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Abstract 
Bridge modal identification using an instrumented vehicle as a moving sensor is 

promising but challenging. A key factor is to extract bridge dynamic components from 
vehicle responses measured when the bridge is operating. A new method based on an 
advanced adaptive signal decomposition technique, the successive variational mode 
decomposition (SVMD), has been developed to estimate the bridge modal parameters 
from the dynamic responses of a passing instrumented vehicle. When bridge-related 
dynamic components are extracted from the decomposition, the natural excitation 
technique (NExT) and/or random-decrement technique (RDT) based fitting methods 
are used to estimate the modal frequencies and damping ratios of the bridge. Effects of 
measurement noise, moving speed and vehicle properties on the decomposition are 
investigated numerically. The superiority of SVMD in the decomposition is verified by 
comparing to another adaptive decomposition technique, the singular spectrum 
decomposition (SSD). The results of the proposed method confirm that the bridge 
modal frequencies can be identified from bridge related components with high accuracy, 
while damping ratio is more sensitive to the random operational load. Finally, the 
feasibility of the proposed method for drive-by bridge monitoring is further verified by 
an in-situ experimental test on a cable-stayed bridge. The components relate to the 
bridge dynamic responses are successfully extracted from vehicle responses.  

Keywords: Operational modal identification, adaptive signal decomposition, SVMD, 
SSD 

1. Introduction
Bridge modal identification using instrumented sensing vehicle has drawn great

attention due to its significant potential for quick scan of bridge structural health 
conditions (Yang et al., 2020; Locke et al., 2020). The sensing vehicle measuring bridge 
dynamic responses under operational conditions is more convenient and cost-effective 
compared to the conventional fixed sensing networks mounted on the structure. Modal 
parameters identified from vehicle responses can be used to assess the health conditions 
of bridge (Mei et al., 2019). However, the extraction of useful dynamic information 
from vehicle responses for bridge health monitoring is not trivial (Hester and González, 
2017; Tan et al., 2019). The vertical dynamic response of vehicle passing over a bridge 
is a multi-component signal mainly including the bridge dynamic component, vehicle 
dynamic component and driving component (Yang et al., 2004). When bridge surface 



roughness is considered, the vehicle related dynamic component is amplified and the 
bridge related dynamic information becomes less visible. 

To enhance the drive-by bridge modal identification, signal processing techniques 
have been used to reduce the effects of road surface roughness and to extract bridge 
related dynamic information. Wavelet transform based methods have been used to 
separate the bridge dynamic information from the vehicle dynamic response (Jian et al., 
2020; Li et al., 2021). However, the selection for the optimal wavelet parameters is an 
arbitrary process that may cause uncertainties (Tan et al., 2020). Empirical mode 
decomposition (EMD) as a data-adaptive technique has been used to decompose vehicle 
response (Yang and Chang, 2009; Yang and Lee, 2018) into a set of intrinsic mode 
functions (IMFs). The recovered IMFs by repeated siftings process in EMD made 
bridge frequencies more visible in the first few IMFs. The IMFs extracted from vehicle 
response were used as damage indicators of bridge structure (O’Brien et al., 2017; 
Kildashti et al., 2020). EEMD method introduced by Wu and Huang (2009) to address 
the mode mixing problem of the EMD was used to identify bridge modal frequencies 
from vehicle response (Zhu and Malekjafarian, 2019). The results showed that EEMD 
method provided better performance on the decomposition of vehicle responses 
compared to EMD. Singular spectrum analysis (SSA) (Elsner and Tsonis, 1996) is 
another powerful technique for time series decomposition and eigenvalue identification 
that has been applied in the field of drive-by bridge modal identification. Yang et al. 
(2013) applied SSA method to identify the bridge frequencies from the test vehicle 
response. A combination of SSA with band-pass filter can filter out the vehicle-related 
dynamic components to improve the scan of bridge modal parameters. Li et al. (2019a) 
proposed a drive-by blind modal identification method (SSA-BSS) by combining SSA 
and second-order blind identification. However, SSA method requires manual selection 
of the embedding length. A new adaptive method, singular spectrum decomposition 
(SSD), for decomposing time series into narrow-banded components was proposed in 
(Bonizzi et al., 2014). The method is originated from SSA with an automated choice of 
fundamental parameters. SSD method has been shown to retrieve different components 
concealed in the data accurately to many fields. However, to the best knowledge of the 
authors, SSD has not been used to analyze vehicle responses for drive-by bridge 
inspection.  

