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Abstract—Many real-world problems deal with collections of data with missing values, e.g., RNA sequential analytics, image
completion, video processing, etc. Usually, such missing data is a serious impediment to a good learning achievement. Existing
methods tend to use a universal model for all incomplete data, resulting in a suboptimal model for each missingness pattern. In this
paper, we present a general model for learning with incomplete data. The proposed model can be appropriately adjusted with different
missingness patterns, alleviating competitions between data. Our model is based on observable features only, so it does not incur
errors from data imputation. We further introduce a low-rank constraint to promote the generalization ability of our model. Analysis of
the generalization error justifies our idea theoretically. In additional, a subgradient method is proposed to optimize our model with a
proven convergence rate. Experiments on different types of data show that our method compares favorably with typical imputation
strategies and other state-of-the-art models for incomplete data. More importantly, our method can be seamlessly incorporated into the
neural networks with the best results achieved. The source code is released at https://github.com/YS-GONG/missingness-patterns.

Index Terms—Missingness patterns, adaptive learning, incomplete data classification, support vector machine, low-rank learning.

F

1 INTRODUCTION

1 L EARNING from incomplete data is of great practical2

and theoretical interest. Commonly, we are faced with3

incomplete data in many real-world applications, e.g., in4

condition-based monitoring, failure of a sensor will cause5

the absence of some records for a set of equipment [1]; in6

medical analysis, measurements on some subjects may be7

lost due to the lack of patient’s compliance or unaffordable8

examination fees [2]; in urban computing problems, some9

areas or segments of traffic network may contain no data10

collectors [3]–[5]; and also there are inevitable dropouts in11

single-cell RNA sequencing data [6]–[8].12

Currently, a typical strategy is to fill the missing at-13

tributes in advance and then feed the data into traditional14

machine learning models. Such missing attributes are com-15

monly filled with zeros or means. K-nearest-neighbor-based16

method is also utilized to estimate the missing values for in-17

complete instances [9]. Probabilistic generative models such18

as Gaussian mixture model (GMM) [10] use expectation19

maximization (EM) algorithm to find the most probable20

completion. Multivariate imputation by chained equations21

(MICE) [11] is an iterative method of dealing with missing22

data under the assumption of missing at random (MAR). A23

limitation of the above imputation methods is that errors24

of imputation may propagate to the following machine25

learning processes. Another intuitive way is to delete in-26

complete instances in training and make some assumptions27
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on missingness patterns [12], or tune the decision function 28

for incomplete test data [13]. However, this limits the appli- 29

cation of such models when all instances are incomplete. 30

Some methods process the missing data in a task-specific 31

way. [14] proposed to use the EM algorithm to learn from 32

incomplete data for a classifier. Similarly, [15] proposed a 33

classification model that dealt with missing data by per- 34

forming analytic integration with an estimated conditional 35

density function. [16] avoided the imputation procedure 36

by introducing instance-specific margins for large margin 37

classifiers. [17] connected the matrix completion task with 38

classification task in a transductive way, whereas [18] ar- 39

gued that completion was neither necessary nor sufficient 40

for classification. They proposed a kernel method for incom- 41

plete data based on observed features. [19] used multiple 42

imputations adaptively to improve the classification results. 43

Apart from the methods mentioned above, many other 44

works fall into this category [20], [21]. 45

In addition to the above-mentioned methods, many neu- 46

ral networks can be utilized to process data with missing at- 47

tributes [22]–[26]. However, they require complete instances 48

in the learning phase. Only recently, [27] proposed a model 49

that can be trained without complete data. They replaced 50

the typical neuron’s response in the first hidden layer by 51

its expected value when data were incomplete. The missing 52

data density was depicted by a Gaussian mixture model and 53

trained together with the neural network. 54

The main shortcoming of previous methods is that they 55

tend to use a universal model for all data, and thus ignore 56

the inherent differences between data with different miss- 57

ingness patterns. Commonly, we use missingness patterns 58

to indicate the locations of the missing entries. Samples 59

may have varying subsets of observable features due to the 60

inherent properties of the instances. Sometimes, a part of 61

the features may not even be defined for some instances. 62
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(a) Features (x, y, z) are complete.

X

Y

(b) Feature z is missing.

Fig. 1: When all features (x, y, z) are observable, we have
an optimal separating plane in (a). When only (x, y) are
observable, the best separating line is the solid line in (b).
The projection of optimal separating plane in (b) is the
dashed line. If we train one model for both cases, we will
probably end with a compromise of them and get an inferior
result.

