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Abstract
Single step genomic best linear unbiased prediction (HBLUP) has been widely used in livestock breeding. 
The HBLUP method (e.g. BLUPf90) requires hyper-parameters to combine genomic and pedigree 
relationships and these should be adequately initialised to maximise the accuracy of genomic prediction. 
In this study, we assess the performance of HBLUP, using various values of hyper-parameters in simulated 
genomic data. We show that the tuning parameter (tuning GRM relative to the pedigree-based numerator 
relationship matrix) considerably increases prediction accuracy, confirming previous studies. The scale 
factor, α, which scales the allele effect size by its frequency, also affects accuracy and the optimal scale factor 
can vary for each trait. In conclusion, fine-tuning the hyper-parameters of HBLUP is necessary to maximize 
prediction accuracy and the scale factor should be considered.

Introduction
Single step genomic best linear unbiased prediction uses a H-matrix that is a harmonised matrix of a 
pedigree-based numerator relationship matrix (NRM) and a genomic relationship matrix (GRM). The 
method is known as HBLUP. The H-matrix allows us to use the information of non-genotyped individuals 
in genomic prediction, using a data augmentation technique (see Legarra et al. 2009; Misztal et al. 2009). 
HBLUP has been widely used in the genetic evaluation of livestock (McMillan et al. 2017).

In HBLUP, there are several (hyper) parameters that can determine the performance of HBLUP.

Firstly, blending is important because it ensures GRM being a positive definite matrix (VanRaden 2008) 
thereby avoiding numerical problems in HBLUP (Legarra et al. 2009). Secondly, tuning is important 
because it adjusts the scale of GRM relative to that of NRMbefore inverting. Given that GRM is based 
on samples in the last few generations (genotyped individuals) whereas pedigree has been recorded from 
the founders, tuning can correct for this scale difference (Legarra et al. 2009; Miztal et al. 2009). Thirdly, 
parameters required to construct GRM may be important. A pairwise genomic relationship is the product 
of scaled genotypic coefficients of two random individuals (VanRaden 2008; Yang et al. 2010). Speed et al. 
(2012) generalised these forms, introducing a scale factor (α) that can determine the genetic architecture of 
a complex trait (aka heritability model).

In this study, we investigate the hyper-parameters required to estimate GRM to see how they affect the 
accuracy of HBLUP. First, various values of tuning and blending hyper-parameters were applied and 
compared to assess the performance of HBLUP, using simulated data with various scenarios of the historical 
population. In the analyses, we used the direct average information algorithm (Lee et al. 2006; Yang et al. 
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2011) that is robust to non-positive definite GRM so that we can assess all sorts of blending values including 
blending = 1. This is followed by exploring various values for the α of GRM that can determine the genetic 
architecture of a complex trait (heritability model).

Materials & methods
Simulated data. QMSim software (Sargolzaei et al. 2009) was used to simulate the historical population 
for 100 generations. In each generation, 50 males and 500 females were randomly selected and mated, 
generating 1000 offspring. Nine thousand biallelic markers in total were simulated, which were equally 
distributed across 30 chromosomes. Phenotypes were simulated for a complex trait, varying the scale 
factor (α=0 or -0.5) (Gowane et al. 2019). For the HBLUP analyses, the last five generations were recorded 
for phenotype and pedigree (n=5,000) and the last two generations were genotyped (n=2,000). To assess 
HBLUP accuracy, 1000 individuals were randomly selected from the last two generations as the target 
dataset, and the remaining 4,000 samples (1000 genotyped and 3,000 ungenotyped) were used as the 
discovery dataset.

Bending and tuning of GRM in HBLUP. The blending process can adjust the GRM to be a positive definite 
matrix (Legarra et al. 2009, Misztal et al. 2009). The adjusted GRM, referred to as Gblended, can be expressed 
as:

𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝜃𝜃𝐺𝐺 + (1 − 𝜃𝜃)𝐴𝐴22     ∀  0 ≤  𝜃𝜃 ≤ 1 (1)

where θ is a positive coefficient to achieve a balance between GRM and the part of NRM (A22) that is 
corresponding to the numerator relationships between the genotyped individuals.

Subsequently, the tuning process can be applied to adjust the scale of the GRM relative to that of the NRM. 
Following Legarra et al. (2014), the adjusted GRM is tuned as

𝐺𝐺𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛽𝛽𝐺𝐺𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝜔𝜔𝜔𝜔 (2)

where J is a matrix with the same size of GRM, and all elements are equal to one, and ω and β are computed 
as:

�́�𝐼𝜔𝜔 𝜔 ( 𝐴𝐴22 𝐼𝐼
2
−𝐼𝐼�́�𝐼𝐼𝐼𝐼

𝑛𝑛   𝛽𝛽 𝛽
[ ∑ 𝐴𝐴22𝑖𝑖𝑖𝑖𝑖

𝑛𝑛
𝑖𝑖=1 −𝐼𝐼′𝐴𝐴22𝐼𝐼𝐼

𝑛𝑛
[ ∑ 𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑛𝑛

𝑖𝑖=1 −𝐼𝐼′𝐺𝐺𝐼𝐼𝐼
𝑛𝑛

 (3)

where I is an array with the size of n × 1 and all values equal to one.

