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Abstract- The problem of open-pit mining optimization is a 
complex task, often containing many variables. In this paper, we 
apply a trajectory-based algorithm known as simulated annealing 
together with a well-known population-based algorithm, genetic 
algorithm, used to generate solutions for a formulation of the 
constrained pit problem (CPIT). Three datasets were used to test 
this simulation, Newman1, zuck_small, and KD. The results show 
that simulated annealing as a trajectory algorithm possesses a 
slightly better performance in comparison with the genetic 
algorithm in terms of profit value.   

      Keywords- Metaheuristics, Open-Pit Mining, Genetic Algorithm, 
Simulated Annealing. 

I. INTRODUCTION 
   An optimization problem, particularly when dealing with 

mixed-integer programming (MIP), becomes computationally 
expensive for conventional algorithms to solve. This happens 
especially when the number of variables and constraints 
increase, and therefore metaheuristics are proposed to tackle 
these problems [1] [2][3]. Open-pit mining is one of these fields 
of optimization problems, where computers show difficulties in 
solving the complex constraints of the mixed-integer problem 
in a reasonable amount of time [4] [5]. Open-pit mining is one 
of the most commonly used surface mining methods to extract 
minerals from the Earth [6]. This method is nowadays a multi-
billion dollar industry [7] [8], and because of this, there has 
been a huge focus on finding feasible solutions for optimal 
resource extraction scheduling. 

Additionally, metaheuristic methods have been 
developed and implemented with the goal of reducing the total 
runtime of optimization problems [9]  [10], yet ending with 

results that are almost as accurate and precise as conventional 
solving methods. Metaheuristics can be classified into two main 
categories; Trajectory-based and Population-based methods 
(Figure 1). A Trajectory-based algorithm uses a single solution 
that moves toward a design space. In contrast, a Population-
based algorithm uses multiple solutions to search for the design 
space to find an optimal solution. Simulated Annealing (SA) is 
known as one of the most well-known Trajectory-based 
algorithms, while the Genetic Algorithm (GA) is recognized as 
one of the most famous Population-based algorithms.  

 

 
Figure 1. Metaheuristics classification. 

    The constrained pit limit problem (CPIT) is an optimization 
problem formalized by Espinoza et al. [11] regarding open-pit 
mining. This problem can be simplified by using an analogy of 
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a real open-pit mine, where the goal is to maximize profit. It 
can be envisioned as a grid of blocks, each with its own numeric 
value representing the profit from mining the block. The 
problem has a resource constraint related to the number of 
blocks that can be excavated during each turn. Furthermore, 
like a real open-pit mine, blocks must first be mined from the 
top, before the player can reach the blocks below. Regarding 
the value of all the blocks, these are known at any point in time. 
In this study, a SA and a GA are applied to generate solutions 
to CPIT, where the results are then compared with each other 
in terms of profit values, using three different datasets.  

        The rest of the paper is structured as follows: Section II 
presents the literature review that describes previous works 
regarding CPIT; Section III describes the methodology and 
implementation of the performed experiments; Section IV 
contains the obtained results, and section V presents the main 
conclusions of the work. 

II. LITERATURE REVIEW 
In the past, several approaches have been used to 

optimize the open-pit mine problem. Bienstock and Zuckerberg 
[12]  suggested a method that optimizes a more general form of 
CPIT, known as the Precedence Constrained Production 
Scheduling Problem (PCPSP). The algorithm involves a 
Lagrangian relaxation method while also using specific 
information regarding the structure of PCPSP, to improve how 
quickly the algorithm converges on an optimal solution. This 
method was able to produce quick results when compared to 
directly using a program to solve the original linear 
programming problem. However, since Lagrangian relaxation 
allows the solver to break some constraints, it is not guaranteed 
that the process produces a feasible solution to the original 
problem. A version of this algorithm was used to produce some 
of the example solutions in the dataset used in this paper. Unlike 
the present paper's experiments, this algorithm uses a program 
to find an exact solution to the problem rather than the 
approximate maximum solutions produced with metaheuristic 
methods [13][14]. Kenny et al. [13] proposed a merge search 
method for the problem in 2018, having improved it later in 
2019 [14].  

