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Structural reliability and partial safety factor assessment of unreinforced 
masonry in vertical bending
Andrea C. Isfeld, Mark G. Stewart and Mark J. Masia

School of Engineering, Research Associate, Centre for Infrastructure Performance and Reliability, the University of Newcastle, Newcastle, 
New South Wales, Australia

ABSTRACT
This paper focuses on a structural reliability-based assessment of clay brick unreinforced 
masonry (URM) walls subjected to uniformly distributed out-of-plane loads in one-way vertical 
bending. Stochastic models combining finite element analysis (FEA) and Monte Carlo simula
tions (MCS) are used to account for spatial variability of the flexural tensile bond strength when 
estimating the wall failure loads. The strength of URM walls is known to be influenced by the 
flexural tensile bond strength, which is subject to high spatial variability as batching, work
manship, and environmental exposure alter the strength of this bond. For this assessment, 
single skin walls have been considered with bond strength statistics seen in typical construc
tion. The model error statistics available for similar walls are combined with the results of the 
spatial stochastic FEA and probabilistic load models to determine the reliability index corre
sponding to the Australian Standard for Masonry Structures AS 3700 design of members in 
vertical bending. It was found that existing levels of reliability exceed target reliabilities, and 
the capacity reduction factor can be increased from 0.60 to 0.65 for URM walls in one-way 
vertical bending while still providing an acceptable level of reliability. A sensitivity analysis 
showed this finding to be robust.
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1. Introduction

To determine the strength of an unreinforced masonry 
(URM) wall subjected to one-way vertical bending the 
Australian Standard for Masonry Structures (AS 3700  
2018) follows a limit states (or load and resistance factor 
design or LRFD) approach, whereby the moment resis
tance is based on the fifth-percentile (characteristic) 
value of flexural tensile bond strength (f

0

mt). The capa
city reduction factor for flexure has been ϕ = 0.6 since 
the first limit states standard was released in 1988, based 
on a calibration with the earlier working stress code. 
However, there has been no reliability-based calibration 
of URM walls in flexure in Australia, nor internationally 
as far as the authors are aware. On the other hand, a 
reliability-based approach was used by Lawrence and 
Stewart (2009) who found that the capacity reduction 
factor for URM walls loaded in compression can be 
increased from 0.45 to 0.75, and this was incorporated 
into AS 3700. Reliability-based calibration of the 
Australian Concrete Structures Code (2018) has 
resulted in Φ values increasing from 0.6 to 0.65 for 
axial loading, from 0.70 to 0.75 for shear, and from 0.8 
to 0.85 for flexure (Stewart et al. 2016; Argarwal, Foster, 
and Stewart 2021). It is unclear if the capacity reduction 
factor for URM walls in flexure may also be increased – 
this is the motivation for the present paper.

In masonry walls, the unit–mortar interface is a 
plane of weakness and dictates the points at which 
flexural failure initiates, governed by the flexural ten
sile bond strength. This bond is subject to high spatial 
variability as it is affected by batching, workmanship, 
and environmental exposure. This means that adja
cent mortar joints between bricks (units) may have 
significantly different material properties, and hence 
high spatial variability.

A random field FEA was developed to include 
spatial variability in linear and non-linear structural 
systems by Liu et al. (1986). Variability can be intro
duced at the level of material properties, geometry, or 
loads, and the effect is measured on the response of the 
system. Versions of this approach are also referred to 
as the stochastic finite element method (SFEA), the 
random finite element method, or the probabilistic 
finite element method (Aggregui-Mena, Margetts, 
and Mummery 2016). Moradabadi et al. (2015) uti
lised the random field finite element method for the 
analysis of eccentrically loaded masonry piers, show
ing agreement with physical testing. A similar 
approach was applied by Isfeld et al. (2016) for the 
simulation of grout injection in historic stone masonry 
walls. Li et al. (2014) modelled brick masonry walls 
under one-way bending due to uniform pressure loads 
with unit-to-unit stochastic spatial variability and 
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compared the results with a nonspatial stochastic ana
lysis whereby a single random value was used for all 
joints in the wall. A nonspatial analysis was found to 
overestimate the probability of wall failure compared 
to spatial analysis, demonstrating the importance of 
considering the unit-to-unit spatial variability of flex
ural bond strength. Li et al. (2016) utilised SFEA to 
model the behaviour of brick panels, considering spa
tial variability of the mortar joint properties at differ
ent levels of correlation. Statistical independence was 
considered between joints, with the unit-to-unit spa
tial correlation coefficient ρ = 0 and a realistic correla
tion of ρ = 0.4 (Heffler et al. 2008). Comparison of 
non-spatial (ρ = 1) stochastic FEA results, spatial 
stochastic FEA with ρ = 0.4, and the results of 310 
experimental specimens showed improved agreement 
between the FEA and test results when the bond 
strength was spatially variable (Li et al. 2016). This is 
consistent with the conclusions of Li, Masia, and 
Stewart (2017) when applying the same modelling 
approach to walls subjected to two-way bending. 
Using this technique, Isfeld, Stewart, and Masia 
(2021) compared spatial SFEA and test results of 2/3 
scale brick walls 1, 2, 4 and 10 units long tested in one- 
way vertical bending. The walls were constructed by 
10 different masons, and 10 corresponding sets of 
spatial SFEA were developed for each mason. 
Comparison with test results was used to probabilisti
cally characterise model error for each wall length 
(Isfeld, Stewart, and Masia 2021).

