The effects of spring versus summer heat events on two arid zone plant species under field conditions

K.V. Milner ${ }^{1}$, K. French ${ }^{2}$, D.W Krix ${ }^{1}$, S.M. Valenzuela ${ }^{1}$, A. Leigh ${ }^{1}$
${ }^{1}$ School of Life Sciences, University of Technology Sydney, Ultimo 2007 Australia;
${ }^{2}$ Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospherics and Life Sciences, University of Wollongong, Wollongong 2522 Australia

Author for correspondence

Dr Kirsty Milner,
Tel: +61 (02) 95141765
Email: Kirsty.Milner@uts.edu.au

Abstract

Heatwaves are increasingly occurring out-of-season, which may affect plants not primed for the event. Further, heat stress often coincides with water and/or nutrient stress, impairing shortterm physiological function and potentially causing downstream effects on reproductive fitness. We investigated the response of water-stressed arid-zone Solanum oligacanthum and S. orbiculatum to spring vs summer heat stress under differing nutrient conditions. Heat stress events were imposed in open-topped chambers under in situ desert conditions. To assess shortterm impacts, we measured leaf photosystem responses ($\mathrm{Fv}_{\mathrm{v}} / \mathrm{F}_{\mathrm{M}}$) and membrane stability; longterm effects were compared via biomass allocation, visible damage, flowering and fruiting. Plants generally fared more poorly following summer than spring heat stress, with the exception of $\mathrm{Fv}_{\mathrm{v}} / \mathrm{F}_{\mathrm{m}}$. Summer heat stress caused greater membrane damage, reduced growth and survival compared with spring. Nutrient availability had a strong influence on downstream effects of heat stress, including species-specific outcomes for reproductive fitness. Overall, high temperatures during spring posed a lower threat to fitness than in severe arid summer conditions of high temperature and low water availability, which were more detrimental to plants in both the short and longer term. Our study highlights the importance of considering ecologically relevant, multiple-stressor events to understand different species responses to extreme heat.

Keywords

Chlorophyll fluorescence ($\mathrm{Fv}_{\mathrm{v}} / \mathrm{F}_{\mathrm{m}}$), desert species, fitness, heat stress, heatwaves, membrane stability, Solanum species, thermal tolerance.

Introduction

To understand the effects of climate change on plants, many studies have focused on imposing a projected CO_{2} and/or average temperature rise (Nijs et al. 1996; Hovenden et al. 2006; Crous et al. 2018). These studies provide information on species responses to predicted changes in long-term averages. Yet, the increased frequency of extreme events is potentially more influential. The effects of extreme events last beyond their short duration (Jentsch et al. 2007) and have greater influence on plant physiology than mean climate (Jump \& Penuelas 2005; Reyer et al. 2013). Observations following heatwaves have reported reduced gross primary productivity of forests (Ciais et al. 2005; Bauweraerts et al. 2014) and increased mortality (Allen et al. 2010; Harris et al. 2018; Hoffmann et al. 2019). During heatwaves, high air temperatures, when coupled with drought conditions (often the case; Vicente-Serrano et al. 2014; Zscheischler \& Seneviratne 2017), contribute to reduced photosynthesis through stomatal closure (Berry \& Bjorkman 1980; Tang et al. 2007). Continued high leaf temperatures affect photosynthesis directly by damaging photosynthetic proteins (Havaux 1993a; Sharkey 2005) or indirectly, through leakiness of and oxidative damage to thylakoids and other membranes (Daniell et al. 1969; Djanaguiraman et al. 2018). As photosynthesis declines and respiration rates increase (Atkin et al. 2005; O'Sullivan et al. 2013), there is less available energy for other processes, such as protection, repair, growth and reproduction (Parsons 1990). With high temperature, the stress response of plants is stimulated in order to protect from damage and return cells to normal metabolic function (Mittler et al. 2012). Therefore, in addition to directly impairing productivity and function, heat stress also presents a cost in the energy required for protection and repairing damage. This raises the question of how plants allocate resources between protection and survival versus growth and reproduction.

Heatwaves are now more likely to occur out-of-season and the heatwave season is starting earlier (Steffen et al. 2014; Reddy et al. 2021). An important implication of a-seasonal heatwaves is that they are potentially more damaging because they occur when organisms are not physiologically primed for high temperatures. With priming-a sub-lethal stress event (for example, Havaux 1993b) -plants are able to acclimatise into warmer seasons (Atkin et al. 2000; Atkin \& Tjoelker 2003; Aspinwall et al. 2017). Out-of-season heatwaves are likely to
leave some species ill-prepared, but evidence for the impacts of timing of high temperature events is scarce. In a rare exception under a benign climate characterised by 'cool summer', spring heatwaves actually benefitted plants because heated temperatures approached a physiological optimum for growth (De Boeck et al. 2011). It is not known whether the same conclusion would be drawn in a more severe climate, such as a desert, where a sudden spring heat stress event can exceed optimal temperatures.

Heatwaves shape arid ecosystems (Holmgren et al. 2006), with plants already living close to thermal limits and exceeding thresholds during extreme events (O'Sullivan et al. 2013). Poor water availability during these times is likely to exacerbate the effects of high temperature alone (Valladares \& Pearcy 1997; Cook et al. 2021). Thus, an ecologically relevant investigation of plant response to heat stress in arid systems should be done in combination with seasonally appropriate water stress. Furthermore, many deserts are typified by poor access to nutrients, due either to water scarcity (Erskine et al. 1996; Handley et al. 1999) or through low nutrient soils (Stafford Smith \& Morton 1990). Physiological responses to protect plants against heat damage are activated quickly but can direct resources away from downstream processes such as growth and reproduction (Begcy et al. 2018; Rajametov et al. 2021). Limited access to soil nutrients, particularly nitrogen, means that the effects of heat stress events may be compounded (Heckathorn et al. 1996a; Heckathorn et al. 1996b), especially when coupled with drought (Teskey et al. 2015; Ward et al. 2015; Harris et al. 2018).

Here we sought to compare the immediate and longer-term responses of desert plants to an early heatwave versus late heatwave. Unlike many controlled heat wave experiments, and to capture desert conditions, plants for this study were grown and treated in situ, incorporating the naturally high light and low humidity conditions that are difficult to reproduce in growth chambers. To water-stressed plants under two nutrient treatments, we imposed a heat stress event of ecological relevance in spring and summer against a background of the naturally occurring weather in each season. We addressed the following questions: 1) Is a spring or summer heat stress more detrimental to growth and fitness outcomes for desert plants? 2) How does nutrient availability influence downstream effects of heat stress, i.e., growth and fitness? We applied these questions to two Australian arid zone Solanum species grown under two nutrient treatments and followed the plants through to fruiting.

Materials and Methods

Site description and species

This study was conducted at the Australian Arid Lands Botanic Garden, Port Augusta, South Australia ($32^{\circ} 28^{\prime} 4.35^{\prime \prime} \mathrm{S}, 137^{\circ} 44^{\prime} 36.99^{\prime \prime} \mathrm{E}$), where mean maximum monthly temperatures reach $34.2^{\circ} \mathrm{C}$ in January and mean monthly precipitation is highest in December at 25.7 mm (BoM 2018). Two perennial arid zone Solanum species with differing microhabitat preferences were selected. Solanum orbiculatum (Dunal ex Poir.) subsp. orbiculatum is found in drier microhabitats (sandplains and dunes, rocky hills and outcrops; FloraNT 2013) and Solanum oligacanthum (F. Muell.), which typically grows in wetter microhabitats (sandy or clayey soils in soaks and creek lines; Bean 2004). Both are perennial herbs with hair-covered leaves and long flowering and fruiting periods (Bean 2004; FloraNT 2013).

Plant growth and treatments

Plants for this experiment were grown from cuttings collected from at least five plants from the living collection at the AALBG, originally sourced from the wild, and established in 75 mm tubes for 33 weeks. Cuttings were transferred to 4.5 L pots filled with $3: 1$ local sandy soil to standard potting mix for four weeks before experiments began (Fig. A1, Appendix A). Plants from each species were randomly assigned to either the low nutrient (potting medium (Van Schaik's Bio Gro, Mt Gambia SA) a mix of composted bark and scoria, containing trace elements, but no controlled release fertiliser) or high nutrient (potting medium with Nutricote Standard Pink slow-release fertiliser; Yates, NSW, Australia, N:P:K 19.1:0.0:11.9) group, applied at time of potting. The effect of nutrient treatment is shown in Appendix B. Growing plants in pots was necessary to maximise controlled conditions; however, pot-binding can occur if plants are left in undersized pots for too long. During a pilot trial, where plants were left in pots until after their shoot growth had slowed, there was evidence of plants becoming pot-bound. Therefore, plants for this experiment were grown for a shorter duration, in the phase between newly established cuttings to peak vegetative growth, which minimised pot-binding, as confirmed at harvest. Within each nutrient treatment, plants were randomly divided into two groups relating to season of the heat stress: austral spring (October 2016) or summer (February 2017) heat stress (Fig. A1, Appendix A). These groups were further subdivided into heat stress treatments: ambient plants, receiving no heat stress, and plants subjected to a heat stress event in open-top chambers. Plants were grown outdoors in full sun.

Heat stress application

Our focus was on single extreme high temperature days, periodically recorded in these regions (e.g., $45.4^{\circ} \mathrm{C}$ recorded in South Australia in October; BoM 2019). To best represent prevailing
desert conditions, plants were grown and treated in situ, incorporating the naturally high light and low humidity conditions that are difficult to reproduce in growth chambers and heat stresses were imposed against a background of the natural weather. We aimed to replicate what plants would experience during a heat stress event, of equivalent length and severity to the afternoon of a heatwave in the desert, when wind speed drops and the leaves of water stressed plants are likely to reach dangerously high temperatures (Leigh et al. 2012). Because natural heatwaves often are coupled with low soil water availability (Teskey et al. 2015), irrigation was withheld from all plants six days prior to heat stress to ensure that the heatwave was associated with ecologically relevant conditions. Daily checks of plants for appearance of water stress (wilting) were conducted and pre-dawn leaf water potential $\left(\Psi_{\mathrm{L}}\right)$ was measured on the day of the heat stress treatment using a pressure chamber (Model 1505D; PMS Instrument Company, OR, USA). Leaf water potential was more negative in water-stressed than wellwatered plants, significantly so only in summer (see Appendix C). However, although the difference in Ψ_{L} for spring was not significant, there were visual signs of leaf wilting for plants that had water withheld, particularly in S. orbiculatum.