Moreover, Dragomiretskiy and Zosso (2014) proposed the variational mode 
decomposition (VMD), a noniterative and adaptive signal processing method. Due to 
its solid mathematical theoretical foundation compared with EMD, VMD-based 
methods have been used in different areas, such as the analysis of seismic signal (Li et 
al., 2018), underwater acoustic signal (Li et al., 2019b), structural system identification 
(Ni et al., 2018) and load data of mechanical systems (Fu et al., 2020). Tian and Zhang 
(2020) utilized VMD to decompose vehicle-induced bridge responses into IMFs to 
extract dynamic properties of the VBI coupled system. Yang et al. (2021) used VMD 
to extract the mono-components from contact-point responses of a VBI model to 
identify the frequencies and damping ratios of the bridge. The results demonstrated that 
VMD performed more efficiently and elegantly than EMD/EEMD in extracting the 
mono-component responses. Despite of its extensive application, the performance of 



VMD is greatly affected by the manually preset mode number and mode frequency 
bandwidth control parameter (Zhang et al., 2018). Therefore, a novel successive 
variational mode decomposition (SVMD) method (Nazari and Sakhaei, 2020) is 
adopted which extracts the components successively and does not need to know the 
number of modes.  

From the above discussion, it can be seen that SVMD has great potential to 
decompose vehicle responses into meaningful mono-components for bridge modal 
identification using instrumented vehicle. Therefore, this study investigates its 
performance in the decomposition of vehicle responses for operational drive-by 
identification of bridge. The bridge related components are extracted to identify 
frequencies and damping ratios by incorporating NExT (James et al., 1993) and/or RDT 
(Ibrahim, 1977) based modal identification algorithms, respectively. Moreover, the 
extracted components are further explored to estimate the contact-point response of the 
bridge at the contact point of vehicle and bridge.  

The rest of the paper is organized as follows. Section 2 presents the vehicle bridge 
interaction model that describes the dynamics of bridge structure under operational 
moving load and the response measurement of sensing vehicle. Section 3 briefly 
introduces the SVMD for the decomposition of vehicle responses. The NExT and RDT 
to be used for damping ratio identification are also described. Extensive numerical 
study is conducted in Section 4 to demonstrate the decomposition results of the adaptive 
techniques. Feasibility of the incorporated damping ratio identification methods is 
investigated. Finally, the vehicle response measured from an in-situ vehicle-bridge 
interaction test is used to further verify the effectiveness of the decomposition methods 
which is followed by conclusions.  
     
2. Vehicle-bridge interaction model considering operational load 

For the implementation of vibration-based bridge health monitoring, sufficient 
external load is usually required to excite the bridge structure to a certain extent (Makki 
Alamdari et al., 2021). For a bridge subjected to a medium to large volume of random 
operational traffic, the spatio-temporal load pattern can be modeled as a random white 
noise with sufficient accuracy (Sadeghi Eshkevari et al., 2020). Therefore, the VBI 
model considered for bridge modal identification is shown in Figure 1. The moving 
load P in the figure represents the operational load and a widely used single-degree-of-
freedom quarter car is utilized as the instrumented sensing vehicle. The acceleration 
response measured from the sensing vehicle is used for bridge modal identification. The 
operational load enters the bridge ahead of the sensing vehicle with a moving speed 𝑣! 
and the speed of the sensing vehicle is 𝑣".  

 
 



 
Figure 1 The model of drive-by bridge inspection in operational condition 

 
2.1 Bridge model under operational load 

The simply supported bridge with a length L can be modelled with finite element 
model. When the moving operational load 𝑃(𝑡) is incorporated into the bridge system, 
the motion of equation of bridge can be written as 

𝐌#𝐝̈#(𝑡) + 𝐂#𝐝̇#(𝑡) + 𝐊#𝐝#(𝑡) = 𝐇$(𝑡)𝑃(𝑡)        (1) 
where 𝐌#, 𝐂#, and 𝐊# are the mass, damping, and stiffness matrices of the bridge, 
respectively; 𝐝̈# , 𝐝̇# , and 𝐝#  are the acceleration, velocity, and displacement 
responses at the element nodes of the bridge, respectively; 𝐇$(𝑡)𝑃(𝑡) is the equivalent 
nodal load vector for the finite element analysis. 𝐇$(𝑡) is based on the Hermitian 
cubic interpolation function for the calculation of equivalent nodal force from moving 
load 𝑃(𝑡). The entries of 𝐇$(𝑡) are zeros except at the degrees-of-freedom (DOFs) 
corresponding to the nodal displacements of the beam element on which the load is 
acting, with 

