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60 Abstract:

61 The resilient modulus (MR) of ballast is one of the key output parameters in any rail design 

62 project because it controls the elastic magnitude of track deformation under cyclic loading. 

63 This study investigates the response of MR under cyclic conditions as a function of four key 

64 parameters, i.e., the loading magnitude, the number of loading cycles, the loading frequency, 

65 and the confining pressure. To do so, two non-linear predictive models, namely, the artificial 

66 neural network (ANN), and the adaptive neuro-fuzzy inference system (ANFIS), are used to 

67 predict the MR values under different loading conditions. To evaluate and predict MR, an 

68 experimental database with 196 data samples is considered in this study. A series of sensitivity 

69 analyses is carried out to investigate the most effective parameters in each non-linear model 

70 and also predict the highest performance model. Although the results from the primary 

71 validation phase are satisfactory for the ANN and ANFIS models, ANFIS proves better (i.e., 

72 the coefficient of determination = 0.709) at estimating the MR during the secondary validation 

73 phase, using an independent dataset. Hence, it can be used as a powerful and practical model 

74 for predicting the magnitude of MR. On the basis of the ANFIS model, this study also offers 
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75 some design considerations in terms of MR of ballast under a practical range of cyclic loading 

76 parameters. 

77 Keywords: Railway geotechnics; Ballast; Resilient modulus; Predictive models; Cyclic 
78 loading; Machine learning. 
79
80 Nomenclature 

ANN Artificial neural network
ANFIS Adaptive neuro-fuzzy inference system 

AI Artificial intelligence 
BP Back-propagation
∅ Bulk stress
C Percentage of clay
D The total number of data samples
𝜎 ´

3 Confining pressure 
Fr Cyclic loading frequency
𝐹𝐸 Squared error function
E Young's modulus 
γ Dry unit weight

𝜀𝑎,𝑟𝑒𝑐 Resilient axial strain
FIS Fuzzy inference system
GUI Graphical user interface

I Number of input parameter
MR Resilient modulus 

qmax,cyc Magnitude of cyclic load
MAE Mean absolute error
MF Membership function
MC Moisture content
ML Machine learning

MLP Multilayer perceptron
MI Mutual information 
N Number of cycles 
PI Plasticity index

P#200 Percent passing number 200 sieve
𝑞𝑚𝑖𝑛 Minimum deviator stress
𝑞𝑚𝑎𝑥 Maximum deviator stress

RMSE Root mean squared error
R2 Coefficient of determination

SVM Support vector machine 
Trimf Triangular MF

w Water content
VAF Variance account for

81

82 1. Introduction
83
84 As the population of Australia continues to grow, more urban infrastructure is needed to ensure 

85 a more efficient plan for public transport in the future; in fact, in many countries and megacities, 

86 urban railway construction is considered to be a priority. The layers of granular material on a 

87 railway track are formed by an upper layer of ballast that consists of angular particles (i.e., 13–
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88 60 mm in size) and a lower sub-ballast or capping layer that consists of compacted granular 

89 material that resembles a broadly-graded road base. When a ballast layer is installed, one of its 

90 key functions is to serve as a primary load-bearing layer and to transfer stress on the underlying 

91 weaker subgrade to minimise track settlement and ensure rapid drainage [1,2]. The mechanical 

92 behaviour of ballast layer under various loading magnitudes and frequencies has been 

93 investigated. When considering the elastic response of ballast under cyclic loading, the resilient 

94 modulus (MR) can be defined by the following equation [3]: 

95              (1)𝑀𝑅 =
∆𝑞

𝜀𝑎,𝑟𝑒𝑐

96 where  is the difference between the maximum deviator stress ( and the minimum ∆𝑞 𝑞𝑚𝑎𝑥) 

97 deviator stress (  and  is the resilient axial strain (Fig. 1). Even though calculating 𝑞𝑚𝑖𝑛), 𝜀𝑎,𝑟𝑒𝑐

98 MR is similar to computing the secant Young's modulus (E), the latter is commonly used to 

99 define the elastic response of the material under monotonic loading. In transportation 

100 geomechanics, the resilient modulus, MR is one of the key design parameters that relates track 

101 deformation (vertical strain) to the applied cyclic train loading over a sufficient number of 

102 loading cycles (Fig. 1). 

103
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104 Fig. 1. Definition of Resilient Modulus, MR, (a): the minimum and maximum deviator 
105 stresses in cyclic loading curve, (b): axial strain changes during application of one cycle of 
106 load 
107 MR is normally determined by conducting cyclic triaxial tests in the laboratory. Direct tests of 

108 determining the MR have proven to be too expensive in both time and money  [4].  Moreover, 

109 the large-scale cyclic test for ballast can be complex to operate, requires sample preparation, 

110 technical effort, and subsequent analysis before MR can be measured [5,6]. Therefore, it is 

111 better to propose predictive techniques for estimating MR that are easier and more applicable. 

112 Previous studies into the MR of soil can be categorised into three major groups, namely (i) 

113 experimental/numerical; (ii) statistical; and (iii) artificial intelligence (AI). 

114 Experimental/numerical studies focus on evaluating or simulating MR with properties such as 

115 the type of soil, the degree of saturation [7–10], or other relevant parameters such as shear 

116 strain, confining pressure,  deviator stress, damping ratio, bulk stress, and number of load 

117 cycles [11–17]. However, these proposed experimental/numerical solutions still need extensive 

118 testing or modelling procedures, all of which require a significant amount of time, expertise 

119 and equipment. The second group of models developed for predicting MR are statistical using 

120 regression-based models. The first study carried out by Carmichael and Stuart [18] has 

121 proposed two formulae for predicting the MR of cohesive and granular soils. These formulae 

122 are mainly based on different types of soils (CH, ML, GW, and GC), their stress values 

123 (deviator and bulk stresses), and properties such as the plasticity index, PI, and water content, 

124 w. In another study by Drumm et al. [19], the MR of subgrade soil is predicted using strength 

125 parameters such as the unconfined compressive strength, and elastic modulus, E, and properties 

126 such as the percentage of clay, C, PI and dry unit weight, . The model showed a good level of 𝛾

127 accuracy, with the coefficient of determination (R2) ranging from 0.81-0.83. Khasawneh and 

128 Al-jamal [20] introduced linear and non-linear multiple regression equations to estimate the 

129 MR of fine-grained soils; this included using basic soil index parameters (e.g., Atterberg limits 

130 and the percent passing number 200 sieve, P#200) and stress-based factors. It seems that the 
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131 independent variables used to develop statistical equations are likely to be correlated (e.g., 

132 Atterberg limits, , and others), and therefore, the model is very complex [4]. In fact, several 𝛾

133 researchers [21] reported that these models are not always robust enough to accurately describe 

134 non-linear and complex systems.