Calibration of the capacity reduction factor for one- 
way bending in AS 3700 (2018) has been considered 
using several approaches. Stewart and Lawrence 
(2002) developed a structural reliability model for 
URM walls in one-way vertical bending. The analytical 
model considered first cracking, and the potential for 
redistribution of stresses until collapse through sim
plifying assumptions, and model error was ignored. A 
baseline lifetime reliability index (β) of 4.92 was 
obtained, and it was found that the reliability index 
was relatively insensitive to wall lengths exceeding 
about 10 units, and also relatively insensitive to wall 
height. The reliability index is related to the probabil
ity of failure by the inverse of the standard normal 
distribution function, with a higher reliability index 
indicating a lower probability of failure. Lawrence and 
Stewart (2011) conducted a reliability analysis on 
URM in one-way bending, utilising a database of 118 
masonry wall tests to quantity model error (model 
uncertainty) for the AS 3700 design model. 
Considering a conservative lifetime target reliability 
index of βT = 4.3 it was determined that the capacity 
reduction factor may need to be decreased slightly. 
However, no allowance was made for spatial variabil
ity of flexural strength, and it was concluded that ‘It is 
possible that a more accurate behaviour model, which 
takes into account spatial variability and load sharing 

between units, could be used in combination with a 
higher capacity reduction factor to achieve the target 
reliability’ (Lawrence and Stewart 2011). Following the 
updated wind loading statistics and target reliabilities, 
Stewart and Masia (2019) utilised the results of spatial 
stochastic FEA in a reliability-based calibration of the 
capacity reduction factor for URM in one-way bend
ing and found evidence to support an increase of ϕ 
from 0.6 to 0.65. However, the authors address the 
need to accurately quantify model error statistics to 
improve the robustness of this study.

This paper focuses on a structural reliability-based 
assessment of clay brick URM walls subjected to uni
formly distributed out-of-plane loads in one-way verti
cal bending. For the present design situation, this is a 
single skin infill masonry panel subject to a lateral 
(wind) load – i.e., there is no vertical pre-compression 
other than panel self-weight. This is a common struc
tural scenario for URM walls in many forms of con
struction and one for which such walls are vulnerable to 
collapse under out-of-plane loading. Stochastic models 
combining FEA and MCS account for spatial variability 
of the flexural tensile bond strength when estimating 
the walls failure loads. Model error statistics are com
bined with the results of the spatial stochastic FEA and 
probabilistic load models to determine the reliability 
index corresponding to the Australian Standard for 
Masonry Structures AS 3700 (2018) design of members 
in vertical bending and to determine the capacity 
reduction factor required to meet the target reliability 
index.

2. Spatial Stochastic FEA Modelling

Spatial stochastic FEA modelling was completed for 
full-scale masonry walls 10 units long (2400 mm), 
28 units tall (2408 mm) and 110 mm thick, sub
jected to one-way vertical bending as shown in 
Figure 1. There is no vertical pre-compression 
other than panel self-weight. The bricks are mod
elled as solid expanded half units (two half units 
120 × 110 × 86 mm (length × width × height) 
make up each 240 mm long brick unit) accounting 
for the mortar joint thickness (10 mm) using the 
simplified micro-modelling approach (Lourenço, 
Rots, and Blaauwendraad 1995; Lourenço 1996; 
Lourenço and Rots 1997). The DIANA (2017) finite 
element software is utilised here for its ability to 
simulate a range of masonry behaviour. Half units 
are assigned linear elastic material properties with 
non-linear behaviour allocated to the mortar joint 
and unit crack interface elements. The combined 
cracking-shearing-crushing model is used to model 
the mortar joints Lourenço, Rots, and 
Blaauwendraad (1995), Lourenço and Rots (1997). 
This model captures tensile, shear, and crushing 
fracture, as well as frictional slip. Discrete cracking 
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using the linear tensile softening model is included 
using interface elements to simulate mid-length 
unit cracking. Mortar joint failure in tension and 
shear can be simulated, along with unit tensile fail
ure, and combined mortar/unit shear and compres
sive failure. The spatial stochastic FEA includes 
unit-to-unit spatial variability of flexural tensile 
bond strength according to the approach developed 
and validated by Heffler (2009) and evaluated 
further by Li et al. (2014); Li et al. (2016); Li, 
Masia, and Stewart (2017) and Isfeld, Stewart, and 
Masia (2021). Heffler et al. (2008) found that the 
bond strength is best represented by a normal dis
tribution, truncated at zero, having unit-to-unit 
spatial correlation of 0.4 within each course and 
no correlation (statistically independent) between 
courses. Figure 2 shows the spatial variability of 

bond strength and cracking at peak load for a 
typical wall (Isfeld, Stewart, and Masia 2021).

2.1. FEA Model Assembly

The boundary conditions are consistent with standard 
construction practice and representative of walls with 
no axial precompression. The bottom course of a 
masonry wall would typically be in contact with a 
concrete footing, or damp-proof course, both of 
which result in reduced bond strength. Thus, the con
servative assumption of zero bond strength is made, 
and the unloaded edge of the first course is restrained 
against vertical and out-of-plane displacement as 
shown in Figure 1 (a) with rotation permitted about 
the support. This approach is aligned with the recom
mendation in AS 3700 (2018) to consider the bond 

(a)                                                     (b) 

Figure 1. FEA of URM in vertical one-way bending (a) model (b) typical out-of-plane displacement at peak load.

Figure 2. Example of tension face cracking pattern and bond strength distribution at peak load (adapted from Isfeld, Stewart, and 
Masia 2021).
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strength as zero when interfacing with other materials. 
Out-of-plane displacements are similarly restricted to 
the unloaded edge at the top of the wall, representing a 
stiff diaphragm. In-plane displacements are restricted 
at a single node on each support to prevent rigid body 
movement. The walls are modelled with self-weight 
and uniform out-of-plane pressure is applied to the 
full wall as shown in Figure 1 (a). Analysis procedures 
and mesh refinement assessed by Isfeld, Stewart, and 
Masia (2021) are used in all models. The out-of-plane 
displacement is recorded at the centre of the unloaded 
face (height/2, length/2) for each load step and used to 
establish the load–displacement behaviour of each 
model.