Accordingly, using the same model for these heterogeneous63

data limits the performance of the model, and imputation64

may lead to severe deviation. More importantly, the model65

could suffer from competition between data with different66

missingness patterns. We illustrate such a phenomenon in67

Fig. 1. For two sets of data labeled as ”.” and ”+”, when68

we have complete features of an instance, the best decision69

plane for classification is shown in Fig. 1. However, if we70

use the available features (x, y) to classify a point when71

feature z is missing, then use the coefficients of the decision72

plane in Fig. 1 (a) regarding (x, y) is not optimal (shown73

as the dashed line in Fig. 1 (b)). The best separating line,74

in this case, is the solid line as shown in Fig. 1 (b). These75

two patterns would compete against each other when train-76

ing with incomplete data, leading to a suboptimal model77

for both cases. A straightforward way to minimize such78

influence is to learn different decision functions for each79

missingness pattern. However, for some missingness pat-80

terns, data can be insufficient for the training of the model,81

which causes difficulties in generalization. Motivated by the82

above discussions, we propose an adaptive learning model83

based on various missingness patterns for incomplete data.84

We summarize the main contributions and innovations of85

this paper as follows:86

• To the best of our knowledge, the proposed method87

is the first attempt to provide an adaptive model88

that can apply associated decision functions to data89

with corresponding missingness patterns and does90

not require the imputation of missing data.91

• We devise different models for data with various92

missingness patterns, while improving the gener-93

alization ability by a low-rank constraint. We also94

provide an efficient training approach for the non-95

convex optimization.96

• We theoretically prove the generalization error97

bound and convergence property of our model,98

demonstrating the low-rank constraint can be helpful99

to reduce the error.100

• Our method can be seamlessly incorporated into101

various neural networks with minimal modification102

of network architectures. We conduct extensive ex-103

periments on several real datasets with internally 104

missing attributes, algorithm implemented in both 105

linear and non-linear (neural networks) models show 106

its superiority compared with other methods. 107

The remainder of this paper is organized as follows: 108

Section 2 includes a literature review. Section 3 proposes 109

our method. The theoretical analysis is given in Section 4. 110

We also provide an efficient training procedure in Section 111

5. All experimental results are shown in Section 6. Finally, 112

conclusions and future work are drawn in Section 7. 113

2 RELATED WORK 114

In this section, we review the current studies with incom- 115

plete data. Generally, there are two categories in this field: 116

learning after imputation and learning with incomplete 117

data. 118

2.1 Learning After Imputation 119

A prevailing strategy is to fill the missing attributes in ad- 120

vance, and then the filled data can be fed into downstream 121

tasks with traditional machine learning methods. In many 122

real-world applications, missing attributes are commonly 123

imputed by zeros or mean-values. An improved method is 124

try to use K-nearest-neighbours of the incomplete instances 125

to estimate the missing values [9]. 126

Tensor decomposition is a widely used method to deal 127

with the incomplete data problem [28] and has been ap- 128

plied into many applications [29]–[31]. For example, [32] 129

leveraged Tucker decomposition for traffic prediction. They 130

can achieve a comparatively accurate result even when the 131

missing ratio of data is quite high. Liu et al. [33] proposed 132

an model to impute missing data in tensors of visual data. 133

There were three models proposed in the paper, they use a 134

relaxation method to separate relationships and utilize the 135

block coordinate descent (BCD) to find a globally optimal 136

solution. Le et al. [34] devised a robust adaptive Canonical 137

Polyadic decomposition method for dealing with high-order 138

incomplete streaming tensors. 139

Multi-view learning usually need to face incomplete data 140

problem [35]. Gong et al. [36], [37] developed a spatially 141

related multi-view learning model with adaptive weight 142

technique to address the incomplete data problem in Ur- 143

ban Statistical Data. Liu et al. [38] proposed an efficient 144

and effective method LF-IMVC for the incomplete multi- 145

view clustering problem. The proposed algorithm learns 146

a consensus clustering matrix jointly, filling each missing 147

values in the base matrix instead of completing kernel matri- 148

ces, and optimizes the corresponding permutation matrices. 149

Similar idea can be found in their following studies [39], 150

[40]. The algorithm designed in [39] does not require that 151

there be at least one complete base kernel matrix over all 152

the samples, and different with traditional imputation pro- 153

cess that complete the incomplete kernel matrices first. [40] 154

developed a model named EE-IMVC focusing on imputing 155

incomplete base matrices generated by incomplete views. 156

Other strategies such as Gaussian mixture model (GMM) 157

utilizes expectation maximisation (EM) algorithm to find 158

the most probable completion; adversarial joint-learning 159

recurrent neural network is proposed for incomplete time 160
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TABLE 1: Symbol description.

Symbols Descriptions
x, y feature vectors and labels
x0 zero-filling for x
m missingness pattern indicator
m̄ augmented vector generated from m

d ; d′ the numbers of dimensions x and m

H
A dictionary for generating

missingness-pattern specific functions
U, V low-rank latent matrices decomposed from H

ξi the slack variable for the margin
η1, η2 regularization parameters
k rank of U and V

P1, P2, ..., Pn; l n different real polynomials in l real variables

αs; Ts
the step-size and number of iterations in stage s

of the Restarted SubGradient method
e the Euler number

series classification [41], where the adversarial network is161

used to encourage the network to complete missing data162

by distinguishing real and imputed values; Multivariate163

imputation by chained equations (MICE) [11] is an iterative164

method of dealing with missing data under the assumption165

of missing at random (MAR); and Kachuee et al. develop a166

generative approach to impute missing data and to measure167

class uncertainties arising from the distribution of missing168

values [42].169

Compared to our method that can adaptively learn with170

incomplete data, the main disadvantage of the above impu-171

tation methods is that errors of imputation may propagate172

to the following machine learning models.173

2.2 Learning with Incomplete Data174

Methods learning with incomplete data can build a task-175

specific machine learning model to handle such incomplete176

information. An intuitive way is to delete incomplete in-177

stances in training, and make some assumptions for miss-178

ingness in training [12], or tune the decision function for179

incomplete test data [13]. This limits the application of such180

models when most of instances are incomplete.181

Ghahramani and Jordan [14] proposed to use EM ap-182

proach to learn from incomplete data for classifier. Similarly,183

Williams et al. [15] proposed a classification model which184

dealt with missing data by performing analytic integration185

with an estimated conditional density function. Elhamifar186

et al. [43] cast the clustering of data with missing entries187

as clustering of complete data. Chen et al. [44] proposed188

a framework that can characterize both global and local189

consistencies in large-scale time series data. The developed190

graphical methods can perform probabilistic predictions191

and estimate uncertainty values without imputing those192

missing entries. Liu et al. [45] devised three algorithms to193

handle the situation where some channels of samples are194

missing. They can only classify each sample based on all195

observed channels, without imputation process involved.196

Pelckmans et al. [46] defined a loss considering the197

uncertainty of predicted outputs. Under the assumption198

of missing completely at random, their method did not199

involve the imputation procedure. Chechik et al. [16] 200

also avoided the imputation procedure by introducing an 201

instance-specific margin for large margin classifier. Gold- 202

berg et al. [17] connected the matrix completion task with 203

classification task in a transductive way, whereas Hazan 204

et al. [18] argued that completion is neither necessary nor 205

sufficient for classification. They proposed a kernel method 206

for incomplete data based on observed features. Liu et al. 207

[19] used multiple imputation adaptively to improve the 208

classification results. Apart from above-mentioned methods, 209

many other works fall into this category [20], [21]. Awawdeh 210

et al. [47] designed a feature selection process to handle 211

the missing values. Śmieja et al. [27] proposed a general 212

approach for adapting neural networks to process incom- 213

plete data, which can learn from incomplete samples. They 214

introduced input layer for processing missing data, where 215

the typical neuron’s response is replaced by its expected 216

value when data were incomplete. 217

The main shortcoming of previous method is that they 218

all use same model for different missingness patterns, and 219

thus ignore the inherent differences carried by missingness 220

patterns. Bullins et al. [48] analysed the limitation of such 221

model under linear case with hinge loss. They gave a limit 222

on the precision attainable when the learning algorithm was 223

allowed to access only a limited number of attributes per 224

example. A straightforward way to improve the lower error 225

bound is to learn different decision functions for different 226

missingness patterns, so for every decision function, the 227

training data is relatively complete. However, for some 228

missingness patterns, the data can be deficient for training 229

a good model, and we may not see all possible missingness 230

patterns in a training set. Hence, in this paper, we designed 231

a general method for learning with incomplete data directly, 232

where data of various missingness patterns are treated 233

differently in the model level. 234

3 MISSINGNESS-PATTERN ADAPTIVE MODEL 235

We formulate our idea for binary classification, but it can 236

also be extended to multi-class and regression tasks with 237

associated objective functions. The main symbols used in 238

this paper are summarized in Table 1, and Fig. 2 shows the 239

flowchart of our method. 240

3.1 Linear Model 241

Given a data instance (x,m, y) with feature vector x ∈ Rd, 242

label y ∈ {−1,+1} and m ∈ Rd
′

an indicator vector repre- 243

sents its missingness pattern. Without any prior knowledge, 244

m will be a d-dimensional binary vector. Each bit of m 245

indicates the missingness of the corresponding bit in x. 246

The bit in m is set to 1 if the corresponding feature in x 247

is observed; otherwise, the bit is set to 0. In some settings 248

such as incomplete multi-view learning, features are missing 249

group-wise, so m can serve as a group-wise indicator thus 250

making d′ much smaller than d. 251

In order to treat missingness patterns adaptively, the 252

linear decision function can be formulated as: 253

f(x) = g(m)xo, (1)

where xo ∈ Rd denotes the x after zero-filling for the 254

missing values. In this way, it is possible to apply different 255
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analysis
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non-convex optimization