The heat stress treatment was applied in two open-top chambers (0.72 m (h) $\times 0.49 \mathrm{~m}$ (w) x 1.09 m (1), with sides enclosed using PVC plastic sheeting). Two ceramic infrared lamps with reflectors ($1000 \mathrm{~W}, 230 \mathrm{~V}$ full trough element, $60 \mathrm{~kW} / \mathrm{m}^{2}, \lambda$ range $2-10 \mu \mathrm{~m}$; Ceramicx, Ireland, fitted with aluminised steel reflectors and solid state relays) were hung 0.3 m above each chamber and tilted at $\sim 40^{\circ}$, similar to Kimball et al. (2008). Heat stress events were imposed to chambers for 3 h between 13:00-16:00. As leaf temperature can vary considerably from air temperature, our goal was to monitor leaf temperature within chambers, maintaining the temperature of target leaves close to $45^{\circ} \mathrm{C}$ (in line with BoM 2018 data; Appendix C), which we did by gradually ramping up IR radiation from the lamps over the first hour, then holding temperature for the remaining two hours (Fig. 1). Due to chamber size, and to maximise replication, four heat stress events were run on consecutive afternoons, each on a separate set of plants. Shortly before commencing each event, at least one plant from each treatment group was placed in one of two chambers and ambient plants were placed adjacent to the chambers.

Evaluating effects of heat stress

To evaluate short-term response of plants to heat stress, and to match the height at which leaf temperature was measured, PSII function and membrane stability were evaluated from three leaves on each of three plants per treatment group. Leaves were sampled at a height of 0.2 m
from the base of the plant (for heat-stressed plants this height was a distance of 0.6 m from the heat source). The longer-term energetic cost of a heat stress event was estimated from growth and fitness metrics at the whole plant scale, that is the whole plant was sampled regardless of distance from the heat source.

Photosystem II (PSII) efficiency was assessed via maximum quantum yield ($\mathrm{F}_{\mathrm{v}} / \mathrm{F}_{\mathrm{m}}$) of PSII, which was measured pre-dawn using a chlorophyll fluorometer (mini-PAM, Heinz Walz GmbH, Effeltrich, Germany) on the morning of, and the day after, heat stress treatment. Many plants had a pre-heat stress $\mathrm{F}_{\mathrm{v}} / \mathrm{F}_{\mathrm{m}}$ values below 0.83 (Fig. A2, Appendix A), likely due to the water stress preceding the heat stress. For this reason, an estimate of damage to PSII was calculated using the equation:

$$
\begin{equation*}
D_{\text {PSII }}=1-\frac{\text { Post } F_{v} / F_{m}}{\text { Pre } F_{v} / F_{m}} \tag{Eqn 1}
\end{equation*}
$$

from Curtis et al. (2014). This metric accounts for the starting point of the plants prior to the heat stress, including background damage that may be caused by water stress or seasonal differences.

Membrane stability was assessed with a conductivity meter (TetraCon 925; WTW, Weilheim, Germany) to measure the electrolyte leakage from $\sim 0.5 \mathrm{~g}$ of fresh leaf placed in 15 mL of deionised water for 90 min (modified from French et al. (2019). A membrane stability index (MSI) was then calculated:

$$
\begin{equation*}
M S I=1-\left(\frac{E C_{90}-E C_{0}}{E C_{\max }-E C_{0}}\right) \tag{Eqn 2}
\end{equation*}
$$

where EC_{0} was the conductivity of the water 5 min after leaves were placed in the water, EC_{90} was the conductivity measured after 90 min and $\mathrm{EC}_{\max }$ was the conductivity measured the morning after leaves were heat treated at $100^{\circ} \mathrm{C}$ to rupture cell walls.

Following the heat stress treatments, plants were returned to irrigated, full sun growth conditions. Approximately 1-2 months after each seasonal stress event, a single replicate plant from each treatment group was randomly selected for harvest. Visual damage to all plants was assigned based on estimated percentage of dead or discoloured leaves on the plant; plant survival also was recorded. At harvest, leaves and stems were separated from roots. Roots were
washed of soil and all organs were oven dried at $60^{\circ} \mathrm{C}$ until weight was stable. Biomass values reported are dry weights.

The influence of heat stress on plant growth was assessed using growth rate of aboveground biomass ($\mathrm{GR}_{\mathrm{AG}} ; \mathrm{g} \mathrm{day}^{-1}$), the instantaneous rate of increase, which takes into account the relative size of the plant (referred to as relative growth rate in Pérez-Harguindeguy et al. 2013), calculated as:

$$
\begin{equation*}
G R_{A G}=\left(\ln M_{2}-\ln M_{1}\right) /\left(t_{2}-t_{1}\right) \tag{Eqn 3}
\end{equation*}
$$

where M_{1} and M_{2} are aboveground biomass, harvested at t_{1} and t_{2} or pre- and post-heat stress, respectively. Aboveground biomass was used, as root samples in summer were lost. For estimating M_{1}, a subset of plants was harvested pre-heat stress and the mean dry mass was used.

To investigate relative aboveground resource allocation, the ratio stem:leaf was calculated. In addition, as an indicator of environmental tolerance and competitive ability (Poorter et al. 2009) leaf mass per area (LMA, $\mathrm{g} \mathrm{m}^{-2}$) was determined. At the time of harvesting, all leaves per plant were scanned and leaf area measured using ImageJ software (National Institutes of Health; Bethesda, MD). Plant level LMA was calculated by dividing total LA by total dry leaf biomass.

Prior to each heat stress treatment, flowers and fruits were removed from the plants so that only those that developed after the heat stress were recorded. To estimate the fitness cost of heat stress, flowers and fruits of all plants were counted and flowers and fruit from harvested plants were weighed (including peduncle as accessory costs). Due to many fruit not being fully developed at harvest the mean number of seeds was recorded from a subset of fruit ($\mathrm{n}=9-12$ for S. oligacanthum and $\mathrm{n}=12$ for S. orbiculatum). Estimates of seed output per plant were calculated based on the mean number seeds per fruit multiplied by the number of fruit on a plant, normalised to per day output due to differences in harvest times. In order to assess whether plants altered the resources directed to flowering or fruiting with respect to treatment, the ratio of flower or fruit mass to aboveground biomass was calculated (flower:AG, fruit:AG (g:g)).

Statistical analyses

This experiment used a four-factor design, each factor with two levels. Species, season, nutrient treatment, and heat stress treatment were fixed effects. The heat stress treatment was administered over four consecutive days, with three new plants from every treatment combination used each day. Total number of plants was 2 species $\times 2$ seasons x 2 nutrient treatments x 2 heat stress treatments x 4 replicate heat stress days x 3 replicate plants + preheat stress harvest: 2 species x 2 seasons $x 2$ nutrient treatments $x 3$ replicate plants $=216$. As mean air temperature within the two chambers was equivalent and significantly higher than ambient temperature (ANOVA; $\mathrm{F}_{2,18}=5.27, \mathrm{p}=0.0158$), we did not consider chamber in the experimental design and the values for any parameter for the three plants was averaged for each of the four replicate stress days, except high nutrient S. oligacanthum in summer, or where deaths occurred. Variables of growth (LMA, GR ${ }_{\text {AG }}$, stem:leaf, flower and fruit:AG) were sampled from one plant per heat stress treatment day. Analysis of visible damage and $\mathrm{GR}_{\mathrm{AG}}$ included dead plants, but dead plants were removed from analysis of stem:leaf and LMA.

Visible damage and survival were analysed using binomial logistic regression using R (R Core Team 2018). The proportion of plants per heat stress treatment day that survived or recorded visible damage (where visible damage $>10 \%=1$, and $<10 \%=0$ or no damage) were used in analyses. All other variables were analysed using ANOVA using the "lm" function, after assumptions were tested and relevant transformations made (see Table 1). Models were simplified by hierarchical removal of non-significant interactions (Crawley 2013). Order of removal used AIC values using the 'dropl' function of the 'car' package (Fox \& Weisber 2011). Interaction terms were dropped until the model with the lowest AIC value that did not deviate significantly from the maximal model was found. Due to the unbalanced nature of the experiment, Type II sums of squares were used (Langsrud 2003) to preserve the marginality principle. Where there were significant interactions, Tukey HSD in the emmeans package were used to find differences (Lenth 2018).

Results

Heat stress on leaf temperatures

The recorded maximum leaf temperatures reached in chambers during imposed heat stresses did not differ between spring and summer ($\mathrm{F}_{1,56}=7.52$, $\mathrm{p}=0.0008$; Fig. 2), despite seasonal differences in ambient conditions between spring and summer (Fig. B1, 2, Appendix B. There was a significant season by temperature effect, whereby ambient leaf temperatures in summer were higher than those of leaves in spring (Fig. 2).

Short-term responses of PSII damage and membrane stability to heat stress
There was significantly more damage to PSII in plants that were exposed to heat stress than in ambient plants (Fig. 3a) and more damage to PSII in summer than in spring (Fig. 3b, Table 1), irrespective of species or nutrient levels. In terms of membrane damage, there was a significant season x nutrient x heat stress effect (Table 1), whereby, plants with reduced access to nutrients incurred little damage to membranes in spring or summer, with only a small increase in damage between ambient and heat-stressed plants (Fig. 3c). For high nutrient plants, there was no difference between ambient and heat-stressed plants in spring, but following a summer heat stress, more membrane damage was recorded (Fig. 3c). The effect of season on membrane damage differed between species (Table 1). There was little membrane damage to S. orbiculatum in either season, while S. oligacanthum recorded similarly low damage in spring, but greater membrane damage in summer (Fig. 3d).

To summarise and compare responses of these desert annuals, we produced a heat map of normalised severity of response for each variable (Table 2). With regards to the short-term responses, generally there was greater damage to MSI in summer, and in heat-stressed rather than ambient treatment plants (Table 2). The exception to this trend was damage to PSII, where plants in spring were more negatively affected than plants in summer.

Growth and allocation of resources

In relation to resources allocated to leaves, S. orbiculatum had higher LMA than S. oligacanthum (Table 1; Fig. 4a). There were no effects of season, nutrient or heat stress treatment on LMA (Table 1). Solanum oligacanthum allocated greater mass to stems than leaves compared to S. orbiculatum (Table 1; Fig. 4b). Overall, more mass was allocated to stems than leaves in summer compared with spring (Table 1; Fig. 4c) and stem:leaf was higher in low nutrient plants than high nutrient plants (Table 1; Fig. 4d). There was no effect of heat stress treatment on the stem:leaf ratio. Growth rate of aboveground biomass differed with the seasons, but depended upon both species and nutrients, with significant interactions with these factors (Table 1). Growth of aboveground biomass was higher in spring than summer in both S. oligacanthum and S. orbiculatum (Fig. 4e). Aboveground growth was higher in high nutrient plants than low nutrient plants in spring, and significantly reduced in overall summer relative to spring, such that there was no difference between nutrient treatments in summer (Fig. 4f). GR $_{\text {AG }}$ was reduced in plants that were heat-stressed compared with their ambient counterparts (Table 1; Fig. 4g). Overall, GR ${ }_{\text {AG }}$ was reduced in summer compared with spring, with low
nutrient plants faring more poorly than their high-nutrient counterparts (Table 2).