2.2. Material Properties

The material properties are categorised as determinis
tic, spatially variable, and spatially dependent. The 
flexural tensile strength of the unit–mortar interface 
is the most critical material parameter for determining 
the load resistance of masonry walls subjected to one- 
way vertical bending (Stewart and Lawrence 2002, 
Heffler 2009). This value is subsequently treated as 
spatially variable, varying along the length and height 
of the wall on a unit-to-unit basis, and directly con
verted to a direct tensile bond strength value. 
Cohesion, fracture energy, and in some cases com
pressive strength are treated as spatially dependent 
variables, calculated as a function of the direct tensile 
strength. The fracture energy is also known to signifi
cantly influence the moment redistribution between 
units, and the subsequent load resistance of the walls 
(Heffler 2009). In turn, cohesion and compression 
strength are adjusted to ensure compatibility with 
the composite interface model criterion (DIANA  
2017). The remaining material parameters are deter
ministic based on representative average values as out
lined by Heffler (2009), and Li et al. (2014); Li et al. 
(2016); Li, Masia, and Stewart (2017) and Isfeld, 
Stewart, and Masia (2021).

A program was written in MATLAB to automate 
the procedure of batching the FEA simulations with 
spatially variable material properties. This program 
would output a python script based on the wall dimen
sions, stochastic material properties, and number of 
simulations in the MCS. For each model the first step 
is to assign a statistically independent tensile bond 
strength to the mortar joint below the first unit in 
each course of masonry. Next, the adjacent joint 
within each course is assigned a tensile bond strength 
that is correlated to the first joint. This pairwise cor
relation is completed for the remaining mortar joints 
in each course. Spatially dependent variables are simi
larly assigned. All head (perpend) joints are assumed 
statistically independent, and no unit-to-unit correla
tion is included.

2.2.1. Flexural Tensile Bond Strength
The probability distribution of the flexural tensile 
bond strength used in these simulations was based 
on testing completed by McNeilly et al. (1996) for 17 
building sites in Melbourne and by Heffler et al. (2008) 
on full-scale wall samples. Consideration is also made 
for the characteristic strength values in AS 3700 
(2018).

McNeilly et al. (1996) completed bond wrench test
ing at 19 building sites in Australia. To obtain samples 
that were representative of typical construction, 
arrangements were made such that the tested brick
work had already been constructed when agreement 
was made to carry out testing. The samples were tested 
a minimum of 7 days after construction. Samples 
taken from two building sites were cured using 
enhanced techniques and were excluded from this 
analysis. Mortar composition was analysed to assess 
the accuracy of batching. Of 75 wet mortar samples, 33 
contained no lime, five contained less than 0.10 parts 
by volume, and the remaining mortars varied between 
0.12 and 1.12 parts. The cement content varied 
between the test sites with the highest cement content 
1:0:4.2 (cement:lime:sand proportions by volume) and 
the lowest 1:0:12.7. No admixtures were added to the 
mortar. McNeilly et al. (1996) reported the mean and 
COV of flexural tensile bond strength for each site; the 
mean ranged from 0.21 to 0.85 MPa (mean of 
0.52 MPa) and the COV from 0.16 to 0.49 (mean of 
0.30). The overall mean and COV of all test sites are 
0.52 MPa and 0.50, respectively. McNeilly et al. (1991) 
considered a normal distribution as providing best fit 
for the data. McNeilly et al. (1991) noted that a log
normal or Weibull distributions could be suitable 
alternatives as described by Lawrence (1983, 1985).

Heffler et al. (2008) completed bond wrench testing 
on all mortar joints in four laboratory constructed 
brick masonry walls. The walls were constructed by 
four different masons with a range of experience levels 
to assess the variability of workmanship. Two mortar 
mixes were tested, 1:1:6 (cement:lime:sand propor
tions by volume) with no admixtures and 1.5:1:6 
which included an air entraining agent to improve 
workability. Typical extruded clay bricks were used 
to construct all walls. The walls were constructed 
over 2 days and cured between 28 and 40 days prior 
to testing. The overall mean and COV of all bond 
strengths for walls constructed with mortar not con
taining admixtures were found to be 0.53 MPa and 
0.50, respectively.

In principle, the statistics for flexural tensile strength 
may also need to be adjusted to account for variability 
in flexural tensile strength test procedures. The accuracy 
of the bond wrench test is influenced by the placement 
of the apparatus and the skill of the operator, and so the 
variability of flexural tensile strength is likely to be 
overestimated. Nonetheless, this source of variability is 
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not factored out of the analysis. This approach is con
sistent with the strength statistics for concrete, reinfor
cement and other materials used in reliability-based 
calibration, even though it is recognised that the varia
bility of the test procedure for flexural tensile strength is 
likely to be higher than most other test procedures. 
Conservatively, no adjustment was made to the statis
tics used for flexural bond strength.

Hence, conservative flexural tensile strength statis
tics are a mean of 0.52 MPa and a COV of 0.5 normally 
distributed with the COV representing the upper end 
of variabilities to be expected for an individual site or 
wall. This is the benchmark scenario representing a 
worst case, denoted as Case 1. A sensitivity analysis to 
be discussed later will assess the effect of Weibull and 
lognormal distributions in structural reliability.

The Australian Standard for Masonry Structures 
AS 3700 (2018) recommends a characteristic flexural 
tensile bond strength not greater than 0.2 MPa for 
clay, concrete, and calcium silicate masonry (exclud
ing special masonry). The 5th percentile (characteris
tic) value for Case 1 is 0.14 MPa, which will lead to a 
more conservative design. If the characteristic strength 
value is taken as 0.2 MPa with a COV of 0.5, this 
corresponds to a mean flexural tensile bond strength 
value of 0.746 MPa. These statistics will lead to sig
nificantly higher reliabilities and will be discussed later 
in the paper. However, if a lower COV of 0.3 is 
assumed, which represents the mean reported value 
from McNeilly et al. (1996), then the mean flexural 
tensile bond strength value reduces to 0.395 MPa, this 
will be analysed as Case 2.

All cases considered a unit-to-unit correlation of 0.4 
within each course and no correlation between courses 
(Heffler et al. 2008) for the bed joints. No data is avail
able on the spatial variability of the head joint (perpend 
joint) bond strength, and thus no correlation was con
sidered in the variation of these values (ρ = 0). Flexural 
tensile bond strengths were converted to direct tensile 
strengths by dividing by a factor 1.5 (Petersen et al.  
2012) as indicated in. This is consistent with the 
approach used for plain concrete in AS 3600 (2018), 
and experimentally by Raphael (1984) and Van der 
Pluijm (1997).

