
RESEARCH PAPER

Ready-to-use deep-learning surrogate models for problems
with spatially variable inputs and outputs

Xuzhen He1 • Haoding Xu1 • Daichao Sheng1

Received: 24 September 2021 / Accepted: 9 September 2022 / Published online: 23 September 2022
� The Author(s) 2022

Abstract
Data-driven intelligent surrogate models gain popularity recently. Particularly in Monte-Carlo-style stochastic analysis, the

influencing factors are considered as inputs, the quantities of interest are considered as outputs, and cheaper-to-evaluate

surrogates models are built from a small amount of sample data and are used for the full Monte-Carlo analysis. This paper

presents a framework with three innovations: (1) we build surrogate models for a particular problem that covers any

possible material properties or boundary conditions commonly encountered in practice, so the models are ready to use, and

do not require new data or training anymore. (2) The inputs and outputs to the problem are both spatially variable. Even

after discretization, the input and output sizes are in the order of tens of thousands, which is challenging for traditional

machine-learning algorithms. We take the footing failure mechanism as an example. Two types of neural networks are

examined, fully connected networks and deep neural networks with complicated non-sequential structures (a modified

U-Net). (3) This study is also the first attempt to use U-Nets as surrogate models for geotechnical problems. Results show

that fully connected networks can fit well simple problems with a small input and output size, but fail for complex

problems. Deep neural networks that account for the data structure give better results.

Keywords Deep learning � Deep neural network � Footing failure mechanism � U-Net

Abbreviations
B Strip footing width

c Cohesion

c0 Normalised cohesion, c0 ¼ c
cr

C0 Representation of the normalised cohesion field as a

2D array

cr Reference strength

lx Scale of fluctuation (horizontal)

ly Scale of fluctuation (vertical)

q0 Overburden load

q
0
0

Normalised overburden load q0
cr

q
0
u

Normalised bearing capacity qu
cr

su Undrained strength

U
0

u
Representation of the normalised failure velocity

field (horizontal) as a 2D array

vu Failure velocity, vu = (uu, vu)

v
0
u

Normalised failure velocity

V
0

u
Representation of the normalised failure velocity

field (vertical) as a 2D array

w Spatially variable weight to calculate errors

x Coordinate vector

x0 Normalised coordinate vector, x0 ¼ x
B

c Unit weight

c0 Normalised unit weight, c0 ¼ cB
cr

C0 Representation of the normalised unit weight field as

a 2D array

ru Failure stress

r
0

u Normalised failure stress, r
0

u ¼ ru
cr

/ Friction angle

U Representation of the normalised friction angle field

as a 2D array

List of symbols
COV Coefficient of variation

CNN Convolutional neural network

FCN Fully connected network

& Xuzhen He

xuzhen.he@uts.edu.au

Haoding Xu

haoding.xu@student.uts.edu.au

Daichao Sheng

daichao.sheng@uts.edu.au

1 School of Civil and Environmental Engineering, University

of Technology Sydney, Ultimo, NSW 2007, Australia

123

Acta Geotechnica (2023) 18:1681–1698
https://doi.org/10.1007/s11440-022-01706-2(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0001-5336-3663
http://crossmark.crossref.org/dialog/?doi=10.1007/s11440-022-01706-2&amp;domain=pdf
https://doi.org/10.1007/s11440-022-01706-2


1 Introduction

Numerical modelling and simulations of geotechnical

problems have seen significant advancements in recent

decades. Extensive new models have been made regarding

the discretisation of governing equations, constitutive

modelling, and boundary treatments (Fig. 1), which all

contribute to more reliable predictions, and even make

some previously impossible tasks possible. For example, to

tackle the issue of mesh distortion and grid tangling in

large deformation problems, meshless methods are devel-

oped, including but not limited to the particle finite element

method [16], the material point method [26], and the

smooth particle hydrodynamics [11]. Various coupled

numerical models are also developed to model multi-phy-

sics problems such as soil–water interaction [4] and solute

transport with porous fluid [2]. Many soil models are

developed for the various kinds of soils in nature and the

distinctive soil behaviours, including but not limited to the

hypoplastic models [3], the bounding surface models for

sands [1], and the unsaturated soil models [20, 21].

Despite all improvements and advantages of advanced

numerical models, they are hardly used in real-world pro-

jects, where practitioners still prefer well-established

models like the linear elastic Mohr–Coulomb model and

tools like slip-line methods. The application of these

advanced models is often restricted to validations against

well-controlled experiments or extensively studied cases.

Some factors that may hinder their accessibility in practice

are:

(1) Research outcomes are often implemented in in-

house codes that are not available to practitioners.

(2) Good user interface and documentation are often

lacking such that the very steep learning curve drives

practitioners away.

(3) Some models are implemented in general-purpose

software packages. The operation of these models is

often cumbersome compared with dedicated tools

like limit analysis for slopes. Defining a single

simulation involves several components, including

domains, materials, boundaries and mesh. Incorrect

operation in any component would result in

unpredictable results.

(4) The computational time for coupled multi-physics

problems is time-consuming, which makes stochastic

analysis and optimisation practically impossible

because these tasks all require many such analyses

[32].

One POSSIBLE solution is to use surrogate models,

which are mostly based on machine learning in the present

day. These surrogate models only solve a particular

problem, e.g. the stability of slopes, the bearing capacity of

foundations, or the ground settlement due to excavation.

The influencing factors for these problems (e.g. material

parameters and boundary conditions in Fig. 1) are consid-

ered as inputs. And the quantities of interest are considered

as outputs. Surrogate models are then built based on sample

data—results from advanced models. Therefore, surrogate

models are equivalent to the advanced models for a par-

ticular problem, but they have the advantage of being easy

to operate and getting results in a shorter time.

Surrogate models are not a new topic and are exten-

sively used in stochastic analysis [14] and optimisation

[29]. In Monte-Carlo-style stochastic analysis, the influ-

encing factors are usually random variables/fields of

material properties, and the quantity of interest is often

safety or reliability-related. Cheaper-to-evaluate surrogate

models are built from a small amount of sample data and

are used for the full Monte-Carlo analysis. In optimisation,

surrogate models are used as the objective functions.

However, most applications of surrogate models are only

for some specific cases. When a new case is studied, the

surrogate model requires new data and re-training, which is

an ISSUE. This paper presents some techniques to solve

this problem with three innovations: (1) we will build

surrogate models for a particular problem that covers any

possible material properties or boundary conditions com-

monly encountered in practice, so the models are ready to

use, and do not require new data or training anymore. (2)

On this occasion, the relationship between inputs and

outputs would be extremely complicated, particularly when

the inputs and outputs are both spatially variable. Even

after discretization, the input and output sizes are in the

order of tens of thousands, and regular machine-learning

tools cannot give reasonable results. We will explore the

use of deep neural networks that account for the data

structure. (3) This study is also the first attempt to use

U-Nets as surrogate models for geotechnical problems.

With these new techniques, the use of deep-learning sur-

rogate models to facilitate the application of advanced

numerical models becomes really POSSIBLE.