Visible damage and survival

Both species showed visible damage to leaves and stems and experienced mortality following heat stress treatment. The influence of nutrient availability on the proportion of plants showing visible damage was determined by heat stress treatment (Table 1). Generally, greater damage was observed in heat-stressed plants than plants under ambient conditions. Low-nutrient, heatstressed plants incurred more damage than their ambient-grown counterparts (Fig. 5a). There were three significant interactions explaining the proportion of plants that survived heat stress (Table 1). First, survival was determined by species, nutrient availability and heat stress treatment. When S. oligacanthum had access to nutrients and was heat-stressed, survival was comparable to ambient plants, however, under low nutrient conditions and after heat stress survival was marginally reduced compared with ambient counterparts (Fig. 5b). On the other hand, survival of S. orbiculatum plants was reduced in heat-stressed plants compared with ambient plants, regardless of nutrient availability (Fig. 5b). Second, survival was influenced by heat stress depending upon the season in which the heat stress occurred, but post hoc differences could not be determined (Table 1; Fig. 5c). Within a season, survival was largely reduced in heat-stressed plants compared with ambient plants and fewer ambient plants survived in summer compared with their spring equivalents. Finally, species differences were apparent in relation to season, but post hoc differences could not be determined (Table 1; Fig. 5c). Typically, S. orbiculatum had the poorest survival rates, irrespective of season, and S. oligacanthum survival was lower in summer than in spring (Fig. 5d). Visible damage was generally greatest in high nutrient plants in summer, compared with other treatment groups (Table 2). The influence of nutrient status on survival was converse to its influence on visible damage; a greater proportion of high nutrient plants survived than their low nutrient counterparts, and S. oligacanthum appeared to survive better than S. orbiculatum (Table 2).

Fitness

The number of flowers produced following heat stress treatment was determined by season and influenced by both nutrient and species (Table 1). For plants with access to high nutrients, flower production was high and there was no effect of season; for low nutrient plants, however, the number of flowers produced was reduced in summer compared with spring (Fig. 6a). Species differences were observed in flower production but dependent on season (Table 1): the number of flowers produced by S. oligacanthum was reduced from spring to summer (Fig. 6b).

Generally, S. orbiculatum produced fewer flowers than S. oligacanthum but unlike S. oligacanthum, the number produced increased from spring to summer (Fig. 6b). Plants that were heat-stressed produced fewer flowers than plants under ambient conditions (Table 1; Fig. $\mathbf{6 c}$). The biomass allocated to flowering was affected by an interaction of species with season and heat stress (Table 1). Regardless of season or heat stress treatment, S. orbiculatum allocated similarly low biomass to flowers compared S. oligacanthum (Fig. 6d). Solanum oligacanthum had notably high flower: aboveground biomass ratios in spring, which then dropped to being significantly lower in summer (Fig. 6d). Generally, there was a small, non-significant, reduction in fruit production in heat-stressed plants compared with ambient treatment plants; however, the greatest effect on fruit production was nutrient availability (Table 1). Plants with access to additional nutrients produced more fruit per plant than those in low nutrient soils (Fig. 6e). The allocation of biomass to the fruit production was affected by a species by season interaction (Table 1), such that S. oligacanthum allocated low amounts of biomass to fruit, irrespective of season, but the amount of biomass allocated to fruit in S. orbiculatum was reduced in summer compared with spring (Fig. 6f). Comparison of proportional reproductive output of each species under different treatments clearly shows that S. orbiculatum has greater seed output per plant than S. oligacanthum (Fig. 6g,h). Seed production of both species was higher when plants had access to high nutrients, compared to low nutrient conditions. Overall, access to nutrients appeared to be the most important factor influencing reproductive fitness, with the contrast between species being greatest in summer, where the difference between low and high nutrient S. orbiculatum fitness was less defined than that of S. oligacanthum (Table $2)$.

Discussion

In this study, we investigated the impacts on two desert Solanum species of nutrient level and timing of heat stress events on plants' short-term tolerance and their reproductive fitness in the longer term. There are a myriad of ways that heat stress can be experimentally applied; most often in growth cabinets and glasshouses under highly controlled conditions; less commonly in open top chambers under field conditions (De Boeck et al. 2012; Marchin et al. 2022). We deliberately applied our heat stress events under ambient weather conditions. This necessarily meant that plants experienced our experimental heat treatments in the context of natural environmental conditions, which varied both within and across seasons. Overall, we found that 1) a heat stress event in summer is worse than a heat stress event in spring and 2) the influence of nutrient availability on downstream effects of heat stress is species-specific.

Based on the reported importance of seasonal priming for coping with a subsequent stress event (Aspinwall et al. 2017), our initial expectation was that imposed heat stress might result in greater damage to plants in spring, which are not primed for high temperature extremes. However, our findings did not support this idea (Table 2). We suggest that summer was worse because firstly, these desert species maintain a high basal tolerance to high temperatures in spring ($44-45^{\circ} \mathrm{C}$ for both study species, Milner et al. unpublished). Recent records of spring temperatures in these regions have included spikes of up to $45.4^{\circ} \mathrm{C}$ (BoM 2019). So, it follows that basal thermal tolerance for species adapted to this environment must be high to maintain a thermal safety margin (O'Sullivan et al. 2013; Drake et al. 2018). Therefore, despite not being primed for their early heat stress, our study species generally incurred less damage in spring than in summer, suggesting an inherent resilience to a-seasonal high temperatures.

The second reason plants experiencing a summer heatwave fared worse than in a spring heatwave, is likely due to the combined severity of heat stress imposed on the already stressful conditions typical of desert summer. In mesic environments, differential responses to the timing of stress events have been attributed to event severity. Whereas a heat spike in spring can be beneficial if temperatures rise to those optimal for photosynthesis (Marchand et al. 2005; De Boeck et al. 2011), even average temperatures in summer might be supra-optimal. Similarly in desert environments, a brief warm period in spring might stimulate photosynthesis, but not be sufficiently sustained to cause long-term damage. By contrast, summer desert conditions can exacerbate other stresses like water limitation; in fact, drought alone has a greater effect on plant health than heat stress alone (De Boeck et al. 2011; Davies et al. 2018). In our study, all our plants experienced some water stress, potentially exacerbated by an element of root crowding and certainly by higher VPD (Fig. C1; Appendix C), such that even in the absence of heat stress, our ambient treatment plants often did more poorly in summer than in spring. Therefore, even though leaf temperatures of heat-stressed plants were similar in spring and summer (Fig. 2), the additional severity of background conditions including a natural heatwave in summer will have compounded the effects of temperature stress, something that may not have been captured under glasshouse conditions. Our findings thus provide realistic insight into the susceptibility of desert plant species as the frequency of these kinds of events continues to increase as predicted (Cowan et al. 2014; Reddy et al. 2021).

Not only are conditions during a summer heat event more severe, but supra-optimal conditions surrounding the event also are likely to hamper recovery in the long term. Physiological recovery from heat stress occurs when benign temperatures (Drake et al. 2018; Guha et al. 2018), including cooler nights (Atkin et al. 2005) and/or access to water (Wang \& Huang 2004), return. Although our plants were returned to water immediately following heat stress, long-term effects of drought on tissue damage, survival and fitness can manifest some months after the stress event (Wang et al. 2016; Davies et al. 2018). In our study, the longer-term damage was most visible and fruiting most reduced after summer heat stress, particularly in S. orbiculatum (Table 2), suggesting that physiological repair was somewhat suppressed, possibly due to lack of adequate recovery conditions. Repeat extreme events are likely in summer and indeed, our summer plants experienced naturally occurring air temperature spikes in the days before the heat stress treatment. Exposure to repeat heat events could have one of two likely outcomes: 1) prime plants for higher tolerance thresholds for the next heat event (Ahrens et al. 2021) or 2) cause injury/damage due to accumulated effects (Harris et al. 2018). The second outcome was probably the case for the plants in this study, which experienced higher heat loads overall. During these desert summers, there is a relative lack of cooler nighttime temperatures (see Fig. C1; Appendix C for example), which coupled with reduced access to water and/or an increased likelihood of experiencing repeated stressfully high temperatures reduces opportunities for recovery.

The effects of nutrient status on protection and downstream costs

We would generally expect that plants with access to more resources will be better able to use nutrients to protect against heat damage (Heckathorn et al. 1996a) or recover (Zhao et al. 2008). Our plants illustrate different responses to summer heat stress, depending on whether this occurred under high or low nutrient conditions. For example, in S. oligacanthum, summerstressed plants with access to high nutrients avoided short-term damage to PSII, but incurred greater membrane (Fig. 3c,d) and visible damage, and had reduced growth rate (Table 2); whereas under low nutrient conditions, it avoided short-term membrane instability (Table 2). Interestingly, the long-term outcomes for this species under high and low nutrients appeared to switch, with high nutrient plants able to survive and reproduce, while low nutrient plants were not (Table 2; Fig. 6e). Overall, for both species, those with access to high nutrients generally fared better than plants in low nutrients, even if they incurred damage (Table 2), suggesting that the cost of heat-related damage and repair on fitness can be mediated if these species have access to nutrients .

Potential drivers for species-specific responses and fitness
Ultimately, predicting persistence of species under altered occurrences of extreme heat events requires an understanding of the fitness costs. The resources allocated to reproduction and the ability to produce fruit are critical components of future survival. In this study, short-term responses to seasonality of heat stress were generally similar between our two species (Table 2), but there was disparity in longer-term responses of survival and reproductive allocation. Solanum orbiculatum produced more, smaller seeds per fruit than S. oligacanthum (Table C1; Appendix C); however, irrespective of the difference in seed size, overall seed production per plant was far greater for S. orbiculatum than S. oligacanthum (Fig. 6h). These species-specific outcomes may reflect long-term adaptation to different microhabitats which then influence response to short-term stress.

The strategy of die-back and resprouting of ephemeral shoots by S. oligacanthum (Fig. A3, Appendix A), a trait used by stress-avoiders (Kassas \& Girgis 1970), appears beneficial in its preferred microhabitat and for withstanding heat stress events. This species showed a strong tendency for vegetative resprouting, with lower LMA, higher stem:leaf ratio (Fig. 4a,b) and greatly reduced growth rate of leaves in summer compared with S. orbiculatum (Fig. 4e). In a similar way that fire resprouters allocate more biomass to storage than reseeders (Pate \& Bell 1999), the ability to store resources following severe damage may explain why S. oligacanthum had greater survival and maintained flowering after heat stress. Many resprouted S. oligacanthum had developed leaves during the experiment and the high survival rate of this species infers the potential to reproduce later (Friedman \& Rubin 2015). Extended longevity via resprouting may be an adaption to stochastic events in arid environments, where reproductive potential is stored for rare and episodic recruitment events (Nano \& Clarke 2011 and references therein). Through vegetative propagation, S. oligacanthum avoids the bad and can exploit the better conditions in the dynamic microhabitat in which it grows.