𝐇$ = {0…0…𝑯!…0}% ∈ 𝑅&&×!      (2) 
where NN is the total number of DOFs for the bridge model; the shape function 𝑯! 
evaluates the moving load on the j-th beam element and its components are given as 

𝑯! =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ 1 − 3=

𝑥̅!(𝑡) − (𝑗 − 1)𝑙(
𝑙(

B
"

+ 2=
𝑥̅!(𝑡) − (𝑗 − 1)𝑙(

𝑙(
B
)

(𝑥̅!(𝑡) − (𝑗 − 1)𝑙() =
𝑥̅!(𝑡) − (𝑗 − 1)𝑙(

𝑙(
− 1B

"

3 =
𝑥̅!(𝑡) − (𝑗 − 1)𝑙(

𝑙(
B
"

− 2=
𝑥̅!(𝑡) − (𝑗 − 1)𝑙(

𝑙(
B
)

(𝑥̅!(𝑡) − (𝑗 − 1)𝑙() D=
𝑥̅!(𝑡) − (𝑗 − 1)𝑙(

𝑙(
B
"

− =
𝑥̅!(𝑡) − (𝑗 − 1)𝑙(

𝑙(
BE
⎭
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫
%

 

with (𝑗 − 1)𝑙( ≤ 𝑥̅!(𝑡) ≤ 𝑗𝑙( and 𝑙( is the length of finite element for the moving 
load on the j-th finite element.  
 
2.2 Dynamics of the sensing vehicle 

The vehicle is used as a moving sensor to measure the dynamic response of bridge 
under operational load 𝑃(𝑡). The vehicle parameters are: 	𝑚* the mass of vehicle, 𝑘+ 
and 𝑐+	the stiffness and damping of suspension spring and damper, respectively. The 
vehicle mass is very small compared to that of the bridge in this study. Its dynamic 



effects on the bridge are neglected (Kong et al., 2014). The equation of motion of 
vehicle can be expressed as 

𝑚*𝑦̈*(𝑡) + 𝑐*𝑦̇*(𝑡) + 𝑘*𝑦*(𝑡) = 𝐹,-(𝑡)              (3) 

where 𝑦*  is the displacement response of vehicle; 𝐹,-(𝑡) = 𝑘*𝑑,-(𝑡) + 𝑐*𝑑̇,-(𝑡); 

𝑑,-(𝑡) = 𝑤(𝑥R!(𝑡), 𝑡) + 𝑟U𝑥R!(𝑡)V is the displacement input to the sensing vehicle at 

location 𝑥R!(𝑡) and 𝑑̇,-(𝑡)	is its time derivative. The operational load moves over the 

bridge with a speed 𝑣!  and it enters the bridge with a distance 𝐿.-  ahead of the 
sensing vehicle. The speed of operational load can be selected arbitrarily to simulate 
random excitation to bridge. Based on Eq.(1), the operational load is transformed to the 
equivalent nodal force at the nodes of the bridge beam elements. It can be viewed as 
applying the random load uniformly along the bridge span to consider its spatio-
temporal characteristics (Sadeghi Eshkevari et al., 2020). Therefore, the moving speed 
of the operational load is simply set as 𝑣! = 𝐿 (𝐿 + 𝐿.-)⁄ 𝑣".	Newmark-beta method 
is used to solve the Eqs. (1) and (3) to obtain the dynamic responses of the bridge 
structure and sensing vehicle.  
 
2.3 Model of road surface roughness pattern  

A widely used random roughness surface simulated based on ISO-8606 (1995) is 
considered. The random roughness in time domain can be given as follows (Henchi et 
al., 1998): 

𝑟(𝑥) = ∑ [4𝑆/(𝑓0)∆𝑓
&!
01! cos	(2𝜋𝑓0𝑥 + 𝜃0)                 (4) 

where 𝑆/(𝑓) is the displacement power spectral density of road surface roughness; 

𝑓0 = 𝑖∆𝑓  is the spatial frequency(cycles/m); ∆𝑓 = !
&!∆

 , and ∆  is the distance 

interval between successive ordinates of the surface profile; 𝑁3 is the number of data 
points; 𝜃0 is a set of independent random phase angle uniformly distributed between 0 
and 2𝜋. The degree of road roughness is determined by the 𝑆/(𝑓4) value, where 𝑓4(=
0.1	cycles/m) is the reference spatial frequency. Class A road roughness defined using 
specified 𝑆/(𝑓4) value in ISO specification is considered. The roughness pattern in 
time and frequency domains are given in Figure 2.   
 