Data-driven intelligent surrogate models have seen

many successful applications [6, 9, 10, 17, 23]. Regarding

surrogate models for stochastic analysis with spatial vari-

ability, we presented a deep-learning surrogate model to

predict the bearing capacity of strip footings in our previ-

ous study [33]. The deep neural network is stacks of con-

volutional layers, average pooling layers, locally connected

layers, and fully connected layers. It is trained with a big

dataset covering any soil properties, spatial variabilities, or

boundary conditions encountered in practice. The model is

very accurate for unseen testing data (3.3% error). If

equipped with a good user interface, this deep-learning

model is a perfect tool for practitioners. It is also shown

1682 Acta Geotechnica (2023) 18:1681–1698

123



that regular machine-learning algorithms cannot reproduce

reliable models (more than 20% error) for such a compli-

cated problem. Although no advanced models are used to

generate the sample data in the study, the framework is

generic and can be used on other occasions.

In our previous study [33], of the four inputs, three are

spatial fields of material parameters, and one is a scalar

measuring loading condition. Although the inputs are

complex, the output is only a scalar—the bearing capacity.

For some problems, the quantities of interest can be spa-

tially variable (Fig. 1, e.g. the failure mechanism of slopes,

the displacement field of the ground, and the concentration

field of hazardous materials in soils) or temporally variable

(Fig. 1, e.g. the settlement of embankment with time and

the creeping of landslides). These problems are relatively

more complicated, and a deep-learning model would

require a different structure from the one used in He et al.

[33]. In this study, we present how to build a deep-learning

surrogate model for problems where the output is also a

field. The prediction of footing failure mechanism is taken

as an example, but this generic framework easily tran-

scends to other problems (e.g. slope failure mechanism

[18], landslide runout [31], and seepage in unsaturated soil

[12]). In Sect. 2, we explain the inputs and outputs for the

problem of footing failure mechanism, the setup of finite

element simulations, and how to evaluate the failure

Fig. 1 Framework to make advanced models more accessible using deep-learning surrogate models

Acta Geotechnica (2023) 18:1681–1698 1683

123



mechanism. The dataset is mentioned in Sect. 3 with

imposed limits for the material parameters and loading

conditions. In Sect. 4, deep neural networks, some layer

types, and the structure of our deep-learning model are

explained. A weighted error is introduced in Sect. 5 as the

loss function. Then we start to build models for a reduced

problem with a smaller size of inputs and progressively

increase the size until the full problem is examined.

2 Footing failure mechanism

If the soil under a strip footing is modelled by perfect

plasticity, after reaching the ultimate failure condition, the

soil will undergo unrestricted plastic flow (like steady-state

fluid flow) with a constant stress field. The Mohr–Coulomb

yield surface is adopted for soils in this study, with c

denoting the cohesion and / denoting the friction angle.

The failure stress and velocity fields depend on the soil

properties and boundary (loading) conditions. Considering

spatial variability of soils (e.g. material parameters are

fields), we can write a relationship as

ru xð Þ; vu xð Þ½ � ¼ f B; c xð Þ;/ xð Þ; c xð Þ; q0½ � ð1Þ

where x ¼ x; yð Þ is the coordinate vector, ru is the failure

stress, vu = (uu, vu) is the failure velocity, B is the width of

footings, c is the unit weight, and q0 is the overburden load

(Fig. 2a).

As illustrated in our previous study [33], we can conduct

dimensional analysis to have:

r
0

u x0ð Þ; v0

u x0ð Þ
h i

¼ f c0 x0ð Þ;/ x0ð Þ; c0 x0ð Þ; q0

0

h i
ð2Þ

With the mean of the cohesion as a reference strength cr,

all quantities in the equation are normalised. x0 ¼ x
B is the

normalised coordinate vector. The normalised unit weight

(c0 ¼ cB
cr
) quantifies the relative significance of gravity and

strength, and the normalised overburden load (q
0
0 ¼

q0
cr
)

quantifies the relative significance of overburden and

strength. Normalised cohesion is c0 ¼ c
cr
. The failure stress

is normalised as r
0
u ¼ ru

cr
, and bearing capacity is its integral

along the footing width q
0

u ¼ r
L

r
0

undA. The failure velocity

field is normalised as v
0
u ¼ vu

v0
where v0 is the vertical

velocity of the footing. So, the failure velocity of footing is

always v
0
u = (0, 1).

The failure stress and velocity fields are largely influ-

enced by soil properties near the footing, the properties far

away are often insignificant. Thus, the spatial dependence

is limited to a small region (�6:4� x0 � 6:4, 0� y0 � 6:4).

Although the failure stress and velocity depend on

continuous fields of material parameters, a finite resolution

is often adopted in numerical analysis. The scale of fluc-

tuation for soils is larger than 0.2 m [22], so with B = 0.2–

1.0 m, normalised scale of fluctuation is at least 0.2, and a

mesh size of Dl
B ¼ 0:1 is fine enough. The final mesh has

64 9 128 elements (Fig. 2a), each with material parame-

ters evaluated from the continuous field with a mid-point

method. There are 65 9 129 nodes, and the displacement

and velocity are solved on nodes.

We thus have the following equation.

q
0

u;U
0

u;V
0

u

h i
¼ f C0;U;C0; q

0

0

h i
ð3Þ

Because of the limited-region dependence and the finite

resolution, C0, U, and C0 are the soil properties represented

as 2D arrays of size 64 9 128. U
0

u and V
0

u are horizontal

and vertical failure velocities, respectively, which are

represented by 2D arrays of 65 9 129.

Our previous study focuses on building a deep-learning

model for the bearing capacity, i.e.

q
0

u ¼ fq C0;U;C0; q
0

0

h i
ð4Þ

where the output is a scalar quantity. This study aims to

build a deep-learning model for the failure mechanism, i.e.

U
0

u;V
0

u

h i
¼ fv C0;U;C0; q

0

0

h i
ð5Þ

where the outputs are spatially variable fields.

In our previous study, for each input (C0;U;C0; q
0
0),

three different numerical methods are used to evaluate the

bearing capacity q
0
u (for cross-validation). But the results

from the finite element simulations with an implicit

dynamic scheme are mainly used for training. In this study,

failure velocity fields are also evaluated by this finite ele-

ment model. In all simulations (Fig. 2a), the footing is 1 m

wide, and the height and width of the domain are 6.4 and

12.8 m, respectively. The domain is made of 64 9 128

quadrilateral elements. The bottom is fixed and the left and

right are roller boundaries.

A large elastic modulus is used, so ultimate failure is

reached when the footing settlement is between 0.003 B

(cases with relatively small q
0

u) and 0.08 B (cases with

relatively large q
0
u). After each displacement increment, we

think the load increases only if it is greater than 1.005 of

the current maximum, and we stop the simulation for a

further displacement of 0.005 B if without load increase.

Figure 2b shows the load/displacement curve for a

homogenous soil with / = 0 and c = 0. The load does not

increase from around 0.003 B and the simulation stops at

around 0.008 B. The predicted bearing capacity is very

close to the analytical value (5.12 from the limit equilib-

rium analysis [25]).

