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Abstract
To overcome the challenges of conventional power systems, such as increasing power demand, requirements of stability and 
reliability, and increasing integration of renewable energy sources, the concept of microgrids was introduced and is currently 
one of the most important solutions for solving the mentioned problems. Generally, microgrids have two operating modes, 
namely grid-connected and islanded modes. Based on the literature and its unique characteristics, the islanded mode is more 
challenging than the other one. In this paper, a new self-adaptive comprehensive differential evolution (SACDE) algorithm is 
proposed for solving economic load dispatch (ELD) and combined economic emission dispatch (CEED) problems, achieving 
optimal power consumption in isolated microgrids. Initially, SACDE is employed for solving the ELD problem as a single-
objective function, meaning that the operational cost is just considered as the objective function, and thereby, the resources 
are scheduled accordingly. Then, a multi-objective platform based on SACDE is also proposed to solve the CEED problem. 
It means two objective functions, including operational cost and emission, are simultaneously optimized. For evaluating the 
performance of the proposed method, three different scenarios under various cases are considered. According to the results, 
when SACDE is employed to solve the single objective function (cost minimization) problem, it has better performance than 
other methods. In terms of the bi-objective scheme (cost and emission minimization), SACDE is significantly superior to 
the price penalty factor technique which is frequently used in previous studies.

Keywords  Economic dispatch · Renewable energy sources · Differential evolution algorithm · Islanded microgrid

List of symbols

Sets
Nof 	� The total number of fitness functions
NG	� The number of generators
NP	� The number of population
nv	� The number of variables
Nr	� The number of solutions stored in the 

repository

Parameters
ui	� The cost coefficient ($/MW2h) of the 

ith generator
vi	� The cost coefficient ($/MWh) of the 

ith generator

wi	� The cost coefficient ($/h) of the ith 
generator

xi	� The emission coefficient of the ith 
generation unit in (kg/MW2h)

yi	� The emission coefficient of the ith 
generation unit in (kg/MWh)

zi	� The emission coefficient of the ith 
generation unit in (kg/h)

a	� Annuitization coefficient
r	� The interest scale (0.09)
N	� Investment duration (20 years)
ISp	� The ratio of investment cost to unit 

power (5$/MWh)
GS	� The operational and maintenance 

costs considered as 0.000016$/MWh
IWp	� The ratio of investment cost to unit 

power (1.4 $/MWh)
GW	� The operational and maintenance 

costs considered as 0.000016 $/MWh
Pmin

i
	� The minimum and maximum output 

power of the ith generator
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Pmax

i
	� The maximum output power of the 

ith generator
Ui	� The weighting coefficient
Cr	� A number between 0 and 1
UB	� The upper bound of decision 

variables
LB	� The lower bound of decision 

variables

Variables
ET	� Total emission value
Pi	� Active power generation (MW)
PSolar	� Solar generation (MW)
F	� The cost function
PWind	� Wind generation (MW)
Q	� The decision variables of the 

problem
rand1	� A uniform number between 0 and 1
RG+1
n

	� A new solution generated in the 
mutation step

�c	� A constant number that is selected 
between 0 and 2

QG
r1

 , QG
r2

,QG
r3

,QG
r4

,QG
r5

	� Randomly selected members of the 
population

QG
best

	� The best individual among all 
populations

SG+1
n

	� A solution generated in crossover 
step

rand2	� A uniform random number between 
[0 1]

mrand	� A uniform random number between 
[0 1]

fitness(∙)	� The fitness value of the underlying 
decision variable solution

fitnessmin
i

	� The minimum fitness of the ith 
function

fitnessmax
i

	� The maximum fitness of the ith 
function

�fi	� The normalized fitness function for 
the nth solution

hi	� The ratio of the fuel cost to the emis-
sion of the corresponding generating 
unit

FC	� Total fuel cost

Abbreviations
ED	� Emission Dispatch
SACDE	� A new self-adaptive comprehensive 

differential evolution
ELD	� Economic load dispatch
CEED	� Combined economic emission 

dispatch
PPF	� Price penalty factor
DE	� Differential Evolution

PSO	� Particle Swarm Optimizer
GSA	� Gravitational Search Algorithm
RGM	� Reduced gradient method
ACO	� Ant colony optimization
CSA	� Cuckoo search algorithm
ISA	� Interior search algorithm
IHS	� Improved harmony search
IAHS	� Improved and adaptive harmony 

search
MHS	� Modified harmony search

1  Introduction

1.1 � Concept and motivation

Despite increasing power demand and numerous chal-
lenges of power systems, such as depletion of fossil fuels 
and global environmental concerns, utilities are obliged to 
provide high-quality and reliable power supplies with the 
least cost for their residential and industrial consumers. Due 
to these challenges, as one of the modern and most effective 
solutions, renewable energy sources such as solar and wind 
energy are increasingly integrated into the power systems 
these days (Abbasi et al. 2020; Shalchi et al. 2020). How-
ever, high integration of renewable energy sources causes 
serious challenges for power systems in different aspects, 
such as system stability, which in turn dramatically hinder 
high renewable energy sources penetration into the sys-
tems. For increasing renewable energy sources integration 
and controlling them optimally, several concepts have been 
developed and introduced so far. Microgrid concept can be 
named as one of the most well-known and effective solutions 
for overcoming the problems caused by the high penetration 
of renewable energy sources into power systems. Simply 
definition, a microgrid is a group of interconnected loads 
and distributed energy resources within clearly defined elec-
trical boundaries that acts as a single controllable entity with 
respect to the grid (Fu et al. 2013). A microgrid can connect 
to and disconnect from the grid to operate in grid-connected 
or islanded modes. Generally, a microgrid includes micro-
sources, distributed energy resources, such as solar and wind 
units, energy storage systems, and controllable loads. As a 
rule, utilities should decrease the generation cost and the 
emission value as much as possible (Ghaedi et al. 2020; 
Abbasi et al. 2021). In contrast to the past decades when 
cost minimization was the only and most important objec-
tive for generating electric power, due to global concerns, 
such as environmental and human health concerns, caused 
by pollution of power generation, numerous regulations and 
solutions have recently been introduced to make the utilities 
able to decrease their harmful emissions, such as toxic gases 
exhalation, with possible least fuel cost (Krishnamurthy 
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and Tzoneva 2012a). As mentioned above, a microgrid is 
developed as a small-scale power plant close to communi-
ties. It is also operated in two different modes, comprising 
islanded and grid-connected modes. In the islanded mode, 
microgrid may be more complicated than that in the grid-
connected mode due to not having extra support from exter-
nal resources (substation). Accordingly, microgrid operation 
under the islanded mode needs further investigations.