135 The last group of models and suggested solutions for predicting the MR of soil is AI. These 

136 approaches are very effective at discovering complicated correlations between multi-

137 dimensional data that is why many geotechnical researchers have adopted them in the past [22–

138 26]. Moreover, they are fast, dependable, and efficient at recognising patterns and finding the 

139 best way to reach the system output [4]. By considering the routine properties of subgrade soil, 

140 such as PI, the moisture content (MC), as well as stress conditions such as the confining 

141 pressure, Zaman et al. [27] developed different artificial neural network (ANN) models like the 

142 multilayer perceptron (MLP) network to predict MR. They concluded that these models are 

143 generally good enough to be used in practice. In another similar study, tree ensemble machine 

144 learning (ML) models were used by Pahno et al. [28] to estimate MR. In these models, they 

145 adopted the database published by Kim [29] to implement the model having 17 input 

146 parameters, from which they obtained a range of R2 = 0.85-0.95. Heidarabadizadeh et al. [16] 

147 also carried out research in this area by using the data available in the literature [4] and a series 

148 of support vector machine (SVM) models to improve their results. The results from their SVM 

149 models were more accurate than the original study which used the ANN technique [4]. In 

150 summary, the predictions for MR utilising AI techniques were much more accurate than the 

151 other groups mentioned. Overall, an R2 of more than 0.85 was obtained for these studies, which 

152 is much better than the empirical/numerical and statistical techniques. It is also important to 

153 note that the AI techniques have been suggested as the most accurate models in previous studies 

154 related to geotechnical issues [30–32]. 
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155 It is found that most of the relevant studies are applicable for road/highway and pavement 

156 engineering, and furthermore, most of the published methodologies and predictive models for 

157 evaluating MR are related to soft soil and fine-grained materials and also unbound granular 

158 materials. To the authors' knowledge, there have been a few MR studies (e.g., [33,34]) carried 

159 out using AI methods on ballast that are relevant to railway applications. In this study, the MR 

160 values of ballast will be predicted using two AI techniques, ANN and the adaptive neuro-fuzzy 

161 inference system (ANFIS). Measured values of MR from the laboratory were used to calibrate 

162 and further validate the predicted models. The most effective factors influencing the MR of 

163 ballast material will be considered as predictors, and the results of predictive models will be 

164 discussed in detail.

165 2. Methods and material 

166 2.1 Artificial neural network (ANN) background

167 With no previous assumptions or mathematical correlations, ANN can be used to represent 

168 complex non-linear interactions among parameters. The structure, function, and computation 

169 of a biological neural network inspired the creation of ANN are achieved by utilising a large 

170 number of operational non-linear computational units [35]. ANNs can be viewed as massively 

171 parallel systems in which a network of connected processing units, known as neurons or nodes, 

172 is organised into layers. Moreover, the way a network functions and the kind of network it is 

173 depends on how its neural connections are configured [36]. 

174 The output layer node error is minimised by constantly adjusting the design and connecting 

175 weights during network training. In reality, a squared error function ( ) computes the output 𝐹𝐸

176 error as follows:

177                          (2)𝐹𝐸 =  
1
2∑𝑃

𝑖 = 1(𝑡(𝑖) ‒ 𝑦(𝑖))2
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178 where the actual and predicted values are presented by  and , respectively. In addition, the 𝑦 𝑡

179 parameter P indicates the number of training patterns to be used.

180 Back-propagation (BP) is a gradient-based learning method that is especially beneficial for 

181 multilayer feed-forward networks in the process of network learning [37]. BP learning uses a 

182 two-stage approach that incorporates a forward and a backward step as its foundation for each 

183 training phase. In this step, input signals are pushed forwards through the network and then 

184 each node on the output layer produces an error signal. In the next step, the weights and biases 

185 in the network will be changed by sending the error rates backwards through the network.

186 As a kind of multilayer feed-forward network, MLPs use weighted connections and activation 

187 functions between successive layers of processing units (neurons) to communicate and process 

188 information (signals) to achieve high performance [35]. Neuron outputs may be generated by 

189 the activation functions of hidden and output neurons, which may perform specifically defined 

190 activation functions of net input.  When a hidden neuron is trained, it receives the complete net 

191 input, which is multiplied by an adaptive weight coefficient (  for each incoming signal (𝑤𝑖𝑗)

192  from the previous layer. As a final step, weighted signals are added together, and a small 𝑥𝑖)

193 amount of bias is introduced into the resulting total signal. This process is then repeated for all 

194 of the layers in the system until the system's complete output is generated. A hidden or output 

195 neuron's entire net input may be expressed as follows:

196              (3)𝑛𝑒𝑡𝑗 = ∑𝑛
𝑖 = 1𝑤𝑖𝑗𝑥𝑖 + 𝑏𝑗

197 where  is the network constructed for neuron j, and  is the bias of neuron j. The activation 𝑛𝑒𝑡𝑗 𝑏𝑗

198 function squeezes the whole net input from each neuron's output into a single value (e.g., 

199 sigmoid). For each hidden or output neuron, the output can be presented as follows:

200 The entire net input for each neuron is reduced to the activation function for that neuron (e.g., 

201 sigmoid). For each hidden neuron, the output is obtained as:
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202              (4)𝑂𝑗 =
1

(1 + 𝑒𝑥𝑝{ ‒ 𝑛𝑒𝑡𝑗})

203 Fig. 2 shows a simplified representation of the data-processing procedures of an artificial 

204 neuron.

205

206 Fig. 2. An artificial neuron j with its various components 

207 2.2 Adaptive neuro-fuzzy inference system (ANFIS) background 

208 Jang [38] was the first to introduce the ANFIS technique, a functional mapping concept that 

209 approximates the process of predicting the values of internal system parameters that can be 

210 simulated using ANFIS capabilities. The notion of fuzzy inference or rule-based systems is 

211 included in ANN, which is why this AI approach is referred to as neuro-fuzzy. The primary 

212 goal of ANFIS is to map a connection between the parameters that are system input and those 

213 that are system output by defining a series of membership functions (MFs) for the variables. 

