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ABSTRACT In practice, traffic data collection is often warned by missing data due to communication
errors, sensor failures, storage loss, among other factors, leading to impaired data collection and hampering
the effectiveness of downstream applications. However, existing imputation approaches focus exclusively
on estimating the lost value from incomplete observations and ignore historical data. In this paper, we
propose a novel neural network model, namely, Attention-Driven Recurrent Imputation Network (ADRIN),
to address the problem of missing traffic data. Specifically, in ADRIN, we devise an Imputation-targeted
Long Short-Term Memory (LSTM-I) module for filling in missing data. Meanwhile, we consider the
periodicity of historical data and design a historical average calculation module in ADRIN. On this basis,
we employ the multi-head self-attention mechanism for further extracting latent temporal features from
the output of the two modules. ADRIN is capable of modeling both incomplete observation inputs and
historical averages independently to estimate the missing values. We conducted comprehensive experiments
on three real-world traffic datasets, to demonstrate that ADRIN consistently outperforms other baselines
in a variety of scenarios. Furthermore, ablation experiments are conducted on the various modules of the
model, and it is concluded that historical data can significantly enhance the imputation effect.

INDEX TERMS Traffic speed imputation, deep learning, long term short memory, self-attention, intelligent
transportation systems.

I. INTRODUCTION

TRAFFIC data is a collection of historical road obser-
vations (e.g., flow and speed) acquired over a period

and is considered as a critical component of Intelligent
Transportation Systems (ITS) [1], [2]. On the basis of these
data, the transportation department can exercise reasonable
and effective traffic control, and businesses can provide more
accurate and reliable service. Recently, there has been a
surge in the development of deep learning-based algorithms
for a variety of problems, including traffic speed prediction,
origin-destination prediction, and travel time estimation,
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etc. [3], [4]. However, the majority of deep learning-based
methods are highly reliant on high-quality data [5], [6]. In
practice, traffic datasets frequently contain missing data due
to sensor failures, regional power outages, extreme weather,
among other reasons [7]. For example, more than 5% of the
PeMS traffic data is missing [8]. Ni et al. [9] noted that data
from the Texas Transportation Institute contained missing
rates ranging from 16% to 93%. As a result, the issue of
missing data needs to be addressed urgently.
To overcome the issue, the most straightforward

approaches are to delete all data with the same 1) timestep
or 2) sensor/road as unobserved. Both methods, however,
imply loss of temporal or spatial information. To address
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FIGURE 1. The traffic speed of East San Li He Avenue (Beijing) per 10 minutes on
different days.

this concern, data imputation is used to estimate missing
values through the analysis of traffic data dependencies or
distributions. Appropriate data imputation methods can accu-
rately restore missing data, thereby avoiding the performance
degradation of various downstream data mining algorithms
in intelligent transportation systems.
In addition, traffic data are highly cyclical and volatile in

nature, compared with typical time-series data (e.g., stock
indices and medical device data). Figure 1 shows the road
speed of East San Li He Avenue in Beijing, China, over a
five-day period. In general, the traffic speeds of successive
days are similar. For example, the road speed is low during
the morning and evening rush hours every day. Besides, traf-
fic speeds vary throughout the day due to a variety of factors
(e.g., weather, accidents, and dates.) and are highly correlated
with the road speeds immediately preceding and following.
Therefore, understanding how to combine the historical data
and observations prior to and following different points in
time is crucial to accomplish the missing data imputation
task.
In the literature, researchers designed algorithms for data

imputation based on statistical methods such as KNN [10],
ARIMA [11]. These methods, however, are only effective for
data with relatively simple distributions [12]. While some
researchers have presented probabilistic models [13] and
Gaussian distributions [14] using matrix decomposition [15],
these methods are typically limited to statistical and low-rank
data [16]. In recent years, deep learning has been widely
utilized in the data imputation problem and achieved out-
standing performance. For example, Cao et al. [17] proposed
BRITS with a bidirectional recurrent neural network struc-
ture to combine the data prior to and after the residual
location for imputation. Luo et al. [18] proposed E2GAN
based on the adversarial generative network [19] structure
to reconstruct the missing data. These studies, however, are
undermined by slow computation or convergence on large
datasets. Ye et al. [20] proposed GACN that incorporates
conventional neural network and graph attention network.
The GACN can estimate the missing value based on spatial
and temporal dependencies. Nonetheless, the convolutional
neural network-based structure results in its performance
being unremarkable when facing massive missing. While
current approaches have produced acceptable results for
the imputation of traffic data, some challenges remain. For

instance, parts of existing methods are overly complicated
and challenging to train [18]. Additionally, most approaches
consider only the temporal dependency within the incomplete
time series data, failing to take advantage of the inherent
periodicity of the traffic data. Furthermore, the question of
how to better extract features from residual data continues
thought-provoking.
To address the aforementioned issues and close the research

gaps, we propose a novel data imputation model called
Attention-Driven Recurrent Imputation Network (ADRIN).
Unlike previous models, we extract features from both miss-
ing input and recent road speed to account for the volatility and
periodicity of traffic data. ADRIN employs the long short-
term memory network for imputation and the multi-head
self-attention [21] network to extract features from miss-
ing data. Additionally, we apply the multi-head self-attention
mechanism in conjunction with the recent traffic state to
extract features associated with the historical information.
The outputs of both modules are then routed through a fusion
module that incorporates a self-attention layer and a linear
layer to obtain the imputation result. Additionally, considering
the spatial correlations is also essential for the missing data
imputation, we designed spatial information powered ADRIN
that contains graph convolutional network to extract spatial
dependency in the road networks. We also design a new loss
function to aid in training model. The major contributions
and efforts are listed as following:

• We propose a novel network structure, Attention-
driven Recurrent Neural Imputation Network (ADRIN)
for reconstructing the incomplete input and historical
average to improve the missing traffic data.