 
(a) Road roughness in time domain 



 
    (b) PSD of the roughness 

Figure 2. Road roughness profiles and the power spectrum density (PSD) 
 
3. Bridge modal identification based on adaptive signal decomposition form a test 

vehicle  
3.1 Successive variational mode decomposition 

For the multi-component vehicle response with N data points, 𝑦̈*(𝑡), its mono-
components can be separated using SVMD iteratively. Unlike the VMD that finds IMFs 
simultaneously, the SVMD is performed to decompose signal into IMFs one after the 
other by successively applying variational mode extraction (Nazari and Sakhaei, 2018). 
This procedure is continued until all modes are extracted. Assume that the signal 𝑦̈*(𝑡) 
is decomposed into two parts: the k-th mode 𝑢5(𝑡) and the residual signal 𝑦$(𝑡) as 
follows: 

𝑦̈*(𝑡) = 𝑢5(𝑡) + 𝑦$(𝑡)                   (5) 
where 𝑦$(𝑡) contains the sum of previously obtained modes and the un-processed part 
of signal 𝑦6(𝑡) as 

𝑦$(𝑡) = ∑ 𝑢0(𝑡)57!
01! + 𝑦6(𝑡)                 (6) 

The decomposition method is based on the following four criteria 
(1) Each mode should be compact around its center frequency. The k-th mode 

minimizes the following criterion: 

𝐽! = n𝜕8 pq𝛿(𝑡) +
9
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"

"
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where 𝑗 = √−1, 𝜕8 denotes the derivative with respect to time, ∗ the convolution 

operation, ‖∎‖ the L2-norm and 𝜔< is the center frequency of the k-th mode. 
(2) The energy of the residual signal 𝑦$(𝑡) should be minimized at frequencies where 

𝑢5(𝑡) has effective components. This constraint is realized by using a proper filter 
𝛽z5(𝜔) with frequency response of : 

𝛽z5(𝜔) =
!

=(;7;")#
                         (8) 

To get minimized spectral overlap between 𝑦$(𝑡) and 𝑢5(𝑡), the energy of filtered 
𝑦$(𝑡) by 𝛽z5(𝜔) should be minimized. The following criterion needs to be realized: 

𝐽" = ‖𝛽5(𝑡) ∗ 𝑦$(𝑡)‖""                      (9) 
where 𝛽5(𝑡) is the impulse response of the filter 𝛽z5(𝜔). 

(3) Besides the minimization of criteria 𝐽! and 𝐽", 𝑢5(𝑡) should have less energy at 
frequencies around the center frequencies of the previously obtained modes. This 
constraint can be satisfied using proper filters with the frequency responses as: 



𝛽z0(𝜔) =
!

=(;7;$)#
; 𝑖 = 1,2, … , 𝑘 − 1              (10) 

This added criterion is represented as follows: 
𝐽) = ∑ ‖𝛽0(𝑡) ∗ 𝑦$(𝑡)‖""57!

01!                  (11) 
where 𝛽0(𝑡) is the impulse response of the filter 𝛽z0(𝜔). 

(4) The last constrain is to guarantee complete reconstruction of 𝑦̈*(𝑡) from k modes 
and the un-processed part of the signal: 

𝑦̈*(𝑡) = 𝑢5(𝑡) + 𝑦6(𝑡) + ∑ 𝑢0(𝑡)57!
01!               (12) 

When k-1 modes are known, the problem of extracting the k-th mode can be 
expressed as a constrained minimization problem, in which a combination of 𝐽!, 𝐽" 
and 𝐽) is minimized subject to the constrain of  

												min 			{𝛼𝐽! + 𝐽" + 𝐽)}					
		𝑢< . 𝜔< . 𝑦$ 																							

subject to: 𝑢5(𝑡) + 𝑦$(𝑡) = 𝑦̈*(𝑡)    (13) 

where 𝛼 is a parameter for balancing 𝐽!, 𝐽" and 𝐽), which can be solved through 
Lagrangian multiplier method. The weighting parameter 𝛼  is one of the most 
important parameters of SVMD. A simple heuristic method to change 𝛼 in each 
iteration is used to avoid the problems related to low or high value of 𝛼 . The 
algorithm of SVMD with varying 𝛼 is presented in (Nazari and Sakhaei, 2020).  

