
“© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating

new collective works, for resale or redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works.”

Comparison of Trajectory and Population-based
Algorithms for Optimizing Constrained Open-pit

Mining Problem

Iman Rahimi

Faculty of Engineering & IT,
University of Technology
Sydney, Sydney, Australia

iman83@gmail.com

Theodore Picard
Faculty of Engineering & IT,

University of Technology
Sydney, Sydney, Australia

theodore.picard@student.uts.edu
.au

Andrew Morabito
Faculty of Engineering & IT

University of Technology
Sydney, Sydney, Australia

andrew.d.morabito@student.uts.
edu.au

Kiriakos Pampalis
Faculty of Engineering & IT,

University of Technology
Sydney, Sydney, Australia

kiriakos.pampalis@student.uts.e
du.au

 Aiden Abignano
Faculty of Engineering & IT

University of Technology
Sydney, Sydney, Australia

aiden.j.abignano@student.uts.ed
u.au

Amir H. Gandomi
Faculty of Engineering & IT,

University of Technology
Sydney, Sydney, Australia

Gandomi@uts.edu.au

Abstract- The problem of open-pit mining optimization is a
complex task, often containing many variables. In this paper, we
apply a trajectory-based algorithm known as simulated annealing
together with a well-known population-based algorithm, genetic
algorithm, used to generate solutions for a formulation of the
constrained pit problem (CPIT). Three datasets were used to test
this simulation, Newman1, zuck_small, and KD. The results show
that simulated annealing as a trajectory algorithm possesses a
slightly better performance in comparison with the genetic
algorithm in terms of profit value.

 Keywords- Metaheuristics, Open-Pit Mining, Genetic Algorithm,
Simulated Annealing.

I. INTRODUCTION
 An optimization problem, particularly when dealing with

mixed-integer programming (MIP), becomes computationally
expensive for conventional algorithms to solve. This happens
especially when the number of variables and constraints
increase, and therefore metaheuristics are proposed to tackle
these problems [1] [2][3]. Open-pit mining is one of these fields
of optimization problems, where computers show difficulties in
solving the complex constraints of the mixed-integer problem
in a reasonable amount of time [4] [5]. Open-pit mining is one
of the most commonly used surface mining methods to extract
minerals from the Earth [6]. This method is nowadays a multi-
billion dollar industry [7] [8], and because of this, there has
been a huge focus on finding feasible solutions for optimal
resource extraction scheduling.

Additionally, metaheuristic methods have been
developed and implemented with the goal of reducing the total
runtime of optimization problems [9] [10], yet ending with

results that are almost as accurate and precise as conventional
solving methods. Metaheuristics can be classified into two main
categories; Trajectory-based and Population-based methods
(Figure 1). A Trajectory-based algorithm uses a single solution
that moves toward a design space. In contrast, a Population-
based algorithm uses multiple solutions to search for the design
space to find an optimal solution. Simulated Annealing (SA) is
known as one of the most well-known Trajectory-based
algorithms, while the Genetic Algorithm (GA) is recognized as
one of the most famous Population-based algorithms.

Figure 1. Metaheuristics classification.

 The constrained pit limit problem (CPIT) is an optimization
problem formalized by Espinoza et al. [11] regarding open-pit
mining. This problem can be simplified by using an analogy of

M
et

ah
eu

ris
tic

s

Population-based algorithms

Swarm intelligence
(Particle Swarm

Optimization, Krill Herd
Algorithm, etc.)

Evolutionary computation
(Genetic Algorithm,

Differential Evolution,
etc.)Trajectory-based algorithms

(Simulated annealing, Tabu
search, etc.)

1
a real open-pit mine, where the goal is to maximize profit. It
can be envisioned as a grid of blocks, each with its own numeric
value representing the profit from mining the block. The
problem has a resource constraint related to the number of
blocks that can be excavated during each turn. Furthermore,
like a real open-pit mine, blocks must first be mined from the
top, before the player can reach the blocks below. Regarding
the value of all the blocks, these are known at any point in time.
In this study, a SA and a GA are applied to generate solutions
to CPIT, where the results are then compared with each other
in terms of profit values, using three different datasets.