• We devise the long short-term memory for imputation
(LSTM-I) that is designed for intermittent time-series
data. In ADRIN, this LSTM-I network is integrated with
multi-head self-attention mechanism to extract temporal
features from the incomplete input.

• We propose a GCN empowered ADRIN that can impute
the incomplete data based on the spatial-temporal
information, the performance of the enhanced model
demonstrates that the outstanding scalability of ADRIN.

• We conduct comprehensive experiments and analysis on
three real-world traffic speed datasets, and the results
demonstrate that our approach outperforms existing
models by a significant margin. In addition, we investi-
gate the role of the constituent components in ADRIN
through ablation experiments and parameter tests.

The rest of this paper is organized as follows. In Section II,
we briefly summarize the existing data imputation research.
In Section III, we introduce the formulation of the proposed
ADRIN, and give details to its constituting components
and training process. Then, we present the experiments and
discussions in Section IV. Section V concludes this paper.

II. RELATED WORK
The subject of missing data imputation has gathered con-
siderable interest from researchers with the growth of traffic
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big data research. In this section, we provide a systematic
review of related literature and classify these approaches
into three categories: statistical learning-based methods,
matrix factorization-based methods, and deep learning-based
methods.

A. STATISTICAL LEARNING-BASED METHODS
Conventional statistical learning-based methods perform sim-
ple statistical operations for the missing data imputation
task, such as linear interpolation [22] and complementing
the missing values with history average or the last observa-
tion [23], which can address the problem only for simple
data distributions. Some researchers proposed computing the
missing values using data surrounding the missing posi-
tions in the feature matrix, such as the classical K-Nearest
Neighbors Algorithm (KNN) algorithm [10], which imputes
the missing by averaging the K nearest neighbors around.
ARIMA [11] and its variants [24] impute the missing val-
ues by prediction based on historical data. Nevertheless,
unlike the other methods for imputation, these approaches
are unable to make effective use of the feature collected after
the missing occurs. The constraint method [25] establishes
rules for completing the missing value based on the overall
data characteristics in the dataset; however, this approach
is applicable only to univariate data and is less effective in
the majority of the practiced scenarios involving multivariate
data.

B. MATRIX FACTORIZATION-BASED METHODS
Matrix Factorization [15] discovers correlations within the
data and imputes missing values by decomposing and
reconstructing the traffic data matrix. Temporal Regularized
Matrix Factorization (TRMF) [26] is a time-series impu-
tation method that makes use of regularization schemes
and a scalable matrix factorization approach. Additionally,
Sportisse et al. [14] introduced Probabilistic Principal
Component Analysis (PPCA) to matrix factorization, which
presumes that the latent features of the observed data con-
form to a Gaussian distribution. Chen et al. [13] employed
a more sophisticated low-rank tensor complementation algo-
rithm to recover missing data. The proposed Bayesian
Gaussia Candecomp/Parafac (BGCP) tensor decomposition
method converts the original data matrix to a high-
dimensional tensor and then describes and recovers the
incomplete matrix. However, the matrix factorization-based
methods need input with specific shape, which limit their
application.

C. DEEP LEARNING-BASED METHODS
In the last decade, an increasing number of researchers
have used deep learning techniques to extract the spatio-
temporal dependencies for missing data imputation. Based
on the Recurrent Neural Network (RNN) [27] for its time-
series data modeling capability, GRUD [28] smooths the
input using the historical average and the most recent

observation before inputting into gated recurrent units [29].
Cao et al. [17] proposed BRITS, a bi-directional RNN struc-
ture for imputation that takes into account both the forward
and backward directions of time-series data. However, the
stepwise computation of RNNs renders their slow speed
and high memory usage. Referring to the image color-
ing problem, Denoising Stacked Autoencoders (DSAE) [30]
combines denoising and stacked encoders to estimate the
unobserved values in the traffic data matrix. DSAE begins
by encoding the data to extract implicit features and then
decoding them to perform fitting and completion. However,
it has certain limitations in terms of introducing significant
fluctuations into the data.
Generative Adversarial Networks (GANs) based mod-

els [19] aim to generate the missing value by learning
the general distribution of the training data. In Generative
Adversarial Imputation Nets (GAIN) [31], the generator
develops the complete data from observations and noise
input, while the discriminator verifies the authenticity of
the generated data. Additionally, Luo et al. [18] proposed
E2GAN as an extension of GAN by incorporating an
encoder-decoder RNN structure to the generator and discrim-
inator to better model the temporal dependency. However,
there are computation speed and convergence issues on large
datasets. Miao et al. [32] proposed a novel data complemen-
tation model SSGAN by combining GAN and BRITS. The
model, on the other hand, requires labeled categories in the
input temporal data, limiting its applicability to the real-
world scenarios. Recently, due to the superiority ability of
attention mechanism to model the inter-feature dependencies,
scholars introduced it to the text to aid in the missing data
imputation task [16], [33], [34]. In [33], Yang et al. utilized
the graph attention neural network [35] to learn the spatial
dependence of data. In [34], Wu et al. applied the attention
mechanism to model the correlation between features and
solve the problem of missing data in database scenarios, lim-
iting his application. In [16], based on the GAIN, Zhang et al.
introduced the self-attention mechanism to better model the
temporal dependence, but the problem of training diffi-
culty persists. The GACN [20] applies convolutional neural
network and graph attention network to extract the temporal
and spatial dependencies, respectively. Nevertheless, when
estimating the continuous missing, the CNN-based structure
is limited due to the size of the receptive field. In this paper,
the proposed ADRIN exploits incomplete input and historical
average to impute the missing traffic data. Unlike the other
models that are difficult to interpret and train, our model
have more intuitive structure and straight forward training
process.
Another related research problem is filling the miss-