 
3.2 Bridge modal identification using a moving test vehicle 

In this study, it is assumed that the properties of sensing vehicle are known, and 
vehicle’s frequencies are not coincided with those of bridge. Therefore, the bridge 
related dynamic mono-components can be extracted from vehicle response for the 
identification of bridge modal frequency and damping ratio (Yang et al. 2021). When 
the mono-components related to the bridge dynamic modes are extracted, the frequency 
can be easily identified and the damping ratio for each mode can be estimated by the 
least-squares fitting an exponential decay to the envelop of the impulse response 
function (IRF) of the system. Since the IRF is not directly available, the NExT and/or 
RDT are applied to extract the impulse response function from the mono-component.  

The underlying theory for the NExT is that the auto- and cross-correlation function 
of output data for a system subjected to white-noise input are similar to the impulse 
response. The correlation function can be estimated using direct procedure with time 
domain data or via calculating spectral density functions. The calculation of correlation 
function requires a preset time lag T. While the principle of RDT is to estimate random 
decrement signatures by averaging time segments of the responses. These segments are 
selected under certain triggering conditions. For the application of RDT, two key 
parameters, i.e., the trigger threshold Φ and time lag T to determine the segment 
number, need to be preset. The most used triggering conditions are level-crossing, 
positive point, local extrema, and zero-up crossing. In this study, the level-crossing 

triggering condition is utilized with the recommendation of Φ = √2𝜎, where 𝜎 is the 

standard deviation of the signal. The outcome of the fitting procedure depends on the 
number of cycles considered within the IRF. It is better to have a sufficient length of 
the time lag T to cover the low frequencies of the structure ( Kordestani et al., 2018). 



The envelop of IRF can be obtained using the Hilbert transform. Besides the bridge 
modal parameters, the bridge displacement at the vehicle-bridge contact-point can be 
identified from the relevant components by double integration of the bridge related 
component. Therefore, the flowchart of the proposed drive-by bridge modal 
identification is shown in Figure 3.  

 

 
Figure 3 Flow chart of the vehicle response decomposition for drive-by bridge modal 

identification  
 

4. Numerical study 
Numerical study is conducted to analyze the effectiveness of the techniques for 

extracting mono-components from vehicle responses and drive-by bridge modal 
identification. The properties of the bridge are: length 	𝐿 = 35m , density 	𝜌 =
5000 kg m⁄ , and flexural rigidity 𝐸𝐼 = 2.178e10Nm2. The damping ratio is set as 
0.01 and the theoretical values of the first three bridge modal frequencies are 2.68, 
10.71 and 24.09Hz, respectively. The properties of the sensing vehicle are: body mass 
mv=466.5kg, suspension stiffness ks=9.00e5 N/m, suspension damping cs=0.14e3 N s/m 
and its fundamental frequency fv is 6.99Hz. The mass ratio between vehicle and bridge 
is 0.27% that is small enough to assume that the vehicle does not change the dynamic 
response of the bridge. The operational load to simulate the traffic on the bridge is a 
randomly generated white noise load as shown in Figure 4(a) and the sampling 
frequency is 200Hz. The approach length before the vehicle arriving at the bridge is 
35m. When the moving speed of the vehicle is 2m/s, the simulated dynamic responses 
of the vehicle and the PSD by Fourier transform of the responses considering Class A 
roughness is presented in Figure 4(b). In the PSD of the response, frequencies fb1 and 
fb2 are the first two modal frequencies of the bridge; fv is the vehicle dynamic frequency.  



  
(a) The operational load         (b) Vehicle response and PSD of response 

Figure 4 The operational load and vehicle response 
 

4.1 Drive-by bridge modal identification using SVMD and SSD 
This section is to compare the performance of SVMD and SSD for decomposing 

the vehicle responses. The noise polluted measurement of the vehicle response is 
simulated as ynoisy=ytrue+noise%×SD(ytrue)×WGN, where ytrue is the calculated vehicle 
response; noise%  is the noise level in percentage; SD(𝑦@ABC)  is the standard 
deviation of 𝑦@ABC and WGN is the standard Gaussian white noise. Noise level of 5% 
is considered, unless otherwise mentioned. SSD and SVMD are used to decompose the 
vehicle response respectively. The separated components in time and frequency 
domains are shown in Figures 5(a) and 5(b), respectively. Four components are 
obtained from the vehicle response. The first and fourth components are related to the 
first and second dynamic modes of bridge, respectively. The third component is related 
to the component of vehicle dynamic response and the second component is related to 
the driving frequency considering the effect of roughness due to the motion of the 
sensing vehicle (Yang et al., 2004). It can be seen that the spectrum of driving 
component is a cluster band with multiple peaks and the amplitude is smaller than that 
of bridge components. 