The merge algorithm is a meta-metaheuristic algorithm that 
relies on the result of multiple metaheuristics applied to smaller 
problems. This is achieved using problem reduction techniques, 
which remove redundant variables and constraints, creating 
several smaller “sub-problems”. These sub-problems are 
evaluated with a range of multiple metaheuristic algorithms, 
with a merge algorithm being applied to determine the place 
where a large majority of the algorithms agree on a solution. If 
enough of the smaller metaheuristics agree on which squares 
should be mined, then this is likely a good solution, being 
shown that probably there is no need to more computing time 
to change the final results. However, if a majority of the sub 
metaheuristics have different conclusions, then a new area in 
the sample space is explored using SA. Once enough of the sub-
metaheuristics agree on a solution, the blocks are mined, and a 
new area in the sample space is explored for the next time 
period. 

 The main goal of this paper is to evaluate the 
perforemannce of two different categories of metaheuristics for 
solving CPIT. Along with the main research focus, more specific 
research questions were created as follows: 

1) Which algorithm finds the best solution for 
CPIT between the SA and the GA using the datasets from 
Minelib [11]?  

2) Between the SA and the GA, which 
algorithm finds a relevant solution to CPIT more quickly?  

III. METHODOLOGY 
The following subsections present the implementation of the 
SA and the GA for CPIT, which were presented in [15]. For the 
performed experiments, CPIT is represented as a MIP with 
predefined variables and relations, and an objective function 
that needs to be maximized.  

A. Simulated Annealing 
 The SA algorithm is a heuristic method used to find 
the global optimum of an objective function. SA algorithm 
finds the global optimum by searching a solution space 
containing both local maxima and minima. The SA is a meta-
metaheuristic used for global optimization in a large solution 
space. As a result, for mixed-integer programming problems, 
which require finding the global optimum, an approximate 
solution from a SA metaheuristic may be preferred over exact 
solutions from systematic mathematical methods, such as 
branch and bound. A SA algorithm works by comparing 
iterative outputs with current and neighboring objective nodes. 
If a neighboring node generates a better solution than the 
current iteration, the neighboring weights are used for the next 
iteration. One of the objectives of this study is to implement a 
SA algorithm as a trajectory algorithm, so CPIT can be solved 
and compared with a well-known Population-based algorithm, 
which in this case was the GA. From Bertsimas and Tsitsiklis 
[16], some basic elements of a SA algorithm were 
implemented into Python from scratch, without any external 
libraries or packages, except for NumPy (it used its 
mathematical exponent and random functions). The pseudo-
code for the used the SA algorithm is as follows (Algorithm 
1): 

 
Algorithm 1. SA algorithm implementation for the 
CPIT. 
 
state = random_start where random_start ∈ 
solution_space 
 
cost = the cost of the CPIT objective 
 
for i = 1 to number of blocks do 

a) temp = max(0.01, (i ÷ number of blocks)) 
b) next_state = get neighbor from state’s 

precedences 
c) next_cost = get cost of next_state 
d) acceptance_prob =  𝑒𝑒𝑒𝑒𝑒𝑒[− 𝑖𝑖

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 ∗

(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

)] 
if acceptance_prob > rand_int(0, 1) do 

i. state = next_state 
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ii. cost = next_cost 

 
return [list(states), list(costs)] 
 

B. Genetic Algorithm (GA) 
A GA is a metaheuristic search algorithm that mimics 

the process of natural evolution, belonging to a larger class of 
evolutionary algorithms. These algorithms generate solutions 
to optimization problems using several techniques, namely, 
inheritance, mutation, selection, and crossover, all of them 
inspired by natural evolution.  

 Alipour et al. implemented a GA [17]using the CPIT 
objective function to evaluate the population's fitness. The 
initial population is randomly generated and afterward 
normalized, ensuring that the solutions fit the constraints; 200 
iterations are run on the population, by using the best solutions 
at the end, regardless of their fitness. Following this paper, a 
GA was implemented using Python 3, without any imported 
external libraries. The pseudo-code which represents the 
internal logic of the algorithm can be seen here (Algorithm 2): 

 
Algorithm 2. GA implementation for the CPIT. 
 
generate an initial population of random solutions 
 
normalize the population 
 
for i = 1 to 200 do 

a) randomly choose 2 parents P1 and P2 
b) crossover them to generate offspring_1 and 

offspring_2 
c) normalize offspring 

if offspring_1.fitness > P1.fitness do 
i. P1 = offspring_1 

if offspring_2.fitness > P2.fitness do 
ii. P2 = offspring_2 

return solution with the highest fitness 
 

 

C. Finding the Maximum Upper Bound 
 Using A Mathematical Programming Language 
(AMPL) [18], it is possible to create mathematical models for 
optimization problems, and more importantly, MIP problems 
that contain constraints. AMPL also has a Python 
compatibility package, which is known as AMPLPy. Using 
AMPLPy, it is possible to run AMPL model files in Python. 
Consequently, it is possible to run the CPIT model file in 
Python to find the maximum upper bound for a designated 
dataset.  
The AMPL model for CPIT has some differences when 
compared to the proposed Python implementation of CPIT in 
this paper. While the AMPL model is designed to find the 
exact solution, the proposed Python implementation of CPIT 
is used as the objective function to generate neighboring 
solutions for both the SA and the GA. 
  