ing vehicle trajectory data points. Shi et al. proposed a
Monte-Carlo-based lane marking identification approach [36]
to extract the vehicle trajectory data. In [37], the authors
proposed a car-following-based (CF-based) vehicle trajectory
connection method that can fill missing data points caused
by detection errors. However, since these methods focus on
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the processing of individual vehicle data, the missing traffic
data imputation concentrates on the road state under the city
scale. Therefore, the respective solutions cannot be directly
adopted for the missing data imputation task.

III. ATTENTION-DRIVEN RECURRENT IMPUTATION
NETWORK
In this section, we elaborate on the proposed Attention-
Driven Recurrent Imputation Network (ADRIN). To begin,
we define the traffic missing data imputation problem in
detail. Subsequently, the framework of ADRIN is introduced,
including the technical components of ADRIN, and the loss
function of ADRIN is defined. Additionally, we extend the
model to graph domain by proposing a GCN-based variant
of ADRIN, which is presented in the end of this section.

A. PROBLEM DEFINITION
Traffic speed data imputation aims to predict the missing
data points with known observed traffic speed data. Given
the ground truth road speed data Y ∈ R

n×T , we have the
observed input feature map with missing data points denoted
by X(?) = (xij) ∈ R

n×T , where n represents the number
of spatial nodes (e.g., sensor stations or road segments), T
represents the number of timesteps in a day, and xij represents
the observed data point of node i at the j-th timestep. To
extrude the missing data points in neural computing, we
additionally define a mask matrix (also known as binary
flag matrix) M = (mij) ∈ R

n×T as

mij =
{

0, if data point xij is recorded;
1, if data point xij is missing.

(1)

For conveniently understanding, a matrix forms of the
incomplete traffic data and the corresponding mask matrix
is illustrated below:

X(?) =
⎡
⎢⎣

36 40 ? 45 41

40 44 46 48 ?

28 ? 40 35 46

⎤
⎥⎦, M =

⎡
⎢⎣

0 0 1 0 0

0 0 0 0 1

0 1 0 0 0

⎤
⎥⎦.

It can be observed that data values at positions (1, 3),
(2, 5), (3, 2) are missing in the feature matrix with miss-
ing data denoted by question marks. Their corresponding
binary values are 1 while the values of other observed data
points are 0 in their respective mask matrix. The objective of
missing data imputation is to restore the missing data points
by interpolating synthesized data values. The error between
Ŷ and Y should be minimized, where Ŷ is the imputation
result.
There are two common patterns of missing data in the

literatures, namely, missing completely at random (MCAR)
and missing not at random (MNAR) [7], [38], which are
illustrated in Figures 2(a) and 2(b), respectively. In MCAR,
the distribution of missing data is dispersed and random in
time series, while the missing data points appear in continu-
ous time points in MNAR. Comparatively, MNAR is a more
challenging problem to solve due to the lack of neighboring
information essential for recovering a single missing point.

FIGURE 2. Diagram of different missing types. The shaded blocks represent the
missing data points.

To evaluate the capacity of ADRIN on different missing data
with different missing patterns, both patterns are investigated
in this work.

B. ATTENTION-DRIVEN RECURRENT IMPUTATION
NETWORK (ADRIN)
Figure 3 depicts the framework of ADRIN. We construct
two main data processing flows, as illustrated in the left and
right parts of Figure 3 based on the time-series features
of traffic speed data. The left flow focuses on extract-
ing typical temporal feature from the incomplete input,
i.e., X(?) = (�X(?)

1 , . . . , �X(?)
T ). Considering the strong peri-

odical correlations in the traffic data within contiguous
days as shown in Figure 1, we additionally construct the
right flow, which accepts the historical average data matrix
X(a) = (�X(a)

1 , . . . , �X(a)
T ) as input by averaging the data of the

recent seven days before the incomplete input. Considering
that urban sensors are more likely to have similar miss-
ing conditions on adjoining days in the real world, so
we set the historical data to have the same missing pat-
tern (i.e., missing pattern and missing rate) with the target
day. And this impact of historical data will be discussed
in Section IV-F. To avoid the influence of extreme value,
we first fill the missing position by the average speed of
each day in these days. The output of these two flows are
two hidden feature matrices, denoted by H = ( �H1, . . . , �HT)
and H∗ = ( �H∗

1 , . . . , �H∗
T), respectively. The former contains

extracted temporal information between timesteps, while the
latter incorporates the periodic time series information. In
the end, a Fusion Module is devised to aggregate the outputs
of two flows (i.e., H and H∗) and develop the imputed data
Ŷ ∈ R

n×T .
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FIGURE 3. The overall architecture of the proposed ADRIN for traffic data imputation.