1684 Acta Geotechnica (2023) 18:1681–1698

123



The dimensionless failure velocity can be evaluated

from the displacement increment field as

v
0

u ¼ vu
v0

¼ dxu=dt
dy0=dt

¼ dxu
dy0
. The displacement increment field

dxu and the footing settlement dy0 are both calculated after

failure and in the same time interval dt. A larger interval

will lead to a more accurate evaluation, which is particu-

larly true for simulations where the friction angle is large

(relatively large q
0
u and simulations are unstable). In this

study, the start time of the time interval is selected as when

the load reaches 90% of the bearing capacity (Fig. 2b), and

the end time is when the simulation stops.

Figure 3a shows the evaluated normalised failure

velocity for the homogenous soil with / = 0 and c = 0.

The dash lines are slip lines from the limit equilibrium

analysis [25]. Agree with analytical analysis, a triangular

region is subsiding vertically with the footing, and the

extent of the failure zone is from -1.5 to 1.5. From this

velocity field, we can also estimate a strain rate field as

shown in Fig. 3b (a contour plot of the Euclidian norm of

the strain rate tensor). Again, it is shown that shearing

happens mostly on the analytical slip lines.

It is difficult to visually compare two velocity fields

from quiver plots like Fig. 3a. So, we use a colour repre-

sentation like Fig. 3c, in which each position is filled with a

colour based on the velocity. The RGB value is calculated

as Red =
1þu

0
u

2
, Green =

1�v
0
u

2
, and Blue = 0.5. Each com-

ponent of the failure velocity has - 1 � u
0
u � 1 and

�1� v
0

u � 1, which guarantees that the red and green val-

ues are between 0 and 1. The outer region has a velocity of

zero, so the corresponding RGB value is (0.5, 0.5, 0.5) and

the colour is grey. The triangular region under the footing

has a velocity of (0, 1), so the corresponding RGB value is

(0.5, 0.0, 0.5) and the colour is magenta. Figure 3d shows

Fig. 2 Illustration of the simulation setup and load/displacement curves

Acta Geotechnica (2023) 18:1681–1698 1685

123



the prediction from the final deep-learning model, which

closely matches the failure mechanism from finite element

simulations and from analytical slip lines.

Figure 2c shows the load/displacement curve for a

homogenous soil with / = 35� and c = 0. The load does

not increase at around 0.025 B and the simulation stops at

around 0.03 B. The analytical bearing capacity is 46.1

(readers can refer to He et al. [33] for the equation), but the

finite element model gives a q
0
u of only 30.7. As explained

in our previous study, the finite element model gives

accurate bearing capacity when /� 25� and give conser-

vative results when /[ 25�. This is because the extent of

analytical slip lines increases exponentially with the fric-

tion angle and will be cut by the left and right boundaries in

numerical models when /[ 25�. In practical geotechnical

design, when the friction angle is large, a safety factor is

often introduced [25] to avoid over-optimistic predictions.

So, these conservative predictions are desired in practice.

The left column of Fig. 4 shows the dimensionless

failure velocity for homogenous weightless soils with

various friction angles (from top to bottom are 5�, 15�, 25�,
and 35�). The top row is results with / = 5� and the failure

mechanism agrees with the analytical results. From the

second row when / = 15�, the predicted failure mecha-

nisms do not agree with analytical results. From the third

row when / = 25�, the analytical slip lines extend further

than �6:4� x0 � 6:4. In all four plots, the size of triangular

subsiding regions is well captured in finite element simu-

lations. In practice, it is very rare that there are no other

nearby structures for a target footing, so the assumption of

an unbounded soil domain in the limit equilibrium analysis

is often unreasonable, and the results from finite element

simulations are closer to reality. The right column of Fig. 4

shows the corresponding failure velocity from the final

deep-learning model, which proves its high accuracy.

3 Dataset

As discussed in the introduction section, to make a ready-

to-use surrogate, the model needs to cover any conditions

commonly encountered in practice. Phoon and Kulhawy

[22] reported typical soil parameters (Table 1) based on an

extensive literature review.

The parameters for the normalised inputs are listed in

Table 2. The reference strength cr is the mean of cohesion,

so the mean of normalised cohesion is 1. The width of strip

footings is often 0.2–1.0 m, so the mean of normalised unit

weight (c0 ¼ cB
cr
) is 0–2. Shallow foundations are buried

below the surface with Df\2:5B, which causes the over-

burden load, so the mean of normalised overburden load

q
0

0 ¼
q0
cr
¼ cDf

cr
is 0–6.

Fig. 3 Determination and representation of the failure velocity (dash lines are analytical slip lines)

1686 Acta Geotechnica (2023) 18:1681–1698

123



Fig. 4 Failure velocity of homogenous weightless soil (left column: results from finite element simulations; right column: results from the final

deep-learning model; dash lines: analytical slip lines; from top to bottom, friction angles are 5�, 15�, 25�, and 35�)

Table 1 Soil parameters reported by Phoon and Kulhawy

Parameters Mean COV Vertical

scale of

fluctuation

ly

Horizontal

scale of

fluctuation lx

c or su 10–700 kPa 0.1–0.55 0.2–6.2 m 23–66 m

/ 20–40� 0.05–0.15

c 13–20 kN/m3 0–0.1

Table 2 Parameters for the normalised parameters

Parameters Mean COV l
0

y l
0

x

c0 1 0–0.55 0.2–! 23–!

/ 0–40� 0–0.15

c0 0–2 0–0.1

q
0

0
0–6

Acta Geotechnica (2023) 18:1681–1698 1687

123



As for the coefficient of variation (COV) for these

normalised inputs. We choose larger ranges than those in

Table 1 to include smaller values. This is because

homogenous fields have COV = 0, small COVs correspond

to near-homogenous fields, and these conditions are

included. Therefore, the COVs for the normalised cohe-

sion, the friction angle, and the normalised unit weight are

0–0.55, 0–0.15, and 0–0.1, respectively. Similarly,

homogenous or near-homogenous fields have a very large

scale of fluctuation, so the limit for the normalised vertical

and horizontal scales of fluctuation are 0.2–! and 23–!,

respectively.

A total of 12,332 data are prepared for training. They

belong to five subsets (Table 3). Some subsets are reduced

problems of the full problem. Subsets 1 and 2 contain data

for homogenous soils. Subsets 3 and 4 are data for

undrained soils with the undrained strength as a random

field. For Subset 5, c0, /, and c0 are all random fields.

Detailed information about the generation of samples can

also be found in our previous study [33]. The quasi-random

sequence is extensively used in sampling a parameter

space, which has the advantage of uniformly covering the

space. Samples of the random fields are generated using

GSTools (an open-source software [13]) with exponential

autocorrelation functions and lognormal distributions. It is

shown that even if training data are from lognormal dis-

tributions, the obtained model is tested and valid for data

from other distribution types [33].