214 The ANFIS network structure is divided into two sections: the premise and the consequence. 

215 The training part of ANFIS is the process of tuning the parameters of these sections using an 

216 algorithm. During training, ANFIS employs the existing input–output data pairings, after which 

217 IF-THEN fuzzy rules that indicate the interconnection of these components are generated 

218 [38,39]. Fig. 3 shows the five-layer structure of ANFIS where a two-input ( , ), and one-𝑥1 𝑥2
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219 output ANFIS structure with three rules are shown. A breakdown of the layers of ANFIS, based 

220 on the diagram shown in Fig. 3 is presented in the following five layers:

221

222 The first layer: fuzzification

223 Fuzzy clusters are generated from input data in the fuzzification layer. The structure of the 

224 underlying data MFs are used in the fuzzification layer. These are called "premise parameters" 

225 and they define the structure of the MFs.  Equations 5 and 6 are used to compute the 

226 membership degrees of each MF, where   is the set of premise parameters. In this layer, {ℎ,𝑗,𝑘}

227 the membership degrees gained are represented by and . The   is defined as 𝜇𝑥1 𝜇𝑥2 𝑔𝑏𝑒𝑙𝑙𝑚𝑓

228 Guassian MF in these equations.

229              (5)𝜇𝐴𝑖(𝑥) = 𝑔𝑏𝑒𝑙𝑙𝑚𝑓 (𝑥; ℎ,𝑗,𝑘) =
1

1 + |𝑥 ‒ 𝑘
ℎ |2𝑗

230              (6)𝑌1
𝑖 = 𝜇𝐴𝑖(𝑥)

231 The second layer: Rule

232 The membership values of the fuzzification layer (the first layer) are used to create firing 

233 strengths ( ) for rules. The membership values are multiplied to get the  values, as presented 𝑤𝑖 𝑤𝑖

234 in Equation 7. 

235 i=1,2              (7)𝑌2
𝑖 = 𝑤𝑖 = 𝜇𝐴𝑖

(𝑥1).𝜇𝐵𝑖(𝑥2)

236 The third layer: Normalization

237 For each rule, the normalisation layer estimates the average firing strength for that specific rule. 

238 Using the normalised value, the ratio of the ith rule's firing strength to the sum of all firing 

239 strengths is calculated (Equation 8).
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240              (8)𝑌3
𝑖 = 𝑤𝑖 =

𝑤𝑖

𝑤1 + 𝑤2 + 𝑤3 + 𝑤4
𝑖 ∈  {1, 2, 3, 4}

241 The fourth layer: Defuzzification

242 The values of the rules are computed in each node of this layer (defuzzification) using the 

243 weighted values provided above, as given in Equation 9. A first-order polynomial is used to 

244 calculate this number.

245                               (9)𝑌4
𝑖 = 𝑤𝑖𝑓𝑖 = 𝑤𝑖 (𝑟𝑖𝑥1 + 𝑠𝑖𝑥2 + 𝑡𝑖)

246 where  is obtained as the output of the previous layer, and  , , and  are the parameter set 𝑤𝑖 𝑟𝑖 𝑠𝑖 𝑡𝑖

247 (also known as the consequence parameters) which will be used to calculate the system output 

248 . The number of consequence parameters is considered as  where  is the number of 𝑌 𝑚 + 1 𝑚

249 input variables. 

250 The fifth layer: Summation

251 The final result of ANFIS in this layer will be found by adding up the results that each rule in 

252 the defuzzification layer produces (Equation 10).

253            (10)𝑌5
𝑖 = overalloutput = ∑

𝑖𝑤𝑖𝑓𝑖 =
∑

𝑖𝑤𝑖𝑓𝑖

∑
𝑖𝑤𝑖

254
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255 Fig. 3. The schematic view of the five-layer architecture of ANFIS

256

257 2.3 Established database

258 Previous studies related to the determination and prediction of MR have been reviewed and 

259 found that for the same ballast material and source, there are still some parameters that can 

260 affect the MR. Sun et al. [5,6,40], Navaratnarajah and Indraratna [41] and Thakur et al. [42] 

261 studied the effects of the cyclic loading frequency (Fr) and the number of cycles (N) on ballast 

262 deformation and reported that these two parameters play a significant role. On the other hand, 

263 stress related parameters such as the magnitude of cyclic load (qmax,cyc), the confining pressure 

264 ( , and the deviator stress are considered to be the most influential factors that affect the final 𝜎 ´
3)

265 results of ballast deformation [1,42–44]. So, it is essential that such parameters will be selected 

266 as input parameters to predict ballast MR in this study. Since there is a need to have an 

267 acceptable variation for each effective parameter in AI studies, some parameters such as 

268 compacted density of ballast and other physical properties are not considered as input 

269 parameters in the current analysis. Therefore, four parameters (qmax,cyc, , Fr, and N) are used 𝜎 ´
3

270 as model inputs or predictors; hence the MR can be predicted by a function of MR = f (qmax,cyc, 

271 , Fr, and N). 𝜎 ´
3

272 In order to fulfil the aims of this study, the study and tests carried out by Sun et al. [6] were 

273 considered. The volcanic latite basalt utilised by Sun et al. [6] is a common ballast that is 

274 extracted from quarries and then used in railway projects in New South Wales, Australia. These 

275 specimens are produced in accordance with the relevant Australian standards [45], and after 

276 being sieved, rinsed, and mixed together, they are then compacted in three distinct layers inside 

277 a rubber membrane. Afterwards, a series of drained triaxial tests under different cyclic 

278 conditions were carried out on the specimens using a large-scale triaxial apparatus. These tests 
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279 are based on different values for each predictor used in this study (qmax,cyc, , Fr, and N) and 𝜎 ´
3

280 their MR values are recorded. Eventually, a database with 219 data samples was prepared such 

281 that each data sample contains four inputs and one output. 