1.2 � Literature review

As the economic load dispatch (ELD) implies, it is the 
scheduling of generation resources by considering an 
objective function (almost always operational cost) subject 
to several constraints. Therefore, it is an important prob-
lem associated with the optimal operation of microgrids. In 
terms of ELD, some efforts have been made so far on which 
a brief review is discussed here. To begin with, the authors 
of Al-Betar et al. (2022) developed a hybrid approach based 
on β-hill climbing optimizer and sine cosine algorithm to 
solve the ELD problem. As revealed from the results of Al-
Betar et al. (2022), this hybridization helps to find superior 
results for some case studies compared with other state-of-
the-art methods. Particle swarm optimization algorithm 
was also modified in Gholami and Dehnavi (2019) to effec-
tively schedule both thermal and renewable resources in an 
islanded microgrid. From Gholami and Dehnavi (2019), it 
can be seen that better results can be obtained if an efficient 
algorithm is developed. ELD considering valve point effects 
has also been investigated in Gholamghasemi et al. (2019) 
on the basis of phasor particle swarm optimization. In Najibi 
and Niknam (2015), dolphin echolocation algorithm was 
utilized to schedule generation resources in grid-connected 
microgrids considering the uncertainties of renewable ener-
gies. Multi-area ELD was investigated in Qin et al. (2017) 
by an enhanced particle swarm optimization. As seen in Qin 
et al. (2017), the enhanced PSO has better performance in 
finding an optimum solution than other published works. 
Firefly algorithm is another evolutionary method employed 
to solve the ELD problem in Chen and Ding (2015).

On the other hand, the future trend toward the economic, 
environmental emission dispatch problem is to solve ELD as 
a multi-objective problem including different objectives like 
fuel cost, emission value and different gases exhalation to 
be fulfilled efficiently by finding the real operating point of 
power generation units. One of the key objective functions is 
emission reduction due to environmental concerns. Accord-
ingly, the combined economic emission dispatch (CEED) is 
defined as a multi-objective problem which tends to mini-
mize the operational cost and emissions emitted by thermal 
units. For solving the CEED, different computational meth-
ods and techniques have been introduced that are discussed 
as follows.

Initially, the price penalty factor (PPF) method is used to 
convert two objective functions into one objective function, 
meaning that the emission is converted to operational cost 
based on multiplying with coefficients obtained via thermal 
units’ boundaries. This concept has different models and is 
frequently used for solving the CEED problem based on var-
ious evolutionary algorithms. For example, in Jacob Raglend 
et al. (2010), the ‘Max–Max’ PPF method is used for solv-
ing the CEED problem based on various Artificial Intelli-
gence algorithms/techniques, including Differential Evolu-
tion (DE), Genetic Algorithm, Particle Swarm Optimizer 
(PSO), and Evolutionary Programming. Besides, the authors 
of Sharifi et al. (2017) used the Max-Max method and an 
improved artificial bee colony algorithm to solve the CEED 
problem. In addition, in Venkatesh et al. (2003), Güvenç 
et al. (2012), and Hamedi (2013), the authors employed this 
method, i.e., the ‘Max–Max’ PPF, for solving the problem 
by using Gravitational Search Algorithm (GSA), Parallelized 
PSO, and Evolutionary Programming. In Krishnamurthy and 
Tzoneva (2012b), a comparative study for solving the CEED 
problem with ‘‘Min–Max’’ PPF using PSO and Lagrange’s 
Algorithm (LA) is presented. In addition, in Krishnamur-
thy and Tzoneva (2011) and Krishnamurthy and Tzoneva 
(2012c), LA and PSO algorithms are respectively employed 
by considering both ‘‘Min–Max’’ and ‘‘Max–Max’’ PPFs 
for solving the CEED problem. In Krishnamurthy and Tzo-
neva (2012d), the LA is used to solve the CEED problem by 
considering four penalty factors with a quadratic equation 
for obtaining the fuel cost and emission value. Moreover, 
the authors solved this problem by using six penalty fac-
tors with a cubic equation in Krishnamurthy and Tzoneva 
(2012e). Besides, the CEED problem is solved with con-
sideration of the valve-point effect based on ‘‘Min–Max’’ 
and ‘‘Max–Max’’ PPF approach in Hemamalini and Simon 
(2009) and Shaw et  al. (2012) where respectively, the 
Maclaurin series-based Lagrangian and the Opposition-
based GSA approaches are used.

The weighted sum method is another method which 
sums both objective functions to convert them to a single 
objective function. In this regard, various investigations 
have been conducted. To illustrate those, in Aydin et al. 
(2014) and Chatterjee et al. (2012), the CEED problem 
with the weighted sum method is solved using the Artifi-
cial Bee Colony algorithm with Dynamic Population size 
algorithm and the opposition-based harmony search algo-
rithm, respectively. For solving the CEED problem with 
consideration of the valve-point effect, the authors in Jiang 
et al. (2014) presented a hybrid approach including PSO and 
GSA techniques with the weighted sum method. Similarly, 
in Labbi and Ben Attous (2014), both objective functions, 
cost and emission, are summed based on the weighted sum 
method, and the associated problem is solved by Hybrid Big 
Bang–Big Crunch optimization algorithm.
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Although the PPF and weighted sum method are much 
simpler and are used to solve multi-objective problems, 
they have some restrictions which may not be suitable to 
deal with current complex optimization problems. One of 
the problems is that they do not present a set of solutions 
(just one global solution is obtained). Another problem is 
that these methods decrease the flexibility for operators to 
make decisions fast, meaning that they need to solve the 
problem for different weighting factors, which is really time-
consuming, particularly under real-time implementations. 
The summary of the literature review is outlined in Table 1.

To this end, a non-dominated sorting technique could be 
employed. This mechanism can be an alternative because 
it provides a set of solutions rather than a single solution. 
Then, the operators can select the compromised solution 
based on the fuzzy rules.

1.3 � Novelties and contributions

In this paper, an efficient optimization algorithm, namely 
a new self-adaptive comprehensive differential evolution 
(SACDE) algorithm, is proposed for dealing with both 
problems of ELD and CEED, achieving optimal power 

consumption in the isolated microgrid. The proposed 
approach can be used for solving single- and multi-objective 
problems. Here, SACDE is utilized for solving the ELD 
problem as a single-objective function in the first stage. 
Moreover, a multi-objective platform is proposed to solve 
the CEED problem based on the proposed optimization algo-
rithm (SACDE). To validate the performance of the proposed 
approach, thorough comparison and simulation results are 
presented based on three different scenarios, including vari-
ous cases. These results show the superiority of the proposed 
method over other ones, such as the reduced gradient method 
(RGM) (Trivedi et al. 2015), ant colony optimization (ACO) 
method (Trivedi et al. 2015), cuckoo search algorithm (CSA) 
(Trivedi et al. 2018), interior search algorithm (ISA) (Trivedi 
et al. 2018), improved harmony search (IHS) algorithm (Lu 
et al. 2013; Elattar 2018), improved and adaptive harmony 
search (IAHS) algorithm (Ponz-Tienda et al. 2017).

The main contributions of this paper can be listed as 
follows:

•	 Providing an efficient algorithm to deal with scheduling 
of generation sources in the microgrid with high penetra-
tion of RESs such as solar and wind generation units.

