALS				
1.4. INE	ESIS OUTUNE	0			
CHAPIER		9			
2.1. GL	OBAL WATER SITUATIONS	9			
2.2. TE	CHNOLOGIES TO REDUCE WATER SHORTAGE	10			
2.2.1.	Water Reclamation				
2.2.2.					
2.3. AI	BRIEF INSIGHT INTO THE CURRENT GCC DESALINATION TECHNIQUES				
2.3.1.	MSF system				
2.3.2.	The status of RO in the Guit area				
2.4. FC	RWARD OSMOSIS-EMERGING DESALINATION TECHNOLOGY				
2.5. BA		17			
2.5.1.	FO memoranes				
2.5.2.	Draw solution for the forward osmosis				
2.5.3.	FO process- transport pnenomena				
2.5.4.	FO Membrane fouling				
2.5.5.	FO energy consumptions				
2.5.6.	Analysis of the FO process cost				
2.6. HY	BRID SYSTEM: A KEY FOR IMPROVED SEAWATER DESALINATION				
2.7. DE	SALINATION RESEARCH TREND IN GCC	32			
CHAPTER	3 : MATERIALS AND METHODS	34			
3.1. IN⁻	RODUCTION	34			
3.2. Ex	PERIMENTAL MATERIALS	35			
3.2.1.	Stream solutions	35			
3.2.2.	FO membranes	36			
3.2.3.	NF membranes				
3.2.4.	FO laboratory-scale setup				
3.2.5.	Prefiltration	40			
3.3. AN	IALYTICAL METHODS	40			
3.3.1.	Intrinsic parameters calculation	40			
3.3.2.	Basic performance measurement	41			
3.3.3.	Energy consumption	43			

Table of Contents

3.3.4	4. Ions count measurements	.43
3.3.	5. Fouling detection techniques	.43
СНА	PTER 4 : PERFORMANCE OF THE PRESSURE-ASSISTED FORWARD	
OSMOS	S-MSF HYBRID DESALINATION PLANT	.45
ABSTR	ACT	.45
4.1.		.46
4.2.	METHODOLOGY	.50
4.2.1	1. FO membranes and characterization	.50
4.2.2	2. Feed and Draw solutions	.51
4.2.3	3. FO system components	.51
424	4 Experimental work	52
4.3.	RESULTS AND DISCUSSIONS	.52
4.3.1	1. Impact of membrane materials and orientations.	.52
4.3.2	2. Recovery rate	.61
4.3.3	3. The concentration of Divalent lons	.63
4.3	4 Power consumption	64
4 4	Conclusions	66
CHAP	TER 5 : BRINE REJECT DILUTION WITH WASTEWATER FOR INDIRECT	Г
DE	SALINATION: CONVERTING WASTEWATER STREAMS TO WATER	
RESOUF	RCES	.67
ABSTR	ACT	.67
5.1.	INTRODUCTION	.68
52	MATERIAI S AND EXPERIMENTS	71
5.2.	1. Stream solutions	.71
5.2	2 Membrane and equipment	72
5.2.	3 Experimental work	73
5.24	4 Analytical processes	75
53	RESULTS AND DISCUSSIONS	76
5.3	1 Water flux in the EO process	76
53	2 Impact of prefiltration and osmotic backwash	79
53	3 Flux reduction	.13 80
534	1 Reverse Solute Flux	.00
53	 Teckling fouling materials 	.02 .81
5.3.	5. Freerow consumption and membrane cost	.0 4 87
5.3	7. Prefiltration and membrane cleaning effects on dilution of the Brine DS	.07 00
5.J.		.90
5.4.	CONCLUSIONS	.95
CHAP	FER 6 : PERFORMANCE OF NANOFILTRATION MEMBRANES IN A LAB	3-
SCALE I	FORWARD OSMOSIS SYSTEM FOR BRINE RECYCLING.	.94
	ΔΟΤ	94
6.1		95
6.2		.90 QQ
6.2	NATERIALS AND METHODS	08.
0.2. 6 2 1	 INFILIENTIALES Feed and draw solutions 	00.
0.Z.	2. I ceu allu ulaw solulions 2. Evnerimental set un	.99
0.2.	2. Ελρατιπτατικαι σαι-up	.39 100
0.2.4	t. I COLUCOIYII	100
0.2.3	D. Analylical Inellious	100
0.3.	RESULTS AND DISCUSSIONS	101
0.3.		101