282 In this database, outliers were identified beforehand and the data was cleaned.  One data point 

283 that stands out from the rest is called an outlier. An outlier could be due to variations in the 

284 measurement, or experimental inaccuracies; in each case the results of the experiment should 

285 be omitted from the database. This process enabled 23 outliers which were identified in the 

286 database through the method of identifying outliers.  The outliers are then removed from the 

287 database, leaving 196 data samples to be considered for modelling in this study. Some basic 

288 information about the selected database can be seen in Table 1. Further details regarding the 

289 tests and their conditions can be found in the original study [6].

290 To better understand the data, histograms of all the input and output parameters are shown in 

291 Fig. 4, and ‘violin plots’ of the same parameters are shown in Fig. 5. Numerical data that is 

292 plotted as a violin plot may be thought of as a mixture of a box plot and a Kernel density plot 

293 [46]. The median (a red point on the violin plot) and inter-quartile range (the black bar in the 

294 middle of the violin) can be discovered in the violin plots, which can effectively display the 

295 complete distribution of data.  The data distribution of these variables is heterogeneous, and is 

296 usually concentrated around one or several values. The modelling procedure for predicting the 

297 MR will be presented in the following sections. 
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298
299 Fig. 4. Histograms for different variables used in this research

300 Table 1. Statistical information regarding variables used in this research to predict ballast MR

Variable Category Symbol Min Max Ave
Magnitude of cyclic load (kPa) Input qmax,cyc 87.5 555 250.5
Confining pressure (kPa) Input 𝜎 ´

3 10 60 32.5
Cyclic loading frequency (Hz) Input Fr 5 30 17
Number of cycles Input N 254 112527 49263
Resilient modulus (MPa) Output MR 67.6 384.9 215.4

301
302
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303  

304
305 Fig. 5. Violin plot for each parameter used in this research
306
307
308 2.4 Evaluation indices

309 To evaluate the accuracy and robustness of the predictive models in this study, five evaluation 

310 metrics, i.e., R2, the variance account for (VAF), the root mean squared error (RMSE), A-20 

311 index, and the mean absolute error (MAE) are considered. R2 is the square of the correlation 

312 between the values that are predicted and those that are actually measured. The value of the 

313 VAF (per cent) indicates how well the prediction is made by comparing the standard deviation 

314 of the fitting error to the standard deviation of the actual value. These evaluation metrics can 

315 be found in Equations 11-15. The root mean squared error (RMSE) represents the standard 

316 deviation of the fitting error that occurs between the predicted value and the measured values, 

317 while the mean absolute error (MAE) represents the value that is most likely to occur when the 

318 actual values are compared to the estimated values. In addition, the A-20 index shows that the 

319 ratio of the results in each stage is within 0.8-1.2 times the measured or actual data samples. 

320 The formulae for these evaluation indices are presented as follows: 

321                          (11)𝑅2 = 1 ‒
∑𝑁

𝑖 = 1(𝑀𝑅𝑚𝑒𝑎 ‒ 𝑀𝑅𝑝𝑟𝑒)2

∑𝑁
𝑖 = 1(𝜏𝑚𝑒𝑎 ‒ 𝜏𝑚𝑒𝑎)2
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322              (12)𝑉𝐴𝐹 = (1 ‒
𝑣𝑎𝑟(𝑀𝑅𝑚𝑒𝑎 ‒ 𝑀𝑅𝑝𝑟𝑒)

𝑣𝑎𝑟(𝑀𝑅𝑚𝑒𝑎) ) × 100%

323                          (13)𝑅𝑀𝑆𝐸 =
1
𝐷∑𝐷

𝑖 = 1(𝑀𝑅𝑚𝑒𝑎 ‒ 𝑀𝑅𝑝𝑟𝑒)2

324                          (14)𝑀𝐴𝐸 =
1
𝐷∑𝐷

𝑖 = 1|𝑀𝑅𝑚𝑒𝑎 ‒ 𝑀𝑅𝑝𝑟𝑒|

325                        (15)𝐴 ‒ 20 =  
𝑚20

𝐷

326 where , ,  denotes the measured, predicted, and mean value of the MR, 𝑀𝑅𝑚𝑒𝑎 𝑀𝑅𝑝𝑟𝑒 𝑀𝑅𝑚𝑒𝑎

327 respectively.  is the number of samples for which the predicted MR values that are in the 𝑚20

328 range of 0.8~1.2 times the actual MR values;  is the total number of data samples. It is noted 𝐷

329 that when the predicted values and the measured values of MR are precisely the same, R2 is 1, 

330 the VAF is 100%, the RMSE is 0, A-20 is 1, and the MAE is 0.

331 3. Modelling process

332 This section discusses the methods and modelling steps used to predict MR values where two 

333 predictive techniques, ANN, and ANFIS are adopted.. The process for modelling these non-

334 linear approaches will be discussed in this section, while their accuracy to predict the MR of 

335 ballast will be evaluated later.

336 3.1 ANN 

337 The first stage of modelling is to randomly divide the entire database into training, testing, and 

338 validation portions. The samples of training data are to train a large portion of the data to 

339 discover and learn possible patterns, whereas the testing data samples should be used to assess 

340 the level of accuracy of the trained model. A small portion of the total data samples are used 

341 for validation to ensure that the developed model has been generalised enough and that it can 

342 be optimised. While a single percentage of 20, 25, and a range of 20-30 are recommended in 

343 the literature as testing data samples [47,48], some researchers used up to 70% of the whole 
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344 data samples as training sets and solved their problems perfectly [49]. With validation, 

345 researchers targeted a range of 10-15% to check model generalisation [50]. In this study,  a 

346 combination of 70, 20, and 10% of the whole database (i.e., 196) is selected as training, testing, 

347 and validation parts, respectively. It is noted that the data samples for training, testing, and 

348 validation are selected randomly from the entire database where each sample has the same 

349 probability of being chosen as other samples. 

350 The ANN modelling process should be started by normalising the whole database (i.e., training, 

351 testing and validation) in a limited range [0-1]. This is carried out for each input/output 

352 parameter using , where  and , are the maximum 𝐿𝑛𝑜𝑟𝑚 = (𝐿 ‒ 𝐿𝑚𝑖𝑛) (𝐿𝑚𝑎𝑥 ‒ 𝐿𝑚𝑖𝑛) 𝐿𝑚𝑎𝑥 𝐿𝑚𝑖𝑛

353 and minimum values of parameter L, respectively, and   is the normalised form of 𝐿𝑛𝑜𝑟𝑚

354 parameter, L. The number of hidden layers and the node(s) inside each hidden layer are 

355 considered to be the two most important factors in obtaining an accurate MLP predictive model. 