2.2.2. Other Material Properties
Material properties used in Isfeld, Stewart, and Masia 
(2021) are based on those outlined by Heffler (2009) 
and evaluated further by Li et al. 2014; Li et al. (2016); 
Li, Masia, and Stewart (2017) have been used here and 
are shown in Table 2. All brick properties including 
Young’s modulus, Poisson’s ratio, and density, as well 
as brick tensile strength values are modelled as deter
ministic. High values for the linear normal and tan
gential stiffness modulus were set to maintain the 
continuity of brick displacements across the interface. 
The tensile fracture energy and cohesion are calculated 

from the flexural tensile strength values, all other 
mortar joint properties represent average (determinis
tic) values used across all models. The tensile fracture 
energy for the mortar joints, Gf

I (N/mm), is related to 
the direct tensile strength, ft (MPa), using Equation (1) 
established by Heffler (2009) using a best fit relation
ship for test data with direct tensile bond strengths up 
to 0.8 MPa from Van Der Pluijm (1997). 

GI
f ¼ 0:01571ft þ 0:0004882 (1) 

The interface cohesion, c, is related to the tensile bond 
strength outlined by Milani and Lourenço (2013). 

c ¼ 1:4ft (2) 

The residual cap must fall outside the tension cut off 
for all direct tensile strength values. To enforce this, 
the compressive strength of masonry is increased to 25 
MPa for ft > 1.4 MPa and to 30 MPa for ft > 1.7 MPa.

2.3. Wall Length

The length of a masonry wall subjected to one-way 
vertical bending is known to affect the ultimate 
strength of the wall (Baker 1981; Isfeld, Stewart, and 
Masia 2021) and has subsequently been shown to 
affect the reliability (Stewart and Lawrence 2002). 
Baker (1981) tested 2/3 scale brick wall panels under 
out-of-plane loading and observed that the strength 
increased with increasing wall length for lengths up to 
4 units but then decreased for longer panels. Isfeld, 
Stewart, and Masia (2021) simulated this testing using 
spatial stochastic FEA for walls 1 to 15 units long and 
24 units tall and found that the wall strength began to 
stabilise beyond seven units.

Several hypotheses exist to describe the influence of 
bond strength variability on the ultimate strength of 
URM walls in one-way vertical bending, including the 
weakest link, brittle/parallel system (successive crack
ing), partial plasticity, and full plasticity (averaging) 
(Baker 1981, Stewart and Lawrence 2002). The weakest 
link hypothesis predicts failure will occur once a single 
joint strength has been exceeded, while the parallel 
systems hypothesis permits progressive redistribution 
of load after cracking until the remaining joints cannot 
sustain the load. The partial plasticity hypothesis 
assumes that averaging of joint strengths is limited to 
some number, N, of adjacent joints. Thus, failure of a 
wall is initiated when the mean moment resistance of 
the lowest strength N adjacent joints is exceeded. 
Stewart and Lawrence (2002) utilised the parallel system 
hypothesis to predict the strength of masonry walls of 
varied length, height, and thickness, finding that relia
bility is insensitive to the length as for longer walls even 
though cracking must progress over a greater number 
of units. Comparison of the parallel system hypothesis 
with the weakest link and averaging hypothesis showed 
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that the weakest link was overly conservative, while the 
averaging hypothesis was nonconservative. Baker 
(1981) found the partial plasticity hypothesis with 
N = 3 or 4 to best fit the experimental data, and this 
was in agreement with the findings of Isfeld, Stewart, 
and Masia (2021).

Individual low strength joints have a significant  

effect on the strength of narrow wall panels and can be 
found to initiate failure. Whereas in longer wall panels 
some averaging of adjacent joint strengths reduces the 
effect of an individual low strength joint. The influence 
of the wall length on the reliability is studied by increas
ing and decreasing the wall length by 50%. In Case 3 the 
wall length is 5 units (1200 mm), while in Case 4 the 

Table 1. Flexural tensile bond strength properties and wall length.

Case Mean COV
5th Percentile 

(f
0

mt) Distribution Wall Length

1 0.520 MPa 0.50 0.14 MPa Truncated Normal 2400 mm
2 0.395 MPa 0.30 0.20 MPa Truncated Normal 2400 mm
3 0.520 MPa 0.50 0.14 MPa Truncated Normal 1200 mm

4 0.520 MPa 0.50 0.14 MPa Truncated Normal 3600 mm

(a) Case 1: L=2400 mm (b) Case 2: L=2400 mm. 

(c) Case 3: L=1200 mm (d) Case 4: L=3600 mm. 

Figure 3. Load displacement behaviour for Cases 1–4.
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wall length is 15 units (3600 mm). These cases are also 
based on Case 1 material properties, see Table 1.

2.4. Spatial Stochastic FEA Results for Ultimate 
Resistance Ru

A total of 150 spatial stochastic FEA Monte Carlo 
simulations (MCS) were completed for each case 
where convergence for mean and COV were observed, 
and also to give a sample size sufficient for probabil
istic model fitting. Failure was characterised by mid- 
height cracking, and load–displacement behaviour for 
all cases is shown in Figure 3. Load redistribution 
occurs as cracking progresses along the wall length; 
this is seen as a gradual reduction in post-peak load
ing, in some simulations rapid failure results in failure 
to converge (plot terminates), or significant rigid body 
displacement as a hinge is formed (rapid increase in 
horizontal displacement, beyond which the solution 
diverges).

The statistics of mean peak pressure values (Ru) are 
shown in Table 3. The method of maximum likelihood 
is an alternative method for statistical parameter esti
mation, which is observed to yield a better fit for larger 
sample sizes. However, in this case, the method of 
maximum likelihood yielded near identical ‘best fit’ 
statistical parameters to those obtained from the 
method of moments.