Table 1   Summary of the literature review

Reference Single-
objec-
tive

Multi-objective Thermal 
resources

Renew-
able ener-
gies

Non-
dominated 
sorting

Price 
penalty 
factor

Weighted 
sum 
method

Fuzzy rules

Al-Betar et al. (2022) Yes No Yes No No No No No
Gholami and Dehnavi (2019) Yes No Yes Yes No No No No
Gholamghasemi et al. (2019) Yes No Yes Nos No No No No
Najibi and Niknam (2015) Yes No Yes Yes No No No No
Qin et al. (2017) Yes No Yes No No No No No
Chen and Ding (2015) Yes No Yes No No No No No
Jacob Raglend et al. (2010) Yes Yes Yes No No Yes No No
Sharifi et al. (2017) Yes Yes Yes No No Yes No No
Hamedi (2013) Yes Yes Yes No No Yes No No
Venkatesh et al. (2003) Yes Yes Yes No No Yes No No
Güvenç et al. (2012) Yes Yes Yes No No Yes No No
Krishnamurthy and Tzoneva (2012b) Yes Yes Yes No No Yes No No
Krishnamurthy and Tzoneva (2011) Yes Yes Yes No No Yes No No
Krishnamurthy and Tzoneva (2012c) Yes Yes Yes No No Yes No No
Krishnamurthy and Tzoneva (2012d) Yes Yes Yes No No Yes No No
Krishnamurthy and Tzoneva (2012e) Yes Yes Yes No No Yes No No
Hemamalini and Simon (2009) Yes Yes Yes No No Yes No No
Shaw et al. (2012) Yes Yes Yes No No Yes No No
Aydin et al. (2014) Yes Yes Yes No No No Yes No
Chatterjee et al. (2012) Yes Yes Yes No No No Yes No
Jiang et al. (2014) Yes Yes Yes No No No Yes No
Labbi and Ben Attous (2014) Yes Yes Yes No No Yes Yes No
Proposed method Yes Yes Yes Yes Yes Yes No Yes
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•	 Addressing a multi-objective framework leading to find-
ing more optimum solutions (less cost and emission) 
compared with other existing techniques like PPF.

•	 Developing a new approach with better applicability to 
solve complicated problems. The proposed method is able 
to provide better solutions than the previously published 
ones, as proved by the comparison and simulation results.

1.4 � Paper’s structure

This paper is organized as follows. Section 2 presents the 
mathematical models and the problem formulation. In 
Sect. 3, the proposed optimization method is explained in 
detail. Besides, Sect. 4 presents the test microgrid data, sim-
ulation and comparison results, and discussions. Finally, the 
conclusion is given in Sect. 5.

2 � Mathematical model

2.1 � Fuel cost function of generators

As the main objectives of the ELD problem, the generation 
levels of all online units must be examined to reduce the 
total fuel cost of generators and the emission level of the 
system with consideration of the system constraints (Bhoye 
et al. 2016b). In this section, as the first objective of the ELD 
problem, minimizing the generation fuel cost is considered 
to be formulated. This objective should be realized with 
consideration of the power demand satisfaction and also the 
operating constraints of the system. According to Trivedi 
et al. (2016), the objective function of the fuel cost minimi-
zation of generation units can be expressed as follows:

Due to the operation of various generation units, such as 
diesel, gas, and combined heat and power units, several harm-
ful pollutants, such as carbon dioxide, nitrogen oxide, and sul-
fur dioxide, are released (Palanichamy and Babu 2008), which 
should be reduced according to the aforementioned reasons. 
For minimizing these toxic emissions in the Emission Dispatch 
(ED) problem, the following objective function is defined:

(1)Min
(
FC

)
=

NG∑
i=1

(
uiP

2

i
+ viPi + wi

)

2.2 � Renewable energy sources

2.2.1 � Solar energy

According to Bhoye et al. (2016a) and Trivedi et al. (2016), 
the cost function of solar generation unit can be written as 
follows:

In (3), the Annuitization coefficient, represented by a, is 
calculated as follows:

In the above equations, PSolar, r, N, ISp and GS respectively 
denote the solar generation (MW), the interest scale (0.09), 
the investment duration (20 years), the ratio of investment 
cost to unit power (5$/MWh), and the operational and main-
tenance costs considered as 0.000016$/MWh.

Consequently, the cost function of the solar energy unit 
can be obtained by (5).

2.2.2 � Wind generation

In (6), the general cost function of wind energy is written 
according to (Esmat et al. 2013).

where, PWind, IWp, and GW respectively denote the wind 
generation (MW), the ratio of investment cost to unit power 
(1.4 $/MWh), and the operational and maintenance costs 
considered as 0.000016 $/MWh.

Accordingly, the cost function of the wind energy unit can 
be calculated as follows:

2.3 � Final objective functions

In Sect. 2.1, the conventional model of the ED problem was 
presented without considering renewable energy sources. 
Here, this problem is formulated in the presence of renew-
able generation units, i.e., renewable energy sources.

(2)Min(ET ) =

NG∑
i=1

(
xiP

2

i
+ yiPi + zi

)

(3)F
(
PSolar

)
= aISpPSolar + GSPSolar

(4)a =
r(

1 − (1 + r)−N
)

(5)F
(
PSolar

)
= 0.5477483 × PSolar

(6)F
(
PWind

)
= aIWpPWind + GWPWind

(7)F
(
PWind

)
= 0.1533810 × PWind
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2.3.1 � First objective function

By considering the two terms of solar and wind generation 
units, the ELD problem given in (1) can be re-written as an 
integrated equation as described in the following:

2.3.2 � Second objective function

As another critical objective in the operation of power sys-
tems, emission minimization is defined as the second objec-
tive function as given below:

In (8) and (9), two objective functions are defined, which 
must be simultaneously minimized. For solving these objec-
tive functions, a multi-objective platform is required, which 
can be achieved by means of a dominant concept. It is note-
worthy that the advantage of multi-objective planning is that 
a set of solutions, namely Pareto-optimum solutions, will be 
obtained rather than a single solution, which in turn enable 
the system operator to make an efficient decision based on 
the system’s preference.

2.4 � Constraints

2.4.1 � Isolated microgrid

By definition, an islanded (isolated) microgrid is discon-
nected from the main grid, which means that there is not any 
energy exchange between the microgrid and the main grid 
(Ramabhotla et al. 2014).

2.4.2 � Power balance constraint

The power balance constraint can be written as follows, 
demonstrating that the load demand should be equal to the 
power generated by all available generation units.

(8)
Min(FC) =

NG∑
i=1

(
uiP

2

i
+ viPi + wi

)
+ 0.1533810 × PWind + 0.5477483 × P

Solar

(9)Min(ET ) =

NG∑
i=1

(
xiP

2

i
+ yiPi + zi

)

(10)PLoad =

NG∑
i=1

(
Pi

)
+ PSolar + PWind

2.4.3 � Power generation constraint

As presented in (11), the output power of each generation 
unit has a given minimum and maximum values as its con-
straints (Ramabhotla et al. 2014).

Fig. 1   Workflow of the opera-
tors of DE algorithm

Ini�aliza�onIni�aliza�on Muta�onMuta�on CrossoverCrossover Selec�onSelec�on FinishFinish

3 � Proposed optimization approach

In this section, the conventional differential evolution (DE) 
algorithm and the proposed optimization approach, along 
with the proposed multi-objective planning approach, are 
presented.

3.1 � Conventional differential evolution algorithm

As an evolutionary algorithm, the DE algorithm can solve 
non-deterministic polynomial-time (NP)-hard problems 
(Wang et al. 2018). This algorithm has been introduced to 
tackle the main drawback of the genetic algorithm, i.e., its 
lack of local search. For better understanding, Fig. 1 shows 
the workflow of the DE algorithm’s operators. As seen, this 
algorithm generates the population between the upper and 
lower bounds of problems. Then, the mutation operator is 
used for making a new individual based on selecting some 
members of the population. After that, by using the crosso-
ver operator, the mutated individual is combined with the 
ith member of the population. By obtaining the mentioned 
operators, a new individual is made which is evaluated based 
on the objective function. The obtained fitness for this indi-
vidual is compared with the fitness of the ith individual, and 
the best one (lowest and highest fitness values for minimiza-
tion and maximization, respectively) is selected for the next 
generation. It should be noted that these steps are repeated 
until reaching the stopping criteria.