4 Deep neural networks

Artificial neural networks are computing models with ele-

ments and structures very similar to biological neural net-

works [27]. The most basic elements are artificial neurons

Table 3 Dataset information

Subsets Description No. of

data

Features of inputs

1 Homogenous weightless

soil

25 c0 and / are

independent of

x0; c0 = 0

2 Homogenous soil 306 c0, /, and c0 are
independent of x0

3 Weightless undrained

soil with no overburden

3000 c0 is random field;

/ = 0; c0 = 0;

q
0
0 = 0

4 Undrained soil 3000 c0 and c0 are random

fields; / = 0

5 The full problem 6000 c0, /, and c0 are
random fields

Total 12,332

Fig. 5 Illustration of neurons, layers, connections, and operations in

deep neural networks

1688 Acta Geotechnica (2023) 18:1681–1698

123



or simply neurons (illustrated as squares in Fig. 5), and

many such neurons form a layer. Neurons are connected

with ‘‘edges’’ (arrows in Fig. 5). A given neuron can have

multiple input connections (the marked green neuron in

Fig. 5a) and multiple output connections (the marked red

neuron in Fig. 5a).

The first network invented is the fully connected net-

work (FCN), which consists of one input layer, several

hidden layers, and one output layer. All layers in this

network are often arranged in lines as Fig. 5a, and each

neuron is connected with all neurons in its preceding layer

(where the name fully connected comes from). From the

perspective of computing, each neuron is a real number,

and a layer is then a vector, and the connections between

two layers can be seen as an operation on an input vector to

produce an output vector. This operation is often in two

steps: weights (as a matrix) are firstly multiplied by the

input vector to produce a vector (a bias vector can be

optionally added onto this vector), on which an element-

wise nonlinear function is then applied. The weights and

biases are trainable parameters, which are adjusted by

associated learning strategies to minimise prediction errors.

The nonlinear function is often called the activation

function.

From universal approximation theorems [8], one-hid-

den-layer FCNs can approximate any complex function if

the number of neurons in the hidden layer is unbounded.

An FCN for the present problem [Eq. (5)] can be simply

built: (a) each of the inputs C0;U, and C0 has a shape of

64 9 128 and q
0
0 is a scalar. These inputs can be flattened

and concatenated as a single input with 24,577 neurons; (b)

one hidden layer has p neurons where p is a tuneable

hyperparameter; (c) each of the outputs U
0

u and V
0

u has a

shape of 65 9 129. Similarly, a flattened output is with

16,770 neurons. Due to the dense connectivity between

layers, FCNs involve many trainable parameters even for a

small hidden layer size (p). For example, if the hidden layer

size is chosen as 50 for the present problem, a very small

number, there are 2.08 million trainable parameters. If the

size rises to 2000, the number of trainable parameters goes

up to 82.7 million.

FCNs do not account for the data structure of the

specific problem, and existing training strategies cannot

guarantee the convergence of approximations (e.g. local

minima, or the convergence rate is slow). Additionally,

deep FCNs often suffer from the problem of overfitting.

Therefore, some dedicated layers and operations have been

created to accommodate different needs and data struc-

tures. For example, the field inputs and outputs in this study

extend in two directions, neurons in each layer can thus be

arranged in 3 dimensions (height, width, and channels) like

in Fig. 5b. This is very similar to the deep-learning models

for analysing images, where the height and width corre-

spond to image pixel sizes, and the channel corresponds to

the colour channels like the RGB values (different material

properties for the present study). We use a tuple

(height 9 width 9 channels) to denote the size of each

layer. The structure of networks can also be complex (like

in Fig. 5b) rather than sequential. Some dedicated layer

types used in this study are:

Convolution layer: When the data are arranged like

Fig. 5b, the spatial relationship is then naturally embedded

into the neighbouring of neurons. In principle, the output at

a position should be mainly determined by inputs at

neighbouring potions. Inspired by this, convolution layers

are invented, in which a neuron is, rather than fully con-

nected to all neurons in its preceding layer, but locally

connected to a cuboid of neurons. This cuboid is often

called kernels or filters (Fig. 5c). The horizontal and ver-

tical sizes of the cuboid are the filter size and are repre-

sented by a tuple (height 9 width). The channel direction

of this cuboid is usually equal to the channel size of the

preceding layer. When neurons slide by one, the corre-

sponding cuboids also slide by a distance (Fig. 5c), which

is defined as the stride of filters and represented by a tuple

(height 9 width), too. Padding is a process of adding

layers of zeros to the preceding layer to control the shape of

the current layer. The number of filters determines the

channel size of the current layer. The height and width of

the current layer are determined by the height and width of

the preceding layer, filter size, stride, and padding.

In addition to this local connectivity, parameter sharing

is also used to further reduce the number of trainable

parameters, which is based on the rationale that filters serve

to conduct high-level abstractions (e.g. finding curves,

corners, soldiers, and flags in images), and they should be

independent of the spatial position, so all filters in the same

channel have the same trainable parameters. The operation

between a convolution layer and its preceding layer is then

computed as a convolution of the filter’s weights with the

input cuboid (where the name convolution comes from).

Transposed convolution layer: The data size (height

and width) reduces continuously after passing through

convolution layers and abstraction of the input is created.

For problems like the present one where the output has a

data size similar to the input, some layers are needed to

increase the size (Upsampling). The connection between a

transposed convolution layer and its preceding layer is like

the convolution layer but exchanges the order of input and

output. A transposed convolution layer is also characterised

by the filter size, stride, number of channels, and padding.

Batch normalisation: In machine learning, the trainable

parameters are updated only after a batch of samples are

trained, not after each sample. The training of deep neural

networks is challenging because the distribution of input

Acta Geotechnica (2023) 18:1681–1698 1689

123



data to layers deep in the network may change after each

batch. So, the learning algorithm is chasing a moving tar-

get. Batch normalisation is to standardise the data for each

batch (maintains the mean of output close to 0 and the

standard deviation close to 1), which can stabilise the

learning process and reduce the number of training epochs.

Dropout layer: Deep neural networks with a huge

number of trainable parameters tend to co-adapt to training

data without generalisation and improving accuracy on

testing data, which is called overfitting. The dropout is a

regularisation technique to prevent this, by randomly set-

ting neurons in the preceding layer to 0 at a frequency of

dropout rate.

ReLU layer: This layer returns an element-wise oper-

ation of its preceding layer, which is max(x, 0), and is

called Rectified Linear Unit in machine learning.

LeakyReLU layer: Like ReLU layer, but with a Leaky

version of the ReLU operation (f xð Þ ¼ x when x� 0, and

f xð Þ ¼ ax when x\0). a defaults to 0.3 in this study.

Deep neural networks with stacks of these dedicated

layers are trained with big data and have been successfully

used in very challenging tasks. For example, in the game

Go, the number of legal board positions is approximately

2.1 9 10170, a computer programme must make an optimal

decision with so many possibilities. Recently, the pro-

gramme AlphaGo [7] has won human experts and con-

stantly ranks 1st worldwide, which is based on a deep

neural network mainly consisting of convolution layers.