 The rest of the paper is structured as follows: Section II
presents the literature review that describes previous works
regarding CPIT; Section III describes the methodology and
implementation of the performed experiments; Section IV
contains the obtained results, and section V presents the main
conclusions of the work.

II. LITERATURE REVIEW
In the past, several approaches have been used to

optimize the open-pit mine problem. Bienstock and Zuckerberg
[12] suggested a method that optimizes a more general form of
CPIT, known as the Precedence Constrained Production
Scheduling Problem (PCPSP). The algorithm involves a
Lagrangian relaxation method while also using specific
information regarding the structure of PCPSP, to improve how
quickly the algorithm converges on an optimal solution. This
method was able to produce quick results when compared to
directly using a program to solve the original linear
programming problem. However, since Lagrangian relaxation
allows the solver to break some constraints, it is not guaranteed
that the process produces a feasible solution to the original
problem. A version of this algorithm was used to produce some
of the example solutions in the dataset used in this paper. Unlike
the present paper's experiments, this algorithm uses a program
to find an exact solution to the problem rather than the
approximate maximum solutions produced with metaheuristic
methods [13][14]. Kenny et al. [13] proposed a merge search
method for the problem in 2018, having improved it later in
2019 [14].

The merge algorithm is a meta-metaheuristic algorithm that
relies on the result of multiple metaheuristics applied to smaller
problems. This is achieved using problem reduction techniques,
which remove redundant variables and constraints, creating
several smaller “sub-problems”. These sub-problems are
evaluated with a range of multiple metaheuristic algorithms,
with a merge algorithm being applied to determine the place
where a large majority of the algorithms agree on a solution. If
enough of the smaller metaheuristics agree on which squares
should be mined, then this is likely a good solution, being
shown that probably there is no need to more computing time
to change the final results. However, if a majority of the sub
metaheuristics have different conclusions, then a new area in
the sample space is explored using SA. Once enough of the sub-
metaheuristics agree on a solution, the blocks are mined, and a
new area in the sample space is explored for the next time
period.

 The main goal of this paper is to evaluate the
perforemannce of two different categories of metaheuristics for
solving CPIT. Along with the main research focus, more specific
research questions were created as follows:

1) Which algorithm finds the best solution for
CPIT between the SA and the GA using the datasets from
Minelib [11]?

2) Between the SA and the GA, which
algorithm finds a relevant solution to CPIT more quickly?

III. METHODOLOGY
The following subsections present the implementation of the
SA and the GA for CPIT, which were presented in [15]. For the
performed experiments, CPIT is represented as a MIP with
predefined variables and relations, and an objective function
that needs to be maximized.

A. Simulated Annealing
 The SA algorithm is a heuristic method used to find
the global optimum of an objective function. SA algorithm
finds the global optimum by searching a solution space
containing both local maxima and minima. The SA is a meta-
metaheuristic used for global optimization in a large solution
space. As a result, for mixed-integer programming problems,
which require finding the global optimum, an approximate
solution from a SA metaheuristic may be preferred over exact
solutions from systematic mathematical methods, such as
branch and bound. A SA algorithm works by comparing
iterative outputs with current and neighboring objective nodes.
If a neighboring node generates a better solution than the
current iteration, the neighboring weights are used for the next
iteration. One of the objectives of this study is to implement a
SA algorithm as a trajectory algorithm, so CPIT can be solved
and compared with a well-known Population-based algorithm,
which in this case was the GA. From Bertsimas and Tsitsiklis
[16], some basic elements of a SA algorithm were
implemented into Python from scratch, without any external
libraries or packages, except for NumPy (it used its
mathematical exponent and random functions). The pseudo-
code for the used the SA algorithm is as follows (Algorithm
1):