356 Hornik et al. [51] showed that when there are a sufficient number of hidden nodes, any 

357 complicated fitting problem may be approximated by a single hidden layer in the modelling of 

358 MLP. One hidden layer with a sigmoidal activation function is used for each MLP network, 

359 and one output layer (MR) is used for each network.

360 If there are  any hidden node numbers, some formulae have been suggested by various scholars, 

361 most of which depend on the number of input variables, I, (e.g., , ) [52,53]. Therefore, 2𝐼 3 2𝐼

362 a sufficient range and number of hidden nodes should be designed. The upper bound for the 

363 hidden node number recommended by Hecht-Nielsen [54] was .  Taking into account 2𝐼 + 1

364 all the available formulae for determining hidden node numbers, as well as the number of input 

365 parameters in this study (I = 4), a range of 1–9 has been implemented in a trial-and-error 

366 process. Nine MLP models were constructed and the results were assessed using the R2 values 

367 as reported in Table 2. It is seen that the hidden node number has a significant effect on the 

368 system’s performance because by increasing the hidden node number from 1-5, the model will 
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369 become more accurate. However, it seems that selecting the most accurate MLP model may be 

370 complicated because some R2 results are very similar; and to overcome this, a simple ranking 

371 method introduced by Zorlu et al. [55] was applied to select the most accurate MLP model.  A 

372 higher score on the training set represents the greatest learning capacity, and a greater capability 

373 on the testing and validation sets means the model has the ability to generalise and can be 

374 applied practically. Therefore, the highest R2 (e.g., 0.966 for the training set) received a rank 

375 of 9, followed by lower ranks for the other R2 values. If different MLP models have the same 

376 value for R2, their rank will be the same as those models. The total ranking would eventually 

377 be a summation of rankings for the training, testing, and validation parts of each MLP model.

378 According to the total ranking values, model number 8, with a rank of 25, represents the highest 

379 performance prediction in forecasting MR. The R2 values of this MLP model are 0.966, 0.928, 

380 and 0.942, respectively, for training, testing, and validation. These results showed that MLP is 

381 capable to map MR behaviour by considering the effects of four input parameters (i.e., qmax,cyc, 

382 , Fr, and N).  Note that the normalised measured and predicted MR values have been 𝜎 ´
3

383 normalised again to calculate other performance prediction indices. The results and capability 

384 of the ANN model will be discussed further in the “Results and Discussion” section. 

385 Table 2. Nine built MLPs to predict ballast MR 

R2 RankingHidden Node 
Number Training Testing Validation Training Testing Validation

Total 
Ranking

1 0.762 0.706 0.830 3 1 1 5
2 0.865 0.824 0.872 4 3 2 9
3 0.918 0.870 0.933 5 4 4 13
4 0.931 0.912 0.931 6 5 3 14
5 0.966 0.925 0.939 9 7 6 22
6 0.949 0.918 0.935 7 6 5 18
7 0.966 0.817 0.968 9 2 9 20
8 0.966 0.928 0.942 9 9 7 25
9 0.956 0.925 0.964 8 8 8 24

386

387
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388 3.2 ANFIS 

389 This section explains the detailed ANFIS modelling for predicting the MR values in the form 

390 of a combination of four input parameters (i.e., qmax,cyc, , Fr, and N). Modelling and 𝜎 ´
3

391 regulating non-specific and uncertain systems may be accomplished with the help of ANFIS, 

392 an intelligent neuro-fuzzy technique. The implementation of ANFIS is commonly carried out 

393 in the following processes. Firstly, after selecting the predictors and the output of the network, 

394 the type and number of MF should be determined. Then, fuzzy rules to solve the particular 

395 problem should be established.  

396 The suggested ANFIS structure must be trained, tested, and validated, so an instrument must 

397 be built for that purpose in a MatLab software environment. It is possible to construct a variety 

398 of ANFIS models with various parameters by using the graphical user interface (GUI). This 

399 application provides users with a fuzzy inference system (FIS) editor, a rule editor, an output 

400 surface viewer, an MF editor, and a fuzzy inference viewer; this programme also includes an 

401 output surface viewer. The GUI selection panel of the ANFIS editor is responsible for the 

402 beginning of FIS training, testing, and validation, the saving of the FIS object, and the 

403 presentation of the fuzzy rules and MFs. 

404 Previous studies have emphasised the effectiveness of MF design using the Gaussian MF 

405 (Gaussianmf) because it offers simplicity and flexibility [56], but the performance of the 

406 ANFIS models was suitable enough when other types of MF such as Triangular MF (Trimf) 

407 are used [57]. On the other hand, the number of MF for each input plays a significant role on 

408 the system’s performance. Therefore, the six ANFIS models reported in Table 3 were created 

409 and their corresponding results regarding training, testing, and validation were obtained. The 

410 values of 3, 4, and 5 were applied to the number of MFs for each type of MF (i.e., Trimf and 

411 Gaussianmf). In these models, the linear output MF type is utilised for the output (MR). It is 

412 found that the models became more accurate when the number of MFs for each input were 
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413 increased. Note that the number of fuzzy rules will increase if the number of MFs for each 

414 input is increased. For example, considering the number of inputs in this study (i.e., 4), the total 

415 number of fuzzy rules for MF = 3 and MF = 5 is 34 = 81 and 54 = 625, respectively. Therefore, 

416 to keep the number of fuzzy rules as reasonable as possible, the authors used 3, 4 and 5 as the 

417 number of MFs for each input parameter. The results obtained are quite similar (Table 3), so 

418 the same ranking system in the ANN part was applied. The best total rank, which is based on 

419 R2 and RMSE for training, testing, and validation stages, is 33. So, the ANFIS model number 

420 3 with Trimf as the MF type and 5 MFs in each input was selected as the best ANFIS model 

421 for predicting ballast MR.