In the following sub-sections, the above-mentioned pro-
cess is mathematically presented.

(11)Pmin

i
≤ Pi ≤ Pmax

i
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3.1.1 � Initialization

After defining the upper and lower bounds of the problem, 
the population is stochastically generated as follows:

3.1.2 � Mutation operator

In this step, three vectors of the population are randomly 
selected, and a new solution) RG+1

n
 ) is created by using (13).

3.1.3 � Crossover operator

According to the vector obtained from the mutation operator 
and the nth member of the population, a solution is made 
as follows:

By using this solution, a diverse individual can be 
obtained, making it possible to escape from local minima.

3.1.4 � Selection operator

In this step, the best solution is achieved by comparing the QG
n

 
and SG+1

n
 vectors. As described in (15), if the fitness of the cre-

ated vector, i.e., SG+1
n

 , is less than that of the nth member of the 
population, it will be kept for the next generation; otherwise, 
the previous individual will be saved for the next generation.

3.2 � Proposed optimization approach (algorithm)

In fact, the mutation operator plays a central role in the pro-
posed algorithm. Accordingly, the purpose of this investiga-
tion is to use multiple mutations to improve both efficiency 
and search capability. Unlike the original method presented 
in Wang et al. (2018), and Gholami and Jazebi (2020a, b) 
where one mutation is used, multiple mutations are used in 
the proposed optimization approach. The proposed mutation 
operator is explained in detail in the following, while other 
steps are the same as the conventional approach in Sect. 3.1.

(12)
Qn,m = LBn,m +

(
UBn,m − LBn,m

)
∗ rand1forn = 1, 2,… ,NP&m = 1, 2,… , nv

(13)RG+1
n

= QG
r1
+ �c ∗

(
QG

r2
− QG

r3

)

(14)SG+1
n,m

=

⎧
⎪⎨⎪⎩

RG+1
n,m

ifrand2 ≤ Cr or m = mrand

QG
n,m

otherwise

⎫⎪⎬⎪⎭

(15)QG+1
n

=

⎧
⎪⎨⎪⎩

SG+1
n

iffitness
�
SG+1
n

�
≤ fitness

�
QG

n

�

QG
n

otherwise

⎫⎪⎬⎪⎭

3.2.1 � Mutation operator

For achieving improved performance in the proposed approach, 
a new mutation operator is developed. Unlike the conventional 

DE algorithm, different mutations are used in the proposed 
approach rather than using only one mutation. In (16) to (20), 
these mutation operators are described. For generating a new 
vector, one of these mutation operators is selected and used 
which in turn not only provides more diversity but also improves 
the efficiency of the proposed algorithm. In Algorithm 1, the 
pseudocode of the proposed approach is represented.

Effective mutation not only helps to strengthen an algorithm’s 
efficiency to escape from the local optima, but it also pushes the 
solution towards the global optimum. If the population diver-
sity increases, the chance of escaping from the local optima 
increases. The proposed method can generate the population 
based on different mutation mechanisms, which in turn results 
in better search capability and escaping from local minima. In 
the suggested optimization approach, 5 different mutations are 
utilized which are described as follows. To commence with, 
mutation 1 in (16) tries to update the nth member based on a sto-
chastic manner, which makes a new member based on the three 
random individuals. On the other hand, mutation 2 in (17) tends 
to push the current member towards the best solution. In muta-
tion 3 in (18), some solutions are randomly selected and mixed 
with the global best solution to make a solution near the current 
global best solution. Mutation 4 in (19) is similar to mutation 2, 
while a random solution is used rather than the global best mem-
ber, meaning that a new solution on the search space is generated 
which may be far away from the global best solution. Finally, in 
mutation 5 in (20), the nth member is oriented to the global best 
member with considering more random members, which helps 
to have further distance from the current global best member. 
To sum up, when these mutations are randomly applied, more 
different populations are obtained, which in turn enhances the 
ability of the algorithm to have better search space exploration.

(16)
(
RG+1
n

)
1
= QG
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As seen in the pseudocode, the mutation of DE algorithm 
has several options. It means a random integer number is 
generated in [1, 5] and saved in IndexMutation. Following 
this, one mutation is applied based on this index. For exam-
ple, if IndexMutation = 3, the mutation which is shown in 
(18) is applied. This mechanism is executed stochastically to 
generate new solutions. This is an excellent way for increas-
ing the population diversity, resulting in escaping from local 
minima.

As already mentioned, the proposed optimization algo-
rithm can be employed to solve both single- and multi-objec-
tive problems. For single-objective problems, the approach 
explained in this section is used. However, for multi-objec-
tive problems, a different selection operator is introduced as 
presented in Sect. 3.3.

3.3 � Proposed multi‑objective approach

As already mentioned, it is required to minimize two differ-
ent functions at the same time. A dominant principle could 

also be used to handle multi-objective problems. In contrast 
to a single-objective plan, a multi-objective plan can acquire 
a set of solutions known as Pareto-optimal solutions instead 
of just a single solution. If the following conditions are satis-
fied, vector Q1 dominates Q2 (Azizivahed et al. 2018, 2019)

where Nof  denotes the total number of fitness functions.
Now, the set of solutions should be normalized into the 

values between [0, 1] by using a Fuzzy method as expressed 
below. In other words, the trapezoidal fuzzy model shown in 
Fig. 2 is used to normalize the objective functions.

(21)∀i ∈ {1, 2, ...,Nof }, fitnessi(Q1) ≤ fitnessi(Q2)

(22)∃i ∈ {1, 2, ...,Nof }, fitnessi(Q1) < fitnessi(Q2)

(23)

𝜇fi(Q) =

⎧
⎪⎨⎪⎩

1
fitnessmax

i
−fitnessi(Q)

fitnessmax

i
−fitnessmin

i

0

fitnessi(Q) ≤ fitnessmin

i

fitnessmin

i
< fitnessi(Q) < fitnessmax

i

fitnessi(Q) ≥ fitnessmax

i

⎫⎪⎬⎪⎭
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In (23), the minimum and maximum fitnesses of the ith 
function are denoted by fitnessmin

i
 and fitnessmax

i
 , respec-

tively. The final solution is chosen among the normalized 
solutions by using the following criteria:

To provide a fair comparison with previous works, i.e., 
Elattar (2018) and Trivedi et al. (2018), the final solution 
selected by (24) is converted into total cost based on the 
PPF. The PPF is responsible for transferring the physical 
sense of emission to the fuel cost and is described as follows.

Figure 3 shows the simple flowchart of the proposed opti-
mization approach for solving the CEED problem.