The results of the spatial stochastic FEA are com
pared to five different distribution types: normal, log
normal, Weibull, Gumbel, and gamma. The 
Kolmogorov–Smirnov (KS) test was applied at the 
5% significance level to test the hypothesis that the 
FEA results are represented by the specified distribu
tions. For all cases, the KS test failed to reject the null 
hypothesis for all distributions. As shown in Figures 4,  
6, and 7 for Cases 1, 3, and 4 the Weibull distribution 
appears to overestimate the likelihood of low strength 
values and the normal distribution provides the closest 
fit (as it sits very near to the perfect-fit line given for 

Table 2. FEA material data for deterministic analysis.

Material Units Model Input Source

Brick Young’s Modulus N/mm2 20 000 Heffler (2009)
Poisson’s Ratio - 0.15

Density kg/mm3 1800
Brick Crack Fictitious Values Linear normal stiffness modulus N/mm3 1000 (Heffler 2009)

Linear tangential stiffness modulus N/mm3 1000
Direct tensile strength N/mm2 2
Tensile fracture energy Nmm/mm2 0.5

Mortar Joints Linear normal stiffness modulus N/mm3 353 Heffler (2009)
Linear tangential stiffness modulus N/mm3 146 Heffler (2009)

Flexural tensile strength N/mm2 Table 1
Direct tensile strength N/mm2

f
0

mt/1.5 (Petersen et al. 2012)

Tensile fracture energy Nmm/mm2 Eq. (1) Heffler (2009)

Cohesion N/mm2 Eq. (2) Milani and Lourenço (2013)
Tangent friction angle - 0.75 Heffler (2009)
Tangent dilatancy angle - 0.6 Heffler (2009)

Tangent residual friction angle - 0.75 Heffler (2009)
Confining normal stress N/mm2 −1.2 Heffler (2009)

Exponential degradation coefficient - 5 Heffler (2009)
Capped critical compressive strength N/mm2 20 Heffler (2009)

Shear traction control factor - 9 Heffler (2009)
Compressive fracture energy Nmm/mm2 15 Heffler (2009)
Equivalent plastic relative displacement - 0.012 Heffler (2009)

Shear fracture energy factor - 0.15 Heffler (2009)

Table 3. Statistical parameters for reliability analysis.

Parameter Mean COV Distribution Source

Ultimate Resistance 
Ru

1.21 kPa 0.11 Normal Case 1 spatial stochastic FEA
1.19 kPa 0.07 Weibull Case 2 spatial stochastic FEA

1.20 kPa 0.11 Normal Case 3 spatial stochastic FEA
1.24 kPa 0.09 Normal Case 4 spatial stochastic FEA

Self-weight, γ 19 kN/m3 0.02 Normal Lawrence and Stewart (2009)
Model Error, ME 0.95 0.14 Normal Isfeld, Stewart, and Masia (2021)
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Figure 4. Case 1 (a) probability distribution of spatial stochastic FEA peak pressure (b) inverse CDF plot of spatial stochastic FEA 
peak pressure.

Figure 5. Case 2 (a) probability distribution of spatial stochastic FEA peak pressure (b) inverse CDF plot of spatial stochastic FEA 
peak pressure.

Figure 6. Case 3 (a) probability distribution of spatial stochastic FEA peak pressure (b) inverse CDF plot of spatial stochastic FEA 
peak pressure.
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the cumulative distribution function (CDF)). The 
same is true for Case 2 shown in Figure 5, however 
the overestimation of low strength values provided by 
the Weibull distribution is minimal, while the remain
ing distributions (excluding Gumbel) significantly 
underestimate the low strength values. The normal 
distribution is selected, as it is slightly conservative, 
for Cases 1, 3, and 4, and the Weibull distribution is 
selected for Case 2.

2.5. SFEA Model Error

The model error (or model uncertainty) statistics were 
established through comparison of the SFEA results with 
the experimental failure loads of 10 simply supported 
brick masonry walls in one-way vertical bending. The 
mean model error (ME) is calculated as the ratio of the 
mean experimental results to the mean model prediction. 
The walls studied were constructed using 2/3 scale bricks 
and were 1–10 units long and 22 units tall and con
structed by 10 different masons, for more details see 
Baker (1981). These test results were then compared 
with spatial stochastic finite element models using the 
same techniques as that used in the present study. The 
model error for a 10 unit length wall (the same config
uration as Case 1) was mean and COV of 0.95 and 0.14, 
respectively, normally distributed Isfeld, Stewart, and 
Masia (2021). For a shorter length wall of four units, 
the mean model error increased to 1.10 Isfeld, Stewart, 
and Masia (2021). As no experimental walls exceeded 10 
units in length a model error for 15 units (Case 4) was 
not calculated. Hence, to be conservative, the model 
error for a 10 unit length wall is applied for all wall 
lengths herein, see Table 3.

3. Structural Reliability Analysis

Reliability analysis based on MCS is used to evaluate 
the current capacity reduction factors for one-way 
vertical bending in AS 3700 (2018). A calibration of 
the capacity reduction factors is then completed, con
sidering target reliability factors based on the 
Australian Standard AS 5104 (2017) and the Joint 
Committee on Structural Safety Probabilistic Model 
Code (JCSS 2021). Finally, a sensitivity analysis is 
completed to evaluate the critical assumptions used 
in the reliability analysis.

3.1. Structural Reliability

The probability that loading will exceed the structural 
resistance is defined as: 

pf ¼ Pr G Xð Þ � 0½ � ¼ Pr R � S � 0½ � ¼ Φ � βð Þ (3) 

β ¼ � Φ� 1 pf
� �

(4) 

where G(X) is a limit state function describing the 
performance of a structure in terms of a vector of 
variables X. The actual resistance, R, and actual load
ing effects, S, are used to assess the probability of 
failure, pf. A value of G(X) ≤ 0 indicates failure. The 
reliability index, β, is calculated using the inverse of 
the standard normal distribution function, Φ−1. The 
limit state function can be expressed in terms of the 
ultimate resistance, Ru, determined through spatial 
stochastic FEA that includes the effect of self-weight, 
and the corresponding model error statistics, ME, as 
well as the out-of-plane wind loading, Wp. 