Solanum orbiculatum, which typically grows in resource-poor areas such as sandy dunes and plains, expresses traits reflecting this environment; for example, high LMA leaves. Unlike S. oligacanthum, we did not observe S. orbiculatum resprouting following severe heat stress damage. Instead, S. orbiculatum appeared to dedicate meristematic activity to immediate reproduction, with reduced GR $_{\text {AG }}$ (Fig. 4e) and increased flower numbers (Fig. 6b). Coupled with its low survival after heat stress, lack of resprouting in S. orbiculatum highlights the importance of high seed output for its ongoing persistence. Extreme conditions are said to
induce more clonal over sexual reproduction (Abeli et al. 2012). Given that summer heat has a marked negative impact on S. orbiculatum, and the high energy requirement for reproduction, there is likely to be strong selection to shift phenological patterns. However, as with many such species living in extreme regions, the prospects for adaptation outpacing currently poor survival under heat stress are fair at best.

Little work has looked at the timing of heat stress events in natural systems (De Boeck et al. 2011; Wang et al. 2016) and few heat tolerance studies consider plants from extreme heat and drought environments. Our findings suggest that, for species that possess high basal thermal tolerances, like those in deserts, a-seasonal heat stress events occurring in spring pose less risk than they might for species in more benign environments. However, repeated events during the height of summer have implications for fitness and survival, especially in low nutrient conditions. While it would be useful to be able to generalise about how all species will endure increased summer heat stress, the species-based differences found in this study highlight the risk in doing so. To best understand and manage productivity and survival in harsh environments, attention should be directed to plant responses based on ecologically relevant signatures, such as life history and microhabitat.

Conflicts of Interest

All authors declare no conflict of interest.

Declaration of Funding

This research was undertaken as part of a collaboration agreement between the University of Technology Sydney and Port Augusta City Council, including support from the Friends of the Australian Arid Lands Botanic Gardens. This research was supported by an Australian Government Research Training Program Scholarship to KM.

Acknowledgements

Collection of data was aided by Alicia Cook, Melinda Cook and Neil Berry. Further support was provided by staff and volunteers at Australian Arid Lands Botanic Gardens.

Author contribution

Together with AL, SV and KF, KM designed the experimental procedure and methods. KM undertook the field work, analysis and led the writing of the paper. SV supervised lab work, while AL and KF supported the field work. DK helped with analysis of data. All authors
contributed critically to the drafts and gave final approval for the publication. This paper forms part of the PhD thesis of Milner (2020).

Data availability statement

Upon publication, data will be made available through the Dryad Digital Repository.

References

Abeli, T., Rossi, G., Gentili, R., Gandini, M., Mondoni, A. \& Cristofanelli, P. (2012) Effect of the extreme summer heat waves on isolated populations of two orophitic plants in the north Apennines (Italy). Nordic Journal of Botany, 30, 109-115.

Ahrens, C. W., Challis, A., Byrne, M., Leigh, A., Nicotra, A. B., Tissue, D., \& Rymer, P. (2021). Repeated extreme heatwaves result in higher leaf thermal tolerances and greater safety margins. New Phytologist, 232, 1212-1225.

Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D.D. \& Hogg, E.T. (2010) A global overview of drought and heatinduced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660-684.

Aspinwall, M.J., Vårhammar, A., Blackman, C.J., Tjoelker, M.G., Ahrens, C., Byrne, M., Tissue, D.T. \& Rymer, P.D. (2017) Adaptation and acclimation both influence photosynthetic and respiratory temperature responses in Corymbia calophylla. Tree Physiology, 37, 1095-1112.

Atkin, O.K., Bruhn, D., Hurry, V.M. \& Tjoelker, M.G. (2005) The hot and the cold: unravelling the variable response of plant respiration to temperature. Functional Plant Biology, 32, 87-105.

Atkin, O.K., Holly, C. \& Ball, M.C. (2000) Acclimation of snow gum (Eucalyptus pauciflora) leaf respiration to seasonal and diurnal variations in temperature: the importance of changes in the capacity and temperature sensitivity of respiration. Plant, Cell \& Environment, 23, 15-26.

Atkin, O.K. \& Tjoelker, M.G. (2003) Thermal acclimation and the dynamic response of plant respiration to temperature. Trends in Plant Science, 8, 343-351.

Bauweraerts, I., Ameye, M., Wertin, T.M., McGuire, M.A., Teskey, R.O. \& Steppe, K. (2014) Water availability is the decisive factor for the growth of two tree species in the occurrence of consecutive heat waves. Agricultural and Forest Meteorology, 189, 19-29.

Bean, A.R. (2004) The taxonomy and ecology of Solanum subg. Leptostemonum (Dunal) Bitter (Solanaceae) in Queensland and far north-eastern New South Wales, Australia. Austrobaileya, 6, 639-816.

Begcy, K., Weigert, A., Egesa, A.O. \& Dresselhaus, T. (2018) Compared to Australian cultivars, European summer wheat (Triticum aestivum) overreacts when moderate heat stress is applied at the pollen development stage. Agronomy-Basel, 8, 99.

Berry, J. \& Bjorkman, O. (1980) Photosynthetic response and adaptation to temperature in higherplants. Annual Review of Plant Physiology and Plant Molecular Biology, 31, 491-543.
Bureau of Meteorology, (BoM). (2018) Climate Data Online: Port Augusta Aero 2001-2018 Commonwealth of Australia.
Bureau of Meteorology, (BoM). (2019) Australian Climate and Weather Extremes Monitoring System. Commonwealth of Australia.
Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V., Aubinet, M., Buchmann, N., Bernhofer, C. \& Carrara, A. (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437, 529-533.

Cook, A.M., Berry, N., Milner, K.V. \& Leigh, A. (2021) Water availability influences thermal safety margins for leaves. Functional Ecology, 35, 2179-2189.

Cowan, T., Purich, A., Perkins, S., Pezza, A., Boschat, G. \& Sadler, K. (2014) More frequent, longer, and hotter heat waves for Australia in the twenty-first century. Journal of Climate, 27, 58515871.

Crawley, M.J. (2013) The R book, Second edn. John Wiley \& Sons, Ltd, Chichester, West Sussex, United Kingdom.
Crous, K.Y., Drake, J.E., Aspinwall, M.J., Sharwood, R.E., Tjoelker, M.G. \& Ghannoum, O. (2018) Photosynthetic capacity and leaf nitrogen decline along a controlled climate gradient in provenances of two widely distributed Eucalyptus species. Global Change Biology, 24, 46264644.

Curtis, E.M., Knight, C.A., Petrou, K. and Leigh, A. (2014). A comparative analysis of photosynthetic recovery from thermal stress: a desert plant case study. Oecologia, 175, 1051-1061.
Daniell, J.W., Chappell, W. \& Couch, H. (1969) Effect of sublethal and lethal temperature on plant cells. Plant Physiology, 44, 1684-1689.
Davies, M., Ecroyd, H., Robinson, S.A. \& French, K. (2018) Stress in native grasses under ecologically relevant heat waves. PLoS One, 13, e0204906.

De Boeck, H.J., Dreesen, F.E., Janssens, I.A. \& Nijs, I. (2011) Whole-system responses of experimental plant communities to climate extremes imposed in different seasons. New Phytologist, 189, 806-817.
De Boeck, H.J., De Groote, T. \& Nijs, I. (2012) Leaf temperatures in glasshouses and open-top chambers. New Phytologist, 194, 1155-1164.
Djanaguiraman, M., Boyle, D.L., Welti, R., Jagadish, S.V.K. \& Prasad, P.V.V. (2018) Decreased photosynthetic rate under high temperature in wheat is due to lipid desaturation, oxidation, acylation, and damage of organelles. BMC Plant Biology, 18, 55.
Drake, J.E., Tjoelker, M.G., Vårhammar, A., Medlyn, B.E., Reich, P.B., Leigh, A., Pfautsch, S., Blackman, C.J., López, R., Aspinwall, M.J., Crous, K.Y., Duursma, R.A., Kumarathunge, D., De Kauwe, M.G., Jiang, M., Nicotra, A.B., Tissue, D.T., Choat, B., Atkin, O.K. \& Barton,
C.V.M. (2018) Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance. Global Change Biology, 24, 2390-2402.

Erskine, P.D., Stewart, G.R., Schmidt, S., Turnbull, M.H., Unkovich, M. \& Pate, J.S. (1996) Water availability - a physiological constraint on nitrate utilization in plants of Australian semi-arid mulga woodlands. Plant, Cell \& Environment, 19, 1149-1159.
FloraNT (2013) FloraNT - Northern Territory flora online. (ed. N.T. Herbarium). Department of Land Resource Management.
Fox, J. \& Weisber, S. (2011) An R Companion to Applied Regression, 2nd edn. Sage, Thousand Oaks, CA.

French, K., Jansens, I.B., Ashcroft, M.B., Ecroyd, H. \& Robinson, S.A. (2019) High tolerance of repeated heatwaves in Australian native plants. Austral Ecology, 44, 597-608.

Friedman, J. \& Rubin, M.J. (2015) All in good time: Understanding annual and perennial strategies in plants. American Journal of Botany, 102, 497-499.
Guha, A., Han, J.M., Cummings, C., McLennan, D.A. \& Warren, J.M. (2018) Differential ecophysiological responses and resilience to heat wave events in four co-occurring temperate tree species. Environmental Research Letters, 13, 065008.

Handley, L.L., Austin, A.T., Stewart, G.R., Robinson, D., Scrimgeour, C.M., Raven, J.A., Heaton, T.H.E. \& Schmidt, S. (1999) The ${ }^{15} \mathrm{~N}$ natural abundance $\left(\delta^{15} \mathrm{~N}\right)$ of ecosystem samples reflects measures of water availability. Functional Plant Biology, 26, 185-199.

Harris, R.M.B., Beaumont, L.J., Vance, T.R., Tozer, C.R., Remenyi, T.A., Perkins-Kirkpatrick, S.E., Mitchell, P.J., Nicotra, A.B., McGregor, S., Andrew, N.R., Letnic, M., Kearney, M.R., Wernberg, T., Hutley, L.B., Chambers, L.E., Fletcher, M.S., Keatley, M.R., Woodward, C.A., Williamson, G., Duke, N.C. \& Bowman, D.M.J.S. (2018) Biological responses to the press and pulse of climate trends and extreme events. Nature Climate Change, 8, 579-587.
Havaux, M. (1993a) Characterization of thermal-damage to the photosynthetic electron-transport system in potato leaves. Plant Science, 94, 19-33.

Havaux, M. (1993b) Rapid photosynthetic adaptation to heat-stress triggered in potato leaves by moderately elevated-temperatures. Plant Cell \& Environment, 16, 461-467.

Heckathorn, S.A., Poeller, G.J., Coleman, J.S. \& Hallberg, R.L. (1996a) Nitrogen availability alters patterns of accumulation of heat stress-induced proteins in plants. Oecologia, 105, 413-418.
Heckathorn, S.A., Poeller, G.J., Coleman, J.S. \& Hallberg, R.L. (1996b) Nitrogen availability and vegetative development influence the response of ribulose 1,5-bisphosphate carboxylase/oxygenase, phosphoenolpyruvate carboxylase, and heat-shock protein content to heat stress in Zea mays L. International Journal of Plant Sciences, 157, 546-553.