We tailor a few advanced neural network-based approaches
according to the time-series traffic speed data and integrated
them into ADRIN. Particularly, we first recast the vanilla
LSTM and propose an LSTM for Imputation (LSTM-I),
which accepts inputs with missing data. The LSTM-I esti-
mates missing values by forward prediction to develop
the predicted feature map X̂. Additionally, we employ the
multi-head self-attention mechanism [21], which has been
demonstrated to be effective in handling time-series prob-
lems [16], [39], in the data processing flows as Multi-head
Self-attention Layer (MSL) to respectively extract temporal
dependency in X̂ and historical features X(a), and obtain the
hidden feature matrices H and H∗. In the following sections,
we first formulate LSTM-I and multi-head self-attention into
layers in the data processing flow as illustrated in Figure 3.
Then, we elaborate on the fusion module that combines the
time-series and historical feature to generate the imputation.

1) LONG SHORT-TERM MEMORY FOR IMPUTATION
LAYER (LSTM-I)

In recent years, LSTM has made numerous achievements
in temporal data modeling tasks, particularly in time-series
predictions [40], [41]. In comparison to the vanilla RNN,
LSTM can prevent gradient explosion during the learning
process. Nevertheless, for the majority of existing LSTM
networks, the input time-series data must be complete. This
requirement, however, is impractical in the investigated traf-
fic data scenarios. Therefore, we refactor the existing LSTM
networks and propose LSTM-I dedicated to process the input
with missing data points.

As shown in Figure 3, at timestep t, �X(?)
t denotes the

incomplete observation and �X∗
t is the prediction. When the

input �Xt contains missing data, we combine the �X(?)
t and �X∗

t
as current input. Specifically, the remodeled LSTM-I uses
the predicted value from the previous timestep to impute the
incomplete value at the current timestep, which can better
utilize the observed values. For each timestep, the LSTM-I
employs the estimation and observed values to restore the
feature as following.

�̂Xt = �X∗
t � �Mt + �X(?)

t �
(

1 − �Mt

)
, (2)

where the �Mt ∈ M represents the missing positions in t-
th timestep as defined in Section III-A, and � denotes the
Hadamard product.
For each layer of LSTM-I, the LSTM cell with shared

parameters is used for the computation. For the t-th LSTM
Cell, the input includes the cell state ct−1 at the previous

timestep, the hidden feature ht−1 and the input �̂Xt. There
are three types of gating units in an LSTM cell, namely,
input gate it, forget gate ft, and output gate ot, which are
used to decide whether to add/remove information to/from a
cell state. These gates adaptively save the input information
to the current memory state and develop the hidden feature
ht ∈ R

d, where d is the dimension size of the hidden feature
of the LSTM cell output, which is defined here as the size
of LSTM. The entire computation process of LSTM cell is
shown below:

it = σ
(
Wi ·

[ �̂Xt; ht−1

]
+ bi

)
, (3)

ft = σ
(
Wf ·

[ �̂Xt; ht−1

]
+ bf

)
, (4)
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gt = tanh
(
Wg ·

[ �̂Xt; ht−1

]
+ bg

)
, (5)

ot = σ
(
Wo ·

[ �̂Xt; ht−1

]
+ bo

)
, (6)

ct = ft � ct−1 + it � gt, (7)

ht = ot � tanh(ct), (8)

where gt is the cell input activation vector, Wg ∈ R
d×2n and

bg ∈ R
d are the weight matrix and bias parameters of the

cell, respectively; Wi,Wf ,Wo ∈ R
d×2n denote the weight

matrices of the input, forget and output gates, respectively;
bi, bf , bo ∈ R

d are the bias parameters of the corresponding
gates; Rd×2n and bo ∈ R

d are the weight matrix and bias
matrix of the memory cell, respectively; σ represents the
sigmoid activation function. Additionally, prediction �X∗

t+1 at
the next timestep is calculated based on the hidden feature
ht by �X∗

t+1 = Wh · ht + bh, where Wh ∈ R
n×d and bh ∈ R

n

are the weight and bias matrix, respectively.
Currently, there are some works that apply RNN-based

structure to deal with the missing data problem. GRU-D [28]
first employs the historical average to fill the missing values
and accepts the time-series input. Additionally, the LSTM
with a mask can also handle the missing data. However, the
former introduces too many noises from the historical data,
especially when facing non-recurrent traffic patterns, like
traffic accidents. If the missing rate is high, the latter will
be hard to learn the temporal dependency in the sparse data
within the direct mask operation. In this way, we propose the
LSTM-I to avoid the influence of missing position, which
can better extract the temporal features.

2) MULTI-HEAD SELF-ATTENTION LAYER (MSL)

Although the enhanced LSTM-I is able to estimate the miss-
ing data step-by-step; however, it has limitation to model the
dependency of long time series data, especially traffic data
often have hundreds of timesteps in one day. Therefore, we
apply the multi-head self-attention mechanism that has been
demonstrated to be effective in extracting temporal depen-
dencies [39], [42] for further feature extraction of output of
LSTM-I X̂ and the historical average X(a). The multi-head
operation can perform the self-attention mechanism in sev-
eral sub-spaces separately, and then combines all the results
after obtaining them. The output matrix with the same shape
as the input time series can be developed by recasting with
a fully-connected layer.
For self-attention computation, we define the time-series

input as X ∈ R
T×n (corresponding to the transposition of

X̂ and X(a)). There are three defined components in the
computation of the self-attention mechanism, namely, the
query matrix Q = X · Wq ∈ R

T×T , the key matrix K = X ·
Wk ∈ R

T×T and the value matrix V = X·Wv ∈ R
T×n, where

Wq,Wk ∈ R
n×T and Wv ∈ R

n×n are the parameter matrices
of the corresponding parts, respectively. The attention matrix

E is subsequently computed by1

E = softmax

(
QKT

√
T

)
∈ R

T×T . (9)