The results by SSD and SVMD are similar for the extraction of first bridge 
dynamic mode and vehicle dynamic mode. Moreover, the SVMD can extract the second 
bridge dynamic component slightly better than SSD as shown in Figure 5(b). The first 
component is transferred to displacement response by double integration and the result 
is compared with the contact-point response as shown in Figure 6. It shows that the 
identified contact responses are very close to the true value.  
 



 
    (a)  In time domain              (b) In frequency domain 

Figure 5 The decomposed components by SSD and SVMD  
 

 
Figure 6 The calculated CP displacement response for Class A road roughness 

 

4.2 Parametric study 
4.2.1 Different measurement noise 

The effects of the measurement noise on the decomposition performance of the 
techniques are studied by considering different noise levels to be added into the 
simulated vehicle acceleration. Three different noise levels are considered, i.e., 0%, 5%, 
and 15%. The decomposition on the noise polluted measurements is performed using 
SSD and SVMD respectively. The obtained components and their spectra considering 
different noise levels are shown in Figures 7 (a) and 7(b), respectively. In the figure, 
three components related to the first bridge mode, the vehicle mode and the second 
bridge mode can be clearly identified. The results confirm the robustness of two 
techniques to the measurement noise. In the rest part of the numerical study, 5% 
measurement noise is used in the simulation.  
 



 
(a) Using SSD 

 
(b) Using SVMD 

Figure 7 The decomposed components considering different measurement noise 
 

4.2.2 Effect of the vehicle speed 
    In the previous study, the vehicle speed is set as 2m/s. To study the effects of 
vehicle speed on the decomposition, a higher vehicle speed is considered, i.e., 6m/s. 
SSD and SVMD are used to decompose the vehicle response and the decomposed 
components are shown in Figure 8 along with their spectra. The results show that only 
the vehicle related dynamic component is clearly extracted. The components related to 
the bridge are heavily contaminated due to the effects of surface roughness and higher 
vehicle speed. Therefore, it is confirmed that a low speed of sensing vehicle is 
beneficial to the drive-by bridge health monitoring. Moreover, it can be seen that 
SVMD outperforms SSD in extracting purer modes. 
 



 
(a)  In time domain        (b) In frequency domain 

Figure 8 The decomposed components in time and frequency domains when vehicle 
speed is 6m/s 

 
4.2.3 Extraction of close modes between the vehicle and bridge  

In above studies the frequency ratio between the vehicle and bridge frequency is 
6.99/2.68=2.61. To further study the performance of those two adaptive methods, a 
close frequency case between the vehicle and bridge is discussed. The stiffness of the 
vehicle suspension is set as 1/4 of the original value. Therefore, the fundamental 
frequency of the vehicle becomes 3.49Hz and the frequency ratio between the vehicle 
and bridge is 1.30. The vehicle response is analyzed using those two methods and the 
results are shown in Figure 9. Figure 9(a) shows the components and their spectra using 
SSD and the decomposed components by SVMD are shown in Figure 9(b). In Figure 
9(a), the first component is dominated by the first bridge mode, the second component 
includes both the vehicle and the first bridge modes and there is a clear peak related to 
the second bridge mode in the third component. The results show that the vehicle and 
the first bridge modes cannot be separated successfully by SSD. In Figure 19(b), three 
components are separated successfully and the first, second and third components are 
related to the first bridge, the vehicle and the second bridge modes respectively. The 
results show that SVMD can identify both the vehicle and bridge modes for the close 
mode case.  

 



 
(a) Using SSD 

 
(b) Using SVMD 

Figure 9 The decomposed components in time and frequency domains 
 

4.3 Bridge modal parameter identification using multiple passes 
The effectiveness of adaptive signal decomposition using SVMD has been 

discussed in Sections 4.1 and 4.2. This section is to study the bridge modal 
identification using extracted dynamic components. The dynamic modes decomposed 
by SVMD are used to extract the bridge frequencies and damping ratios. From the 
literature, the identification of bridge damping ratios involves more uncertainty and 
inaccuracy (Yang et al., 2021). To evaluate the accuracy of the proposed drive-by 
bridge modal identification method, the Monte Carlo method with 50 simulations is 
used to generate the vehicle response dataset to simulate multiple passes of the sensing 
vehicle considering random operational load. These responses are analyzed by SVMD, 
respectively, and the components related to the first two dynamic modes of bridge are 
used for the identification of frequency and damping ratio. Another two different 
damping ratio values of bridge, i.e., 0.02 and 0.03 are also considered in the simulating 
vehicle responses. The mean values and the standard deviation (std) of the identified 



frequencies for 50 passes are presented in Table 1. It can be seen that the mean values 
are very close to the theoretical values and the errors are all less than 1.5%. The results 
confirm that the bridge modal frequencies can be identified with high accuracy using 
the developed method.  