422 The MFs designed by the best ANFIS model to estimate ballast MR are shown in Fig. 6. The 

423 range of input parameters used in the training phase are divided into five parts, namely very 

424 low (VL), low (L), medium (M), high (H), and very high (VH). In addition, some of the If-

425 Then rules created by the system when predicting ballast MR are shown in Table 4. The ANFIS 

426 models are trained using the linguistic variables and the If-Then rules to predict ballast MR. The 

427 same variables and rules are used to test and validate the trained model. In the next section, the 

428 results from the best ANFIS model will be examined in more depth.
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429 Table 3. Six ANFIS models with different specifications and their predictive performance 

Network Performance Ranking 
ANFIS 
model MF type

No. of MF 
in each 
input R2 train

R2 
test

R2 
validation

RMSE 
train

RMSE 
test

RMSE 
validation

R2 

train
R2 
test

R2 
validation

RMSE 
train

RMSE 
test

RMSE 
validation

Total 
Ranking

1 Trimf 3 0.952 0.813 0.883 18.95 40.455 32.864 4 3 4 3 3 3 20
2 Trimf 4 0.966 0.894 0.912 15.993 30.059 28.619 5 6 5 4 6 4 30
3 Trimf 5 0.970 0.874 0.922 15.11 32.696 27.387 6 5 6 5 5 6 33
4 Gaussianmf 3 0.926 0.744 0.853 23.554 46.83 36.942 3 2 3 2 2 2 14
5 Gaussianmf 4 0.966 0.894 0.912 15.993 30.059 28.619 5 6 5 4 6 4 30
6 Gaussianmf 5 0.970 0.863 0.922 14.962 34.272 28.146 6 4 6 6 4 5 31

430
431

432
433 Figure 6.  MFs used in this study by the ANFIS model, (a) qmax,cyc, (b) , (c) Fr, and (d) N𝜎 ´

3
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434 Table 4. Some examples of the If-Then ANFIS rules used to predict MR

If (qmax,cyc is VL) and (  is VL) and (Fr is VL) and (N is VH) Then (MR is VL) 𝜎 ´
3

If (qmax,cyc is L) and (  is L) and (Fr is L) and (N is VH) Then (MR is L) 𝜎 ´
3

If (qmax,cyc is M) and (  is M) and (Fr is L) and (N is VH) Then (MR is M) 𝜎 ´
3

If (qmax,cyc is H) and (  is VH) and (Fr is M) and (N is L) Then (MR is H) 𝜎 ´
3

If (qmax,cyc is VH) and (  is H) and (Fr is VH) and (N is VH) Then (MR is VH) 𝜎 ´
3

435

436 4. Results and discussion 

437 4.1 Model assessment 

438 The predictive models should be evaluated in the training phase, and in the case of satisfaction, 

439 they should also be evaluated in the testing and validation stages. The best model is the one 

440 that receives an acceptable level of predictions for all phases. In this study, the calculated 

441 performance indices (Equations 11-15) for the training, testing, and validation of the non-linear 

442 predictive models are shown in Table 5. In terms of system error, the RMSE values of (32.696 

443 and 25.122) and (27.387 and 22.778) and the MAE values of (21.292 and 18.174) and (18.404 

444 and 17.106) are obtained for the testing and validation phases of the ANFIS, and ANN models, 

445 respectively. With ANN and ANFIS, the results are similar, although the ANFIS predictions 

446 during the training phase are better, and the testing and validation phases reported closer 

447 measured and predicted MR values by the ANN model. A-20 is a good index to identify the 

448 best models because it calculates the predicted over measured MR values within a certain range 

449 (0.8-1.2). The results of A-20 show that ANN is a more accurate AI technique than ANFIS 

450 with regards to training, testing, and validation. 

451 In order to have a better understanding, the measured MR vs predicted MR for all phases of the 

452 ANN and ANFIS models are shown in Figs.  7 and 8, respectively. These figures confirm that 

453 the ANFIS and ANN models are capable to predict  MR values that are close to the measured 

454 ones. The Taylor diagrams of the training, testing and validation outcomes are shown in Fig. 

455 9. The distance that separates the point that represents the model and the point of origin is used 
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456 to illustrate the standard deviation, and the ticks that appear on the arc that revolves clockwise 

457 around the point that represents the model, are used to illustrate the correlation coefficient. The 

458 actual MR value is represented by the point labelled "REF" (the black star), and the distance 

459 from each of the other points to the point labelled "REF" reflects the centred system 

460 error.  When working with Taylor diagrams, the placement of points on the graph may be used 

461 as a criterion for determining the capabilities of the relevant model. The models that are 

462 represented by points located closer to the "REF" point are more capable, so according to this 

463 guiding concept, the ANFIS model performed best in the training phase, whereas the ANN 

464 model was more accurate during the testing and validation phases. Although the ANN and 

465 ANFIS models were very accurate, a secondary validation may be needed to examine the 

466 accuracy of the ANN and ANFIS models built in this study. To do this, the authors used a new 

467 database from literature; it will be explained in the following section.

468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
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484 Table 5. The results of MR obtained for the training, testing and validation phases

Training Testing ValidationModel

R2 VAF (%) RMSE A-20 MAE R2 VAF (%) RMSE A-20 MAE R2 VAF (%) RMSE A-20 MAE

ANFIS 0.970 96.970 15.110 0.971 10.412 0.874 87.405 32.696 0.872 21.292 0.922 92.072 27.387 0.900 18.404

ANN 0.966 96.619 15.965 0.978 11.316 0.928 96.625 25.122 0.949 18.174 0.942 94.125 22.778 0.950 17.106

485
486
487

488
489
490 Fig. 7. Measured MR vs predicted MR in the case of ANN model 
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491
492 Fig. 8. Measured MR vs predicted MR in the case of ANFIS model 
493

494
495 Fig. 9. Taylor diagram for all phases and two predictive models  
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496 4.2 Validation with the other studies 

497 This section describes the process of performing a secondary validation phase to determine the 

498 best model in this study. In this regard, 37 new independent data samples with the same input 

499 parameters were randomly collected from the literature, as presented in Table 6. As shown,  

500 some inputs are within the range of inputs used to construct the models. For example, qmax,cyc 

501 is the same for all 37 data samples (i.e., 230 kPa), and the range for  is between 10-60 kPa. 𝜎 ´
3

502 However, some data points are outside the ranges considered while developing the model for 

503 this study. The Fr range in Table 1 is (5-30 Hz), whereas some points with Fr = 40 Hz are in 

504 Table 6. In addition, some out-of-range values for N (i.e., 200,000, 300,000, and 400,000) 

505 compared to Table 1 were considered in these validation data samples. All predictive models, 

506 namely ANN, and ANFIS, were applied to the data samples in Table 6 to challenge them when 

507 predicting MR values if new data is available. It is important to note that the source and type of 

508 ballast used in Table 6 are the same as the original data samples used in model development.