6.3.	2. Divalent ions rejection	
6.3.	3. Effect of applied pressure on the water recovery rate	
6.3.	4. Energy consumption	110
6.3.	5. Cost analysis	111
6.4.	Conclusions	112
CHAPT OSM EFFLUE	ER 7 : NANOFILTRATION MEMBRANES APPLICATION IN THE F OSIS PROCESS FOR MSF BRINE DILUTION WITH TERTIARY SE	ORWARD EWAGE 113
ABSTF	ACT	113
7.1.	INTRODUCTION	114
7.2.	MATERIALS AND METHODS	116
7.2.	1. NF membranes	116
7.2.	2. Stream solutions	116
7.2.	3. Lab-scale setup	116
7.2.	4. Experimental work	117
7.2.	5. Analytical methods	117
7.3.	RESULTS AND DISCUSSION	118
7.3.	1. Flux patterns with applied pressures and membrane modules	118
7.3.	2. Cleaning efficiency and fouling reversibility	122
7.3.	3. Removal of ionic species	124
7.3.	4. Energy consumption	125
7.4.	CONCLUSIONS	126
CHAPT	ER 8 : CONCLUSIONS AND FUTURE RECOMMENDATIONS	127
8.1.	CONCLUSIONS	127
8.2.	RECOMMENDATIONS FOR FUTURE WORK	131
REFERI	ENCES	133

List of figures

Figure 2.1. Schematic diagram of the MSF Process (Zhao et al., 2018) Figure 2.2. FO publications trend between 1992 and 2020 (Aende et al., 2020)	13 16
Figure 2.3. Illustration of the principle of FO process including the separation step and the regeneration (recovery) step Figure 2.4. The typical TFC FO membrane structure: active and support layers	18 5
Figure 2.5. Illustration of ICP and ECP in a) FO mode and b) PRO mode. J_w and J_s are the water and the permeate flux, respectively Figure 3.1. Key map of the research activities.	20 25 35
Figure 3.2. Water contact angle for virgin Porifera TFC and FTSH ₂ O CTA membranes.	37
Figure 3.3. An inustration of the FO lab-scale installation Figure 4.1. Schematic diagram illustrating the proposed FO pretreatment of seawater to the MSF plant.	39 48
Figure 4.2. FO bench-scale unit configuration used in the seawater-brine FO and PAFO experiments.	51
hydraulic pressures between 0 and 4 bar using TFC membrane in (A) AL-FS and (B) AL-DS orientations Figure 4.4. Change of permeation flux with time at different applied pressures	ea 54
using CTA membrane, (A) AL-FS and (B) AL-DS orientations Figure 4.5. The average membrane flux was calculated at different applied pressures of the FO process using (A) TFC membrane and (B) CTA membrane	56 ie
Figure 4.6. Flux Reduction in the FO process at different applied pressures using (A) TFC membrane and (B) CTA membrane in AL-FS and AL-DS	58
orientations Figure 4.7. SEM images of the active and support layer of used and washed TFC and CTA membranes. Images show fouling layer in the active and suppo membrane layers used in the FO process conducted with 2 bar hydraulic pressure	60 rt 61
Figure 4.8. Recovery rate (%) of FO process at different applied pressures, using TFC membrane (A) and CTA membrane (B). In AL-FS and AL-DS orientations	62
Figure 4.9. Mg ²⁺ , Ca ²⁺ and SO ₄ ²⁻ dilution in the DS following FO process at different applied pressures and in FO and PAFO mode using TFC and CTA FC membranes. (A) and (B) TFC membrane in AL-FS and AL-DS orientations, respectively. (C) and (D) CTA membrane AL-FS and AL-DS orientations,	02
respectively Figure 4.10. Energy consumption at different applied pressures, (A) using TFC membrane and (B) using CTA membrane.	64 C 65