The curve-fitting modal identification methods based on NExT and RDT are used 
to estimate the damping ratios from bridge dynamic components. As mentioned in 
Section 3.2, the time lag T need to be preset. As such, five time lags, 𝑇 =
([12, 13, 14, 15, 16]/	𝑓#0 	)		are used to identify the damping ratios of the bridge, where 
𝑓#0 is the bridge frequency. Table 2 presents the mean value and standard deviation of 
the identified damping ratios using the decomposition technique and two damping ratio 
identification methods with different time lags. It can be seen that the mean value of 
the damping ratios by multiple passes are close to the true values when damping ratio 
is 0.01 and 0.02, respectively, and the errors are within 10%. When the damping ratio 
0.03 is considered, the maximum error of the damping ratio for the second mode is 
about 15%. The results show that the proposed method could identify the damping ratio 
with an acceptable accuracy.    

 
Table 1 Identified frequency considering different damping ratios 
 
 
 
 

 
 
 
Table 2 Identified damping ratio considering random operational load 

 

 

Identified frequency (Hz) 
Damping ratio 0.01 0.02 0.03 

 mean std mean std mean std 
First mode 2.674 0.0561 2.667 0.0419 2.658 0.085 

Second mode 10.589 0.0842 10.559 0.1012 10.549 0.182 

 Damping ratio (%) True value Error 
(%) T 12/fb1 13/fb1 14/fb1 15/fb1 16/fb1 

Mean 
Mode 

No. 

Value 

(%) mean std mean std mean std mean std mean std 

RDT 1.03 0.48 1.07 0.49 1.09 0.49 1.11 0.49 1.11 0.48 1.08 1st 

mode 

 

 

1.00 

8.0 

NExT 1.02 0.46 1.04 0.47 1.05 0.48 1.07 0.48 1.08 0.48 1.05 5.0 

RDT 0.92 0.51 0.94 0.52 0.95 0.52 0.96 0.52 0.97 0.52 0.95 2nd 

mode 

5.0 

NExT 0.94 0.49 0.96 0.50 0.98 0.51 0.99 0.52 1.00 0.53 0.97 3.0 

RDT 2.07 1.00 2.01 0.90 1.94 0.82 1.86 0.76 1.79 0.70 1.93 1st 

mode 

 

 

2.00 

2.3 

NExT 2.10 0.97 2.00 0.92 1.91 0.87 1.83 0.84 1.77 0.80 1.92 2.7 

RDT 1.87 0.67 1.85 0.67 1.82 0.67 1.78 0.67 1.74 0.67 1.81 2nd 

mode 

9.5 

NExT 1.90 0.61 1.91 0.62 1.90 0.62 1.89 0.62 1.86 0.61 1.89 5.5 

RDT 3.07 1.79 3.03 1.78 2.98 1.77 2.92 1.73 2.84 1.69 2.97 1st 

mode 

 

 

3.00 

1.0 

NExT 3.17 1.86 3.15 1.86 3.14 1.87 3.12 1.87 3.10 1.87 3.14 4.7 

RDT 2.61 0.86 2.58 0.86 2.54 0.86 2.50 0.85 2.45 0.85 2.54 2nd 

mode 

15.0 

NExT 2.86 0.92 2.82 0.92 2.77 0.92 2.73 0.92 2.68 0.92 2.77 7.7 



5. Experimental study on a cable-stayed bridge 
In-situ vehicle-bridge interaction test is conducted to further verify the proposed 

method. The test bridge is a single lane highway bridge with a span 46m and a width 
6m (as shown in Figure 10). A long-term monitoring system has been installed on the 
bridge. The signal condition, data logging software and data logger of the monitoring 
system were listed in (Sun et al., 2017). The dynamic monitoring system continuously 
records the vibration response of the bridge and produces a file with an acceleration 
time series every 10 minutes at a sample rate of 600Hz. A dense array of accelerometers 
is installed under the bridge deck and timely synchronized to measure the structure 
responses. Figure 10(b) shows the locations of the installed 24 accelerometers on the 
deck. The measured data are continuously transferred over a 4G cellular network to the 
database.  