G Xð Þ ¼ ME� Ru � Wp (5) 

Figure 7. Case 4 (a) probability distribution of spatial stochastic FEA peak pressure (b) inverse CDF plot of spatial stochastic FEA 
peak pressure.

AUSTRALIAN JOURNAL OF STRUCTURAL ENGINEERING 9



3.2. Calculation of Structural Reliability

The AS 3700 vertical bending moment capacity for 
simply supported walls with low axial load is: 

Mcv ¼ ϕf
0

mtZd þ fdZd (6) 

where Zd is the section modulus per metre wall length, 
fd is the design compressive stress, and f

0

mt is the 
design flexural tensile bond strength.

The design flexural tensile bond strength is based 
on two values defined in AS 3700: (i) a characteristic 
flexural tensile bond strength not greater than 0.2 MPa 
and (ii) a 5th percentile (characteristic) strength value 
calculated from bond strength measurements. For 
example, for Cases 1, 3 and 4 this equates to f

0

mt = 
0.14 MPa (see Table 1). Both values have been con
sidered in this analysis to account for the most critical 
design case, whereby the characteristic flexural tensile 
bond strength is overestimated in the absence of test 
data by considering the limiting value of 0.2 MPa.

The nominal resistance is calculated for a simply 
supported wall in one-way bending is: 

Rn ¼
Mcv8
H2 ¼

ϕf
0

mtZd þ fdZd

� �
8

H2 (7) 

where the overall wall height is H = 2408 mm, and the 
minimum design compressive stress on the bed joint 
at the location of flexural cracking is calculated as the 
effect of the self-weight at mid-height of the wall is: 

fd ¼ 0:5γH (8) 

where the mean bulk density (γ) is 19 kN/m3 (AS 3700  
2018) and the COV is 0.02 following a normal distri
bution (Lawrence and Stewart 2009).

The nominal resistances when ϕ = 1.0 are 0.45 kPa 
and 0.62 kPa when f

0

mt = 0.14 MPa and f
0

mt = 0.2 MPa, 
respectively. The mean values from the SFEAs (see 
Table 3) are about 1.2 kPa – i.e., mean(Ru/Rn) = 1.94 
– this suggests, as expected, that there is significant 
reserve capacity in the walls.

The mean-to-nominal statistics for peak annual 
wind loading for non-cyclonic and cyclonic conditions 
are based on recommendations from the Australian 
Building Codes ABCB (2019), see Table 4. The super
seded wind load statistics proposed by Pham (1985) 
are significantly lower than the ABCB wind loading 
statistics (Stewart 2018). The wind load statistics are 
related to nominal resistance as: 

Wp ¼ Rn
W
Wn

(9) 

The probability of failure is thus: 

pf ¼ Pr ME� Ru � Rn �
Wmean

Wn
� 0

� �

¼ Pr ME� Ru �
ϕf

0

mtZd þ 0:5γHZd

� �
8

H2 �
W
Wn
� 0

2

4

3

5

(10) 

where ME, Ru, γ, and W/Wn are modelled as random 
variables (see Tables 3 and 4), and all other parameters 
are deterministic.

3.3. Target Reliability

The Australian Standard ‘General principles on reliability 
for structures’ AS 5104 (2017), (adopted from ISO 2394 
(2015)), provides a basis for determining the target 
annual reliability (βT) which can be used to assess the 
capacity reduction factor. The target reliability is selected 
by considering several factors including the nature of 
failure, the expected costs associated with failure, and 
the cost associated with reducing the probability of fail
ure. The nature of failure is critical in the determination 
of target reliability. Structural elements that exhibit brittle 
or sudden failure should be assessed in a higher conse
quence class than those for which collapse is more gra
dual. The ability to mitigate the effects of failure reduces 
the necessary consequence class. Unreinforced masonry 
walls subjected to one-way vertical bending exhibit brittle 
failure without pre-warning.

Table 4. Statistical parameters W/Wn for peak annual wind loading ABCB (2019).

Conditions Mean COV Distribution

Non-cyclonic 0.33 0.49 Lognormal

Cyclonic 0.16 0.71 Lognormal

Table 5. Annual target reliabilities (βT) for economic optimisation (adapted from JCSS 2021, AS 5104 2017).

Relative Costs of Safety Measures

Consequence of Failure

Class 2 
(Minor)

Class 3 
(Moderate)

Class 4 
(Large)

Large 3.1 3.3 3.7
Medium 3.7 4.2 4.4

Small 4.2 4.4 4.7
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The present design situation is a single skin infill 
masonry panel subject to a lateral (wind) load – i.e., 
there is no vertical pre-compression other than panel 
self-weight. In this case, the consequence class is initi
ally classified as Class 2 (expected number of fatalities 
fewer than 5, smaller buildings and industrial facilities); 
however, as the failure mode is non-ductile without pre- 
warning the consequence class is increased to Class 3 
(moderate consequences of failure – material losses and 
functionality losses of societal significance, expected 
number of fatalities fewer than 50, most residential 
buildings) in Table 5. The Joint Committee on 
Structural Safety Probabilistic Model Code (JCSS  
2021) recommends that the relative cost of safety is 
medium for ‘the most common design situation’. 
Moreover, JCSS (2021) states that ‘a large uncertainty 
in either loading or resistance (coefficients of variation 
larger than 40%) . . . a lower reliability class should be 
used. The point is that for these large uncertainties the 
additional costs to achieve a high reliability are prohibi
tive.’ As noted in Table 4, the COV of peak annual wind 
load reaches 0.49. Hence, for a minor consequence 
Class 2 and medium relative cost of safety measures 
the annual target reliability index is βT = 3.7 (pf = 1.1 × 
10−4). A moderate consequence (Class 3) would 
increase the target reliability index to βT = 4.2 (pf = 
1.3 × 10−5).

A Class 4 consequence would be a disastrous event 
causing disruptions and delays at a national scale over 
periods in the order of months, with the expected 
number of fatalities being fewer than 500. If such a 
large consequence is considered, then the target relia
bility index increases to βT = 4.4 (pf = 5.4 × 10−6). 
Given the additional limitations imposed on the use of 
unreinforced masonry in AS 3700 (2018) this level of 
consequence is not deemed relevant.