For our footing failure mechanism problem, we will build a

modified U-Net, which was initially developed for

biomedical image segmentation [5]. It is also successfully

used in medical image reconstruction [19], pixel-wise

regression for pansharpening [30], and image-to-image

translation for fluorescent stain estimation [28]. A U-Net is

made from downsamplers and upsamplers (Fig. 6), which

are further made from stacks of the layers mentioned. For a

downsampler, the data pass through a convolution layer, a

batch normalisation layer (optional), and a LeakyReLU

layer. If a stride of (2, 2) is used with padding for the

convolution layer, the input size (height and width) is

halved after passing through a downsampler (Fig. 6). The

channel number of the output is determined by the con-

volution layer. For an upsampler, the data pass through a

transposed convolution layer, a batch normalisation layer, a

dropout layer (optional and default rate = 0.4) and a ReLU

layer. Similarly, a stride of (2, 2) with padding will double

the height and width. In this study, the filter size is fixed as

(4, 4) for downsamplers and upsamplers.

With the building blocks, our final deep-learning model

is illustrated in Fig. 7. The inputs (C0;U, and C0) are

stacked together as a matrix input of size (64, 128, p0).

Here, p0 depends on the problem to solve. For the full

problem, p0 is 3. If the model is for weightless undrained

soil (U = 0, C0 = 0), p0 is 1. The matrix input and the

scalar input (q
0

0) do not enter calculation at the same

position. The matrix input firstly passes a downsampler and

the output data has a shape of (32, 64, p1), which will

further flow in two directions (arrows in Fig. 7). In one

direction, the data pass another downsampler—further

reducing the size and achieving abstraction. In the other

direction, the data will be concatenated with the output data

(size = (32, 64, p11)) of the last upsampler to have a new

output (size = (32, 64, p1 ? p11)), which then passes a

transposed convolution layer and produces the output

(failure mechanism; size = (65, 129, 2)). So, this model is

very complex with a highly nonlinear structure. In the

upper part, the matrix input passes through six downsam-

plers; higher degrees of abstraction are achieved; the data

size is progressively reduced until finally becomes (1, 2,

p6). Meanwhile, the scalar input (q
0
0) is extend to shape (1,

2, s0). Here, s0 also depends on the problem to solve. These

data are then concatenated as data of shape (1, 2, p6 ? s0).

In the bottom part, the data pass through five upsamplers.

There are 11 tuneable hyperparameters (from p1 to p11)

for the model. When the data pass through the downsam-

plers, the channel size should increase

p1 \ p2 \ � � � \ p5 \ p6ð Þ to accommodate the higher

degrees of abstraction. When the data pass through the

upsamplers, the channel size should decrease

(p6 [ p7 [ � � � [ p10 [ p11) towards the final channel

size of the output. For simplicity, we only test three sets of

hyperparameters (labelled as small, medium, and large

models, respectively in Table 4). For the full problem

(p0 = 3 and s0 = 1), a small model has 1.83 million train-

able parameters, and it rises to 29.25 million for the large

model.

5 Training and testing

The full problem of footing failure mechanism is compli-

cated with 24,577 input features and 16,770 output features

[Eq. (5)], so we firstly start with a reduced problem with a

smaller size of input features, and progressively increase

the size until the full problem is examined.

In machine learning, a dataset is often separated as

training, validation, and testing datasets, where models are

trained with learning strategies based on the training

dataset. The validation dataset is used to avoid overfit-

ting—stop training when the error on the validation dataset

does not improve. The testing dataset is used to provide an

unbiased evaluation of the final model. For each problem,

whether reduced or full, 70% of available data are used for

1690 Acta Geotechnica (2023) 18:1681–1698

123



Fig. 6 Downsampler and upsampler

Fig. 7 Structure of the modified U-Net

Acta Geotechnica (2023) 18:1681–1698 1691

123



training, 15% for validation, and the remaining 15% for

testing.

In training, a loss function must be defined such that

trainable parameters are adjusted to minimise it. For a

sample, if the ‘‘true’’ failure velocity is v
0
u, the predicted

failure velocity is vp
0
u , a simple selection of loss function

would be the sum of error length over all positions, i.e.P
v
0
u � vp

0
u

�� ��. But we want the predicted failure velocity to

be more accurate close to the footing, so a weighted error is

introduced (
P

w v
0
u � vp

0
u

�� ��), where the weight is

w x0ð Þ ¼ 1

x0j j þ 3
ð6Þ

It is the maximum (0.33) at the centre of footing,

decreases continuous with the distance, and is halved at

position x0j j= 3.

5.1 Weightless undrained soil
with no overburden

This is a reduced problem with U;C0, and q
0
0 all equal to

zero, and the corresponding dataset is Subset 3 with 3000

data. The input is solely C0 (or S
0

u).

Firstly, an FCN with one hidden layer can be built: the

flattened input has 8192 neurons, and the flattened output

has 16,770 neurons. A dropout layer is added between the

only hidden layer and the output layer, and randomly sets

‘‘signals’’ from the hidden layer to 0 with a frequency of

dropout rate (between 0 and 1) during training time, which

means that after passing the dropout layer, the ‘‘signals’’

have only a probability of (1 – dropout rate) to retain its

original value. The dropout layer can help to avoid over-

fitting and the rate is often between 0.2 and 0.5 [24]. We set

the dropout rate to 0.4 in this study, and its specific choice

does not influence the conclusions of this study. The per-

formance of trained models is often affected by how the

trainable parameters are initialised [9]. In this study, for

each combination of hyperparameters, we run the training

11 times—one run with trainable parameters initialised

with zeros and ten runs with trainable parameters initialised

according to Glorot normal distribution (also called Xavier

normal initializer) [15]. We found that the average errors

are only slightly influenced by the initialisation, and it does

not affect the conclusions of this study. In the following

presentation, among these 11 runs, the results with the

lowest average error for the testing dataset are reported.

For the FCN with one hidden layer, the only hyperpa-

rameter is then the number of hidden neurons. When it

varies from 50 to 2000, the total number of trainable

parameters changes from 1.26 million to 49.9 million, the

average errors of training, validation, and testing dataset

are presented in Fig. 8a as circles. With more hidden

neurons and so more trainable parameters, the network is

more complex and will lead to a more accurate model. But

when the neuron size increases over 1200 (29.97 million

parameters), no improvement is observed for the average

errors of the validation and testing dataset (around 1.4),

while the average error of the training dataset decreases

slowly, indicating slightly overfitting. So, a robust model is

with 1200 hidden neurons, and the error (around 1.4) is

larger than that of the U-Net (around 1.0, diamonds in

Fig. 8a).

We also test deep FCNs, particularly networks with two

hidden layers that have the same number of neurons in each

hidden layer (from 10 to 1000). A dropout layer is similarly

added between the last hidden layer and the output layer.

The total number of trainable parameters varies from 0.27

million to 26.0 million, and the average errors are pre-

sented in Fig. 8a as triangles. The performance of deep

FCNs is better than that of one-hidden layer FCNs

regarding the average error of the testing dataset (1.0

compared with 1.4), and is comparable to that of the U-Net

(1.0, diamonds). However, stronger overfitting is observed.

With more trainable parameters (i.e. more complex mod-

els), the error of the training dataset decreases continuously

and even reaches a very low value of 0.33—a clear indi-

cation of overfitting. Deep FCNs with more hidden layers

should get even stronger overfitting, which is a well-

recognised issue of deep FCNs. That is why other deep

neural networks such as CNNs, locally connected networks

and U-Net are created—they are regularised versions of

deep FCNs.