509 After conducting the analyses using new data, the results were obtained and then the measured 

510 MR and predicted MR were compared. The best way to assess the model’s performance in this 

511 stage is by system error. A large amount of RMSE i.e., 235 was obtained for ANN model, but 

512 the system error (i.e., RMSE) for the ANFIS model is 31.2 which was the most accurate of all 

513 predictive models. An R2 of 0.709 was obtained between measured and predicted MR values 

514 using the ANFIS model; this confirms that this model can predict MR values for training, 

515 testing, and primary validation, and for regarding the secondary part of the validation. 

516 As discussed earlier, ANFIS is a combination of the ANN and fuzzy logic controllers, which 

517 means the fuzzy rules are generated using ANN. This is one of the key differences between 

518 ANN and ANFIS. The controller blocks, and parameters of ANN are generated in accordance 

519 with an algorithm, whereas ANFIS is a combination of ANN and fuzzy logic controllers. The 

520 incorporation of neural networks into fuzzy systems not only enhances their performance, it 
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521 also provides a better representation of their internal information thanks to the ability of neural 

522 networks to learn [58]. The measured and predicted MR values during the secondary validation 

523 are shown in Fig. 10. It is seen that the ANFIS model can be used as a strong predictive model 

524 to estimate ballast MR for the situation described in this study. 

525 Table 6. The selected data samples for the purpose of secondary validation

qmax,cyc 
(kPa)

 𝝈 ´
𝟑

(kPa)
Fr 

(Hz) N MR 
(MPa) Reference

230 30 5 1000 198.1
230 30 5 2000 218.5
230 30 5 5000 220.5
230 30 5 10000 240.8
230 10 10 1000 215.5
230 10 10 2000 223.5
230 10 10 5000 261.5
230 10 10 10000 305.7
230 60 5 1000 247.7
230 60 5 2000 254.9
230 60 5 5000 314.7
230 60 5 10000 323.9
230 60 5 25000 345.5

Sun et al. [40]

230 15 15 50000 186.3
230 15 20 30000 195.1
230 15 20 50000 196.9
230 15 20 70000 197.4

Navaratnarajah and Indraratna [41]

230 20 10 50 103.7
230 20 10 100 121.6
230 20 10 500 144.2
230 20 10 1000 146.9
230 20 10 5000 160.5
230 20 10 10000 158.2
230 20 10 50000 168.9
230 20 10 200000 180.3
230 20 20 50000 176.1
230 20 20 100000 186.8
230 20 20 200000 182.5
230 20 20 300000 189.3
230 20 30 200000 198.6
230 20 30 300000 199.8
230 20 30 400000 200.7
230 20 40 500 188.9
230 20 40 1000 197.7
230 20 40 5000 208.1
230 20 40 10000 205.9
230 20 40 50000 214.5

Indraratna et al. [11]

526
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527

528 Fig. 10. Predicted MR values by the ANFIS model vs measured MR for the secondary 

529 validation phase

530 4.3 Comparison of predicted MR with previous models  

531 There are several empirical equations that were developed for predicting ballast MR during the 

532 past decades [6,43,59], among others. This section compares the results of ANFIS developed 

533 in this study with the empirical equations available in the literature and show that the ANFIS 

534 model performs better and more accurately. The bulk stress ( ) is the main parameter in those ∅

535 empirical equations for predicting ballast MR. There is another study that considered another 

536 parameter related to tested frequency for ballast (i.e., Fr) [40]. Therefore,  the authors decided 

537 to select the following empirical equations introduced earlier by Indraratna et al. [43] and Sun 

538 et al. [40]. The testing conditions and ballast types of these studies are very similar to the 

539 current research. 

540            (16)𝑀𝑅 = 40∅0.34

541            (17)𝑀𝑅 = 𝑎 . 𝐹𝑏
𝑟 +  ∅𝑐 (𝑎 = 98.6, 𝑏 = 0.404, 𝑐 = 0.911)

542 where,  in these equations, is the bulk stress, Fr is the frequency, and a, b and c are constants ∅

543 with specific values. For comparison purposes, the first 25 data samples in Table 6 have been 

544 selected and the MR values were calculated through Equations 16 and 17, accordingly. Fig. 11 

545 shows the measured MR values in comparison with the predicted MR values by the ANFIS, and 
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546 empirical Equations 16 & 17. In addition, Table 7 presents the absolute errors obtained for each 

547 data sample as well as the average error (percentage) for each model. It is observed that the 

548 ANFIS model is able to predict MR values closer to the measured values compared to other 

549 models. The results of Equation 16 are almost constant with very small changes while we have 

550 a wide range for the measured MR (approximately 100-350 MPa, black line). The results 

551 obtained from the Equation 17 deviate far from the measured MR values from the laboratory 

552 tests. One of the possible reason may be related to the role and function type of Fr in this 

553 equation. Moreover, the average absolute errors of 13.33, 42.44, and 111.70% obtained for the 

554 ANFIS, Equation 16 and Equation 17, respectively (Table 7), confirm that the ANFIS is a more 

555 reliable model which is able to estimate MR  values with a high level of accuracy.

556

557 Fig. 11. The measured MR values in comparison with the predicted MR values by ANFIS and 

558 empirical equations

559 Table 7. The absolute errors obtained for each data sample as well as the average error for 

560 each model

Absolute Error (%)Dataset 
Number ANFIS Equation 16 Equation 17

1 0.17 38.79 83.73
2 8.84 25.87 66.62
3 7.77 24.70 65.08
4 12.64 14.17 51.13
5 8.06 21.34 87.01
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6 5.69 17.00 80.31
7 5.79 0.01 54.10
8 13.89 14.47 31.82
9 0.68 18.34 60.16
10 0.75 15.01 55.66
11 16.19 6.85 26.08
12 13.04 9.50 22.48
13 2.89 15.16 14.82
14 34.76 42.20 143.11
15 10.59 35.80 150.77
16 6.50 34.56 148.48
17 16.58 34.22 147.85
18 38.70 158.79 299.24
19 18.30 120.73 240.53
20 0.24 86.14 187.17
21 2.06 82.73 181.90
22 10.83 67.20 157.94
23 39.44 69.65 161.73
24 33.42 58.93 145.19
25 25.52 48.88 129.68