Algorithm 1. SA algorithm implementation for the
CPIT.

state = random_start where random_start ∈
solution_space

cost = the cost of the CPIT objective

for i = 1 to number of blocks do

a) temp = max(0.01, (i ÷ number of blocks))
b) next_state = get neighbor from state’s

precedences
c) next_cost = get cost of next_state
d) acceptance_prob = 𝑒𝑒𝑒𝑒𝑒𝑒[− 𝑖𝑖

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 ∗

(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

)]
if acceptance_prob > rand_int(0, 1) do

i. state = next_state

2
ii. cost = next_cost

return [list(states), list(costs)]

B. Genetic Algorithm (GA)
A GA is a metaheuristic search algorithm that mimics

the process of natural evolution, belonging to a larger class of
evolutionary algorithms. These algorithms generate solutions
to optimization problems using several techniques, namely,
inheritance, mutation, selection, and crossover, all of them
inspired by natural evolution.

 Alipour et al. implemented a GA [17]using the CPIT
objective function to evaluate the population's fitness. The
initial population is randomly generated and afterward
normalized, ensuring that the solutions fit the constraints; 200
iterations are run on the population, by using the best solutions
at the end, regardless of their fitness. Following this paper, a
GA was implemented using Python 3, without any imported
external libraries. The pseudo-code which represents the
internal logic of the algorithm can be seen here (Algorithm 2):

Algorithm 2. GA implementation for the CPIT.

generate an initial population of random solutions

normalize the population

for i = 1 to 200 do

a) randomly choose 2 parents P1 and P2
b) crossover them to generate offspring_1 and

offspring_2
c) normalize offspring

if offspring_1.fitness > P1.fitness do
i. P1 = offspring_1

if offspring_2.fitness > P2.fitness do
ii. P2 = offspring_2

return solution with the highest fitness

C. Finding the Maximum Upper Bound
 Using A Mathematical Programming Language
(AMPL) [18], it is possible to create mathematical models for
optimization problems, and more importantly, MIP problems
that contain constraints. AMPL also has a Python
compatibility package, which is known as AMPLPy. Using
AMPLPy, it is possible to run AMPL model files in Python.
Consequently, it is possible to run the CPIT model file in
Python to find the maximum upper bound for a designated
dataset.
The AMPL model for CPIT has some differences when
compared to the proposed Python implementation of CPIT in
this paper. While the AMPL model is designed to find the
exact solution, the proposed Python implementation of CPIT
is used as the objective function to generate neighboring
solutions for both the SA and the GA.

D. Datasets
 All the used datasets in these experiments come from
Minelib [11]. For CPIT, the number of blocks in the mine and
the precedences for each block are known. In this work, three
datasets were used: Newman 1, Zuck_small, and KD, with
time periods of 6, 20, and 12, respectively. Figure 2 presents
the number of blocks and precedences of the three datasets.

Figure 2. Number of blocks and precedences of each dataset.

IV. RESULTS AND DISCUSSION

For the experiments performed during this work, all the
algorithms were run on a single desktop computer with an
AMD Ryzen 3950x 3.9 GHz CPU. Doing so made it possible
to keep consistent runtimes between each algorithm. All the
results shown in Figures 3-5 are of arbitrary profit units,
having no consistent way to track the exact amount of profit
from an open-pit mine, since the value of resources changes
on a daily basis. In section A, the experimental results have
been described in detail.

Figure 3. Profit values gained for the Newman1 dataset using the

different algorithms.

Figure 4. Profit values gained for the Zuck_small dataset using the

different algorithms.