Hoffmann, A.A., Rymer, P.D., Byrne, M., Ruthrof, K.X., Whinam, J., McGeoch, M., Bergstrom, D.M., Guerin, G.R., Sparrow, B., Joseph, L., Hill, S.J., Andrew, N.R., Camac, J., Bell, N., Riegler,
M., Gardner, J.L. \& Williams, S.E. (2019) Impacts of recent climate change on terrestrial flora and fauna: Some emerging Australian examples. Austral Ecology, 44, 3-27.

Holmgren, M., Stapp, P., Dickman, C.R., Gracia, C., Graham, S., Gutiérrez, J.R., Hice, C., Jaksic, F., Kelt, D.A., Letnic, M., Lima, M., López, B.C., Meserve, P.L., Milstead, W.B., Polis, G.A., Previtali, M.A., Richter, M., Sabaté, S. \& Squeo, F.A. (2006) Extreme climatic events shape arid and semiarid ecosystems. Frontiers in Ecology and the Environment, 4, 87-95.
Hovenden, M.J., Miglietta, F., Zaldei, A., Vander Schoor, J.K., Wills, K.E. \& Newton, P.C.D. (2006) The TasFACE climate-change impacts experiment: Design and performance of combined elevated CO_{2} and temperature enhancement in a native Tasmanian grassland. Australian Journal of Botany, 54, 1-10.
Jentsch, A., Kreyling, J. \& Beierkuhnlein, C. (2007) A new generation of climate-change experiments: Events, not trends. Frontiers in Ecology and the Environment, 5, 365-374.
Jump, A.S. \& Penuelas, J. (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecology Letters, 8, 1010-1020.
Kassas, M. \& Girgis, W.A. (1970) Habitat and plant communities in the Egyptian desert: VII. geographical facies of plant communities. Journal of Ecology, 58, 335-350.
Kimball, B.A., Conley, M.M., Wang, S., Lin, X., Luo, C., Morgan, J. \& Smith, D. (2008) Infrared heater arrays for warming ecosystem field plots. Global Change Biology, 14, 309-320.
Langsrud, Ø. (2003) ANOVA for unbalanced data: Use Type II instead of Type III sums of squares. Statistics and Computing, 13, 163-167.
Leigh, A., Sevanto, S., Ball, M.C., Close, J.D., Ellsworth, D.S., Knight, C.A., Nicotra, A.B. \& Vogel, S. (2012) Do thick leaves avoid thermal damage in critically low wind speeds? New Phytologist, 194, 477-487.
Lenth, R. (2018) emmeans: Estimated marginal means, aka least-squares means. R package version 1.3.1. Retrieved from https://cran.r-project.org/web/packages/emmeans/index.html.

Lewis, S.C., King, A.D. \& Mitchell, D.M. (2017) Australia's unprecedented future temperature extremes under Paris limits to warming. Geophysical Research Letters, 44, 9947-9956.

Marchand, F.L., Mertens, S., Kockelbergh, F., Beyens, L. \& Nijs, I. (2005) Performance of High Arctic tundra plants improved during but deteriorated after exposure to a simulated extreme temperature event. Global Change Biology, 11, 2078-2089.
Marchin, R.M., Backes, D., Ossola, A., Leishman, M.R., Tjoelker, M.G. \& Ellsworth, D.S. (2022) Extreme heat increases stomatal conductance and drought-induced mortality risk in vulnerable plant species. Global Change Biology, 28, 1133-1146.

Milner, K. (2020) The price of heat stress: functional and resource constraints to thermal tolerance in arid zone plants. PhD Thesis, University of Technology Sydney. (https://opus.lib.uts.edu.au/bitstream/10453/142273/2/02whole.pdf)

Mittler, R., Finka, A. \& Goloubinoff, P. (2012) How do plants feel the heat? Trends in Biochemical Sciences, 37, 118-125.

Nano, C.E.M. \& Clarke, P.J. (2011) How do drought and fire influence the patterns of resprouting in Australian deserts? Plant Ecology, 212, 2095-2110.
Nijs, I., Kockelbergh, F., Teughels, H., Blum, H., Hendrey, G. \& Impens, I. (1996) Free Air Temperature Increase (FATI): A new tool to study global warming effects on plants in the field. Plant, Cell \& Environment, 19, 495-502.
O'Sullivan, O.S., Weerasinghe, K.L.K., Evans, J.R., Egerton, J.J., Tjoelker, M.G. \& Atkin, O.K. (2013) High-resolution temperature responses of leaf respiration in snow gum (Eucalyptus pauciflora) reveal high-temperature limits to respiratory function. Plant, Cell \& Environment, 36, 12681284.

Parsons, P.A. (1990) The metabolic cost of multiple environmental stresses - implications for climaticchange and conservation. Trends in Ecology \& Evolution, 5, 315-317.
Pate, J.S. \& Bell, T.L. (1999) Application of the ecosystem mimic concept to the species-rich Banksia woodlands of Western Australia. Agroforestry Systems, 45, 303.
Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-Harte, M.S., Cornwell, W.K., Craine, J.M., Gurvich, D.E., Urcelay, C., Veneklaas, E.J., Reich, P.B., Poorter, L., Wright, I.J., Ray, P., Enrico, L., Pausas, J.G., de Vos, A.C., Buchmann, N., Funes, G., Quétier, F., Hodgson, J.G., Thompson, K., Morgan, H.D., ter Steege, H., van der Heijden, M.G.A., Sack, L., Blonder, B., Poschlod, P., Vaieretti, M.V., Conti, G., Staver, A.C., Aquino, S. \& Cornelissen, J.H.C. (2013) New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167-234.
Poorter, H., Niinemets, Ü., Poorter, L., Wright, I.J. \& Villar, R. (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist, 182, 565-588.
R Core Team (2018) R: A language and environment for statistical computing R Foundation for Statistical Computing, Vienna, Austria

Rajametov, S.N., Yang, E.Y., Jeong, H.B., Cho, M.C., Chae, S.Y. \& Paudel, N. (2021) Heat treatment in two tomato cultivars: A study of the effect on physiological and growth recovery. Horticulturae, 7, 119.

Reddy, P.J., Perkins-Kirkpatrick, S.E. \& Sharples, J.J. (2021) Intensifying Australian heatwave trends and their sensitivity to observational data. Earths Future, 9, e2020EF001924.
Reyer, C.P.O., Leuzinger, S., Rammig, A., Wolf, A., Bartholomeus, R.P., Bonfante, A., de Lorenzi, F., Dury, M., Gloning, P., Abou Jaoudé, R., Klein, T., Kuster, T.M., Martins, M., Niedrist, G., Riccardi, M., Wohlfahrt, G., de Angelis, P., de Dato, G., François, L., Menzel, A. \& Pereira, M. (2013) A plant's perspective of extremes: terrestrial plant responses to changing climatic variability. Global Change Biology, 19, 75-89.

Sharkey, T.D. (2005) Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant Cell \& Environment, 28, 269-277.

Stafford Smith, D.M. \& Morton, S.R. (1990) A framework for the ecology of arid Australia. Journal of Arid Environments, 18, 255-278.

Steffen, W., Hughes, L. \& Perkins, S.E. (2014) Heatwaves: hotter, longer, more often. Climate Council of Australia Ltd.

Tang, Y., Wen, X., Lu, Q., Yang, Z., Cheng, Z. \& Lu, C. (2007) Heat stress induces an aggregation of the light-harvesting complex of photosystem II in spinach plants. Plant Physiology, 143, 629638.

Teskey, R., Wertin, T., Bauweraerts, I., Ameye, M., McGuire, M.A. \& Steppe, K. (2015) Responses of tree species to heat waves and extreme heat events. Plant Cell and Environment, 38, 16991712.

Valladares, F. \& Pearcy, R.W. (1997) Interactions between water stress, sun-shade acclimation, heat tolerance and photoinhibition in the sclerophyll Heteromeles arbutifolia. Plant Cell and Environment, 20, 25-36.

Vicente-Serrano, S., M. , Lopez-Moreno, J.I., Beguería, S., Lorenzo-Lacruz, J., Sanchez-Lorenzo, A., García-Ruiz, J., M. , Azorin-Molina, C., Morán-Tejeda, E., Revuelto, J., Trigo, R., Coelho, F. \& Espejo, F. (2014) Evidence of increasing drought severity caused by temperature rise in southern Europe. Environmental Research Letters, 9, 044001.

Wang, D., Heckathorn, S.A., Mainali, K. \& Tripathee, R. (2016) Timing effects of heat-stress on plant ecophysiological characteristics and growth. Frontiers in Plant Science, 7, 1629.

Wang, Z.L. \& Huang, B.R. (2004) Physiological recovery of Kentucky bluegrass from simultaneous drought and heat stress. Crop Science, 44, 1729-1736.
Ward, E.J., Domec, J.-C., Laviner, M.A., Fox, T.R., Sun, G., McNulty, S., King, J. \& Noormets, A. (2015) Fertilization intensifies drought stress: Water use and stomatal conductance of Pinus taeda in a midrotation fertilization and throughfall reduction experiment. Forest Ecology and Management, 355, 72-82.

Zhao, W.Y., Xu, S., Li, J.L., Cui, L.J., Chen, Y.N. \& Wang, J.Z. (2008) Effects of foliar application of nitrogen on the photosynthetic performance and growth of two fescue cultivars under heat stress. Biologia Plantarum, 52, 113-116.

Zscheischler, J. \& Seneviratne, S.I. (2017) Dependence of drivers affects risks associated with compound events. Science Advances, 3, e1700263.

Table 1. F-values of four factors in models of physiological and growth traits of Solanum oligacanthum and S. orbiculatum; factors were species, season (spring versus summer), nutrient treatment (high versus low) and heat stress treatment (ambient versus heat stress).