4 � Simulation results and discussion

In this section, simulation results along with comprehen-
sive discussion and comparisons are presented for prov-
ing the proposed solution’s performance. Initially, the 

(24)��(n) =

Nof∑
i=1

Ui × �fi(xm)

Nr∑
m=1

Nof∑
i=1

Ui × �fi(xm)

(25)hi =
ui
(
Pmin

i

)2
+ vi

(
Pmin

i

)
+ wi

xi
(
Pmax

i

)2
+ yi

(
Pmax

i

)
+ zi

(26)

TotalCost =

NG∑
i=1

[(uiP
2

i
+ viPi + wi) + hi(xiP

2

i
+ yiPi + zi)]

+0.1533810 × PWind + 0.5477483 × P
Solar

test microgrid’s data are presented. Then, three scenarios, 
including different cases, are defined, and their results are 
presented and discussed. These scenarios and their cases are 
depicted in Fig. 4 and are listed in the following:

A.Scenario 1 
(Single-objective 
scheduling):

•Case 1: All sources 
included

•Case 2: All sources 
without wind 
energy

•Case 3: All sources 
without solar 
energy

•Case 4: All sources 
without solar and 
wind energy

B.Scenario 2 (Bi-
objective opera-
tion, i.e., CEED):

•Case 1: All sources 
included

•Case 2: All sources 
without wind 
energy

•Case 3: All sources 
without solar 
energy

•Case 4: All sources 
without solar and 
wind energy

C.Scenario 3 (Other 
evaluations):

•Case 1: Sensitivity 
analysis of algo-
rithm's parameters

•Case 2: ED with con-
sidering power loss

•Case 3: Comparison 
with non-dominated 
sorting genetic algo-
rithm II (NSGA-II)

Fig. 2   Membership function for both objective functions

Start 
Optimization

Print the results 
(optimal generation)

Read system data (load data, renewable 
generation, load profile, and etc.)

h=1

Initialize the population randomly 
between lower and upper bounds

itr=1

Randomly apply one of the mutation 
operators

Apply crossover operator

Apply selection operator

itr<maxit

Save non-dominated solutions of this 
hour

h<24

Yes

itr
=i

tr
+1

h=
h+

1

Yes

Fig. 3   Flowchart of the proposed algorithm (SACDE)
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4.1 � Test microgrid data

Here, data of the test microgrid are given (Elattar 2018; 
Trivedi et al. 2018). Table 2 lists the data of solar and wind 
generations for a 24-h period which belong to a location on 
the east coast of the United States of America (USA). The 
demand throughout the time horizon is shown in Table 3 
(Elattar 2018; Trivedi et al. 2018). Moreover, Table 4 pre-
sents the generators' characteristics, including their genera-
tion limits and fuel cost and emission coefficients (Elattar 
2018; Trivedi et al. 2018).

4.2 � The results of Scenario 1 (single‑objective 
scheduling)

Here, only the ED is considered and solved as a single-
objective function. To prove the performance of the pro-
posed method, its results (hourly and daily costs of the 
generation units) are compared with those of previously 
published methods/approaches, including RGM (Trivedi 
et al. 2015), ACO (Trivedi et al. 2015), CSA (Trivedi et al. 
2018), and ISA (Trivedi et al. 2018). As already mentioned, 
this scenario includes 4 cases whose results are presented in 
the following subsections.

Evalua�on

Scanario 1: single objec�ve

Case 1: 
All 

sources 
included

Case 2: 
All 

sources 
without 

wind 
energy

Case 3: 
All 

sources 
without 

solar 
energy

Case 4: 
All 

sources 
without 
solar & 

wind

Scenario 2: bi objec�ve

Case 1: 
All 

sources
included

Case 2: 
All 

sources 
without 

wind 
energy

Case 3: 
All 

sources 
without 

solar 
energy

Case 4: 
All 

sources 
without 
solar & 

wind

Scenario 3: other evalua�ons

Case1: 
sensi�vity 
analysis of 
algorith,'s 
parameter

Case 2: 
ED with 

considering 
power loss

Case 3:  
Comparing 

with NSGA-II

Fig. 4   An overview of the scenarios and their cases to evaluate the proposed method

Table 2   Solar and wind 
generation data for 24 h

Time (h) Generation (MW) Time (h) Generation (MW) Time (h) Generation 
(MW)

Solar Wind Solar Wind Solar Wind

1 0 1.7 9 24.05 20.58 17 9.57 3.44
2 0 8.5 10 39.37 17.85 18 2.31 1.87
3 0 9.27 11 7.41 12.80 19 0 0.75
4 0 16.66 12 3.65 18.65 20 0 0.17
5 0 7.22 13 31.94 14.35 21 0 0.15
6 0.03 4.91 14 26.81 10.35 22 0 0.31
7 6.27 14.66 15 10.08 8.26 23 0 1.07
8 16.18 26.56 16 5.30 13.71 24 0 0.58

Table 3   Load profile for 24-h period

Time (h) Load 
(MW)

Time (h) Load 
(MW)

Time (h) Load (MW)

1 140 9 210 17 170
2 150 10 230 18 185
3 155 11 240 19 200
4 160 12 250 20 240
5 165 13 240 21 225
6 170 14 220 22 190
7 175 15 200 23 160
8 180 16 180 24 145

Table 4   Characteristic of the generators

Characteristic Generators

1 2 3

Power generation limits Minimum 37 40 50
Maximum 150 160 190

Fuel cost coefficients u ($/MW2h) 0.024 0.029 0.021
v ($/MWh) 21 20.16 20.4
w ($/h) 1530 992 600

Emission coefficient x (kg/MW2h) 0.0105 0.008 0.012
y (kg /MWh) − 1.355 − 0.6 − 0.555
z (kg /h) 60 45 30
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4.2.1 � Case 1 (all sources)

In this case, the microgrid contains all energy sources (gen-
eration units). The results of Case 1, which are the hourly 
cost of the generation units, are presented in Table 5. As 
seen, the proposed approach outperforms other methods by 
scheduling generations with the least expenditure. In Fig. 5, 
the generated powers of different generation units in Case 1 
for the proposed approach are presented.

4.2.2 � Case 2 (all sources excluding wind generation unit)

In this case, the microgrid contains all energy sources, 
excluding wind energy. The results of different methods 
including the proposed method for Case 2 are listed in 

Table 6. As seen, the least generation cost, i.e., 171934.59 
($/day), belongs to the proposed approach among all of the 
compared methods. In Fig. 6, generated powers of different 
units in Case 2 for the proposed method are shown.

4.2.3 � Case 3 (all sources with no solar generation unit)

In this case, the microgrid includes no solar energy source. 
Table  7 presents the results of diverse approaches for 
this case, demonstrating that the proposed one shows the 
best performance by providing the least generation cost 
(171163.856 ($/day)). Besides, Fig. 7 shows the hourly gen-
erated powers of different units in Case 3 obtained by the 
proposed approach.