Here, the softmax function is used to convert the attention
matrix into a probability matrix, and the probabilities of all
columns sum to 1. Thus, Eij represents the influence of the
i-th time point on the j-th time point. The dynamic impact
of traffic speed data on different time points on the j-th
time point can be captured by multiplying the weights of
the j-th column with the value matrix V and calculating the
accumulation. The output of the self-attention mechanism is
denoted by Z, which can be computed by

Z = attention(X) = EV = softmax

(
QKT

√
T

)
V. (10)

For multi-head self-attention computation, we follow the
paradigm in [21] that involves multiple attention mechanisms
to compute their respective output Zi, i, . . . ,H separately,
where H is the number of attention heads. This allows learn-
ing in different attentional subspaces derived by Eq. (10)
separately, which is capable of capturing richer feature rela-
tionships. Finally, we concatenate all Zi inputs to the linear
layer to get the final output, which can be formulated as

Output = concat(Z1, . . . ,Zh)Wc, (11)

where Output is the final output of MSL that corresponding
to the hidden states H and H∗, and Wc is the parameter
weight of the linear layer.

3) FUSION MODULE

To aggregate the output of the two flows and develop the final
imputed data, a Fusion Module is devised that incorporates
a Single-head Self-attention Layer and a Linear Layer. The
Single-head Self-attention Layer is the one-head version of
MSL in which the input is the concatenation of the output
of the two flows. After the attentional computation, we use
a fully-connected neural network in the Linear Layer to
develop the final imputed results, which is defined by

Ŷ = attention
(
concat

(
H,H∗))Wl + bl, (12)

where attention(·) represents the attention computation as
introduced in Eq. (10), Wl and bl are the parameters of the
linear layer, and Ŷ is the final imputed results of ADRIN.

4) LOSS FUNCTION

To restrict the output of LSTM-I to obey the distribution of
the speed matrix while accelerating the model convergence,
we define respective loss functions for LSTM-I and the final
output. Given the ground truth road speed data Y ∈ R

n×T and
the imputed output Ŷ, we define the masked loss function
L1, which is formulated as

L1

(
Y, Ŷ

)
= |M � Y − M � Ŷ|, (13)

1. The T in KT denotes the transposition in Eq. (9) and (10)
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FIGURE 4. The architecture of GCN module in ADRIN.

where M ∈ R
n×T is the mask matrix defined in Section III-A

to indicate the missing data points.
To ensure X̂ (i.e., the output of LSTM-I) is similar with

X(?) (i.e., the input of LSTM-I), and accelerate the con-
vergence speed of LSTM-I, we define the loss function
L2 as

L2

(
Y, X̂

)
= |M � Y − M � X̂|. (14)

Combining the above two sub-loss functions, we have the
final loss function L, which is formulated as

L = L1

(
Y, Ŷ

)
+ L2

(
Y, X̂

)
. (15)

C. GRAPH CONVOLUTIONAL NETWORK-EMPOWERED
ADRIN
Plenty of works [20], [43] has shown that spatial information
is essential for road-based tasks like traffic state prediction
and traffic data imputation. However, over-reliance on spa-
tial information will limit the application scenarios of the
proposed model. For example, geographic information of
some roads or sensors may be unretrievable due to security
or privacy reasons. In this way, we only propose a vanilla
extension version of ADRIN, named GCN-ADRIN, which
incorporates the ADRIN and graph conventional network
(GCN) [44]. Except for the merit as introduced in ADRIN,
the GCN-ADRIN is able to estimate the missing considering
the spatial information.
The road network can be represented by a directional

graph G = (V,E), where V is the set of road segments (i.e.,
nodes) and E is the set of road intersections (i.e., edges).
The adjacency matrix A = {Iij} is generated by a thresholded
Gaussian kernel method:

Iij =
{

1, when i �= j and exp
(
− dist(vi,vj)

κ2

)
≥ μ

0, otherwise.
, (16)

where Iij denotes the connectivity between nodes vi and vj,
which depends on their Euclidean space distance defined by
dist(vi, vj); μ and κ are the user-defined parameters which
are to control the sparsity of graph, and their values are set
in accordance with [45].
Figure 4 depicts the structure of the extension part that

contains two vanilla GCN layers. To avoid overfitting and
debilitating performance, we utilize the skip-connection [46]
to calculate the final output of the extension part.

X̂(out) = σ
(
D̃− 1

2 ÂD̃− 1
2 X̂Wg

)
+ X̂, (17)

where Â = A + In denotes the sum of adjacent matrix and
self-connection, In is the identity matrix, D̃ = ∑

j Âij is the

degree matrix, Wg ∈ R
n×n is the weighted matrix, X̂(out) is

the output of this module, and σ(.) is the sigmoid function.
We consider extracting the spatial dependency from both

left and right halves respectively in Figure 3. As shown in
Figure 4, the module that contains GCN and skip-connection
is between the LSTM-I and the MSL. Similarly, the module
with the same structure is applied to the historical average
part to learn the spatial information between the input and
MSL. Currently, there are a variety of advanced graph neural
network structures applied in the traffic domain, and the
senior design will be discussed in future work.

IV. CASE STUDIES
In this work, we propose ADRIN for missing traffic data
imputation. To evaluate and explore its performance, we
conduct a series of comprehensive case studies on three
real-world traffic speed datasets. This section first intro-
duces the experimental setup. Subsequently, we compare the
imputation accuracy of ADRIN with existing state-of-the-
art algorithms and visualize the imputation effects. Ablation
experiments and hyper-parameter tests are carried out to
demonstrate and elaborate on the necessity of various parts
in the model. Additionally, we investigate the performance
of models on incomplete data with different sampling noise.