	$\mathrm{D}_{\text {PSII }}$	MSI	stem: leaf	LMA	$\mathrm{GR}_{\text {AG }}$	Visibl e dama ge	Survi val	Flowe r no.	Fruit no.	Flower :AG	Fruit: AG
species	0.22	$\begin{aligned} & \mathbf{3 8 . 2 2} \\ & * * * \end{aligned}$	16.91	24.29	0.01	1.59	10.10	72.78	1.14	$\begin{aligned} & \text { 19.45* } \\ & * * \end{aligned}$	$7.57 *$
season	$\begin{aligned} & 8.07 \\ & * * \end{aligned}$	12.92	$\begin{aligned} & 14.90 \\ & * * * \end{aligned}$	0.14	$\begin{aligned} & 58.79 \\ & * * * \end{aligned}$	0.80	1.42	4.85	3.82	${ }_{* *}^{19.21 *}$	7.83*
nutrient	1.39	5.23*	$\begin{aligned} & 14.74 \\ & * * * \end{aligned}$	0.34	$\begin{aligned} & 14.25 \\ & * * * \end{aligned}$	0.10	0.17	129.73	$\begin{aligned} & 39.99 \\ & * * * \end{aligned}$	1.73	0.21
temperature	$\begin{aligned} & 8.74 \\ & * * \end{aligned}$	6.55*	1.26	2.32	4.98*	$\begin{aligned} & 20.43 \\ & * * * \end{aligned}$	$\underset{* * *}{16.18}$	8.78**	2.77	0.00	0.07
species * season		$\begin{aligned} & 12.44 \\ & * * \end{aligned}$	0.96	1.92	4.82*		4.19*	30.57*	2.14	11.86*	$\underset{* * *}{15.53}$
species * nutrient		2.31	1.53	0.26	0.12		3.03	3.28		0.26	
species temperature		0.00	1.70	0.26	1.02		0.04	0.37	2.17	0.51	2.12
season * nutrient		$\begin{aligned} & 14.63 \\ & * * * \end{aligned}$	0.13	0.47	6.84*	1.01	2.33	5.37*		0.10	3.62
season * temperature		0.24	0.07	1.89	1.59	3.13	6.40 *	2.05	1.78	0.21	2.45
nutrient temperature		0.55	0.00	3.64	0.20	4.33*	1.47	3.60		0.55	
$\begin{aligned} & \text { species } \\ & \text { nutrient } \end{aligned}$			3.07	1.66	1.82			2.76			
species * season * temperature				2.58						4.64*	
species * nutrient * temperature			2.32				5.58*				
season * nutrient * temperature		4.21*								2.86	
degrees of freedom	1,57	1,50	1,51	1,45	1,50	1,54	1,50	1,50	1,54	1,45	1,49
transformation	neg. $\sqrt{ }$	logit	$\log _{10}$	$\sqrt{ }$				$\log _{10}$	\checkmark	\checkmark	$\sqrt{ }$

Analysis of variance was used for all variables, except damage and survival which were analysed using general linear models. In both analyses, models were simplified by step-wise removal of non-significant interactions. Bolded F-values are significant at P-value <0.05. Levels of significance denoted as follows: ${ }^{* * *}=p<0.001 ;{ }^{* *}=p<0.01 ; *=p<0.05$. Variable descriptions: D ${ }_{\text {PSIII }}$, damage to PSII; MSI, membrane stability index; stem:leaf, ratio of stem to leaf biomass; LMA, mean leaf mass per area; $\mathrm{GR}_{\mathrm{AG}}$, growth rate of aboveground biomass; visible damage, visual damage to plants analysed as a proportion, where $<10 \%$ damage $=0,>10 \%$ damage $=1$; survival, proportion of plants survived; flower/fruit no, number of flowers/fruits produced per day since heat stress; flower/fruit:AG, ratio of flower/fruit mass to aboveground biomass. All biomass are dry weights.

Table 2. Heat map of Solanum oligacanthum and S. orbiculatum responses to heat stress normalised within a response variable.

Within each variable, the severity of response incurred during the seasonal heat stress experiment was normalised to the treatment group with the strongest mean response/damage. Normalised vales were coloured to aid in comparison, where $1=$ most damage (red) and $0=$ no damage (blue). Note: Values displayed to 2 decimal places, but colours are derived from more decimal places. Variable descriptions: D $_{\text {PSII }}$, damage to PSII; MSI, membrane stability index; GR $_{\text {AG }}$, growth rate of aboveground biomass ($\mathrm{GR}_{\mathrm{AG}}$ included negative values so transformed by adding 1); Vis. damage, proportion of plants showing visible damage; Flower/Fruit:AG, flower/fruit mass to above ground biomass; Flower/Fruit per day, number of flowers or fruits produced per day since heat stress;
Survival, proportion of plants that survived the experiment; Sum total, sum of all variables. A sum total close to nine indicates that plants did poorly across all response measures.

Fig. 1 Mean leaf temperatures during imposed heat stress (red points) and of ambient plants (dark blue points). Temperature was ramped in first 60 min , then maintained at $\sim 45^{\circ} \mathrm{C}$ for remaining 120 min (see Appendix C for detail). Data shown are all measured Solanum plants from spring and summer. Mean leaf temperature is the average of three leaves per plant. Solid lines show the loess smoothing of leaf temperatures.

Fig. 2 Mean maximum leaf temperatures $(\pm S D, n=4)$ recorded during a seasonal heat stress experiment on Solanum oligacanthum and S. orbiculatum in southern arid Australia. Plants were placed in chambers for imposed heat stress (red) or left in ambient conditions (dark blue). Different letters indicate significant ($p<0.05$) differences between the means of treatment responses.

Fig. 3 Mean (\pm SD) short-term physiological responses of Solanum oligacanthum and Solanum orbiculatum during a heat stress experiment in southern arid Australia. Main factor effects of damage to PSII (a,b). Factor interactions influencing membrane stability (MSI; c,d): c represents a three-way interaction with the colours of symbols indicative of whether plants were grown in high or low nutrients (dark green and yellow, respectively); d shows a two-way interaction with S. oligacanthum (blue) and S. orbiculatum (purple). , $\mathrm{n}=4$ with exception of S. oligacanthum summer high nutrient C and HS where $\mathrm{n}=3$. Different lower-case letters above symbols indicate significant differences $(p<0.05)$ among the means of treatments.

Fig. 4 Responses of growth and allocation of biomass in two species of Solanum subject to heat stress (mean \pm SD). Solanum oligacanthum and S. orbiculatum were grown in high or low nutrients and subjected to heat stress or ambient conditions in either spring or summer. Colours are described in Fig. 3. Variables are: LMA (a); stem to leaf ratio (b); and growth rate of leaves $\left(\mathrm{GR}_{\mathrm{AG}}\right)$. All biomass are dry weights. Significant interactions are plotted in e and f. LMA $\mathrm{n}=$ 4, except S. oligacanthum summer high nutrient ambient and HS and S. oligacanthum spring low nutrient HS where $\mathrm{n}=3$ and S. orbiculatum spring low nutrient ambient where $\mathrm{n}=2$. Stem to leaf ratio and $\mathrm{GR}_{\mathrm{AG}} \mathrm{n}=4$ with exception of S. oligacanthum summer high nutrient ambient and HS where $\mathrm{n}=3$. Different lower-case letters above symbols indicate significant ($p<0.05$) differences between the means of treatments. Note that panels e and f show two-way interactions and $\mathrm{a}-\mathrm{d}, \mathrm{g}$ are main factors. Means of main factors of aboveground biomass can be seen in Table A1; Appendix A.

Fig. 5 Visible damage and survival of desert Solanum species (Solanum oligacanthum and S. orbiculatum) following heat stress treatment (mean \pm SD). Ambient in dark blue, heat stress in red, other colours are explained in Fig. 3. Proportion of plants with visible damage greater than 10% (a); proportion of surviving plants (b-d). Significant two-way interactions are shown in panels a, c and d and three-way interaction in panel b. $\mathrm{n}=4$ with exception of S. oligacanthum summer high nutrient ambient and HS where $\mathrm{n}=3$. Different lower-case letters above symbols indicate significant ($p<0.05$) differences between the means of treatments. Note that panel b represents a three-way interaction and a, c and d show two-way interactions.

Fig. 6 Fitness and allocation of resources to reproductive structures of desert Solanum species in response to nutrient availability and seasonal heat stress (mean $\pm \mathrm{SD}$). Colours are explained in Fig. 3. Number of flowers produced per day following heat stress treatment (a-c); flower mass to aboveground (AG) biomass (d); Number of fruits produced per day following heat
stress treatment (e); flower mass to AG biomass (f). Note, panels c and e show main factors, two-way interactions are shown in panels a,b,f and a three-way interaction in panel d. Flower and fruit per day $\mathrm{n}=4$ with exception of S. oligacanthum summer high nutrient ambient and HS where $\mathrm{n}=3$. Flower and fruit to $\mathrm{AG} \mathrm{n}=4$, except S. oligacanthum summer high nutrient ambient and HS and S. oligacanthum spring low nutrient HS where $\mathrm{n}=3$ and S. orbiculatum spring low nutrient ambient where $\mathrm{n}=2$. Different letters indicate significant ($p<0.05$) differences between the means of treatments. Relative proportional representation of estimated seed output of Solanum oligacanthum (g) and S. orbiculatum (h). Fruit were harvested following heat stress treatment (ambient, A; or heat stress, HS) on plants grown in low (LN) or high (HN) nutrients in spring or summer. The mean number of seeds plant ${ }^{-1}$ was calculated using the mean number of seeds fruit ${ }^{-1} \mathrm{x}$ number of fruit plant ${ }^{-1}$ day $^{-1}$. Note that the panel on the right contains both species, with S. oligacanthum represented by the very narrow strip at bottom, which is magnified on the left to show S. oligacanthum seed output only. Mean seed output by each species by factor is shown in Table A1; Appendix A. All biomass are dry weights.

Effects of seasonal heat events on arid zone plant species Milner et al.

The following Supporting Information is available for The effects of spring versus summer heat events on two arid zone plant species under field conditions
K.V. Milner, K. French, D.W Krix, S.M. Valenzuela, A. Leigh

Appendix A. Accompanying data for heat stress responses of Solanum oligacanthum and Solanum orbiculatum.

Table A1. Main factor means ($\pm \mathrm{SE}$) of short- and long-term responses to heat stress experiment during spring versus summer.

Fig. A1 Schematic of experimental design and timeline of seasonal heat stress experiment.
Fig. A2 Maximum quantum yield $\left(\mathrm{F}_{\mathrm{v}} / \mathrm{F}_{\mathrm{m}}\right)$ of Solanum plants pre- and post-heat stress.
Fig. A3 Resprouting Solanum oligacanthum following heat stress.

Appendix B. Nutrient conditions of Solanum oligacanthum and Solanum orbiculatum.
Methods B1 Additional methodological details on leaf protein extraction.
Table B1 ANOVA output of effect of species (Solanum oligacanthum and S. orbiculatum), season (spring versus summer) and nutrient treatment (high versus low) on leaf protein content.

Fig. B1 The effect of fertliser application on nitrogen status of Solanum oligacanthum (left) and Solanum orbiculatum (right) leaves.

Appendix C. Characterising ambient and applied heat stress events in spring and summer.
Table C1 Air temperature and VPD during heat stress treatments in spring and summer.
Fig. C1 Ambient air temperature and VPD at Australian Arid Lands Botanic Gardens, Port Augusta, South Australia.

Fig. C2 Air temperature $\left({ }^{\circ} \mathrm{C}\right)$ and VPD (kPa) during four replicate heat stress treatments (one replicate per row) imposed in spring (a, c) and summer (b, d).

Effects of seasonal heat events on arid zone plant species Milner et al.

Appendix A. Accompanying data for heat stress responses of Solanum oligacanthum and Solanum orbiculatum.