Figure 5.1. (a) Lab-scale experimental design of the FO system. Operational parameters: 2 LPM flow rate, 25 °C and 40 °C on the feed and draw sides, respectively. (b) An illustration of the proposed FO-MSF hybrid system......73 Figure 5.2. The water flux readings in the FO process, (a-d) without FS and DS prefiltration and (e-h) with FS & DS prefiltration, were conducted in both Figure 5.3. Average flux for each cycle in the FO experiments. Each FO process was run for 4 consecutive cycles. Each FO cycle was operated for 180 min, and the water flux was measured every 15 min. Experiment (1-4) without FS & DS prefiltration and (5-8) with FS & DS prefiltration......80 Figure 5.4. Flux reduction in the FO experiments after each cleaning method. Membrane cleaning was performed after each cycle for both AL-FS and AL-DS orientations. No FS & DS prefiltration in Experiments (1-4) and with prefiltration Figure 5.5. Variation of RSF without FS & DS prefiltration in Experiments (1-4) and with prefiltration in Experiments (5-8). Each experiment consists of 4 cycles Figure 5.6. SEM images of the AL of the fouled FO membranes. Fouling on the AL are more remarkable without prefiltration and in AL-FS according to the membrane samples used......85 Figure 5.7: (a) Associated EDS spectrum of the sample membrane in the SEM-EDS analysis, (b) Table showing the elements of the spectrum in numbers in the SEM-EDS analysis......85 Figure 5.8. SEM-EDS analysis of the AL of the fouled FO membrane in the AL-DS orientation at the end of cycle 4 after hot DI water cleaning. C, O, Mg and Figure 5.9. FTIR spectroscopy of the new fouled and washed membranes. (a) Scanning the AL in the AL-FS mode. (b)Scanning the SL in the AL-DS mode. 87 Figure 5.10. The performance of the FO experiments was conducted in terms of specific power consumption. (1-4) FO process without stream solution Figure 5.11. Reduction of Mg^{2+} , Ca^{2+} and SO_4^{2-} in % in FO experiments, (a-d) Figure 6.1. Fundamental demonstration of the FO-MSF hybrid system using the Figure 6.2. Schematic diagram of the laboratory FO system set up using NF Figure 6.3. Water flux calculated following the use of the three NF membranes, (a) TS80, (b) XN45 and (c) UA60 in FO process at 0, 2 and 4 bar applied pressure in the AI-FS mode and 2LPM flow rate. (FS= seawater, 45g/L, 25°C; Figure 6.5. The average flux recorded when NF membranes were used in the FO processes at 0, 2 and 4 bar applied pressure. FS= seawater, 45g/L, 25 °C; DS=brine solution, 80g/L, 40 °C; 2LPM flow rate......105 Figure 6.6. SEM images of pristine NF membranes. (a) TS80, (b) XN45 and (c) UA60 and fouled membrane at 4 bar, (d) TS80, (e) XN45 and UA60......106 Figure 6.7. The percentage of ions dilution in the DS following the FO process (PAFO) using (a) TS80, (b) XN45 and (c) UA60 NF membranes, respectively. (FS= seawater, 45g/L, 25 °C; DS=brine solution, 80g/L, 40 °C; 2LPM flow rate; AL-FS orientation)......108 Figure 6.8. Water flux recovery rate of NF membranes (TS80, XN45 and UA60) and FO membranes (TFC and CTA) in PAFO process at 0, 2 and 4 bar. (FS= Figure 6.9. Energy consumption of the FO process using TS80, XN45 and UA60 NF membranes in the AL-FS mode at 0, 2 and 4 bar. FS= seawater, Figure 7.2. The water flux of the FO system using TS80 membrane at 0, 2 and Figure 7.3. Water flux pattern with the time in the FO system at 4 bar when a) Figure 7.4. Comparison of the average water flux of the NF membranes (TS80, Figure 7.5. Illustration of flux reduction after each cycle for each membrane at 4 Figure 7.6. SEM images of the fouled and cleaned NF membranes when FO operated at 4 bar: a) TS80 fouled, b) TS80 washed with hot DI water, c) XN45 fouled, d) XN45 washed, e) UA60 fouled, UA60 washed......123 Figure 7.7. The percentage of Mg, Ca and SO₄ ions dilutions at 4 bar using Figure 7.8. TS80, XN45 and UA60 NF membranes energy consumption in the