A. EXPERIMENT CONFIGURATION
1) DATASET

In this work, we employ three real-world traffic speed
datasets, namely, NavInfo-Beijing (BJ),2 PeMS: District 5
(PeMSD5),3 and Hong Kong Traffic Speed Map (HK).4

Specifically, the BJ dataset is provided by NavInfo Traffic
Index Platform, which contains the average speed of 1368
roads in Beijing from 00:00 Jan. 1, 2019 to 23:55 Jun.
30, 2019. The sampling interval of records is 5 minutes.
To minimize the impact of missing data while retaining
the dataset complexity, we only use the road speed data
with an overall missing data rate of less than 5% for the
experiment, i.e., a total of 168 roads. According with the
literature [45], [47], we utilise linear interpolation to com-
plement the missing traffic data, record their positions, and
remove the interpolation during the evaluating stage.
The PeMSD5 dataset contains traffic speed data col-

lected from Caltrans Performance Measurement System.
This dataset includes 144 sensor stations in District 5 of
California, and the recording duration is from 00:00 Jan. 1,
2013 to 23:55 Jun. 30, 2013. It is worth mentioning that the
records in PeMSD5 are collected from sensors in highways,
which differ from the urban roads in BJ. The HK dataset
includes the average road speed of arterial roads in Hong
Kong from 00:00 Mar. 10, 2021 to 23:50 Jul. 31, 2021.

2. http://www.nitrafficindex.com
3. https://PeMS.dot.ca.gov/
4. https://data.gov.hk/en-data/dataset/hk-td-sm_1-traffic-speed-map
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FIGURE 5. Three real-world datasets investigated in experiments.

TABLE 1. Summary of BJ, PeMSD5, and HK datasets.

We note that the records from outbacks like Tuen Mun and
Shatin are static in the long term. Hence, we employ the
road data in Hong Kong island that consists of 84 roads.
Particularly, the actual sampling interval is 2 minutes in HK
dataset; however, considering the large computational con-
sumption and the occurrence of original missing in dataset,
the time interval of traffic speed data is set to 10 minutes.
One to note that the BJ an HK are from dual-loop detectors,
and the D5 is from a single loop detectors. A summary of
these datasets is presented in Table 1. Figure 5 depicts the
sampling locations of roads or sensors in the three datasets.5

2) CONFIGURATIONS

In all case studies, we employ the Z-score normaliza-
tion to preprocess the data. For cross-validation, we follow
the prior work [38], [48] and split the datasets into two
non-overlapping subsets based on the chronological order,
namely, the training and test sets: the first 80% of all sam-
ples are training data, while the remaining 20% are the test
data. In addition, a data augmentation method is applied dur-
ing the training stage: for each sample Y in the training set,
we generate the missing input X(?) ten times randomly. We
use Adam [49] as the optimizer with an initial learning rate
of 0.001. The batch size is 20, and the number of training
epoch is set to 200. The number of heads H in the multi-head
self-attention mechanism is set to 8, and the hidden layer
size d is set to 168; these two parameters will be discussed in

5. To better show the collection locations, we have simplified the roads
in the BJ and HK datasets to a point representation.

the following section. PyTorch is used to conduct the experi-
ments, and the hardware configuration includes nVidia RTX
2080Ti GPUs and a Xeon Silver 4210 CPU.

3) METRIC

Following the previous works [6], [38] on traffic data imputa-
tion, we adapt mean absolute error (MAE) and mean absolute
percentage error (MAPE) as the metrics for this experiment,
which are defines as

MAE = 1

c

T∑
j=1

n∑
i=1

∣∣mij(yij − ŷij
)∣∣, (18)

MAPE = 100%

c

T∑
j=1

n∑
i=1

∣∣∣∣∣
mij

(
yij − ŷij

)
yij

∣∣∣∣∣, (19)

where mij indicates the traffic data in same position is miss-
ing or not as introduced in Section III-A, c = ∑T

j=1
∑n

i=1 mij
represents the number of corrupted records, yij ∈ Y is the
ground truth, and ŷij ∈ Ŷ is the imputation value.

B. ACCURACY OF IMPUTATION
To assess the model comprehensively, we conducted exper-
iments considering the two missing patterns, i.e., MCAR
and MNAR, in this case study. Additionally, to verify the
effectiveness of model in a variety of scenarios, we com-
pare ADRIN to existing methods considering a wide range
of missing rates from 10% to 90%. The applied base-
line approaches are selected from a variety of imputation
methods as reviewed in Section II, which are the current
state-of-the-art or most widely adopted ones for missing data
imputation:

• Historical Average (HA) [23]: HA takes the complete
data of the most recent seven days and averages the
corresponding timestep in a day for each road segment
to fill in the missing values.

• Bayesian Gaussian CP decomposition (BGCP) [13]:
BGCP is a Bayesian tensor factorization model that
employs Markov chain Monte Carlo to model the latent
factor (i.e., low-rank structure).
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TABLE 2. Performance comparison (in MAE/MAPE(%)) for imputation tasks on BJ dataset.

TABLE 3. Performance comparison (in MAE/MAPE(%)) for imputation tasks on PeMSD5 dataset.

• Bayesian Temporal Matrix Factorization (BTMF) [50]:
BTMF employs a Gaussian vector autoregressive pro-
cess to model the temporal dependence to impute the
time series data.

• Parallel Data and Generative Adversarial Networks for
Imputation (PGAN) [38]: PGAN a GAN-based data
imputation approach for missing traffic data, and both
the generator and discriminator are made of linear
layers.