Table A1. Main factor means (\pm SE) of short- and long-term responses to heat stress experiment during spring versus summer.

	Species		Season		Nutrient		Heat stress treatment	
	S. oligacanthum	S. orbiculatum	Spring	Summer	High	Low	Ambient	Heat stress
DPSII	0.05 ± 0.02	0.06 ± 0.02	0.08 ± 0.02	0.03 ± 0.02	0.05 ± 0.02	0.06 ± 0.02	0.02 ± 0.01	0.09 ± 0.02
MSI	0.95 ± 0.01	0.98 ± 0	0.98 ± 0	0.95 ± 0.01	0.95 ± 0.01	0.97 ± 0	0.97 ± 0.01	0.95 ± 0.01
Stem:leaf $(\mathrm{g} / \mathrm{g})$	3.3 ± 0.74	1.58 ± 0.31	1.45 ± 0.18	3.36 ± 0.75	1.45 ± 0.18	3.43 ± 0.77	2.14 ± 0.51	2.79 ± 0.67
$\mathrm{GR}_{\text {AG }}(\mathrm{g} / \mathrm{day})$	0.01 ± 0.01	0.01 ± 0	0.03 ± 0	-0.01 ± 0	0.02 ± 0.01	0 ± 0	0.02 ± 0.00	0.01 ± 0.01
LMA (g/m ${ }^{2}$)	90.37 ± 5.01	134.19 ± 7.44	109.06 ± 6.12	$\begin{aligned} & 115.29 \pm \\ & 8.6 \end{aligned}$	108.9 ± 6.1	115.66 ± 8.76	118.58 ± 7.55	$\begin{aligned} & 105.04 \pm \\ & 7.32 \end{aligned}$
Flower/day	2.81 ± 0.48	0.9 ± 0.18	2.12 ± 0.46	1.51 ± 0.29	3.09 ± 0.44	0.65 ± 0.16	2.06 ± 0.4	1.59 ± 0.39
Fruit/day	0.1 ± 0.02	0.15 ± 0.03	0.16 ± 0.03	0.1 ± 0.03	0.22 ± 0.03	0.04 ± 0.01	0.15 ± 0.03	0.11 ± 0.02
$\begin{aligned} & \text { Flower:AG } \\ & (\mathrm{g} / \mathrm{g}) \end{aligned}$	0.09 ± 0.02	0.03 ± 0	0.09 ± 0.02	0.03 ± 0.01	0.07 ± 0.02	0.05 ± 0.01	0.06 ± 0.01	0.06 ± 0.01
Fruit:AG (g/g)	0.01 ± 0	0.03 ± 0.01	0.03 ± 0.01	0.01 ± 0	0.02 ± 0.01	0.02 ± 0.01	0.02 ± 0.01	0.02 ± 0.01
Survival (prop.)	0.94 ± 0.03	0.82 ± 0.05	0.91 ± 0.04	0.86 ± 0.04	0.89 ± 0.04	0.88 ± 0.04	0.96 ± 0.02	0.81 ± 0.05
Damage (prop.)	0.31 ± 0.07	0.23 ± 0.05	0.24 ± 0.07	0.3 ± 0.06	0.28 ± 0.06	0.26 ± 0.07	0.1 ± 0.04	0.44 ± 0.07
AG biomass (g)	8.98 ± 1.98	12.98 ± 2.15	8.53 ± 1.4	$\begin{aligned} & 13.43 \pm \\ & 2.54 \end{aligned}$	$\begin{aligned} & 18.64 \pm \\ & 2.13 \end{aligned}$	3.31 ± 0.34	11.46 ± 2.09	10.43 ± 2.09

Effects of seasonal heat events on arid zone plant species Milner et al.

	Species		Season		Nutrient		Heat stress treatment	
	S. oligacanthum	S. orbiculatum	Spring	Summer	High	Low	Ambient	Heat stress
LA (m^{2})	0.04 ± 0.01	0.05 ± 0.01	0.04 ± 0.01	0.05 ± 0.01	0.08 ± 0.01	0.01 ± 0	0.05 ± 0.01	0.04 ± 0.01
Pre-Root mass (g)	8.69 ± 3.93	11.28 ± 4.36	0.8 ± 0.08	$\begin{aligned} & 19.17 \pm \\ & 4.41 \end{aligned}$	$\begin{aligned} & 15.85 \pm \\ & 5.19 \end{aligned}$	4.13 ± 1.24		
Pre- Root:shoot (g / g)	1.24 ± 0.16	1.34 ± 0.19	0.97 ± 0.08	1.61 ± 0.19	1.16 ± 0.18	1.43 ± 0.16		
Pre- AG (g)	5.65 ± 1.94	8.3 ± 3.55	0.85 ± 0.07	13.1 ± 3.14	$\begin{aligned} & 11.47 \pm \\ & 3.55 \end{aligned}$	2.48 ± 0.61		
Seed output (mean seed size)	S. oligacanthum S. orbiculatum	$\begin{aligned} & (7.3 \pm 0.7 \mathrm{mg}) \\ & .5 \pm 0.2 \mathrm{mg}) \end{aligned}$	$\begin{aligned} & \hline 0.11 \pm 0.02 \\ & 11.97 \pm 2.22 \end{aligned}$	$\begin{aligned} & 0.09 \pm 0.02 \\ & 6.28 \pm 1.87 \end{aligned}$	$\begin{aligned} & 0.17 \pm 0.02 \\ & 15.39 \pm \\ & 2.62 \end{aligned}$	$\begin{aligned} & 0.04 \pm 0.01 \\ & 2.866 \pm 0.02 \end{aligned}$	$\begin{aligned} & 0.10 \pm 0.02 \\ & 11.63 \pm 2.25 \end{aligned}$	$\begin{aligned} & 0.10 \pm 0.02 \\ & 6.62 \pm 1.84 \end{aligned}$

All biomass are dry weights. Parameters are explained in Table 1 with the exception of aboveground (AG) biomass and pre-heat stress harvest of AG biomass (pre-AG), root biomass (Pre-Root mass) and root:shoot ratio (Pre-Root:shoot); Leaf area (LA, m²), total LA of plant; Seed output, the number of seeds fruit ${ }^{-1}$ normalised to day. Seed output has not been statistically analysed (see Methods)

Effects of seasonal heat events on arid zone plant species Milner et al.

Date	pescripion	Schematic of treatments
	and	
\% 296		
$\overline{20} 5$	Ameme mam	
	Spring stress treatments applied (x4 replicate stress treatments) © Ambient treatrent OHeat stress treatment	
\%		
\%	Remembemes mens	
Dis.feroun	simmemememmemem	(e)
Sisperm 20	Eamamex mex	
Inemememb		

Fig. A1 Schematic of experimental design and timeline of seasonal heat stress experiment. Plants were grown from cuttings and allocated to nutrient treatments (green points); a sub-set of plants were harvested prior to the heat stress treatments (pre-harvest; pale blue points); heat stress treatments were imposed on four consecutive days (red points) in Austral spring (October) and summer (February). After the heat stress treatments, plants were left to grow and a subsample was destructively harvested for biomass and fitness (post-harvest; black points). Nondestructive sampling for visible damage, survival and numbers of flowers and fruit of all remaining plants were conducted (dark blue points).

Fig. A2 Maximum quantum yield $\left(\mathrm{F}_{\mathrm{v}} / \mathrm{F}_{\mathrm{m}}\right)$ of Solanum plants pre- and post-heat stress. Solanum oligacanthum (top panels) and Solanum orbiculatum (bottom) plants were grown in high or low nutrients. In spring (left panels) or summer (right) plants were water stressed before exposure to heat stress (red) or ambient conditions (blue). $\mathrm{F}_{\mathrm{v}} / \mathrm{F}_{\mathrm{m}}$ was measured predawn (dark adapted) on the mornings pre- and post-heat stress. Boxplots include all individual plants $(\mathrm{n}=24$, except S. oligacanthum high nutrient summer $=18)$. Box and whisker plots (in the style of Tukey: interquartiles with whiskers extending to lowest and highest datum within $1.5 * \mathrm{IQR}$ of lower and upper quartiles respectively).

Effects of seasonal heat events on arid zone plant species Milner et al.

Fig. A3. Resprouting Solanum
oligacanthum following heat stress.

Appendix B. Nutrient conditions of Solanum oligacanthum and Solanum orbiculatum.

Method B1. Additional methodological details on leaf protein extraction and protein status of leaves

To verify the effect of nutrient status, we determined total leaf protein concentration. The protein extraction protocol was modified from Knight (2010). Frozen leaf samples were ground to a fine power in tubes (Eppendorf ${ }^{\text {TM }}$ tubes, Hamburg, Germany) with a 3 mm glass bead. Samples were placed in a tissue homogeniser (MM300, Retsch GmbH, Haan, Germany) for 45 s at 100 Hz , with samples being returned to liquid nitrogen after each round of beating (repeated 10x). A protein extraction buffer (100 mM Tris, $2.5 \% \mathrm{w} / \mathrm{v}$ SDS, 5 mM EDTA, with protease inhibitor cocktail (cOmplete ${ }^{\text {TM }}$ ULTRA tablets; Merck, KGaA, Darmstadt, Germany)), was added ($740 \mu \mathrm{~L}$) and samples heated for 5 min before being rested for 1 h at room temperature. The supernatant was collected after centrifugation at 20000 g for 10 min . The total amount of protein extracted from the samples was determined using BCA assay (Thermo Fisher Scientific, Waltham, MA, USA) run in triplicate using BSA as a standard.

Additional fertiliser increased the leaf nitrogen content of fertlised plants in comparison with plants without fertiliser, although the differences were affected by season and species (Table B1; Fig. B1). The leaf protein content of plants sampled in spring did not differ, regardless of nutrient treatment; however, in summer, leaf protein content was signicantly higher in high nutrient than low nutrient grown plants. Leaf protein content was influenced by nutrient status depending upon species, whereby higher leaf protein content was seen in S. oligacanthum grown under high than low nutrient conditions, but did not differ with nutrient status in S. orbiculatum.

References

Knight, C.A. (2010) Small heat shock protein responses differ between chaparral shrubs from contrasting microclimates. Journal of Botany, pp. 7. doi:10.1155/2010/171435

Poorter, H., Bühler, J., van Dusschoten, D., Climent, J. \& Postma, J.A. (2012) Pot size matters: a meta-analysis of the effects of rooting volume on plant growth. Functional Plant Biology, 39, 839-850.

Effects of seasonal heat events on arid zone plant species Milner et al.

Table B1. ANOVA output of effect of species (Solanum oligacanthum and S. orbiculatum), season (spring versus summer) and nutrient treatment (high versus low) on leaf protein content.