Applied in both linear and 

non-linear models

A subgradient method is proposed 

with an efficient convergence rate
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Fig. 2: The flowchart of our proposed method. In the learning process, given a set of samples with different missingness
patterns, we provide a dictionary H for generating missingness pattern-specific functions. We then restrict H with a
low-rank constraint that introduces correlations between models for different missingness patterns. After a rigorous
generalization error bound analysis, we apply our method into both linear and non-linear models with efficient training
process.
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Fig. 3: examples for x, m and m̄.

weight coefficients generated by g(m) for data of different256

missingness patterns. g can be selected from a wide range257

of function classes. In this paper, we adopt a simple yet258

efficient form of g(m) given by:259

g(m) = (Hm̄)>, (2)

where H ∈ Rd×2d′ serves as a dictionary for generat-260

ing missingness-pattern-specific functions. m̄ = [m>, (1 −261

m)>]> is an augmented vector generated by concatenating262

m and its element-wise logic NOT operation. The example263

of sample vector x, corresponding m and m̄ is illustrated in264

Fig. 3. In doing this, for every distinct missingness pattern265

m, we have a corresponding weight vector generated by266

Hm̄. Notice that we use m̄ instead of m to ensure that267

for every missingness pattern we select a fixed number of268

elements from H . Bias terms could also be incorporated into269

Eq.(1) by appending a constant feature to xo and extend270

m and H accordingly. Thus the bias terms can also be271

adaptively fitted to missingness patterns. For notational272

simplicity, we omit them in our formulas.273

In the spirit of large margin classifier, we can define 274

a modified learning objective which is specialized for in- 275

complete data with the margins varying over different 276

missingness patterns. Given a set of n labeled observations 277

{(xi,mi, yi)}ni=1, the learning objective is: 278

min
H

1

n
‖M � (HM̄)‖2F + η1‖H‖2F +

η2

n

n∑
i=1

`(yi, m̄
>
i H
>xoi ),

s.t. rank(H) ≤ k,
M = [m1, · · · ,mn], M̄ = [m̄1, · · · , m̄n],

(3)
where `(y, ŷ) , max(0, 1 − yŷ) denotes the hinge loss. 279

‖·‖F and � denotes the Frobenius norm and the Hadamard 280

product respectively; ξi is the slack variable similar to 281

that in Support Vector Machines; η1, η2 and k are hyper- 282

parameters; H ∈ Rd×2d′ , M ∈ Rd×n, M̄ ∈ R2d′×n. 283

Because each instance has its own observable part, we 284

should optimize the margin regarding observable part only. 285

Unlike in the complete data setting, where the margin op- 286

timization is associated with a regularization on the weight 287

vector, we need vary the regularisation in incomplete data 288

setting because the weight vectors vary over samples with 289

different missingness patterns. This leads to the first term in 290

Eq. (3), which is the approximate denominator for instance- 291

based margins. We borrow this idea from [16] to ensure a fair 292

optimization of margins. This is achieved through a mask 293

matrix M to set the weights to zeros in HM̄ corresponding 294

to missing features. We also introduce η1 to constraint the 295

Frobenius norm of H and fix it to be a small constant. 296

Eq.(3) allows us to define a decision function for every 297

missingness pattern while connecting them through a low- 298

rank matrix H . The low-rank constraint introduces corre- 299

lations between models for different missingness patterns, 300

so that facilitates the learning of models related to some 301

rare missingness patterns. In detail, we decompose H by 302
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U>V to restrict the rank of H ≤ k, where U ∈ Rk×d and303

V ∈ Rk×2d′ , then Eq.(3) can be converted as:304

min
U,V

1

n
‖M � (U>V M̄)‖2F + η1‖U>V ‖2F

+
η2

n

n∑
i=1

`(yi, m̄
>
i V
>Uxoi ),

s.t. M = [m1, · · · ,mn], M̄ = [m̄1, · · · , m̄n].

(4)

This learning objective is non-convex. The non-convexity305

naturally arise from the rank constraint in H . One may306

consider add more constraints on U or V (e.g., UU> =307

I) to make the learning problem convex globally, but that308

will inevitably add the computation complexity and is in-309

deed unnecessary, i.e., for the non-convex low-rank matrix310

problems, all local minima are also globally optimal [49].311

Such constraints will not benefit to the performance of the312

proposed model. Nevertheless, we will show the learning313

objectives regarding U or V are convex respectively. We also314

present an efficient training algorithm in Section 5.315

3.2 Generalize to Non-linear Model316

Our idea can also be readily applied to many existing neural317

networks with some minimal modifications. Assume the318

output of a neural network with complete data can be319

expressed as:320

ŷ = f(x; θ) (5)

where θ denote parameters of the network with any non-321

linear activation functions. We can adjust the weight of322

observed features by missingness pattern, which gives the323

output:324

ŷ = f((Hm̄)� xo; θ). (6)

Considering the low-rank constraint, we decompose H325

by U>V . Then, the learning objective can be formulated as326

follows:327

min
U,V,θ

n∑
i=1

L
(
yi, f((U>V m̄i)� xoi ; θ)