3

Figure 5. Profit values gained for the KD dataset using the different

algorithms

A. THE EXPERIMENTAL RESULTS

 The implemented GA was significantly faster in the
generation of a result when compared to the SA algorithm.
However, overall, both metaheuristic algorithms were rather
slow since each of them took several minutes to generate
results for the smaller datasets. As the datasets increased, the
number of blocks and precedences, the algorithms became
even slower. The maximum upper bound for CPIT was
attained using an AMPL model of CPIT, and running the
AMPL model with the associated dataset. With this, it was
possible to determine the maximum solution for CPIT,
allowing for the use of a base to the results of the
metaheuristic models against the expected maximum
solution of CPIT.

 The results achieved from the SA and the GA showed
that each algorithm took several minutes to complete, even
for tiny datasets. There are several reasons for these results,
with the most likely being the way Python was used for the
implementation of CPIT and the method of finding
appropriate random and neighboring solutions.

 There are several ways to improve the CPIT
model. Since the model was implemented by using lists and
arrays for holding data from the datasets, many of the
functions to access blocks’ data, including the profit value
for that block or the precedents of that block, require linear
iteration through the array until the correct index is found.
As a result, accessing block’s data that is needed to generate
a neighbor would result in a function that runs in 𝑂𝑂(𝑛𝑛2) time
complexity, since the block index needs to be accessed, as
well as the precedence index for that particular block. One
crucial step that can be used to reduce runtimes would be to
make the CPIT model a multithreaded one, which would
allow the model to have access to more than one CPU thread
during its execution. For most CPUs, including the one on
which the tests were run, implementing a multithreaded
capacity would have considerably reduced the runtime of the
CPIT model.

V. CONCLUSION
In this paper, two well-known metaheuristics, the SA and the
GA, from two different categories, namely, Trajectory and
Population-based algorithms, respectively, were applied.
The results showed both algorithms lead to the same profit
values for Newman1 and KD datasets, while the SA
possesses a better profit value when using zuck_small
dataset. Improving the implementation of both the SA and
the GA, combined with a better optimized CPIT model, may
lead to higher quality results that come within a ~5% range
of the theoretical upper bounds.

 One of the future objectives is to improve the
implementation by solving some of the problems of the CPIT
model, particularly the time complexity of the algorithm, as
well as handling the constraints of the CPIT model in a
different manner, where the scheduling of neighboring
blocks is more confined to the precedences. Moreover, it is
worth noting that the runtime of these algorithms depends on
the choice of parameter settings; in this paper, the default
settings have been conducted, and it is suggested for future
work that different operator settings are addressed. It is also
an objective to look at other solutions to CPIT, such as
Kenny et al.’s merge search [19] [14], where the SA is
applied to generate the neighboring solutions rather than to
solve the entire CPIT. From this information, it may be
possible to combine metaheuristic algorithms to form only
one result instead of implementing separate metaheuristics to
find the global optimum.

REFERENCES

[1] A. H. Gandomi, A. Emrouznejad, and I. Rahimi, “Evolutionary
 Computation in scheduling: A scientometric analysis”,
 Evolurionary Computation in Scheduling, pp.1-10,2020.
[2] R. Behmanesh, I. Rahimi, and A. H. Gandomi, “Evolutionary

many-objective algorithms for combinatorial optimization
problems: a comparative study,” Archives of
Computational Methods in Engineering, vol. 28, no. 2, pp.
673–688, 2021.

[3] I. Rahimi, A. Ahmadi, A. F. Zobaa, A. Emrouznejad, and S. H.
E. A. Aleem, “Big data optimization in electric power
systems: A review,” Big Data Analytics in Future Power
Systems, pp. 55–84, 2018.

[4] A. D. Mwangi, Z. Jianhua, H. Gang, R. M. Kasomo, and M. M.
Innocent, “Ultimate pit limit optimization methods in open
pit mines: A review,” Journal of Mining Science, vol. 56,
no. 4, pp. 588–602, 2020.

[5] C. Meagher, R. Dimitrakopoulos, and D. Avis, “Optimized open
pit mine design, pushbacks and the gap problem—a
review,” Journal of Mining Science, vol. 50, no. 3, pp. 508–
526, 2014.