• Graph Attention Convolutional Network (GACN) [20]:
GACN incorporates convolutional neural network and
graph attention network to estimate the missing values
and follows an encoder-decoder structure.

• Bidirectional Recurrent Imputation (BRITS) [17]:
BRITS accepts the missing timing data into two RNNs
in forward and reverse directions, respectively, and com-
bines the outputs of the two RNNs to compensate for
the missing time-series data.

Among these baselines, the matrix factorization-based
methods (e.g., TRMF and BTMF) must strictly ensure that
the input format shape is days× time× road. For compari-
son purposes, we uniformly set the inputs of deep learning
methods such as PGAN, BRITS, GACN, ADRIN, and GCN-
ADRIN to be the missing data of one day, i.e., time× road.
Additionally, the input of matrix factorization-based methods
is the concatenation of complete training data and incom-
plete testing data. Furthermore, due to it is hard to ensure the
convergence of PGAN, we set the learning rates of genera-
tor and discriminator among {0.00001, 0.0001, 0.001, 0.01}

and apply grid search to obtain the best result. The
hyper-parameters of the other models remain unaltered.
Tables 2, 3, and 4 summarize the imputation result of

MCAR and MNAR, respectively, with the missing rate
between 10% and 90% on the three datasets. The exper-
imental results demonstrate that the proposed ADRIN and
GCN-ADRIN outperforms all other baselines by achieving
the lowest MAE and MAPE values under most scenarios.
The results are outstanding on complicated datasets like
urban roads speed data BJ and HK, while on the simpler
highway speed dataset PeMSD5, ADRIN can achieve results
close to SOTA on MCAR. This is due to the superiority of
the proposed model to extract time-series dependency from
missing input and historical features of ADRIN. In particular,
statistical learning-based method, such as HA produce sig-
nificantly worse imputation roads speed values than ADRIN.
This is because such approach capture only the sample dis-
tribution within the dataset to complement the missing value
but ignore the temporal correlation, which make the inferior
performance.
Considering the compared deep learning-based methods,

the proposed ADRIN outperforms the state-of-the-art PGAN,
GACN, and BRITS. Due to the superior ability to model
time-series dependencies from the missing input and the
historical data separately, ADRIN achieves a significant
improvement over the other approaches when the missing
rate is low, regardless of whether the missing data is com-
pletely random or not. For example, compared to other deep
learning-based methods on HK dataset, e.g., the BRITS who
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TABLE 4. Performance comparison (in MAE/MAPE(%)) for imputation tasks on HK dataset.

won third place, in both cases, ADRIN reduces the MAPE
by 9.82% and 8.53% at 10% missing. At the same time, at
90% missing, the MAPE results in reductions of 5.39% and
7.30%, respectively. The result demonstrates that ADRIN can
achieve more significant gains when the missing rate is low,
which is contributed by incorporating more complete history
features. The same phenomena can be observed on the D5,
HK dataset. In addition, since the PGAN use only linear
modules to model features, they can only impute acceptable
results on the PeMSD5 dataset with simple data distribu-
tions. However, the proposed ADRIN, which additionally
takes into account the temporal dependency, can cope with
both missing data of urban roads and highways.
Unlike matrix factorization-based methods, deep learning

ones have more advantages for modeling complicated data
such as the urban road speed. However, deep learning models
are highly dependent on the quality of data, and high missing
rates make it difficult to capture the temporal feature correla-
tions. For instance, in the case of MCAR and 90% missing on
PeMSD5 dataset, ADRIN achieves an inferior performance
due to the data distribution of highway speed is simpler than
urban roads. Additionally, the results of matrix factorization-
based approach are much stable across all missing rates. This
is because that these methods estimate the missing values
from the overall data distribution. For example, the absolute
differences of ADRIN’s MAPE results in all missing rate
cases are 1.07% (MCAR) and 0.57% (MNAR) on BJ dataset,
but the differences of BGCP are 0.21% (MCAR) and 0.26%
(MNAR). However, contributed by the outstanding ability
for modeling the temporal dependency, ADRIN outperforms
all other models on the complicated urban datasets (BJ and
HK) with various missing cases.
Comparing the imputation results between MCAR and

MNAR, it is clear that all approaches have lower MAPE
under MCAR than MNAR. Due to the continuous large
batch of missing blocks, it is challenging to model the fea-
ture dependency of data in MNAR, leading to the degraded
performance. However, on the BJ and HK datasets, ADRIN
can achieve more significant improvement compared with
GACN, BRITS, and PGAN in MNAR than MCAR, con-
tributed by the aid of historical information. Additionally,
resembling the performance of ADRIN and GCN-ADRIN,

the latter achieves better performance on the D5 and HK
datasets with the aid of GCN. The difference is because
the distance between road segments is small as shown
in Figure 5(b) and 5(c), and the spatial information is of
great significance on the two datasets. On the contrary, the
road segments in BJ are far from each other. The vanilla
GCN structure can not fully extract the spatial dependency,
resulting in no noticeable improvement.
To better evaluate the efficiency of different methods, we

count the average time overhead of the above experiments,
and the results are shown in Table 2, 3, and 4. Among
these methods, BGCP achieves the shortest computation
time on all datasets, thanks to that BGCP only employs
Markov chains to factorize the residual data and comple-
ment it. Additionally, among the deep learning methods,
our proposed ADRIN and GCN-ADRIN have a significant
improvement in computation time over BRITS thanks to their
end-to-end structure. In addition, the computation time is
less than that of PGAN, which requires pre-training. GCAN
achieves a lower time overhead due to feature extraction only
from a spatial perspective and its simple structure, but its
simple structure leads to a lower imputation accuracy than
other methods.
Finally, to illustrate the imputation of ADRIN more