 

 
(a) The cable-stayed bridge 

 
(b) Sensor location on the bridge deck 

Figure 10 Long-term monitoring of a cable-stayed bridge 
 

5.1 Bridge modal identification 
Bridge modal analysis is conducted using the responses measured from the 

accelerometers on the bridge deck. Bridge acceleration responses measured after a 
vehicle excitation are analyzed with modal analysis toolbox from Chang et al. (2012) 
for the identification of bridge modal parameters. Figure 11 gives the identified bridge 
vibration modes including the modal frequencies. For the vibration after the vehicle 
excitation, six vibration modes are identified. It can be seen that the first bridge 
vibration mode at 2.03Hz is the vertical bending mode of the deck and the mode at 
5.86Hz is the third vertical bending mode. The other modes show a mixture of torsion 
and bending.  
 



 
Figure 11 Identified bridge vibration modes 

 
5.2 Bridge modal identification 

For the bridge modal identification test, a vehicle of Hyundai Tucson 2006 model 
with a gross weight of 1.5t is used. A wireless accelerometer (manufactured by BeanAir) 
is installed on the top surface of the dashboard as shown in Figure12. The vehicle 
responses are measured when it stops on the ground and on the bridge deck with its 
engine idling, respectively. Figure 13 shows the measured responses and their spectra. 
The results show that there are two dominated peaks at 17.5Hz and 23.3Hz in the 
spectrum and they are the vehicle engine-related frequencies as it is idling. In the results 
when the vehicle parks on the bridge deck, the peak at 2.0Hz is also visible and that is 
related to the first bridge vibration mode. The vehicle is driven multiple times on the 
ground with different speeds at 10, 20 and 30km/h, respectively. The dynamic 
responses measured from the wireless sensor are used for spectrum analysis with 
Fourier transform. After analyzing all the responses, the first three vibration frequencies 
of the vehicle body when it is moving are 1.2, 1.5~1.8 and 2.2~2.7 Hz, respectively.  

The dynamic response measured from the wireless sensor when the vehicle passes 
the bridge at a speed 10km/h is shown in Figure 14. SVMD and SSD are used to 
decompose the vehicle response and Figures 15(a) and 15(b) show the decomposed 
components and their spectra, respectively. In Figure 15(a), five components are 
extracted using SVMD. The first two components are around 1.05Hz and 1.56Hz and 
they are related to the vehicle dynamic responses. Other three components are around 
2.05Hz, 3.56Hz and 6.23Hz. Compared with the results using sensors on the bridge, 
these three components are corresponding to the first, second and fourth dynamic 
modes of the bridge respectively. The results show that the SVMD can successfully 
extract the bridge related dynamic components from vehicle response. Figure 15(b) 
shows three components extracted by SSD. The results show that the bridge related 
components are not extracted successfully. This further confirms the numerical results 
that the SVMD can decompose the mono-components from the vehicle responses when 
the frequencies of the vehicle and bridge are close. 
 



    
(a) Vehicle used for the test            (b) Vehicle instrumentation 

Figure 12 Vehicle for test and instrumentation with wireless sensor 
 

 
Figure 13 Response measurements when vehicle stops on the road and bridge 

 

 
Figure 14 Response measured in the vehicle and the response spectrum 

 



 
(a) Using SVMD 

  

(b) Using SSD 
Figure 15 The decomposed components using SVMD and SSD 

 
6 Conclusions 

This study investigates the adaptive decomposition of responses of moving vehicle 
for bridge modal identification using SVMD. The performance of SVMD is compared 
to that of SSD. Results of the parametric analysis demonstrate that the techniques can 
extract the mono-components from vehicle responses. It is also found that the 
components extracted from vehicle response by using the adaptive decomposition 
techniques can be further analyzed to get contact-point displacement response of the 
bridge. Numerical and experimental study confirms that the SVMD performs better 
than the SSD, especially when the frequencies of the components in the vehicle 
response are close.  

For the bridge modal identification from a moving test vehicle, the NExT and RDT 
based modal identifications are both incorporated to analyze the bridge related dynamic 
components to estimate the modal frequencies and damping ratios. The bridge modal 
parameters are identified accurately by computing the mean value of multiple tests 



when the damping ratio is 0.01 and 0.02, respectively. The damping ratio identification 
is more sensitive to the operational load than the frequency identification and the 
multiple tests can improve the accuracy of damping ratio identification when the bridge 
is subjected to random operational load.  
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