)
, (7)

where L is the loss function. Note that if we let f(·; θ) in328

the non-linear case ŷ = f((Hm̄)� xo; θ) be a element-wise329

sum function, it is then reduced to the linear case. That is,330

ŷ = 1>d
(
(Hm̄)� xo

)
.331

We incorporate the rank constrain by decomposing H332

into product of U> and V with U ∈ Rk×d and V ∈ Rk×2d′ .333

U and V would be learned together with the network’s334

parameters θ in an end-to-end manner. The motivation335

behind the formula is clear and effective: we can adjust the336

importance of observed features when some other features337

are missing. Additionally, our non-linear model only intro-338

duces two learnable matrices U ∈ Rk×d and V ∈ Rk×2d. The339

number of extra parameters occupied a small proportion of340

the entire neural network.341

4 GENERALIZATION ERROR BOUND ANALYSIS 342

In this section, we theoretically analyze the generalization 343

error of our linear model. We give a rather general bound on 344

the generalization error based on the growth function. This 345

bound also supports the low-rank constraint in our model. 346

We firstly introduce some common settings in this 347

section. A labeled training set is given by D = 348

{(xi,mi, yi)}ni=1, where xi ∈ X ; X is a subset of Rd, 349

yi ∈ {−1,+1} and mi ∈ {0, 1}d
′

represents the missingness 350

indicator vector. We assume that training data are drawn 351

independently and identically distributed (i.i.d.) according 352

to some unknown distribution D and denote D ∼ D. 353

The derived bound will be quite general since we do not 354

assume the underlying missingness mechanism a prior. Let 355

the hypothesis set F be a family of functions mapping X to 356

{−1,+1} defined by: 357

F = {x 7→ sign((Hm̄)>xo) : rank(H) ≤ k}, (8)

The empirical error of a hypothesis f ∈ F over the 358

training set D is defined as: 359

R̂D(f) =
1

n

n∑
i=1

1f(xi) 6=yi , (9)

where 1f(xi) 6=yi = 1 if f(xi) 6= yi and 0 otherwise. The 360

generalization error of f is defined by: 361

RD(f) = E
(x,y)∼D

[
1f(x)6=y

]
. (10)

We start with a bound on the generalization error RD(f) 362

given by [50, Corollary 3.9]. For any δ > 0, with probability 363

at least 1− δ, for any f ∈ F , we have: 364

RD(f) ≤ R̂D(f) +

√
2 log ΠF (n)

n
+

√
log 1

δ

2n
, (11)

where ΠF (n) is the growth function for the hypothesis 365

set F with n samples. The growth function ΠF (n) is the 366

maximum number of distinct sign-patterns on n samples 367

that can be produced with functions in F . As a result, 368

the generalisation error bound mainly relies on the growth 369

function ΠF (n). Next, we will give the bound for ΠF (n)and 370

formal definition on ΠF (n). 371

We restate the following Lemma [51, Lemma 17] for 372

bounding the growth function: 373

Lemma 4.1. Let P1, P2, ..., Pn be n real polynomials in l real 374

variables, and suppose the degree of each Pi does not 375

exceed t. If n ≥ l then s(P1, P2, ..., Pn) ≤ 2(2e · n · t/l)l 376

with s(P1, P2, ..., Pn) denotes the total number of sign- 377

patterns of the polynomials P1, P2, ..., Pn; and e is the 378

Euler number. 379

Lemma 4.1 provides a bound for sign patterns of poly- 380

nomials. This bound assumes Pi 6= 0. This coincides with 381

most of the practical cases. If we would like to consider 382

a more complete setting that allows Pi = 0, we can set 383

sign(0) = 1 and follow the results in [52, Proposition 5.5] 384

to obtain s(P1, P2, ..., Pn) ≤ (8e · n · t/l)l. 385

We then give the definition of the growth function ΠF (n) 386

and its bound altogether in following theorem. Proof of this 387

theorem will be based on Lemma 4.1. 388
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Theorem 4.2. The growth function ΠF (n) of hypothesis set389

F on n samples is defined and bounded by:390

ΠF (n) =

max
{x1,...,xn}⊆X

∣∣ {(sign(f(x1)), ..., sign(f(x1))
)

: f ∈ F
} ∣∣

≤ 2(
2e · n · t

l
)l,

(12)

where t = 2 and l = k(d+ 2d′).391

Proof: Consider f(x1), ..., f(xn) to be n real polyno-392

mials. Because rank(H) ≤ k, H can be decomposed into393

product of U> and V with U ∈ Rk×d and V ∈ Rk×2d′ .394

Treat elements of U and V as variables, so that the degree395

of each polynomial f(xi) is 2 and we have k(d + 2d′)396

variables. Apply Lemma 4.1 and we complete the proof.397

398

Corollary 4.2.1. For any f ∈ F and δ > 0, following399

generalization error bound holds with probability at400

least 1− δ:401

RD(f) ≤ R̂D(f) +

√
2k(d+ 2d′) log 4e·n

k(d+2d′) + log 4

n

+

√
log 1

δ

2n
.

(13)

The rank k of H , the feature dimension d, the dimension402

d′ of missingness indicator vector m and the sample size n403

jointly represent the upper bound of generalization error in404

above corollary. Clearly this bound decreases when sample405

size n increases. A low-dimensional feature vector x and406

a low-dimensional missingness pattern indicator vector m407

are both beneficial to the model generalization. It also shows408

that appropriately constrain the rank k of H can be helpful409

to reduce the error.410

5 EFFICIENT TRAINING PROCEDURE411

The optimisation of Eq.(7) is based on stochastic gradient412

descent with PyTorch [53] implementation. We discuss the413

learning problem with regard to Eq.(4) in this section. It414

is non-convex due to the rank constraint. Notice that H415

can be decomposed as H = U>V with U ∈ Rk×d and416

V ∈ Rk×2d′ . Then the loss function associated with Eq.(4)417

is convex regarding U with fixed V and vice versa. We can418

optimize them alternatively until convergence. A straight-419

forward way to minimize the loss function is through the420

subgradient method. We fix some subgradient oracles for U421

and V as:422

gU =
2

n
V M̄

(
M> �

(
M̄>V >U

))
+ 2η1V V

>U − η2

n

∑
i∈Isv

yiV m̄ix
o
i
>,

(14)

gV =
2

n
U
(
M �

(
U>V M̄

))
M̄>

+ 2η1UU
>V − η2

n

∑
i∈Isv

yiUxoi m̄
>
i ,

(15)

Algorithm 1: Subroutine for optimizing U

Input: U1
1 , V , the number of stages S.

Output: U1
S+1.