3.4. Discretisation of Thickness

It is recognised that bricks are manufactured in dis
crete sizes and so designers will normally adjust sup
port conditions, span lengths and structural systems to 
optimise unit thickness selection. However, it is most 
likely that the unit thickness will still need to be 
‘rounded-up’ (i.e., discrete size greater than the design 
thickness). This ‘rounding-up’ may be incorporated 
into a reliability analysis by increasing the wall thick
ness, and the increase in structural reliability is sig
nificant (Stewart and Lawrence 2002). This 
phenomenon occurs also for reinforced concrete and 
structural steel sections where the mean over-sizing is 
estimated to be approximately 5% (e.g., Melchers and 
Beck 2018). However, reliability-based code–calibra
tion studies usually ignore this influence and so it is 
also not considered in the present study. It should be 
noted, however, that ignoring this influence is con
servative, and this effect is potentially higher for 
masonry than for other materials.

3.5. Results for Cases 1-4

A structural reliability analysis was initially completed 
for an URM wall 2.408 m high and 2.4 m in length in 
one-way vertical bending for the benchmark Case 1. 
Considering the capacity reduction factor specified in 
AS 3700 (2018) (ϕ = 0.6), for Case 1 when the calcu
lated characteristic strength (0.14 MPa) was used to 
design the URM wall, the annual reliability index was 
found to be 5.04 for non-cyclonic and cyclonic condi
tions. When the AS 3700 (2018) characteristic strength 
value (0.20 MPa) is used to calculate the design 
strength, the annual reliability index values decreases 
to 4.47 and 4.61 for non-cyclonic and cyclonic 

Figure 8. Effect of capacity reduction factor on reliability index for Case 1.
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conditions, respectively. The relationship between the 
capacity reduction factor and the reliability index for 
non-cyclonic and cyclonic conditions is shown in 
Figure 8. A wall designed to the AS 3700 (2018) 
recommended characteristic flexural tensile bond 
strength of f

0

mt= 0.2 MPa results in a lower design 
thickness compared to the one designed to the 5th 

percentile of the bond strength distribution (f
0

mt= 
0.14 MPa) for the same design load. Hence, it is 
evident from Figure 8 that designing to f

0

mt = 0.2 
MPa leads to a lower reliability and is thus the govern
ing case.

In Figure 8 it is also shown than an URM wall 
designed for one-way bending exceeds the target reli
abilities for all values of ϕ if designed to f

0

mt = 0.14 
MPa. On the other hand, the capacity reduction factor 
(ϕ) needed to meet the target reliabilities for f

0

mt = 0.2 
MPa are 0.95 and 0.70 for βT = 3.7 and βT = 4.2, 
respectively, for non-cyclonic regions. If a higher tar
get reliability of βT = 4.4 is selected, then ϕ = 0.63 for 
non-cyclonic regions. For the cyclonic regions, the ϕ 
values are higher for all target reliabilities.

It might appear counter-intuitive that reliabilities 
are mostly lower for non-cyclonic regions. This is not 
to mean that non-cyclonic wind speeds are higher, but 
that the actual mean wind speeds are proportionally 
higher than the nominal (design) values for non- 
cyclonic regions mean(W/Wn) = 0.33 than they are 
for cyclonic regions where mean(W/Wn) = 0.16. This 
is offset, in part, by the significantly higher variability 
of cyclonic winds. In other words, nominal design 
wind speeds for non-cyclonic regions may be slightly 
less conservative when compared to cyclonic regions.

Since designing to the AS 3700 (2018) recom
mended characteristic flexural tensile bond strength 
of f

0

mt = 0.2 MPa leads to lower reliabilities, the results 
and discussion to follow will focus on this conservative 
design criteria.

A reliability-based calibration of AS 3700 (2018) is 
completed considering target annual reliability index 
values of 3.7 and 4.2. The capacity reduction factors 

determined for the non-cyclonic and cyclonic condi
tions are given in Table 6 for Cases 1 to 4. The effect of 
determining the bond strength probability distribution 
based on 0.2 MPa being the 5th percentile (Case 2) 
increases reliabilities slightly, leading to a slightly higher 
ϕ value. A shorter wall length (Case 3) results in a 
reliability index only 0.01 lower than the benchmark 
Case 1. A longer wall has more opportunity for load 
redistribution, leading to higher mean resistance and 
lower variability (e.g., Isfeld, Stewart, and Masia 2021), 
leading to a higher reliability. Considering all cases, the 
lowest (critical) ϕ value is 0.70 (Non-cyclonic, Case 3).

To be conservative, it may be recommended that the 
capacity reduction factor be increased from the current 
AS3700 value of ϕ = 0.6 to ϕ = 0.65. In this case, the 
minimum annual reliability index is 4.32 (Non-cyclonic, 
Case 3) which easily exceeds the strictest target reliability 
of βT = 4.2.

3.6. Sensitivity Analyses

The sensitivity of the reliability analysis to critical factors 
is tested by adjusting those factors and comparing the 
results to benchmark Case 1 with a design bond strength 
of 0.2 MPa and for ϕ = 0.6. Factors of interest include 
variability of self-weight, variability of model error, 
change in unit thickness, and probabilistic distributions 
for model error, bond strength, and ultimate resistance.

Table 7 shows the reliability indices when (i) self- 
weight is treated as deterministic, (ii) unit thickness is 
rounded up by 5%, (iii) model error is treated as 
deterministic equal to 1.0, and (iv) model error has a 
mean of 1.0 and COV of 0.05, (v) flexural bond 
strength is lognormal or Weibull as suggested by 
some other researchers (Lawrence 1983, 1985), (v) 
ultimate resistance distribution is evaluated with the 
distribution found to have the second best fit 
(Weibull), and (vii) flexural bond strength statistics 
based on a 5th percentile of 0.2 MPa and a COV = 0.5 
(mean = 0.746 MPa, COV = 0.5).