	Degrees of freedom	Sum of Squares	F-value	p-value
species	1	1500	3.83	0.05
season	1	3089	7.89	$\mathbf{0 . 0 1}$
nutrient	1	608	1.55	0.21
species * season	1	1377	3.52	0.06
species *	1	1874	4.79	$\mathbf{0 . 0 3}$
nutrient		2318	5.92	$\mathbf{0 . 0 2}$
season * nutrient	1	57154		
Residuals	146			

Effects of seasonal heat events on arid zone plant species Milner et al.

Fig. B1 The effect of fertliser application on nitrogen status of Solanum oligacanthum (left) and Solanum orbiculatum (right) leaves. Total leaf protein concentration (mg / g FW) from plants following application of fertiliser (high nutrient) or growth in sand and potting mix alone (low nutrient) (Box and whisker plots (in the style of Tukey), with sample size indicated above).

Effects of seasonal heat events on arid zone plant species Milner et al.

Appendix C. Characterising ambient and applied heat stress events in spring and summer

Desert plants naturally experience heatwaves under drought, high light conditions and low wind and humidity, which can result in poor water relations.To confirm that experimental plants were water stressed, pre-dawn leaf water potential $\left(\Psi_{\mathrm{L}}\right)$ was compared with that of well-watered plants grown alongside experimental plants. In spring, although non-significant Ψ_{L} was lower in water stressed $(-0.8(-0.6,-0.9) \mathrm{MPa}$; bootstrap mean and $95 \% \mathrm{CI})$ than well-watered $(-0.6(-0.5,-0.7)$ MPa) S. oligacanthum plants and S. orbiculatum plants $(-0.7(-0.5,-0.7)$ MPa and $-0.6(-0.5,-0.7)$ MPa of water-stressed and well-watered plants respectively). In summer, Ψ_{L} was significantly lower in water-stressed than well-watered plants of both S. oligacanthum (-0.9 (-0.7, -1.2) and -$0.6(-0.5,-0.6) \mathrm{MPa}$ respectively) and S. orbiculatum ($-1.2(-0.9,-1.6)$ and $-0.7(-0.5,-0.9) \mathrm{MPa}$ respectively).

During spring, photosynthetically active radiation (PAR) was measured with a Li-190R Quantum Sensor and LI-250A light meter (Li-COR, Lincoln, Nebraska, USA). PAR received in the chambers was $\sim 26 \%$ lower than light levels outside (independent samples t-test; $\mathrm{t}_{14}=2.57, \mathrm{p}=$ 0.02), however, the mean chamber PAR of $1347 \pm 118 \mathrm{mmol} \mathrm{m}^{-2} \mathrm{~s}^{-1}$ was similar to saturating light levels for Australian desert plants (e.g., $1200 \mathrm{mmol} \mathrm{m}^{-2} \mathrm{~s}^{-1}$ PAR for Acacia anuera in arid Northern Territory; (Wujeska-Klause et al. 2015). Photoperiod in October and February when heat stresses were imposed was approximately 13 h . With an average annual PAR of approximately $1500 \mathrm{mmol} \mathrm{m}^{-2}$ day $^{-1}$ (Owen \& Griffiths 2013). Heat stress events in nature often occur when wind speed drops, reducing forced convection that would otherwise prevent leaves from overheating (Vogel 2009). To check that experimental heat stress events mimicked such conditions, wind speed inside and outside of the chambers was measured using a digital anemometer (435; Testo, Testo SE \& CO.KGaA, Lenzkirch, Germany). Recorded wind speeds were $0.04-1.14 \mathrm{~ms}^{-1}$ inside chambers and 0.09-8.9 ms^{-1} outside chambers, with greater variance (SD) outside than in chambers (1.30 and $0.20 \mathrm{~ms}^{-1}$ respectively). Wind speed was significantly higher outside than inside chambers (Welch two sample t -test with unequal variance: $\mathrm{t}_{390}=23.527, p<0.001$).

During heat stress treatments, leaf temperature was monitored using a non-contact infrared thermometer (accuracy $\pm 2.5 \%{ }^{\circ} \mathrm{C}$; IP67; Jaycar, NSW, Australia) and a thermographic camera with emissivity set to 0.95 (accuracy $\pm 2^{\circ} \mathrm{C}$ or $\pm 2 \%$ of m.v.; Testo $885-2$; Testo SE \& CO.KGaA, Lenzkirch, Germany). Photographs were taken with a number of plants in field of

Effects of seasonal heat events on arid zone plant species Milner et al.
view approximately four times throughout the 3 h heat stress period. For leaf temperature analysis, images taken with the camera were used to find temperatures of three target leaves (0.6 m from heat source) per plant per time point using the manufacturer's software (Testo IRSoft, v4.4). During all heat stress events (except one replicate in spring), ambient air temperature ($\mathrm{T}_{\text {air }}$) and humidity in chambers were recorded using climate loggers (DS1923; iButton $®$, Alfa-Tek Australia) suspended within a double-layer, cup-shaped white plastic shield to maintain air flow around the sensor while reflecting radiation. In addition, air temperature and humidity were constantly monitored, using iButtons ${ }^{\circledR}$, where potted plants were grown. Vapour pressure deficit was calculated using the formula:

$$
V P D=\frac{(100-\text { relative humidity })}{100} \times \text { saturated vapour pressure }
$$

Seasonal differences in ambient air temperature and VPD during the experimental period (including the five days prior, during and five days post heat stress treatment) were apparent, with warmer and drier conditions in summer than in spring (Fig. C1). In summer, a natural heatwave (three consecutive days exceeding the $90^{\text {th }}$ percentile) occurred two days prior to experimentation (Fig. C1b). During the heat stress treatments in spring, air temperatures in the open-top chambers (Table C1; Fig. C1a) were generally greater than naturally occurring heatwaves in this region at a similar time of year (three days $>33^{\circ} \mathrm{C}, 90^{\text {th }}$ percentile maximum temperature data from Port Augusta Airport 2001-2017; BoM 2018). During summer treatments, imposed heat stress air temperatures in the chambers (Table C1; Fig. C1b) were similar to typical summer heatwaves (3 days $>40^{\circ} \mathrm{C}$). Mean leaf temperatures of heat-stressed plants reached $47^{\circ} \mathrm{C}$, in spring and $50^{\circ} \mathrm{C}$ in summer, which is comparable to a mean maximum leaf temperature of $52^{\circ} \mathrm{C}$, measured in other water-stressed native desert plants at this site during early summer (Cook et al., unpublished).

References

Bureau of Meteorology (BoM). (2018) Climate Data Online: Port Augusta Aero 2001-2018. Commonwealth of Australia
Owen, N.A. and Griffiths, H. (2014), Marginal land bioethanol yield potential of four crassulacean acid metabolism candidates (Agave fourcroydes, Agave salmiana, Agave tequilana and Opuntia ficus-indica) in Australia. GCB Bioenergy, 6, 687-703.
Vogel, S. (2009) Leaves in the lowest and highest winds: temperature, force and shape. New Phytologist, 183, 13-26.

Effects of seasonal heat events on arid zone plant species Milner et al.

Wujeska-Klause, A., Bossinger, G. \& Tausz, M. (2015) Seedlings of two Acacia species from contrasting habitats show different photoprotective and antioxidative responses to drought and heatwaves. Annals of Forest Science, 72, 403-414.

Effects of seasonal heat events on arid zone plant species Milner et al.

Table C1. Air temperature and VPD during heat stress treatments in spring and summer.

Season	HS treatment	Air temperature (${ }^{\circ} \mathrm{C}$)				VPD (kPa)			
		min	max	mean	heat sum	min	max	mean	deficit sum
Spring									
Overall mean	Ambient	30.5	32.5	31.4	5692.2	3.6	4	3.8	686.5
	HS	34.6	41.6	39.1	7083.7	4.6	7.2	6.2	1123.5
HS 2	Ambient	24.7	28.2	26.4	4781.2	2	2.6	2.3	411.1
	OTC1	32.7	41.1	38.5	6974.7	3.7	6.6	5.6	1010.6
	OTC2	31.1	37.6	34.7	6275.1	3.3	5.2	4.3	781.1
HS 3	Ambient	29.7	33.1	31.2	5654.6	3	4.1	3.6	657.6
	OTC1	32.1	38.6	36.2	6546.6	3.8	6	5.1	921.9
	OTC2	34.1	45.1	40.1	7262.1	4.2	8.6	6.5	1184.3
HS 4	Ambient	35.6	38.6	36.7	6640.8	5.1	6.1	5.5	991
	OTC1	38.6	46.6	42.8	7738.9	6.1	9.8	7.9	1429.6
	OTC2	37.6	47.1	42.6	7705.1	5.8	9.9	7.8	1413.6
Summer									
Overall mean	Ambient	34.5	38.2	36.7	6634.9	4.1	5.4	4.8	872.7
	HS	38.2	44.8	42.8	7746.5	5.3	8.1	7.1	1293.4
HS 1	Ambient	28.1	31.6	30.1	5440.1	2.6	6.1	4.8	869.4
	OTC1	30.1	44.1	38.3	6940.6	4.8	6.9	5.8	1047.4
	OTC2	29.7	40.6	37.1	6709.4	5.8	9.2	7.8	1417.3
HS 2	Ambient	36.6	41.6	39.2	7095.9	6.2	10.2	8.7	1581.5
	OTC1	40.1	46.6	44	7972	5.5	8.3	6.8	1232.4
	OTC2	41.1	48.6	46.1	8341.4	7.2	11.2	9.6	1737.1
HS 3	Ambient	37.6	44.6	41.2	7449.2	6.6	10.4	9	1635.5
	OTC1	42.1	50	47.2	8548.6	3.3	4.7	3.9	705.9
	OTC2	40.6	48.6	46.1	8347.1	4.5	6.9	5.8	1048.3
HS 4	Ambient	34.6	38.6	36.2	6554.1	4.6	7	6.1	1099.9
	OTC1	38.1	44.1	41.4	7493.4	2.3	3.2	2.8	505.1
	OTC2	38.1	44.1	42.1	7619.7	2.8	7.5	5.3	958.4

Heat stresses were imposed in open top chambers using infrared lamps. Ambient conditions were measured adjacent to chambers. Minimum, maximum and mean are given for air temperature and VPD. Heat sum and deficit sum are the sum of all readings logged at one min intervals for the 180 min duration of the experiment. No data collected for replicate 1 HS in spring due to non-functional data loggers.

Effects of seasonal heat events on arid zone plant species Milner et al.

Fig. C1 Ambient air temperature and VPD at Australian Arid Lands Botanic Gardens, Port Augusta, South Australia. Data for the five days preceding, four days during (shaded area) and five days following heat stresses in spring (a) and summer (b).

Effects of seasonal heat events on arid zone plant species Milner et al.

Fig. C2. Air temperature $\left({ }^{\circ} \mathrm{C}\right)$ and VPD (kPa) during four replicate heat stress treatments (one replicate per row) imposed in spring (a, c) and summer (b, d). Heat stress conditions are shown within open top chambers (red lines) and ambient conditions adjacent to chambers (blue lines). No data were collected for the first replicate treatment in spring due to non-functional data loggers.