1 Initialization: ε0 = F (U1
1 ). Calculate C , γ, LΦ, Lh,

α1, T1.
2 for s = 1 to S do
3 αs = ( 1

2 )s−1α1; Ts = 2s−1T1;
4 for t = 1 to Ts do
5 Calculate U t+1

s by Eq.(18);

6 U1
s+1 = arg minU∈U1

s ,...,U
Ts+1
s

F (U);

where Isv denotes indices of support vectors, i.e. samples 423

with positive slack variables. Given the subgradients, we 424

can optimize U with fixed V and optimize V with fixed 425

U iteratively until convergence. The key factor that influ- 426

ences the overall convergence is the convergence rate of 427

subroutines to optimize U and V , so we now discuss the 428

convergence rate of optimization regarding U given V . For 429

V , a similar result holds, and we omit the details here. 430

Algorithm 1 presents the procedure for optimizing U . 431

Our loss function is non-Lipschitz and can not be guar- 432

anteed to be strongly-convex regarding U , as can be verified 433

from its gradient given above. These are often required 434

for deriving a convergence rate for subgradient methods. 435

Inspired by [54] and [55], together with the Restarted Sub- 436

Gradient (RSG) method [56], we can give a ε approximate 437

solution in O( 1
ε ) iterations with our optimization strategy 438

regarding U . 439

Our loss function has the form of F (U) = Φ(U) + h(U) 440

with: 441

Φ(U) =
1

n
‖M � (U>V M̄)‖2F + η1‖U>V ‖2F , (16)

h(U) =
η2

n

n∑
i=1

`(yi, m̄
>
i V
>Uxoi ), (17)

where the hinge loss `(y, ŷ) , max(0, 1−yŷ). One can easily 442

verify that Φ(U) has LΦ-Lipschitz gradient and h(U) is an 443

Lh-Lipschitz function. Let αs and Ts be the step-size and 444

number of iterations in stage s. In each stage, we adopt the 445

following update rule: 446

U t+1
s = U ts − αs

gUt
s∥∥gUt

s

∥∥
F

, t = 1, · · · , Ts, (18)

and we choose U1
s+1 = arg minU∈U1

s ,...,U
Ts+1
s

F (U) for next 447

stage. Let ε0 = F (U1
1 ) and F ∗ be the minima of F (U). We 448

have following theorem. 449

Theorem 5.1. With γ = max(
√

8LΦ, 8Lh), C = 1
η1σ2

min(V )+
450

where σmin(V )+ is the smallest non-zero singular 451

value of V . In order to get U that satisfies F (U) − 452

F ∗ ≤ ε, Algorithm 1 requires S = dlog2( ε0ε )e stages 453

and O
(√η2Cγ

ε max(
√

8
9LΦη2, 8Lh)

)
iteration complexity 454

where dae denotes the smallest integer not less than a. 455
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For s = 1, 2, · · · , S, the step-size αs and number of456

iterations Ts are given by:457

αs =
1

2s−1
· ε0
γ
√
η2
,

Ts = 2s−1 · d 1

ε0
max(

√
8LΦ

9
η2Cγ, 8Lh

√
η2Cγ)e.

(19)

Notice that Eq.(19) is applied when η2 ≥ 1. For η2 ≤ 1,458

we can simply set η2 in Eq.(19) to 1 and share same con-459

vergence rate. Theorem 5.1 shows that our optimization460

strategy has sublinear convergence rate. Calculating the461

subgradient requires linear time regarding n, d, d′ and462

square time regarding the rank k.463

We give following lemma to prove theorem 5.1.464

Lemma 5.2. Denote by U∗ the optimal set contains all465

minimizers of F . Let U∗ denote the element in U∗ which466

is closest to U. The following holds:467

‖U − U∗‖2F ≤ C(F (U)− F ∗), (20)

where a constant C = 1
η1σ2

min(V )+
and F ∗ is the minimal468

value of F .469

Proof: Our loss function regarding H has the form of:470

471

K(H) =
1

n
‖M � (HM̄)‖2F + η1‖H‖2F

+
η2

n

n∑
i=1

`(yi, m̄
>
i H
>xoi ).

(21)

Clearly K(H) is a ρ-strongly convex function with ρ ≥472

2η1. Following proof of [57, Theorem 8], the set of optimal473

solutions regarding minimizing F (U) is:474

U∗ = {U : U>V = H∗}, (22)

where H∗ denotes the unique minimizer of K(H). Given V475

and U , by definition of U∗ we have:476

U∗ = min
U ′∈U∗

‖U ′ − U‖2F . (23)

From KKT conditions of Eq.(23) we know:477

u∗i − ui + V βi = 0, (24)

where u∗i , ui and βi denote i-th column vectors of U∗, U478

and related Lagrange multipliers respectively. This implies479

u∗i − ui ∈ Im(V ). From Courant-Fischer theorem we know:480

‖V >ui − V >u∗i ‖2 ≥ σmin(V )+‖ui − u∗i ‖2. (25)

Apply Eq.(25) to every column of U we get:481

‖V >U − V >U∗‖2F ≥ σ2
min(V )+‖U − U∗‖2F . (26)

By definition of strongly-convex function:482

K(H1) ≥ K(H2)+〈k(H2), H1 −H2〉+
ρ

2
‖H1−H2‖2F , (27)

where k(H2) ∈ ∂K(H2) is any subgradient of K at H2. Let483

H1 = U>V and H2 = (U∗)>V , and notice that K(U>V ) =484

F (U). We have:485

F (U) ≥ F ∗ +
〈
V k((U∗)>V )>, U − U∗

〉
+
ρσ2

min(V )+

2
‖U − U∗‖2F ,

(28)

because V ∂K((U∗)>V )> = ∂F (U∗). According to opti- 486

mality conditions of subgradient method, we can choose 487

V k((U∗)>V )> = 0 ∈ ∂F (U∗). Thus, 488

ρσ2
min(V )+

2
‖U − U∗‖2F ≤ F (U)− F ∗. (29)

Because ρ ≥ 2η1, 489

‖U − U∗‖2F ≤
1

η1σ2
min(V )+

(F (U)− F ∗), (30)

which completes the proof. 490

We adopt following update rule in stage s: 491

U t+1
s = U ts − αs

gUt
s∥∥gUt

s

∥∥
F

, t = 1, · · · , Ts. (31)

Notice that our loss function has the form of: 492

F (U) = Φ(U) + h(U), (32)

where Φ(U) has LΦ-Lipschitz gradient and h(U) is an Lh- 493

Lipschitz function. Then another useful Lemma is: 494

Lemma 5.3. With the update rule of Eq.(31), we have 495

min
t=1...Ts

{F (U ts)− F ∗}

≤ LΦ

2

(∥∥U1
s − U∗

∥∥2

F

2Tsαs
+
αs
2

)2

+ 2Lh

(∥∥U1
s − U∗

∥∥2

F

2Tsαs
+
αs
2

) (33)

Lemma 5.3 is proved in [55] by firstly applying [55, 496

Lemma 2.3] to our loss function F (U) and then applying 497

[55, Theorem 1.2]. 498

We can use Lemma 5.2 and Lemma 5.3 to complete the 499

proof of Theorem 5.1. Combine Lemma 5.2 and Lemma 5.3, 500

we get: 501

min
t=1...Ts

{F (U ts)− F ∗}

≤ LΦ

2

(
CF (U1

s )

2Tsαs
+
αs
2

)2

+ 2Lh

(
CF (U1

s )

2Tsαs
+
αs
2

) (34)