As expected, a deterministic self-weight has a neg
ligible effect on the calculated reliability. This is 

Table 6. Capacity reduction factor (ϕ) for target annual reliability index of 3.7 and 4.2, for Cases 1–4 and f
0

mt = 0.2 MPa.

Capacity Reduction Factor (ϕ) to meet Target Reliability

Reliability Index when 
ϕ = 0.6

βT = 3.7 βT = 4.2

Non-cyclonic:
Case 1 4.47 0.95 0.70
Case 2 4.51 0.96 0.72

Case 3 4.46 0.94 0.70
Case 4 4.57 0.99 0.75

Cyclonic:
Case 1 4.61 >1 0.83

Case 2 4.63 >1 0.84
Case 3 4.60 >1 0.82
Case 4 4.68 >1 0.87
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consistent with the results of Lawrence and Stewart 
(2011). Considering a deterministic model error of 1.0 
or a mean model error of 1.0 and COV of 0.05 had a 
similar effect for all cases. When the COV of the 
model error is reduced, the reliability index increased 
consistently despite the small reduction in the mean 
model error used in these cases. For Case 1 changing 
the resistance distribution from normal to Weibull led 
to a reduction in the reliability index as the Weibull 
distribution overestimated the probability of low peak 
pressure values. Changing the flexural bond strength 
from normal to lognormal increases reliabilities, 
whereas selecting a Weibull distribution results in a 
small decrease in the reliability index.

Table 7 also shows the effect of discretisation of unit 
thickness. For example, if the unit thickness is rounded 
up by only 5%, then the reliability index increases from 
4.47 to 4.68. This shows the important effect that dis
cretising of unit thickness can have on structural relia
bility. However, as discussed in Section 3.4, reliability- 
based code–calibration studies usually ignore this influ
ence and so it is not considered in the present study 
when proposing capacity reduction factors.

In summary, Table 7 shows that the annual relia
bility indices all exceed the strictest target reliability of 
βT = 4.2.

A lower wall height will have less opportunity for low 
bond strengths as high stresses will occur over fewer 
courses. For example, for a wall of 1.2 m height, the 
flexural stresses three courses above mid-height are 
85% of the peak (mid-height) stress including self- 
weight, whereas for a 2.4 m high wall this proportion 
increases to 96%. This should lead to higher mean-to- 
nominal capacity (Ru/Rn) and lower COV of peak wall 
strength for walls lower than 2.4 m in height. URM walls 
are rarely higher than a single storey of 2.4 m but may 
reach 3.0 m in some cases. In this case, a slightly lower 
mean-to-nominal capacity and higher COV of peak wall 
strength are expected, with a small reduction in  

reliability.

4. Conclusions and recommendations

A spatial stochastic FEA model was developed to esti
mate the resistance of full scale URM walls in one-way 
vertical bending. This model accounts for the unit-to- 
unit spatial variability of material properties, consider
ing bond strengths observed in typical Australian con
struction. The walls are subject to a wind load and self- 
weight with no vertical pre-compression. An estab
lished method of structural reliability analysis was 
applied using the spatial stochastic FEA as a resistance 
model, considering the random variability of model 
error, flexural bond strength, and wind load.

The reliability analysis includes a number of 
assumptions that lead to conservative (lower) reliabil
ity indices, namely:

(1) discretisation of unit thickness is not considered 
– yet its effect would be higher for masonry than 
other materials.

(2) variability of flexural tensile strength was not 
reduced to account for variability in bond 
wrench test procedures.

(3) a design bond strength of 0.2 MPa is used, 
rather than the calculated 5th percentile 
obtained from the probability distribution of 
flexural bond strength.

(4) walls are assumed to be simply supported, 
whereas in many practical cases there may be 
partial rotational restraint at the top or bottom 
of a vertically spanning wall panel.

The reliability indices will be higher if even one of 
these conservative assumptions were not included 
in the analysis or were modelled more accurately. 
Comparison of the annual reliability index to target 
reliabilities recommended by Australian and 

Table 7. Sensitivity Analysis of Reliability Indices for benchmark Case 1 and f
0

mt = 0.2 MPa.

ϕ = 0.6 ϕ = 0.65

Non-Cyclonic Cyclonic Non-Cyclonic Cyclonic

Benchmark Case 1 4.47 4.61 4.34 4.51

Self-weight deterministic 4.48 4.61 4.35 4.51
Unit thickness is rounded up by 5% 4.68 4.76 4.54 4.67

Model error mean(ME) =1.0, COV(ME) =0.0 4.85 4.84 4.71 4.74
Model error mean(ME) =1.0, COV(ME) =0.05 4.82 4.82 4.68 4.72
Flexural bond strength is Weibull distribution: mean(Ru) =1.16 kPa, COV(Ru) =0.11 4.40 4.55 4.26 4.45

Flexural bond strength is lognormal distribution: 
mean(Ru) =1.25 kPa, COV(Ru) =0.08

4.61 4.70 4.48 4.60

Flexural bond strength: mean = 0.746 MPa, COV =0.5: 
mean(Ru) =1.51 kPa, COV(Ru) =0.12

4.87 4.93 4.74 4.83

Ultimate resistance is Weibull distribution 4.41 4.58 4.28 4.48
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international standards found that the capacity 
reduction factor for the Australian Standard for 
Masonry Structures AS 3700 may be increased 
from ϕ = 0.6 to ϕ = 0.65 as the lowest (critical) 
ϕ value is 0.70. It is therefore reasonable, and still 
conservative, to round down this value to ϕ = 0.65 
for URM in one-way vertical bending. The robust
ness of this recommendation is shown through 
sensitivity analyses. If such a recommendation is 
implemented in AS 3700, then this will result in 
an 8.3% increase in the flexural design capacity in 
the design of new structural masonry in Australia.

Coupling the results of physical wall testing with 
that of spatial stochastic FEA models has been shown 
to produce a reliable prediction of the strength dis
tribution of masonry walls. The use of such models in 
reliability analysis has provided an economical means 
of evaluating design standards. This approach could 
be applied to consider the effect of vertical pre-com
pression on such walls, as well as the effects of two- 
way bending.
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