Table 5   Results of Case 1 (all sources included) of Scenario 1

Time RGM ($/h) ACO ($/h) CSA ($/h) ISA ($/h) Proposed 
approach 
($/h)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

6297
6474
6565
6650
6759
6867
7209
7762
8649
9713
8722
8794
9654
9013
7905
7268
7276
7288
7544
8567
8167
7314
6674
6389

6134
6312
6439
6512
6682
6807
6837
6780
7457
7852
8358
8594
8146
7760
7424
6943
6756
7146
7538
8517
8153
7316
6605
6275

6117
6192
6291
6235
6573
6742
6487
6093
6758
6930
8026
8216
7425
7154
7126
6648
6555
7107
7530
8510
8150
7313
6599
6267

6117
6192
6292
6234
6575
6735
6488
6093
6750
6936
8026
8213
7408
7154
7129
6649
6553
7107
7525
8510
8148
7313
6599
6266

6113.350
6188.205
6285.583
6230.801
6560.708
6728.862
6479.810
6102.521
6751.723
6931.916
8028.953
8218.940
7419.068
7160.281
7122.418
6639.498
6547.099
7098.672
7530.902
8508.714
8145.102
7306.453
6587.643
6252.836

Total 183,520 173,343 167,044 167,012 166,940.1
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Fig. 5   Generated power of different generation units in Case 1 of Sce-
nario 1

Table 6   Results of Case 2 of Scenario 1

Time RGM ($/h) ACO ($/h) CSA ($/h) ISA ($/h) Proposed 
approach 
($/h)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

6298
6483
6579
6677
6778
6881
6950
7020
7626
8001
8498
8808
8277
7831
7485
7074
6833
7202
7548
8569
8168
7316
6677
6387

6152
6380
6496
6611
6727
6844
6924
6972
7616
7987
8469
8719
8272
7827
7479
7048
6769
7187
7549
8513
8148
7313
6611
6266

6157
6393
6509
6624
6741
6856
6827
6714
7226
7336
8334
8669
7747
7396
7319
6963
6635
7150
7556
8514
8151
7321
6625
6275

6122
6392
6539
6623
6741
6849
6827
6713
7204
7286
8346
8669
7746
7396
7319
6964
6635
7151
7555
8513
8161
7321
6625
6311

6152.459
6380.427
6496.518
6611.169
6726.762
6842.277
6817.636
6708.416
7234.326
7349.333
8336.193
8670.182
7758.753
7402.468
7316.131
6955.745
6626.012
7141.725
7550.999
8513.155
8153.242
7313.277
6611.051
6266.341

Total 175,966 174,879 172,038 172,008 171,934.59
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Fig. 6   Generated power of different generation units in Case 2 of Sce-
nario 1
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4.2.4 � Case 4 (no renewable energy sources)

In Table 8, the hourly and total generation costs of dif-
ferent approaches for Case 4 of Scenario 1, where micro-
grid includes only fuel-based generation units (no renew-
able energy sources). Based on these results, the proposed 
approach is ranked as the best algorithm for obtaining the 
least generation cost (176197.27 ($/day)) among all meth-
ods. In addition, Fig. 8 presents different units’ generations 
acquired by the proposed approach.

It should be noted here that based on Figs. 5, 6, 7, 8, pre-
senting the hourly generation of each unit of Scenario 1, the 
generation units can perfectly cover the whole load, and also 
the constraints are perfectly satisfied. Besides, Figs. 9 and 10 
respectively compare the hourly and total generation costs 
of Scenario 1 obtained by the proposed method. Accord-
ing to these figures, utilization of renewable energy sources 

can remarkably decrease both hourly and total operational 
costs of the system. If PV and WT engage in power genera-
tion alongside thermal units (Case 1), larger cost savings 
are observed. There is a slight cost rise in Case 2 due to the 
exclusion of WT. Likewise, in Case 3, where PV does not 
participate in the microgrid, the cost is higher than that in 
Case 1. Nevertheless, the cost reaches its peak in Case 4 as 
the thermal units only feed consumption and the renewable 
sources are entirely ignored. Through this comparison, it 
can be seen that more renewable energy integration results 
in greater cost and emission minimization.

Table 7   Results of Case 3 of Scenario 1

Time CSA ($/h) ISA ($/h) Proposed approach ($/h)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

6117
6192
6292
6236
6573
6743
6633
6473
7307
7844
8205
8305
8167
7785
7362
6771
6777
7161
7538
8510
8148
7314
6600
6261

6117
6187
6292
6236
6572
6742
6632
6472
7307
7844
8209
8304
8167
7783
7362
6776
6777
7161
7545
8508
8148
7272
6600
6261

6114.916
6187.308
6284.435
6230.605
6560.995
6729.882
6621.039
6463.633
7301.786
7841.422
8203.986
8305.738
8165.968
7782.090
7354.861
6758.698
6765.157
7150.532
7530.957
8512.094
8144.722
7312.996
6586.688
6253.347

Total 171,314 171,274 171,163.856
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Fig. 7   Generated powers of different generation units in Case 3 of 
Scenario 1

Table 8   Results of Case 4 of Scenario 1

Time RGM ($/h) ACO ($/h) CSA ($/h) ISA ($/h) Proposed 
approach 
($/h)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

6298
6483
6579
6677
6778
6881
6986
7094
7795
8300
8569
8848
8569
8040
7548
7094
6881
7204
7548
8569
8168
7316
6677
6389

6152
6380
6496
6611
6727
6844
6969
7078
7788
8284
8513
8760
8513
8031
7549
7078
6844
7194
7549
8513
8149
7313
6611
6266

6157
6393
6509
6625
6741
6856
6973
7088
7793
8272
8514
8758
8514
8032
7556
7088
6856
7204
7556
8514
8152
7319
6625
6275

6157
6395
6531
6635
6742
6858
6971
7087
7793
8272
8514
8758
8433
8026
7571
7086
6856
7203
7555
8511
8151
7322
6625
6268

6152.155
6381.719
6495.561
6611.172
6727.319
6847.733
6960.835
7077.144
7787.495
8269.342
8512.979
8758.343
8519.312
8029.449
7548.870
7076.606
6842.947
7196.408
7550.118
8512.582
8150.121
7311.897
6611.063
6266.105

Total 177,291 176,212 176,370 176,320 176,197.27
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Fig. 8   Generated powers of different generation units in Case 4 of 
Scenario 1
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4.3 � The results of Scenario 2 (bi‑objective 
scheduling)

Unlike Scenario 1, the economic and emission are simulta-
neously solved as a bi-objective function (CEED problem) 
in Scenario 2. The results of the proposed approach are com-
pared with those of other methods, such as RGM (Trivedi 
et al. 2015), ACO (Trivedi et al. 2015), CSA (Trivedi et al. 
2018), ISA (Trivedi et al. 2018), IHS (Elattar 2018), IAHS 
(Elattar 2018), and MHS (Elattar 2018) for validating the 
superior performance of the proposed one. As already 

mentioned, four cases are defined in this scenario too. In 
Fig. 11, some of the Pareto Front examples obtained by the 
proposed approach for different hours are shown.

As seen in this figure, a Pareto solution has two differ-
ent values (cost and emission). Therefore, the results in 
Tables 9, 10, 11, 12 are the combination of these two items 
obtained based on the PPF to have a fair comparison with 
other published works. In other words, the PPF is respon-
sible for transferring the physical sense of emission to the 
fuel cost.

4.3.1 � Case 1 (all sources)

In this case, all generation units are employed in the micro-
grid whose results (hourly and daily generation costs) for 
different algorithms are listed in Table 9. As seen, SACDE 
(the proposed approach) can outperform the others by pro-
viding the least total generation cost (177936.6 ($/day)). 
Fig. 12 shows the generated powers of the generation units 
obtained by the proposed approach.