We assume that F (U1
s ) ≤ η2. This could be easily 502

guaranteed by knowing that F (0) ≤ η2, and set U = 0 at 503

initialization. When η2 ≥ 1, set the step size αs and number 504

of iteration Ts as: 505

αs =
F (U1

s )

γ
√
η

2

(35)

Ts = d 1

F (U1
s )

max(

√
8LΦ

9
η2Cγ, 8Lh

√
η2Cγ)e. (36)

We can obtain: 506

min
t=1,...,Ts+1

{F (U ts)− F ∗} ≤
F (U1

s )

2
. (37)
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TABLE 2: Summary of datasets

Dataset Instances Features % of Internally Missing

bands 539 19 5.38%
hepatitis 155 19 5.67%

horse 368 22 23.80%
mammographic 961 5 3.37%

pima 768 8 12.24%
MIC 1700 111 35.8%

Drive Diagnosis 58509 49 0%
MNIST 70000 784 0%
Avila 20867 10 0%

We choose the best U in stage s as the initial values in507

stage s+ 1 following:508

U1
s+1 = arg min

U∈U1
s ,...,U

Ts+1
s

F (U), (38)

therefore we can get:509

‖U1
s+1 − U∗‖2F ≤ C(F (U1

s+1)− F ∗) ≤ CF (U1
s )

2
. (39)

Applying the inequality recursively, we obtain αs+1 =510
αs

2 , Ts+1 = 2Ts, and511

min
t=1,...,TS+1

{F (U tS)− F ∗} ≤ F (U1
1 )

2S
. (40)

In order to get U that satisfies F (U)−F ∗ ≤ ε, Algorithm512

1 in our paper requires S = dlog2( ε0ε )e stages with ε0 =513

F (U1
1 ). Summing up the iterations for all stages and noticing514

that it is a geometric series, gives the iteration complexity515

O
(√η2Cγ

ε max(
√

8
9LΦη2, 8Lh)

)
.516

When η2 < 1, the iteration complexity becomes517

O
(Cγ
ε max(

√
8
9LΦ, 8Lh)

)
to satisfy F (U)−F ∗ ≤ ε. This can518

be verified by setting η2 = 1 in Eq.(35), Eq.(36) and applying519

them recursively with Eq.(34). Thus we complete the proof520

of Theorem 5.1.521

Computational Complexity. We discuss the time com-522

plexity of our proposed model here. The time complexity523

is mainly affected by our subgradient training methods, as524

shown in Eq.(14)-(15). It is apparent that the time complexity525

is governed by matrix multiplication operations and deci-526

sion function complexity in each iteration. Calculating the527

subgradient incurs O(nk(d + 2d′) + (d + 2d′)k2) computa-528

tional complexity, which is quadratic regarding the rank k529

and linear regarding n, d, d′, so it can be easily calculate530

even for large number of samples and feature dimension.531

Notice that Eq.(14)-(15) require indices of the support vec-532

tors, which can be obtain through the decision function with533

O(nk(d+ 2d′)) complexity.534

6 EXPERIMENTS535

In this section, we present experiments on some real datasets536

with internally missing attributes as well as artificially miss-537

ing entries. Table 2 summarizes the datasets.538

6.1 Linear model 539

We apply our method learned through Eq.(4) on six real 540

datasets retrieved from UCI repository [58] with internally 541

missing attributes, those are the top six datasets in Table 542

2 (MIC indicates the Myocardial Infarction Complications 543

dataset and we choose to predict Chronic Heart Failure). 544

We randomly split those datasets into 70% for training 545

and 30% for testing. First, we conduct experiments on the 546

original dataset. Second, to consider a more general case, 547

we randomly removed 30% of the values in the training sets 548

and test sets. In this case, the missing rate would be higher 549

than 30% for all datasets and the missingness mechanisms 550

are more complex than the original datasets. 551

We considered methods with publicly available codes. 552

We compared our method with the following baselines: 553

• Flag: This method added additional binary features 554

to indicate whether a feature was missing for a given 555

instance. The missing values were set to zero. 556

• Zero: This method sets missing values to zero. 557

• Mean: This method sets missing features to averages 558

of corresponding features from other instances that 559

were not missing. 560

• KNN: Missing features of an instance were filled 561

with means of those features calculated from the 562

K-nearest neighbors of this instance. The neighbor- 563

hood was measured using Euclidean distance with 564

observed features. The K was chosen from {3, 4, 5}. 565

• GMM: Missing values in the training set were filled 566

in an iterative way between two steps: (1) learn- 567

ing a GMM with the filled data and (2) re-filling 568

missing values using components’ means, weighted 569

by the posterior probabilities of related components 570

generated the sample. For the test set, we used the 571

learned GMM to iteratively fill the missing values 572

until convergence according to step (2). We chose the 573

number of the mixture components from {3, 4, 5}. 574

This idea is similar to that in [10], [14], [16]. 575

• MICE: MICE iteratively imputed one missing feature 576

by regression based on other features [59]. We chose 577

the linear regression to fit the models. 578

• geom: This method was proposed by [16]. It consid- 579

ers sample-specific margins. We used the iterative 580

algorithm as suggested there with 5 iterations. The 581

parameter C were selected from {10−5,...,105}. 582

• karma: This algorithm was presented in [18]. It 583

trained a classifier under the low-rank assumption 584

of data. The parameters γ and C were selected from 585

{1, 2, 3, 4} and {10−5,...,105}. 586

• WEDGE: WEDGE was designed to impute gene 587

expression matrices via a biased low-rank matrix de- 588

composition approach [60], we modified it to adapt 589

to our datasets with incomplete values. 590

• SMV-NMF: A state-of-the-art missing data imputa- 591

tion method based on the spatio-temporal correlation 592

learning [37]. It trained a classifier under the low- 593

rank assumption of data. The implemented parame- 594

ters are selected by grid search. 595

We combined the Flag, Zero, Mean, KNN, GMM and 596

MICE with Support Vector Machines (SVM) and chose the 597
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TABLE 3: Classification accuracy (mean±std) with original datasets. The best results are bold and the second best are
underlined.