Average 13.33 % 42.44% 111.70%
561

562 5. Design considerations

563 After confirming that the ANFIS model developed in this research is a powerful and applicable 

564 predictive technique, it is a further step to extend the database based on this model. To this end, 

565 320 kPa was considered as qmax,cyc for the analysis. Then, values of 10 and 20 Hz were 

566 considered for Fr. In addition, values of confining pressures (20, 30 and 40 kPa) and loading 

567 cycles (10,000, 20,000, 30,000, 40,000 and 50,000 cycles) were used for  and N, 𝜎 ´
3

568 respectively. The idea is to generate a database according to these values and then predict the 

569 ballast MR. In this way, the behaviour of ballast MR under different conditions can be better 

570 investigated and the results can be used by practising engineers. Fig. 12 shows the predicted 

571 results of MR under different loading conditions (qmax,cyc = 320 kPa). The predicted curves are 

572 in bell-shaped where the MR values are relatively low in the early cycles (N = 10,000 cycles), 

573 followed by gradual increase until reaching the peak at (N = 30,000 cycles), and then decrease 

574 in the subsequent loading cycles (N = 50,000 cycles). It seems that the number of loading cycles 

575 of N = 30,000 can be introduced as an optimum number. The highest MR was obtained by the 

576 green line when  is 30 kPa, N is 30,000 cycles and Fr = 20 Hz. Additionally, the lowest MR 𝜎 ´
3
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577 is reported by the red line when  is 20 kPa, N is 30,000 cycles, and Fr = 20 Hz. Very close 𝜎 ´
3

578 values were obtained for two different cases, namely (  = 40 kPa, and Fr = 10) and (  = 20 𝜎 ´
3 𝜎 ´

3

579 kPa, and Fr = 10), this shows the lesser effects of  compared to Fr on the model output. 𝜎 ´
3

580 It is also seen that at the beginning (N = 10,000 cycles), in the cases of red, yellow, purple, and 

581 black curves, the MR values are not that close to each other; whereas at the end of the analysis 

582 (N = 50,000 cycles), these lines are too close to each other. It shows that by increasing the 

583 number of cycles (i.e., N > 30,000), the MR values are closer for different loading conditions. 

584 It is important to note that the results presented in Fig. 12 obtained by simultaneously applying 

585 the four parameters, and the results would be different if these parameters were applied 

586 separately.

587

588 Fig. 12.  MR obtained by the ANFIS model for different N, Fr and (qmax,cyc = 320 kPa)𝜎 ´
3 

589 6. Sensitivity analysis 

590 To identify the significance of the input variables (qmax,cyc , Fr, and N) on MR, the mutual 𝜎 ´
3

591 information (MI) method was utilised to determine the importance and sensitivity of each 

592 variable on the MR values. The MI method is a filtering method that can capture arbitrary 
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593 relationships (both linear and nonlinear) between independent and dependent variables, 

594 therefore obtaining an estimated amount of mutual information between each independent 

595 variable and the dependent variable [60]. Take note that the estimated value falls somewhere 

596 in the range [0, 1], where a value of 0 indicates that the two variables are unrelated to one 

597 another, and a value of 1 indicates that the two variables have a strong positive correlation with 

598 each another. When the estimated amount of an independent variable is closer to 1, it is more 

599 strongly correlated with the dependent variable, and vice versa. The significance between these 

600 four input variables and MR is shown in Fig. 13. Intuitively, Fr showed the highest correlation 

601 with MR, with a respective correlation index of 0.627, followed by the qmax,cyc and N with 

602 correlation indices of 0.412 and 0.306, respectively. As for the , it had an insignificant 𝜎 ´
3

603 correlation with MR owing to the low correlation index (0.147). 

604

605 Fig. 13.  Importance of the input parameters on the ballast MR 

606 7. Limitations and future works

607 In this study, depending on the materials and testing conditions, there are a few limitations. 

608 The AI models developed in this study are only suitable for given testing conditions (e.g., 

609 ballast types and sizes) mentioned in this study. For example, the ballast gradations in European 
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610 countries may be larger than the standards used in Australia. Also, if other researchers want to 

611 use the models introduced in this paper, they should use similar inputs and ranges of parameters 

612 that were used in this research.

613 A comprehensive database of various types of ballast with different sources and physical 

614 properties such as compacted density, compressive strength, surface roughness (friction 

615 coefficient) can be collected to develop a more generalised AI model. In this way, a wider 

616 range of input parameters can be used, which makes the AI model reliable and flexible for 

617 researchers and designers to use. Researchers can also apply other ML methodologies such as 

618 tree-based or hybrid intelligence to compare their ability to predict ballast deformation or other 

619 important ballast properties.   

620 8. Conclusions

621 This study aimed to predict resilient modulus (MR) of ballast by incorporating four predictors 

622 and two ML predictive models, namely ANN, and ANFIS. The following conclusions could 

623 be drawn:

624  Although both the ANN and ANFIS models were excellent during training and 

625 testing stages, the ANFIS model showed better performance and applicability when a 

626 new database was available as a secondary validation stage. This confirms the general 

627 ability of the model in predicting ballast MR under different testing settings.

628  According to the sensitivity analysis, it was found that the peak values for MR 

629 could occur when  = 30 kPa, N = 30,000 cycles and Fr = 20 Hz. Also, the lowest MR 𝜎 ´
3

630 could be obtained if  = 20 kPa, N = 30,000 cycles and Fr = 20 Hz. The results of this 𝜎 ´
3

631 analysis would be useful for designers when considering the expected performance of 

632 tracks at various stages of loading and train speeds. 
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633   Based on the MI analysis, the most influential parameter on the MR values was 

634 identified as the Fr, while the least influential parameter was identified as the . A 𝜎 ´
3

635 similar conclusion was also obtained using the design considerations of the ANFIS 

636 model. 

637  The comparison of the developed ANFIS model with the previous empirical 

638 equations and subsequently obtaining the closer MR values to the measured ones 

639 confirm that the ANFIS model can be used by other researchers/geotechnical engineers 

640 as long as the conditions are similar to this study. The input parameters and the ranges 

641 used in this study are two key points if others wish to implement the developed models.

642
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