List of tables

Abbreviations

A	Pure water permeability
AL	Active layer
В	Solute permeability
СР	Concentration polarization
СТА	Cellulose triacetate
DI	Deionized
DS	Draw solution
EDS	Energy Dispersive X-ray Spectroscopy
FO	Forward Osmosis
FS	Feed solution
FTIR	Fourier transform infrared
GCC	Gulf Cooperation Council
ICP	Internal Concentration polarization
Jw	Water flux
MSF	Multi-Stage Flashing
NF	Nanofiltration
PAFO	Pressure-assisted forward osmosis
RO	Reverse Osmosis
S	Structural parameter
SEM	Scanning electron microscopy
SL	Support layer
ТВТ	Top brine temperature
TDS	Total dissolved solids
TFC	Thin Film Composite
TSE	Tertiary sewage effluen

Abstract

One of the largest global risks is freshwater scarcity. In countries with limited natural water resources, water reclamation and desalination have become a strategic source of clean and usable water. Specifically, seawater desalination is a sustainable flow of fresh water in the Gulf Cooperation Council (GCC) countries located in the driest part of the world. Multi-Stage Flashing (MSF) desalination has been proved to be the most reliable thermal desalination technology in the GCC countries, mainly considering Qatar's MSF plants. Despite its efficiency and high-quality water production, MSF technology suffers major drawbacks affecting its performance. Scale formation, specifically the non-alkaline scale, has been a serious issue from thermodynamic and economic perspectives. Pretreatment of the feed solution to the MSF plants was proposed and investigated in the literature to tackle the scale issue. The current project's novelty is to design and test the FO-MSF hybrid system for seawater pretreatment by the FO process for the MSF desalination plant. Several commercial FO and NF membranes were applied for recycling the MSF brine reject within the FO system using the brine as a draw solution.

Selecting the appropriate membrane and the ideal draw solution is essential for an efficient FO process. Since the brine reject solution is the only DS used in all the experiments conducted in this study, the variables included the membrane and the feed solution. TFC and CTA FO membranes with fresh sweater feed solution were used in the FO system for the MSF plant. Pressure-assisted FO (PAFO) process was introduced, and experimental results showed 50% more permeation flux by increasing the feed pressure from 1 to 4 bar. When tertiary sewage effluent (TSE) was proposed as a feed solution using TFC membranes, a considerably high water flux of 35 L/m²h was achieved. Under the same operating conditions in the FO mode using fresh seawater on the feed side, commercial NF membranes were tested for the first time in the FO system. A more feasible membrane selection can be the NF membranes as they demonstrated better results than FO membranes. However, higher performance was achieved when TSE and NF were combined in the FO process. Experimentally, this combination recorded a maximum water flux of 39.5 L/m²h and achieved up to 42% divalent ions dilution. While the outcome of this study is still preliminary, the results are promising and can highlight the potential of using the FO system for MSF brine dilution.