Dataset

Method bands hepatitis horse mammographic pima MIC

Flag 0.617±0.000 0.872±0.000 0.864±0.000 0.778±0.000 0.783±0.000 0.771±0.003
Zero 0.606±0.002 0.851±0.000 0.838±0.000 0.796±0.000 0.801±0.000 0.763±0.005
Mean 0.611±0.002 0.872±0.000 0.847±0.000 0.796±0.000 0.792±0.000 0.765±0.004
MICE 0.617±0.000 0.809±0.000 0.856±0.000 0.785±0.000 0.775±0.000 0.763±0.001
GMM 0.594±0.013 0.872±0.021 0.841±0.011 0.779±0.010 0.787±0.023 0.752±0.003
KNN 0.593±0.010 0.847±0.009 0.847±0.000 0.775±0.002 0.805±0.000 0.773±0.003
geom 0.605±0.000 0.872±0.000 0.865±0.000 0.789±0.000 0.792±0.000 0.758±0.005
karma 0.611±0.040 0.809±0.000 0.838±0.000 0.798±0.000 0.797±0.005 0.767±0.002

WEDGE 0.609±0.015 0.812±0.004 0.841±0.010 0.790±0.002 0.783±0.002 0.762±0.001
SNM-NMF 0.624±0.003 0.850±0.000 0.865±0.000 0.778±0.000 0.797±0.008 0.765±0.002

Ours 0.678±0.005 0.872±0.000 0.876±0.007 0.799±0.001 0.791± 0.002 0.778± 0.000

TABLE 4: Classification accuracy (mean±std) on datasets with additional missing values. The best results are bold and the
second best are underlined.

Dataset

Method bands hepatitis horse mammographic pima MIC

Flag 0.583±0.006 0.845±0.016 0.825±0.007 0.764±0.006 0.737±0.022 0.773±0.004
Zero 0.597±0.022 0.842±0.017 0.816±0.015 0.761±0.018 0.736±0.010 0.759±0.003
Mean 0.586±0.008 0.843±0.017 0.822±0.013 0.774±0.009 0.740±0.002 0.761±0.003
MICE 0.575±0.027 0.774±0.044 0.712±0.041 0.772±0.016 0.738±0.023 0.764±0.002
GMM 0.572±0.021 0.825±0.037 0.805±0.013 0.768±0.012 0.742±0.021 0.764±0.005
KNN 0.592±0.016 0.812± 0.037 0.836±0.026 0.762±0.006 0.747±0.009 0.771±0.005
geom 0.575±0.023 0.834±0.025 0.819±0.022 0.762±0.009 0.742±0.006 0.764±0.002
karma 0.551±0.040 0.817±0.032 0.759±0.022 0.759±0.014 0.740±0.009 0.751±0.008

WEDGE 0.566±0.017 0.844±0.021 0.819±0.031 0.763±0.012 0.738±0.017 0.770±0.003
SVM-NMF 0.603±0.010 0.838±0.024 0.827±0.014 0.774±0.010 0.743±0.008 0.770±0.006

Ours 0.648±0.021 0.868±0.009 0.840±0.011 0.776±0.010 0.756±0.006 0.780±0.004

parameter C for SVM from {10−5,...,105}. Data were nor-598

malized to zero mean and unit covariance after imputation599

for imputation-based methods and normalized based on600

observed features for geom, karma and our method. We601

fixed η1 = 10−6 for our method. η2 and k were chosen602

from {10−5,...,105} and {2, 4, ..., d} where d is the feature603

dimension of related dataset. All the hyper-parameters are604

selected based on 5-fold cross-validation on training sets.605

We present experiments with the original datasets here606

in Table 3. The original datasets contains internally ab-607

sent attributes. Our model consistently outperforms other608

baselines except on pima dataset. The performance gaps609

between all models are relatively small due to the low610

missing percentages.611

Experiment results in the general case (with additionally612

30% data removed) are presented in Table 4. We repeated613

the experiments 5 times to report the classification accuracy.614

Our method achieved the best accuracy on all 5 datasets.615

In general, our method is better than imputation methods,616

because inaccurate imputation could deteriorate the down-617

stream classification task. Our method also outperforms618

Flag, which indicates that simply adding the missingness619

pattern as additional features is not as good as our strategy.620

These datasets contain inherent missing features, and we621

also removed some values randomly. These factors make622

the missingness mechanism complicated and it is hard to 623

learn a universal model that fits all these heterogeneous 624

missingness patterns. Our method tries to adaptively apply 625

the classifiers specialized to different missingness patterns, 626

which makes it capable of learning some non-liner classi- 627

fiers. This makes our model outperforms other baselines. 628

6.2 Non-Linear model 629

We compare our method with other baselines based on 630

linear models (neural networks). The experiments were 631

conducted on three real datasets. 632

Sensorless Drive Diagnosis dataset is retrieved from 633

UCI repository [58]. The features are extracted from electric 634

current drive signals. It consists of 11 classes indicating 11 635

different running conditions of the drive. There are 58509 636

instances and each instance has 49 features. The datasets 637

were randomly split into 50% training set and 50% test 638

set. We randomly selected 25% of the training data as the 639

validation set. 640

MNIST [61] is a dataset for classification of handwritten 641

digits. The dataset contains 784 features and has a training 642

set of 60000 examples, and a test set of 10000 examples. We 643

randomly selected 20% of the data in training set as the 644

validation set. 645
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(a) Results on dataset Sensorless Drive Diagno-
sis .
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(b) Results on dataset MNIST.
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(c) Results on dataset Avila.

Fig. 4: The average accuracy.

TABLE 5: Classification accuracy (mean±std) on Sensorless Drive Diagnosis dataset. The best results are bold and the
second best are underlined.

Percentage of missing

Method 10% 30% 50% 70% 90%

Zero 0.908±0.001 0.852±0.011 0.769±0.005 0.618±0.005 0.317±0.002
Mean 0.947±0.004 0.907±0.001 0.816±0.003 0.650±0.005 0.329±0.003
MICE 0.717±0.001 0.422±0.009 0.483±0.010 0.322±0.007 0.197±0.007
GMM 0.938±0.002 0.890±0.005 0.805±0.007 0.601±0.007 0.327±0.003
KNN 0.936±0.004 0.847±0.003 0.725±0.003 0.398±0.004 0.215±0.005
Flag 0.970±0.001 0.925±0.001 0.834±0.002 0.677±0.003 0.345±0.004

PMNN 0.733±0.001 0.886±0.001 0.781±0.001 0.649±0.002 0.318±0.001

Ours 0.976±0.001 0.940±0.001 0.858±0.002 0.695±0.002 0.351±0.002

TABLE 6: Classification accuracy (mean±std) on MNIST dataset. The best results are bold and the second best are
underlined.

Percentage of missing

Method 10% 30% 50% 70% 90%

Zero 0.957±0.001 0.942±0.002 0.918±0.002 0.863±0.003 0.688±0.003
Mean 0.964±0.001 0.951±0.001 0.933±0.001 0.891±0.003 0.727±0.004
GMM 0.963±0.002 0.925±0.003 0.806±0.011 0.636±0.006 0.379±0.012
KNN 0.965±0.001 0.941±0.002 0.864±0.001 0.703±0.023 0.223±0.012
Flag 0.867±0.002 0.935±0.002 0.908±0.003 0.847±0.012 0.360±0.045

PMNN 0.907±0.001 0.910±0.002 0.883±0.003 0.842±0.002 0.700±0.004

Ours 0.970±0.001 0.958±0.001 0.940±0.001 0.900±0.002 0.739±0.004

TABLE 7: Classification accuracy (mean±std) on Avila dataset. The best results are bold and the second best are underlined.