D. Datasets 
 All the used datasets in these experiments come from 
Minelib [11]. For CPIT, the number of blocks in the mine and 
the precedences for each block are known. In this work, three 
datasets were used: Newman 1, Zuck_small, and KD, with 
time periods of 6, 20, and 12, respectively. Figure 2 presents 
the number of blocks and precedences of the three datasets.  

 
Figure 2. Number of blocks and precedences of each dataset. 

IV. RESULTS AND DISCUSSION 

For the experiments performed during this work, all the 
algorithms were run on a single desktop computer with an 
AMD Ryzen 3950x 3.9 GHz CPU. Doing so made it possible 
to keep consistent runtimes between each algorithm. All the 
results shown in Figures 3-5 are of arbitrary profit units, 
having no consistent way to track the exact amount of profit 
from an open-pit mine, since the value of resources changes 
on a daily basis. In section A, the experimental results have 
been described in detail. 

 
Figure 3. Profit values gained for the Newman1 dataset using the 

different algorithms. 

 
Figure 4. Profit values gained for the Zuck_small dataset using the 

different algorithms. 



3 
 

 
Figure 5. Profit values gained for the KD dataset using the different 

algorithms 

A. THE EXPERIMENTAL RESULTS 

     The implemented GA was significantly faster in the 
generation of a result when compared to the SA algorithm. 
However, overall, both metaheuristic algorithms were rather 
slow since each of them took several minutes to generate 
results for the smaller datasets. As the datasets increased, the 
number of blocks and precedences, the algorithms became 
even slower. The maximum upper bound for CPIT was 
attained using an AMPL model of CPIT, and running the 
AMPL model with the associated dataset. With this, it was 
possible to determine the maximum solution for CPIT, 
allowing for the use of a base to the results of the 
metaheuristic models against the expected maximum 
solution of CPIT. 

 The results achieved from the SA and the GA showed 
that each algorithm took several minutes to complete, even 
for tiny datasets. There are several reasons for these results, 
with the most likely being the way Python was used for the 
implementation of CPIT and the method of finding 
appropriate random and neighboring solutions.  

       There are several ways to improve the CPIT 
model. Since the model was implemented by using lists and 
arrays for holding data from the datasets, many of the 
functions to access blocks’ data, including the profit value 
for that block or the precedents of that block, require linear 
iteration through the array until the correct index is found. 
As a result, accessing block’s data that is needed to generate 
a neighbor would result in a function that runs in 𝑂𝑂(𝑛𝑛2) time 
complexity, since the block index needs to be accessed, as 
well as the precedence index for that particular block. One 
crucial step that can be used to reduce runtimes would be to 
make the CPIT model a multithreaded one, which would 
allow the model to have access to more than one CPU thread 
during its execution. For most CPUs, including the one on 
which the tests were run, implementing a multithreaded 
capacity would have considerably reduced the runtime of the 
CPIT model.  

V. CONCLUSION 
In this paper, two well-known metaheuristics, the SA and the 
GA, from two different categories, namely, Trajectory and 
Population-based algorithms, respectively, were applied. 
The results showed both algorithms lead to the same profit 
values for Newman1 and KD datasets, while the SA 
possesses a better profit value when using zuck_small 
dataset. Improving the implementation of both the SA and 
the GA, combined with a better optimized CPIT model, may 
lead to higher quality results that come within a ~5% range 
of the theoretical upper bounds. 

 
        One of the future objectives is to improve the 
implementation by solving some of the problems of the CPIT 
model, particularly the time complexity of the algorithm, as 
well as handling the constraints of the CPIT model in a 
different manner, where the scheduling of neighboring 
blocks is more confined to the precedences. Moreover, it is 
worth noting that the runtime of these algorithms depends on 
the choice of parameter settings; in this paper, the default 
settings have been conducted, and it is suggested for future 
work that different operator settings are addressed. It is also 
an objective to look at other solutions to CPIT, such as 
Kenny et al.’s merge search [19] [14], where the SA is 
applied to generate the neighboring solutions rather than to 
solve the entire CPIT. From this information, it may be 
possible to combine metaheuristic algorithms to form only 
one result instead of implementing separate metaheuristics to 
find the global optimum. 
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