For undrained soils, failure is concentrated in a small

region (Fig. 4) and is only determined by soil elements

very close to the footing. So, we do not need an input C0 as
large as 64 9 128. If we only consider soil elements in a

small region (�2:5� x0 � 2:5, 0� y0 � 2:0), the input C0 is

Table 4 Hyperparameters for the deep-learning model

Model size No. of trainable parameters for the full problem p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

Small 1.83 million 16 32 64 128 128 128 128 128 64 32 16

Medium 7.32 million 32 64 128 256 256 256 256 256 128 64 32

Large 29.25 million 64 128 256 512 512 512 512 512 256 128 64

1692 Acta Geotechnica (2023) 18:1681–1698

123



cut to 20 9 50, and the output (U
0

u and V
0

u) is cut to

21 9 51 9 2. An FCN can then be built with these cut

inputs and outputs. A dropout layer is also used, and

Fig. 8b gives the average errors (circles). Similarly, when

the hidden neuron size is over 1200 (3.77 million trainable

parameters), the average errors of the validation and testing

dataset do not improve, and the average error of the

training dataset decreases slowly. So, a robust model is

with 1200 hidden neurons, achieving an average error of

0.95, 30% better than the FCN with one hidden layer.

Additionally, there are only 3.77 million trainable param-

eters compared with the 29.97 million of the FCN with one

hidden layer, which shows that more input features or a

more complex model do not necessarily mean a better

model. Similarly, we test FCNs with two hidden layers. For

this case of cut inputs and outputs, the deep FCNs cannot

improve the error of the testing dataset but only lead to

stronger overfitting.

In the second FCN, we in fact apply a filter on the

original inputs and outputs by filtering out insignificant

features (soil properties and failure velocity far from the

footing) based on our understanding of the physical

mechanism (failure is concentrated in a small region) [33].

Deep learning is a powerful tool because abstractions (fil-

ters) are learnt from data automatically. For example, in

computer vision, the high-level features (e.g. curves, cor-

ners, soldiers, and flags) can be automatically learnt from

images with CNNs. For some tasks such as image-to-image

translation, face ageing and generating realistic pho-

tographs, these operations can be learnt from images with

generative adversarial networks (the U-Net is one type).

Another benefit of these deep neural networks is that they

are regularised versions of deep neural networks and can

avoid overfitting to some extent. A deep-learning model is

built based on the U-Net for this reduced problem. The

matrix input is (64, 128, 1) and the scalar input (q
0
0) is not

needed. Three models with different sizes of trainable

parameters are trained and the results are presented in

Fig. 8 as diamonds. For this simple task, even the smallest

model (1.83 million trainable parameters) can give good

results (the average error is about 1.0), and models with

more trainable parameters will not improve. As shown in

Fig. 8, the U-Net is as good as the FCN with cut inputs and

performs much better than the FCN with one hidden layer.

Most importantly, it will not easily fall into the overfitting

problems as the FCNs with two hidden layers do.

5.2 Undrained soil

This second scenario (failure mechanism of undrained soil

under footing) has comparatively more input features—two

arrays (C0 ¼ S
0

u, C
0) and a scalar q

0
0. The corresponding

dataset is Subset 4 with 3000 data. The previous problem is

a reduced problem of the present one with (C0 = 0 and

q
0
0 = 0), so there are in total 6000 data available for

training.

Firstly, an FCN with one hidden layer can be built with a

flattened input of 16,385 neurons. Following the same

process, the optimal number of hidden neurons is 1500,

which has 49.57 million trainable parameters and achieves

an average error of about 1.37 for the testing dataset (cir-

cles in Fig. 9a). The FCNs with two hidden layers (trian-

gles in Fig. 9a) again have overfitting problems. A robust

FCN with cut inputs and outputs achieves a smaller error of

0.89. In the modified U-Net for this problem, the matrix

input is (64, 128, 2) and the scalar input (q
0
0) enters the

calculation as in Fig. 7. Without applying artificial filters

and human intervention, the modified U-net with a medium

and large number of trainable parameters can achieve a low

average error (0.97), slightly better than the small U-Net

model. This error is slightly larger than the FCN with cut

inputs, but this modified U-Net should be considered the

same accurate because, for the FCN with cut inputs and

Fig. 8 Errors of different models for weightless undrained soil with no overburden (black = training; red = validation, blue = testing)

Acta Geotechnica (2023) 18:1681–1698 1693

123



outputs, the prediction of velocities outside the region

(�2:5� x0 � 2:5, 0� y0 � 2:0) is missing and is assumed

accurate by default.

5.3 The full problem

The first two scenarios have relatively small size input

features, and failure is concentrated within a small region.

So, the FCNs can still give reasonable results, but we need

to understand the mechanism and process the data (ignor-

ing insignificant features) before building the networks. In

this last section, the problem with full inputs (three

matrices C0;C0, and U and a scalar q
0
0) is considered. The

corresponding dataset is Subset 5 with 6000 data, but

Subsets 1–4 are data of reduced problems, so a total of

12,332 data are available.

Firstly, an FCN with one hidden layer with a flattened

input of 24,577 neurons is built. From Fig. 10a, the optimal

structure has 1700 hidden neurons, which has a huge

amount of training parameters—70.31 million. With such a

complicated model and so much training data ([ 12,000),

the training process becomes very challenging, about one

hour of computation is required on a GPU workstation

(Nvidia Quadro GV100, processing power 14.8 TFLOPS,

and bandwidth 870 GB/s) to train a single model. Yet, the

obtained model has a very large average error (2.00). Using

deep FCNs (two hidden layers) cannot achieve a smaller

error comparable to that of the U-Net (diamonds) but only

lead to overfitting.

We can also build an FCN with cut inputs. The matrix

input (64, 128, 3) is firstly cut into (20, 50, 3), then flat-

tened and combined with the scalar input q
0

0, resulting in

the input of 3001 neurons. Because in some samples, the

failure region extends further than (�2:5� x0 � 2:5,

0� y0 � 2:0), we cannot cut the output, so the flattened

output is 16770 neurons. Figure 10b shows that the robust

model is with 1500 hidden neurons, which has 29.67

million trainable parameters and has an average error of

1.84. The modified U-Net with medium and large size

trainable parameters is a more accurate model (the average

error is 1.50).

It must be emphasised that the performance gap between

the modified U-Net and the one-hidden-layer FCN with cut

inputs is larger than these errors suggested (1.50 compared

with 1.84). Table 5 shows the performance of the models

on data of different datasets. The modified U-Net and the

FCN with cut inputs perform equally well on Subsets 3 and

4 because, for these data, failure is concentrated in a small

region. However, the FCN will have problems for Subsets

1, 2, and 5 (underline in Table 5), in which some samples

have the failure extending very deeply and widely. The

average errors of the modified U-Net are only 80% of those

of the FCN (underline in Table 5). Therefore, deep neural

networks that account for the data structure can be used for

very complicated tasks with a huge number of input fea-

tures and output features and have a competitive advantage

over the fully connected networks in these tasks.