Fig. 9   Hourly generation 
costs of Scenario 1 over a 
day obtained by the proposed 
approach
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Fig. 10   Total generation costs of Scenario 1 over a day obtained by 
the proposed approach

Fig. 11   Some Pareto-Front 
examples obtained by the 
proposed approach in Scenario 
2 for a Case 1 at hour = 1 b 
Case 2 at hour = 8 c Case3 at 
hour = 18 d Case 4 at hour = 22
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Table 9   Results of Case 1 of Scenario 2

Time RGM cost ($/h) ACO cost ($/h) CSA cost ($/h) ISA cost ($/h) IHS cost ($/h) IAHS cost($/h) MHS cost($/h) Proposed 
approach($/h)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

8529
8648
8675
8795
8758
8848
8964
9308
9609
10,049
11,520
12,098
10,676
9982
9569
9030
8872
9273
9990
12,646
11,496
9534
8667
8517

7250
7511
7704
7742
8211
8459
8406
7923
9040
9599
11,184
11,616
10,320
9707
9351
8469
8189
9061
9852
11,897
11,101
9488
8077
7498

7153
7203
7278
7280
7545
7723
7457
7138
7731
7920
9231
9470
8482
8186
8154
7622
7526
8132
8652
9846
9383
8371
7572
7254

7153
7203
7278
7285
7545
7679
7457
7138
7731
7937
9231
9470
8482
8186
8159
7626
7525
8131
8636
9811
9383
8370
7572
7262

7090.50
7151.10
7170.80
7159.60
7528.20
7600.10
7444.20
7051.00
7660.30
7851.50
9152.00
9394.30
8400.30
8135.40
8100.60
7550.50
7470.60
8050.80
8549.60
9760.60
9249.90
8300.80
7463.70
7225.80

7058.00
7130.20
7151.50
7130.80
7450.10
7572.20
7423.80
7050.30
7640.90
7845.40
9150.00
9381.30
8374.40
8119.90
8090.50
7539.60
7440.20
8040.40
8511.00
9710.00
9219.70
8281.40
7440.10
7195.70

6942.80
7010.30
7100.70
7049.60
7377.20
7553.30
7294.10
6935.60
7576.40
7770.80
9073.40
9314.30
8326.20
8025.40
7984.40
7457.90
7362.60
7956.60
8462.30
9690.90
9221.60
8194.50
7403.10
7070.80

6537.83
6604.19
6699.52
6647.80
7002.35
7163.50
6892.11
6523.33
7182.27
7381.70
8563.23
8773.12
7900.93
7614.23
7565.17
7064.31
6970.26
7528.83
8011.77
9138.38
8718.55
7775.98
7020.84
6656.48

Total 232,053 217,655 192,309 192,250 190,512.3 189,947.5 188,154.4 177,936.6

Table 10   Results of Case 2 of 
Scenario 2 Time RGM cost ($/h) ACO cost ($/h) CSA cost ($/h) ISA cost ($/h) MHS cost ($/h) Proposed 

approach 
($/h)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

8490.00
8528.00
8592.00
8675.00
8756.00
8878.00
8849.00
8969.00
9788.00
10,235.00
12,153.00
13,327.00
10,957.00
10,153.00
9707.00
9093.00
8810.00
9340.00
10,009.00
12,664.00
11,495.00
9540.00
8675.00
8515.00

7317.00
7694.00
7922.00
8117.00
8318.00
8600.00
8589.00
8559.00
9630.00
10,139.00
11,648.00
12,336.00
10,788.00
10,012.00
9617.00
8829.00
8279.00
9137.00
9937.00
12,032.00
11,197.00
9479.00
8117.00
7491.00

7179.00
7365.00
7479.00
7598.00
7721.00
7848.00
7816.00
7692.00
8269.00
8397.00
9620.00
10,052.00
8887.00
8467.00
8377.00
7974.00
7608.00
8182.00
8657.00
9851.00
9388.00
8379.00
7598.00
7264.00

7156.00
7364.00
7508.00
7599.00
7721.00
7841.00
7816.00
7692.00
8244.00
8337.00
9634.00
10,053.00
8887.00
8467.00
8378.00
7970.00
7608.00
8182.00
8657.00
9849.00
9400.00
8379.00
7596.00
7263.00

6977.40
7194.40
7310.30
7429.50
7550.80
7675.30
7647.20
7530.90
8105.90
8242.20
9465.90
9903.00
8734.90
8305.80
8206.80
7797.90
7444.40
8006.60
8483.50
9696.60
9226.10
8203.00
7429.50
7082.80

6564.61
6789.66
6908.16
7064.11
7185.20
7277.93
7248.53
7129.81
7696.62
7834.17
8932.64
9334.05
8268.22
7882.97
7784.50
7390.77
7057.02
7579.49
8047.97
9480.87
8702.54
7784.37
7055.20
6677.05

Total 234,198 223,784 197,668 197,601 193,650.8 183,676.4
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4.3.2 � Case 2 (no wind generation unit)

In this case, only wind energy is not employed in the micro-
grid. The hourly and total operational costs obtained by dif-
ferent approaches for this case are given in Table 10. As 
seen, the least total cost, i.e., 183,676.4 ($/day), is provided 
by the proposed approach. In Fig. 13, generated powers of 
different generators while employing the proposed method 
are shown.

4.3.3 � Case 3 (no solar generation unit)

Here, the microgrid has no solar generation unit. In Table 11, 
the results (generation costs) of the compared approaches for 
this case are given where the proposed approach has the 
superior performance by giving the total cost of 182495.6 
($/day). Additionally, the hourly generated powers of differ-
ent generation units obtained by the proposed approach are 
shown in Fig. 14.

4.3.4 � Case 4 (no renewable energy resources)

In Table 12, the hourly and total operational costs of differ-
ent methods for Case 4 of Scenario 2, where the microgrid 
includes no renewable energy sources, are listed. Accord-
ing to the results, the proposed algorithm is the superior 
one by providing the least cost (187935.12 ($/day)) among 

Table 11   Results of Case 3 of Scenario 2

Time CSA cost ($/h) ISA cost ($/h) MHS cost($/h) Proposed 
approach 
($/h)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

7153.00
7203.00
7279.00
7235.00
7544.00
7724.00
7606.00
7443.00
8364.00
9006.00
9454.00
9581.00
9408.00
8933.00
8427.00
7756.00
7761.00
8194.00
8636.00
9845.00
9383.00
8371.00
7572.00
7254.00

7152.00
7199.00
7279.00
7235.00
7545.00
7724.00
7606.00
7443.00
8364.00
9006.00
9461.00
9581.00
9407.00
8933.00
8427.00
7758.00
7761.00
8193.00
8644.00
9842.00
9383.00
8325.00
7571.00
7254.00

6943.40
7010.50
7099.60
7050.20
7377.20
7553.40
7439.40
7278.50
8190.10
8840.70
9295.80
9425.90
9248.70
8766.30
8252.30
7584.20
7590.10
8017.20
8461.90
9690.70
9221.80
8194.70
7403.70
7070.80

6525.48
6602.32
6703.52
6650.98
6966.28
7153.10
7053.18
6884.91
7770.00
8362.65
8771.53
8904.99
8725.14
8320.77
7816.37
7191.79
7179.05
7604.62
8009.29
9131.69
8702.38
7771.34
7012.31
6681.92

Total 197,132 197,093 193,006.9 182,495.6

Table 12   Results of Case 4 of 
Scenario 2

Time RGM cost ($/h) ACO cost ($/h) CSA cost ($/h) ISA cost ($/h) MHS cost ($/h) Proposed 
approach 
($/h)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

8490.00
8528.00
8592.00
8675.00
8756.00
8878.00
9005.00
9167.00
10,527.00
11,867.00
12,664.00
13,511.00
12,664.00
11,160.00
10,009.00
9167.00
8875.00
9347.00
10,009.00
12,664.00
11,495.00
9540.00
8675.00
8515.00