[6] E. Ben-Awuah, O. Richter, T. Elkington, and Y. Pourrahimian,
“Strategic mining options optimization: Open pit mining,
underground mining or both,” International Journal of
Mining Science and Technology, vol. 26, no. 6, pp. 1065–
1071, 2016.

4
[7] É. Lèbre, G. Corder, and A. Golev, “The role of the mining

industry in a circular economy: a framework for resource
management at the mine site level,” Journal of Industrial
Ecology, vol. 21, no. 3, pp. 662–672, 2017.

[8] M. Brueckner, A. Durey, R. Mayes, and C. Pforr, “The mining
boom and Western Australia’s changing landscape:
Towards sustainability or business as usual?,” Rural
Society, vol. 22, no. 2, pp. 111–124, 2013.

[9] I. Rahimi, A. H. Gandomi, K. Deb, F. Chen, and M. R. Nikoo,
“Scheduling by NSGA-II: review and bibliometric
analysis,” Processes, vol. 10, no. 1, p. 98, 2022.

[10] I. Rahimi, A. H. Gandomi, F. Chen, and E. Mezura-Montes,
“A Review on Constraint Handling Techniques for
Population-based Algorithms: from single-objective to
multi-objective optimization,” arXiv preprint
arXiv:2206.13802, 2022.

[11] D. Espinoza, M. Goycoolea, E. Moreno, and A. Newman,
“MineLib: a library of open pit mining problems,” Annals
of Operations Research, vol. 206, no. 1, pp. 93–114, 2013.

[12] D. Bienstock and M. Zuckerberg, “Solving LP relaxations of
large-scale precedence constrained problems,” in
International Conference on Integer Programming and
Combinatorial Optimization, 2010, pp. 1–14.

[13] A. Kenny, X. Li, and A. T. Ernst, “A merge search algorithm
and its application to the constrained pit problem in
mining,” in Proceedings of the Genetic and Evolutionary
Computation Conference, 2018, pp. 316–323.

[14] A. Kenny, X. Li, A. T. Ernst, and Y. Sun, “An improved merge
search algorithm for the constrained pit problem in open-
pit mining,” in Proceedings of the Genetic and
Evolutionary Computation Conference, 2019, pp. 294–302.

[15] M. Samavati, D. Essam, M. Nehring, and R. Sarker, “A new
methodology for the open-pit mine production scheduling
problem,” Omega (Westport), vol. 81, pp. 169–182, 2018.

[16] D. Bertsimas and J. Tsitsiklis, “Simulated annealing,”
Statistical Science, vol. 8, no. 1, pp. 10–15, 1993.

[17] A. Alipour, A. A. Khodaiari, A. Jafari, and R. Tavakkoli-
Moghaddam, “A genetic algorithm approach for open-pit
mine production scheduling,” International Journal of
Mining and Geo-Engineering, vol. 51, no. 1, pp. 47–52,
2017.

[18] R. Fourer, D. M. Gay, and B. W. Kernighan, “A modeling
language for mathematical programming,” Management
Science, vol. 36, no. 5, pp. 519–554, 1990.

[19] A. Kenny, X. Li, and A. T. Ernst, “A merge search algorithm
and its application to the constrained pit problem in
mining,” in Proceedings of the Genetic and Evolutionary
Computation Conference, 2018, pp. 316–323.

	2023 IEEE
	Rahimi et al
	Aiden Abignano
	Amir H. Gandomi
	Faculty of Engineering & IT
	University of Technology Sydney, Sydney, Australia
	aiden.j.abignano@student.uts.edu.au
	Keywords- Metaheuristics, Open-Pit Mining, Genetic Algorithm, Simulated Annealing.
	I. INTRODUCTION
	II. LITERATURE REVIEW
	III. METHODOLOGY
	A. Simulated Annealing
	B. Genetic Algorithm (GA)
	D. Datasets

	IV. RESULTS AND DISCUSSION
	V. CONCLUSION
	REFERENCES