We have demonstrated the performance of the final

modified U-Net model for homogeneous soils in Fig. 3d

and Fig. 4. Figure 11 shows the first eight testing samples

of Subset 5. In some samples (2, 6, and 7), the failure zone

is shallow. Particularly, for the 7th sample, it is only a thin

layer under the footing. For others (1, 3, 4, 5, and 8), failure

develops deeply and widely into the soil. Because the soil

properties vary spatially, failure can develop along weak

zones asymmetrically: deeper on the right part for the 2nd

and 4th samples, and deeper on the left for the 5th and 6th

samples. In general, this deep-learning model is very

accurate and can be used to predict footing failure mech-

anisms for any soil properties, spatial variabilities, or load

conditions encountered in practice. If equipping with a

good user interface, it is an ideal tool for practitioners.

Fig. 9 Errors of different models for undrained soil (black = training; red = validation, blue = testing)

1694 Acta Geotechnica (2023) 18:1681–1698

123



6 Conclusion

This paper presents a framework to connect advanced

models with practical designing tools using deep learning.

For a particular problem, the influencing factors are con-

sidered as inputs, and the quantities of interest are con-

sidered as outputs. Deep-learning models are built based on

results from advanced models. So, deep-learning models

are equivalent to the advanced models for a particular

designing problem but have the advantage of being easy to

operate and getting results in a shorter time.

The designing tool must cover any conditions com-

monly encountered in practice, so the relationship between

inputs and outputs would be extremely complicated (par-

ticularly when spatial variability is considered), and only

the recently developed deep learning can cope with it.

The prediction of footing failure mechanisms is taken as

an example. After dimensional analysis and assuming

limited-region dependence and finite resolution, it is pre-

sented that for this problem, the inputs are the normalised

overburden, and finite fields of the normalised cohesion,

the normalised unit weight, and the friction angle (repre-

sented as 2D arrays). The outputs are finite fields of

dimensionless failure velocity (also represented by

matrices). The failure velocity is estimated from displace-

ment increments after failure in finite element models.

Typical parameters of soil properties, spatial variability,

or load condition are identified, and representative samples

are generated to cover all the conditions with techniques

like the quasi-random sequence and random field generator

(with randomisation method) There are in total 12,332 data

available for training and belong to 5 subsets. Some data

belongs to reduced problems of the full problem.

Two types of neural networks are examined. One is the

traditional fully connected network, and the other is a

modified U-Net, which has a very complicated nonlinear

structure. It is made up of building blocks like downsam-

plers and upsamplers, which are further made of layers

such as convolution layers, transposed convolution layers,

batch normalisation layers, dropout layers, ReLU layers,

and LeakyReLU layers. A weighted average of error length

is introduced as the loss function, which has a greater

weight for positions close to the footing and decreases

continuously with increasing distance from the footing.

We start with a reduced problem—the failure mecha-

nism of weightless undrained soil with no overburden.

3000 samples are generated. Fully connected networks and

a modified U-Net are built. The fully connected network

with cut inputs and the modified U-Net perform equally

well. However, a filter is artificially applied for the fully

connected network based on our understanding of the

underlying mechanism, while in the deep-learning model,

filters are automatically ‘‘learned’’ from data. A relatively

more complicated problem is then the failure mechanism of

any undrained soils with overburden. In this case, the fully

connected network with cut inputs and the modified

U-Net also perform equally well.

At last, the full inputs are considered, and all the 12,322

data are used for training. Results show that fully con-

nected networks with one hidden layer can fit well simple

problems with a small size of inputs and outputs, but they

Fig. 10 Errors of different models for the full problem (black = training; red = validation, blue = testing)

Table 5 Performance of the models on data of various subsets

Subset

1

Subset

2

Subset

3

Subset

4

Subset

5

FCN with one

hidden layer

2.116 1.947 1.476 1.495 2.346

FCN with cut

inputs and one

hidden layer

2.049 1.721 1.001 1.121 2.305

U-Net 1.436 1.376 0.876 1.068 1.855

Acta Geotechnica (2023) 18:1681–1698 1695

123



Fig. 11 Performance of the final deep-learning model (the first eight testing samples in Subset 5; left column: results from finite element

simulations; right column: results from the final deep-learning model)

1696 Acta Geotechnica (2023) 18:1681–1698

123



fail for complex problems. Fully connected networks with

many hidden layers suffer from the problem of overfitting.

The modified U-Net that accounts for the data structure of

specific problems gives better models. The accuracy of the

final deep-learning model is demonstrated with both the

average error and some plots of sample failure

mechanisms.

Funding Open Access funding enabled and organized by CAUL and

its Member Institutions.

Data Availability Statement The datasets generated during and/or

analysed during the current study are available from the corre-

sponding author on reasonable request.

Declarations

Conflict of interest The authors declare that they have no known

competing financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Alonso EE, Gens A, Josa A (1991) Discussion: a constitutive

model for partially saturated soils. Géotechnique 41(2):273–275.

https://doi.org/10.1680/geot.1991.41.2.273

2. Anderson JA (1995) An introduction to neural networks. MIT

Press

3. Andersson J, Ahlström H, Kullberg J (2019) Separation of water

and fat signal in whole-body gradient echo scans using convo-

lutional neural networks. Magn Reson Med 82(3):1177–1186.

https://doi.org/10.1002/mrm.27786

4. Bandara S, Soga K (2015) Coupling of soil deformation and pore

fluid flow using material point method. Comput Geotech 65:302.

https://doi.org/10.1016/j.compgeo.2014.12.007

5. Bolton M (1979) A guide to soil mechanics. Macmillan Educa-

tion, London. https://doi.org/10.1007/978-1-349-16208-6

6. Chen CT, Gu GX (2020) Generative deep neural networks for

inverse materials design using backpropagation and active

learning support. Adv Sci. https://doi.org/10.1002/advs.

201902607

7. Cybenko G (1989) Approximation by superpositions of a sig-

moidal function. Math Control Signals Syst 2(4):303–314. https://

doi.org/10.1007/BF02551274

8. Dafalias YF, Taiebat M (2016) SANISAND-Z: zero elastic range

sand plasticity model. Géotechnique 66(12):999–1013. https://

doi.org/10.1680/jgeot.15.P.271

9. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) Ima-

geNet: a large-scale hierarchical image database, pp. 248–255.

https://doi.org/10.1109/cvprw.2009.5206848

10. Glorot X, Bengio Y (2010) Understanding the difficulty of

training deep feedforward neural network. Proc Mach Learn Res

9:249–256. https://doi.org/10.1109/LGRS.2016.2565705

11. Griffiths DV, Lane PA (1999) Slope stability analysis by finite

elements. Geotechnique 49(3):387–403. https://doi.org/10.1680/

geot.1999.49.3.387

12. Guardiani C, Soranzo E, Wu W (2022) Time-dependent relia-

bility analysis of unsaturated slopes under rapid drawdown with

intelligent surrogate models. Acta Geotech 17(4):1071–1096.