7317.00
7694.00
7922.00
8117.00
8318.00
8600.00
8768.00
8998.00
10,406.00
11,347.00
12,032.00
12,476.00
12,032.00
10,889.00
9936.00
8998.00
8599.00
9186.00
9936.00
12,032.00
11,197.00
9479.00
8117.00
7491.00

7179.00
7365.00
7479.00
7598.00
7721.00
7849.00
7978.00
8110.00
8943.00
9540.00
9851.00
10,170.00
9850.00
9238.00
8657.00
8110.00
7849.00
8244.00
8657.00
9851.00
9388.00
8377.00
7598.00
7265.00

7179.00
7367.00
7499.00
7608.00
7722.00
7851.00
7978.00
8110.00
8943.00
9540.00
9850.00
10,170.00
9746.00
9230.00
8675.00
8109.00
7849.00
8244.00
8657.00
9847.00
9388.00
8379.00
7598.00
7260.00

6977.40
7194.40
7310.30
7429.50
7550.80
7675.40
7802.50
7933.70
8774.30
9380.90
9696.60
10,020.00
9696.60
9074.40
8483.50
7933.70
7675.60
8067.50
8483.50
9696.60
9226.10
8203.00
7429.50
7082.80

6560.18
6803.19
6921.50
7041.87
7155.64
7295.47
7415.95
7527.76
8307.12
8843.60
9114.53
9412.21
9115.96
8560.57
8024.32
7531.09
7282.98
7641.68
8021.98
9139.83
8716.82
7778.18
7026.77
6695.92

Total 240,780 229,887 202,867 202,799 198,798.4 187,935.12
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all compared methods. Besides, Fig. 15 shows different 
units’ generated powers which are obtained by the proposed 
approach.

According to Figs.  12, 13, 14, 15, by using the pro-
posed method, the whole load is supplied by the generation 
units, and the constraints are perfectly satisfied. Moreover, 
Figs. 16 and 17 respectively compare the hourly and total 
costs acquired by the proposed approach in Scenario 2. As 
seen, both hourly and total costs can be considerably reduced 
by employing renewable energy sources in the system. In 
detail, when both renewable energy sources, including PV 
and WT, participate in power generation in the presence of 
thermal units (Case 1), a lower cost is obtained. Besides, 
there is a little increase in the cost of Case 2 where no WT 
exists. Similarly, in Case 3 (no PV in the microgrid), the 
cost is more than that in Case 1. Moreover, in Case 4, the 
cost has the highest value because the demand is merely 
supplied by the thermal units. Consequently, it is clear that 
the more renewable energies are integrated into the micro-
grid, the more reduction in the cost and emission can be 
achieved. The total emission emitted from thermal units is 
also depicted in Fig. 18 where it is obvious that the micro-
grid experiences a higher emission if there is no renewable 
energy integration. While, the cost significantly decreases 
by employing solar energy and wind turbine.

4.4 � The results of Scenario 3

4.4.1 � Case 1: sensitivity analysis on the algorithm’s 
parameters

For optimum tuning of the algorithm’s parameters, the 
parameter Cr is set to 0.1 initially, and thereby, the param-
eter �c is changed from 0.1 to 0.9. The results of the tuning 
of �c are shown in Fig. 19a. As seen, the best range of �c 
is between 0.2 to 0.4. After acquiring the optimal value of 
the parameter �c , the optimum value of the parameter Cr is 
obtained. Hence, the parameter �c is considered to be equal 
to 0.3, and then the parameter Cr is changed from 0.1 to 0.9 
to extract its best value. According to Fig. 19b. the param-
eter Cr should have a value between 0.3 and 0.4 to achieve 
desirable performance.
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Fig. 12   Generated powers of different generation units in Case 1 of 
Scenario 2
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Fig. 13   Generated powers of different generation units in Case 2 of 
Scenario 2
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Fig. 14   Generated powers of different generation units in Case 3 of 
Scenario 2
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Fig. 15   Generated powers of different generation units in Case 4 of 
Scenario 2

Fig. 16   Hourly costs of Sce-
nario 2 over a day obtained by 
the proposed approach

6000

7000

8000

9000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Co
st

 ($
/h

)

Time

All Sources All Sources Without Wind Turbine
All Sources Without Photovoltaic All Sources Without Renewable Sources



An efficient bi‑objective approach for dynamic economic emission dispatch of…

1 3

4.4.2 � Solving ED in the presence of power loss

During the operation of power systems, some of the gener-
ated power is wasted as losses. Generally, 5–10% of the gen-
erated power is wasted as losses (Asrari et al. 2016; Gholami 
and Parvaneh 2019). Accordingly, the power balance con-
straint in (10), including power loss, is modified to 

PLoad + Ploss =
NG∑
i=1

�
Pi

�
+ PSolar + PWind . Here, it is assumed 

that 5 percent of generated power which is equal to 5% of 
the load is wasted. The results for all cases of Scenario1 by 
considering the power loss are obtained and listed in 
Table 13; it is shown that the amount of operational cost is 
increased since the power loss is considered in the 
calculations.

4.4.3 � Comparison with NSGA‑II

Here, the efficiency of the proposed approach is compared 
with NSGA-II (Deb et al. 2000) whose results are shown in 
Fig. 20. As seen, the proposed approach is the superior one 
compared to the NSGA-II since it can provide high-quality 
solutions.

5 � Conclusion

These days, the demand for renewable energies integration 
has increased sharply due to environmental concerns. Thus, 
proposing efficient operational optimization schemes to 
cope with such emerging technologies is necessary. This 
article proposes a new optimization algorithm to deal with 
both problems of ELD and CEED, leading to optimal power 
consumption in an islanded microgrid. For this aim, a new 
modified version of differential evolution algorithm, named 
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Fig. 17   Total costs of Scenario 2 over a day obtained by the proposed 
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(a) Effect of cβ on the performance of 
the algorithm

(b) Effect of Cr on the performance of 
the algorithm
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Fig. 19   Parameter tuning of the proposed approach

Table 13   Results of all cases 
of Scenario 1 considering the 
power loss

Cases Total cost ($/day)

Case1 172,306.8
Case2 177,324.5
Case3 176,550.9
Case4 181,614.0
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self-adaptive comprehensive differential evolution algorithm 
(SACDE) is proposed. The proposed algorithm is assessed 
under two conditions, including single- and multi-objective 
operations. Regarding single-objective scheduling, this algo-
rithm is employed to solve the ELD problem. In terms of 
the multi-objective operation, the CEED problem with two 
objective functions of cost and emission is solved. Accord-
ing to the comprehensive results presented in the previous 
sections, the proposed approach by providing the optimal 
solution (giving the lowest cost) outperforms the other simi-
lar methods such as RGM, ACO, and CSA. The sensitivity 
analysis of the parameters associated with the algorithm was 
also investigated to determine their best values. In addition 
to comparing the proposed algorithm with other similar ones 
such RGM, ACO, CSA, a separate comparison between the 
proposed approach and the NSGA-II, a well-known algo-
rithm, was also performed, proving the superiority of the 
proposed algorithm over NSGA-II. For future works, con-
sidering electric vehicle charging stations in reconfigur-
able microgrids suffering from renewables’ uncertainties 
and performing a comprehensive comparison between all 
existing algorithms to schedule microgrids’ resources can 
be suggested.
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