Genomic relationship matrix (GRM) and scale factor (α). It is assumed that the relationship between 
genetic variance and allele frequency can change depending on the evolutionary forces such as selections, 
mutation, migrations, and genetic drift. In the following equation, we can see that the variance of the ith 
genetic variant (vi) is a function of the allele substation effect (βi) and the allele frequency (pi), which can 
be written as (Momin et al. 2021)

𝑉𝑉𝑉𝑉𝑉𝑉(𝑣𝑣𝑖𝑖) = 2𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)1+2𝛼𝛼 × 𝛽𝛽𝑖𝑖2 (4)

where α is the scale factor that can determine the relationship between genetic variance and allele frequency, 
i.e. the genetic architecture of a complex trait. In the infinitesimal model (Falconer and Mackay 1996), 
α is assumed to be zero for all traits. An alpha value of -0.5, assumes that the genetic variance of the 
causal variant has a uniform distribution across tits minor allele frequency spectrum. However, it has been 
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reported that the value of α can vary, depending on trait and population (Momin et al. 2021; Speed et al. 
2017; Speed et al. 2012). The generalised form of the GRM with the hyper-parameter of alpha (Speed et al. 
2012) can be written as

𝐺𝐺𝑖𝑖𝑖𝑖 =
1
𝑑𝑑 ∑𝑙𝑙𝑙1[(𝑥𝑥𝑖𝑖𝑙𝑙 − 2𝑝𝑝𝑙𝑙)(𝑥𝑥𝑖𝑖𝑙𝑙 − 2𝑝𝑝𝑙𝑙)][2𝑝𝑝𝑙𝑙(1 − 𝑝𝑝𝑙𝑙)]2𝛼𝛼𝐿𝐿  (5)

where Gij is the genomic relationship between the ith and jth individuals, the number of SNPs is L and d is 
the expected diagonals and computed as:

𝑑𝑑 𝑑 𝑑𝑑 𝑑 𝑑𝑑[(𝑥𝑥𝑖𝑖𝑖𝑖 − 2𝑝𝑝𝑖𝑖)𝟐𝟐[2𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)]2𝛼𝛼] (6)

Statistical models. In this paper, we used genome-based restricted maximum likelihood (GREML) and 
HBLUP, based on linear mixed models, to predict individual breeding values (Gao et al. 2012).

Results
Figure 1a shows that the tuning process significantly improves the prediction accuracy (Pearson corelation 
coefficient (R-value) between true and estimated breeding value), confirming previous studies. Blending 
with θ<1 is not really improving the performance of HBLUP. The tuning parameter (tune=1, Eq. 3) based 
on Legarra et al. (2009) performed better than tune=2 (Eq. 3 except for β=1). Figure 1b shows that the 
choice of the α value (scale factor) is important and an optimal α can improve the prediction accuracy. 
As expected, the highest prediction accuracy is achieved when using the true α value. As shown in Figure 
1c, the best configuration of the hyper-parameters could be obtained, using a grid search that considered 
blend, tune and alpha (scale factor) simultaneously.

Discussion
A blending strategy was not effective in improving the accuracy of HBLUP for various historical population 
scenarios (result not shown) although one study reported that blending could increase the prediction 
accuracy in dairy cattle (Gao et al. 2012). The second observation was that the tuning methods on the 
H-matrix could significantly increase the prediction accuracy. We compared three tuning methods 

Figure 1. HBLUP accuracy and hyper-parameters. (a) The HBLUP accuracy (R-value) improves when using tune=1 
(Equation 3) or tune=2 (Equation 3 except β=0 Vitezica et al. 2011). However, blending (θ<1) would not increase 
the accuracy for this simulated dataset. The error bars are 95% CI over 3,000 replications. (b) The HBLUP accuracy 
increases when using the true α values used in the simulation. The error bars are 95% CI over 3,000 replications. 
(c) The HBLUP accuracy for a single simulation replicate using a grid search method where the prediction accuracy 
was measured from 5-fold cross validation.

(a) (b) (c)
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including tune=1 (based on Legarra’s method (2009)), tune=2 (based on Vitezica et al. 2011), and tune=0 
(i.e. without tuning). It is well known that alpha can vary across populations and traits (Momin et al. 2022). 
We show that the effect of α on the HBLUP accuracy was considerable. Our findings confirm that fine-
tuning the hyper-parameters of HBLUP is necessary where the scale factor, a novel hyper-parameter in 
the context of HBLUP, should be considered. It is recommended that a grid search or similar optimisation 
algorithm should be used to find the best configuration for these hyper-parameters including blending, 
tuning and alpha.
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