Percentage of missing

Method 10% 30% 50% 70% 90%

Zero 0.722±0.002 0.630±0.005 0.553±0.006 0.496±0.004 0.433±0.002
Mean 0.718±0.005 0.630±0.005 0.556±0.003 0.492±0.003 0.433±0.002
MICE 0.717±0.005 0.618±0.005 0.435±0.007 0.422±0.002 0.412±0.001
GMM 0.722±0.004 0.633±0.004 0.557±0.003 0.470±0.002 0.432±0.002
KNN 0.746±0.004 0.620±0.002 0.536±0.006 0.474±0.003 0.426±0.002
Flag 0.713±0.005 0.630±0.004 0.555±0.003 0.491±0.002 0.433±0.002

PMNN 0.503±0.004 0.445±0.003 0.526±0.003 0.473±0.004 0.412±0.001

Ours 0.765±0.002 0.646±0.004 0.556±0.003 0.499±0.003 0.444±0.001
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(a) Results on bands. (b) Results on hands (+30% missing
values).
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Fig. 5: Effect of Parameters on Dataset Bands.

The Avila dataset was extracted from 800 images of the646

’Avila Bible’, an XII century giant Latin copy of the Bible.647

The prediction task consists in associating each pattern to a648

copyist, with the given 10 features. It consists of 12 classes649

and 20867 instances. Data have been normalized by using650

the Z-normalization method and divided into two subsets:651

a training set containing 10430 samples, and a test set652

containing 10437 samples. We randomly selected 25% of the653

training data as the validation set654

karma and geom methods cannot be applied to neural655

networks so we omit them here. MICE cannot scale to656

MNIST dataset due to the high dimensionality of feature657

vectors. We compared an additional method proposed re-658

cently in [27] and named it PMNN. The number of compo-659

nents of GMM for PMNN was chosen from {3, 4, 5}. We660

did not compare with other neural networks for classifi-661

cation since they required complete instances for training.662

We compared all the baselines based on a multilayer per-663

ceptron (MLP) consists of 3 ReLU hidden layers with 100664

neurons per layer. We used cross-entropy loss as the loss665

function in training. All hyper-parameters is selected based666

on the validation set. The range of hyper-parameters was667

similar to the linear model except that k was chosen from668

{21, 22, ..., 2log2 d}where d is the feature dimension. Because669

these datasets were complete, we randomly removed 10%,670

30%, 50%, 70%, 90% of values in them. We repeated this671

procedure 5 times to report the classification accuracy with672

mean and standard deviation.673

Figure 4 presents the average results on non-linear mod-674

els. To keep image clear, we only draw top five methods,675

the comprehensive results are reported in Table 5 - 7.676

The tests drawn in Figure 4 demonstrate the superiority677

of our method with various missing ratios. Table 5 and678

Table 6 show the results of our method together with some679

baselines. The results show the advantage of our method680

(a) Results on horse. (b) Results on horse (+30% missing
values).
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Fig. 6: Effect of Parameters on Dataset Horse.

over classical imputation methods and PMNN. Notice that 681

PMNN produced a poor result when the missing ratio was 682

low. PMNN requires to fit a GMM together with the neural 683

network, but the GMM of PMNN is only trained with 684

incomplete instances. Unlike GMM for imputation, where 685

all data are used to fit the GMM, their model cannot be 686

trained well when the percentage of missing is low. Flag 687

shows good performance on Sensorless Drive Diagnosis 688

dataset. However, its performance is limited on MNIST 689

dataset. This indicates that the missingness patterns can be 690

important in learning with incomplete data, but should be 691

wisely incorporated into the model equation. Our model 692

consistently outperforms other baselines, which verifies the 693

effectiveness of our strategy to adjust the importance of 694

present features by the missingness patterns. 695

Table 7 presents the experiment results on a smaller 696

dataset Avila [62]. In general, our model performs better 697

than other baselines, but compared to results on MNIST 698

dataset, the improvements are relatively small. Because our 699

method involves more parameters, it may require more data 700

for the model learning. 701

6.3 Analysis of Parameters and Convergence 702

This section evaluates the performances of our proposed 703

model by varying the critical parameters. As illustrated 704

in Section 3.1 and 6.1, we fixed η1 = 10−6 to constraint 705

the Frobenius norm of H . We here show the experimental 706

results with various k and η2 on datasets bands and horse, 707

similar results can be gotten in other datasets. We discuss 708

them jointly and pick them up by the grid search method. 709

Fig. 5 reveals the different accuracies with varying set- 710

tings for k and η2 on dataset bands. In general, our model is 711

insensitive to k and η2. When we increase η2 from 10−4
712

to 104, the result improves at the beginning stage, and 713

tends to stay stable at the range of {101, 104}. In particular, 714
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Fig. 7: Convergence rate.

our model achieves the best result when k = 16 and η2715

= 101, while it can get good performance if the k is set716

between 14 and 18. Fig. 6 reveals the effect of varying k717

and η2 on dataset horse. Our model is insensitive to η2 and718

k. We observe that the performance is stable when η2 is719

ranged between 101 and 103. η2 = 101 yields the best results.720

Generally speaking, when the k was less than full-rank, the721

performance was better. When we introduce more missing722

entries (+30%), the trends are clearer that we attend at the723

best performance at k = 16 and k = 10 for bands and horse724

datasets, respectively. Our model is insensitive to k up to725

some values. Then the performance drops for overly-large726

k.727

In summary, both parameters used in our model are ben-728

efit to the performance improvement. Moreover, our model729

is stable and easy fine-tuning because of the insensitivity for730

those parameters.731

Figs. 7 (a) and (b) illustrate the convergence trends of our732

iterative model on both the above two datasets. It represents733

that our proposed efficient training algorithm can converge734

into a local solution in terms of the objective value in a small735

number of iterations.736

7 CONCLUSION AND FUTURE WORK737

We proposed a general method for learning with incom-738

plete data, where data of different missingness patterns are739

treated differently in model level. This idea can reduce the740

competition between data of different missingness patterns741

in training. In detail, we proposed a linear model that can742

be adaptively applied to data with different missingness743

patterns. And analysis of error bound justifies our method744

in the linear case. Our experiment results verified the effec-745

tiveness of our model empirically.746

The dimension of missingness indicator vectors influ-747

ences the computation complexity and generalization error,748

our future work will focus on how to develop a lower-749

dimension representation for them. Although we do not im-750

pute the missing data for our model, it does not conflict with751

imputation methods. How to combine various imputation752

methods with our model is another interesting future work.753
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