https://doi.org/10.1007/s11440-021-01364-w

13. He X, Liang D, Bolton MD (2018) Run-out of cut-slope land-

slides: mesh-free simulations. Géotechnique 68(1):50–63. https://

doi.org/10.1680/jgeot.16.P.221

Fig. 11 continued

Acta Geotechnica (2023) 18:1681–1698 1697

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1680/geot.1991.41.2.273
https://doi.org/10.1002/mrm.27786
https://doi.org/10.1016/j.compgeo.2014.12.007
https://doi.org/10.1007/978-1-349-16208-6
https://doi.org/10.1002/advs.201902607
https://doi.org/10.1002/advs.201902607
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/10.1680/jgeot.15.P.271
https://doi.org/10.1680/jgeot.15.P.271
https://doi.org/10.1109/cvprw.2009.5206848
https://doi.org/10.1109/LGRS.2016.2565705
https://doi.org/10.1680/geot.1999.49.3.387
https://doi.org/10.1680/geot.1999.49.3.387
https://doi.org/10.1007/s11440-021-01364-w
https://doi.org/10.1680/jgeot.16.P.221
https://doi.org/10.1680/jgeot.16.P.221


14. He X, Wang F, Li W, Sheng D (2021) Deep learning for efficient

stochastic analysis with spatial variability. Acta Geotech. https://

doi.org/10.1007/s11440-021-01335-1

15. He X, Xu H, Sabetamal H, Sheng D (2020) Machine learning

aided stochastic reliability analysis of spatially variable slopes.

Comput Geotech 126:103711. https://doi.org/10.1016/j.compgeo.

2020.103711

16. Huang M, Jia CQ (2009) Strength reduction FEM in stability

analysis of soil slopes subjected to transient unsaturated seepage.

Comput Geotech 36(1–2):93–101. https://doi.org/10.1016/j.

compgeo.2008.03.006

17. Kandel ME et al (2020) Phase imaging with computational

specificity (PICS) for measuring dry mass changes in sub-cellular

compartments. Nat Commun. https://doi.org/10.1038/s41467-

020-20062-x

18. Kang F, Xu Q, Li J (2016) Slope reliability analysis using sur-

rogate models via new support vector machines with swarm

intelligence. Appl Math Model 40(11–12):6105–6120. https://doi.

org/10.1016/j.apm.2016.01.050

19. Monaghan JJ, Gingold RA (1983) Shock simulation by the par-

ticle method SPH. J Comput Phys 52:374–389

20. Müller S. GSTools. https://geostat-framework.org/

21. Oñate E, Idelsohn SR, Del Pin F, Aubry R (2004) The particle

finite element method—an overview. Int J Comput Methods

1(2):267–307. https://doi.org/10.1142/S0219876204000204

22. Phoon K-K, Kulhawy FH (1999) Characterization of geotechnical

variability. Can Geotech J 36(4):612–624. https://doi.org/10.

1139/t99-038

23. Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional

networks for biomedical image segmentation. IEEE Access

9:16591–16603. https://doi.org/10.1109/ACCESS.2021.3053408

24. Sheng D, Fredlund DG, Gens A (2008) A new modelling

approach for unsaturated soils using independent stress variables.

Can Geotech J 45(4):511–534. https://doi.org/10.1139/T07-112

25. Sheng D, Smith DW (2002) 2D finite element analysis of mul-

ticomponent contaminant transport through soils. Int J Geomech

2(1):113–134. https://doi.org/10.1061/(ASCE)1532-

3641(2002)2:1(113)

26. Silver D et al (2016) Mastering the game of Go with deep neural

networks and tree search. Nature 529(7585):484–489. https://doi.

org/10.1038/nature16961

27. Sulsky D, Zhou SJ, Schreyer HL (1995) Application of a particle-

in-cell method to solid mechanics. Comput Phys Commun

87(1–2):236–252. https://doi.org/10.1016/0010-4655(94)00170-7

28. Wang ZZ, Goh SH (2022) A maximum entropy method using

fractional moments and deep learning for geotechnical reliability

analysis. Acta Geotech 17(4):1147–1166. https://doi.org/10.1007/

s11440-021-01326-2

29. Wu W, Bauer E, Kolymbas D (1996) Hypoplastic constitutive

model with critical state for granular materials. Mech Mater

23(1):45–69. https://doi.org/10.1016/0167-6636(96)00006-3

30. Yao W, Zeng Z, Lian C, Tang H (2018) Pixel-wise regression

using U-Net and its application on pansharpening. Neurocom-

puting 312:364–371. https://doi.org/10.1016/j.neucom.2018.05.

103

31. Zhang P, Yin ZY, Jin YF, Chan THT (2020) A novel hybrid

surrogate intelligent model for creep index prediction based on

particle swarm optimization and random forest. Eng Geol

265:105328. https://doi.org/10.1016/j.enggeo.2019.105328

32. Zhang P, Yin ZY, Jin YF (2022) Machine learning-based mod-

elling of soil properties for geotechnical design: review, tool

development and comparison. Arch Comput Methods Eng

29(2):1229–1245. https://doi.org/10.1007/s11831-021-09615-5

33. Zhang P, Yin Z-Y, Jin Y-F (2022) Bayesian neural network-

based uncertainty modelling: application to soil compressibility

and undrained shear strength prediction. Can Geotech J

59(4):546–557. https://doi.org/10.1139/cgj-2020-0751

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

1698 Acta Geotechnica (2023) 18:1681–1698

123

https://doi.org/10.1007/s11440-021-01335-1
https://doi.org/10.1007/s11440-021-01335-1
https://doi.org/10.1016/j.compgeo.2020.103711
https://doi.org/10.1016/j.compgeo.2020.103711
https://doi.org/10.1016/j.compgeo.2008.03.006
https://doi.org/10.1016/j.compgeo.2008.03.006
https://doi.org/10.1038/s41467-020-20062-x
https://doi.org/10.1038/s41467-020-20062-x
https://doi.org/10.1016/j.apm.2016.01.050
https://doi.org/10.1016/j.apm.2016.01.050
https://geostat-framework.org/
https://doi.org/10.1142/S0219876204000204
https://doi.org/10.1139/t99-038
https://doi.org/10.1139/t99-038
https://doi.org/10.1109/ACCESS.2021.3053408
https://doi.org/10.1139/T07-112
https://doi.org/10.1061/(ASCE)1532-3641(2002)2:1(113)
https://doi.org/10.1061/(ASCE)1532-3641(2002)2:1(113)
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1016/0010-4655(94)00170-7
https://doi.org/10.1007/s11440-021-01326-2
https://doi.org/10.1007/s11440-021-01326-2
https://doi.org/10.1016/0167-6636(96)00006-3
https://doi.org/10.1016/j.neucom.2018.05.103
https://doi.org/10.1016/j.neucom.2018.05.103
https://doi.org/10.1016/j.enggeo.2019.105328
https://doi.org/10.1007/s11831-021-09615-5
https://doi.org/10.1139/cgj-2020-0751

	Ready-to-use deep-learning surrogate models for problems with spatially variable inputs and outputs
	Abstract
	Introduction
	Footing failure mechanism
	Dataset
	Deep neural networks
	Training and testing
	Weightless undrained soil with no overburden
	Undrained soil
	The full problem

	Conclusion
	Open Access
	References