clearly, we visualize the ground truth data, the missing input
and the imputation results on June 30, 2019 on dataset BJ
in Figures 6(a), 6(b), and 6(c), respectively. It is noticeable
that the model prefers to describe the traffic speed using
smooth curves for different road segments rather than to
more dispersed actual values. Furthermore, in the presence
of consecutive missing values, ADRIN does an outstanding
job of estimating the unobserved values. Additionally, we
choose the No. 45 road, West Zhong Shan Avenue, which
severely deficits observation values, as shown in Figure 6(d).
In Figure 6(d), the shaded area indicates that the data are
missing period, the orange and black curves represent the
actual and imputed speeds, respectively. While ADRIN’s
imputation results are smoother than the real speed variation,
they can accurately capture changing road speed trends. For
example, even when data are missing, ADRIN can accurately
reflect the daily trend of increasing and then decreasing road
speed between 9:00 and 18:00.
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FIGURE 6. The visualization road speed on 2019-06-30 in Beijing, including the ground true value, the incomplete observation, imputed results, and an individual road speed.

C. ABLATION TEST
In this section, we carry out comprehensive ablation tests to
assess the contribution of each sub-networks to the overall
model performance. To maintain objectivity, The training
and testing configurations used in these case studies are
identical to those described in Section IV-A.2. Specifically,
the variants LSTM-I Attention is defined by: The left half
as shown in Figure 3 that incorporates LSTM-I and MSL
for modeling the temporal dependence within the incomplete
input. Besides, we also compare the performance of LSTM-I
and GCN-ADRIN.
Figure 7 shows the MAPE result of the two sub-networks,

ADRIN, and GCN-ADRIN evaluated with different miss-
ing types on the BJ dataset. The comparison leads to
the following conclusions: To begin, the proposed ADRIN
achieves the best performance across most missing rates
and patterns. This observation conforms to the intuition that
ADRIN models the temporal dependency from both the miss-
ing data and the historical average, resulting in improved
information extraction and imputation result. Especially,
thanks to the aid of historical data, the improvement of
the imputation effects are more evident in high missing
rates. Furthermore, unlike the LSTM attention network,
ADRIN utilizes the recent five-day traffic data to enhance
the imputation. Comparing the two result curves, ADRIN
indicates that historical data has a non-neglectable posi-
tive effect on the imputation. Additionally, the better result
of LSTM-I Attention than LSTM-I shows the superior

ability of the multi-head self-attention mechanism to model
time-series features. Besides, with the help of spatial
information, GCN-ADRIN has achieved improvements in
some cases like MCAR-60%, MCAR-70%, etc. However,
the graph is generated based on the distance between roads
as defined in Eq. (16). It can not express the connec-
tivity of road network while applied on the BJ dataset
whose roads are far from each other, leading to the unre-
markable improvement of imputation. We will design an
advanced graph structure to address this issue in future
work.

D. HYPER-PARAMETERS
Proper selection of hyper-parameters, such as the size of the
hidden layer, the number of hidden layers, and number of
heads, is critical in determining the model’s performance in
the context of deep learning. In this section, we study the
performance of ADRIN across a range of hyper-parameters
and attempt to determine the optimal neural network archi-
tecture. In particular, we employ the hidden size d of LSTM-I
among {84, 168, 336},6 and the number of heads H among
{4, 8, 12}7 to test the imputation performance on BJ with
50% missing rate on MCAR and MNAR.

Tables 5 and 6 demonstrate a variety of well-performing
structures and their imputation results. From the results,

6. Considering the BJ dataset contains 168 road segments.
7. Referring to [21].
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FIGURE 7. The MAPE results of ablation tests on BJ dataset.

TABLE 5. ADRIN hyper-parameter models and imputation accuracy (MCAR).

we can draw the following conclusions. First, increasing
the number of hidden states in the model can improve
performance (compare the performance of ADRIN with
d = 84 and ADRIN with d = 168). This is consistent with
the widely hold belief that increasing the number of neu-
ral network layers increases the efficacy of learning latent
data features. However, the excessive number of neurons
can degrade the performance due to over-fitting. Second,
involving more attention heads can slightly improve the
system performance. This is consistent with the concept of
multi-head self-attention mechanism, which states that more
features can be learned through the multi sub-space learning
process. However, too many heads may lead to excessive
consumption of computing resources.

TABLE 6. ADRIN hyper-parameter models and imputation accuracy (MNAR).

E. DATA NOISE
In the previous case studies, we utilized the ground truth of
three real-world traffic speed datasets to evaluate and explore
the proposed model. However, noise during the sampling
process inevitably influences the data collected. In this sec-
tion, we manually introduce various noises to the input of
the model to demonstrate their robustness on the BJ dataset.
Specifically, following the previous work [51], we generate
the Gaussian noise that follows the mean equals to 1 and
the standard error among {2%, 4%, . . . , 20%} and multiply
original input by the noise. It means the average deviations
are 1%, 2%, . . . , and 10% of the ground truth, respectively.
Figure 8 shows the imputation performance of four mod-

els who achieved outstanding results in previous case studies,
including BGCP, GACN, BRITS, and the proposed ADRIN.
The results indicate that increasing noise level generally
leads to larger MAPE, while the influenced data distribu-
tion patterns are harder to learn. Additionally, because the
performance of deep learning-based methods highly depends
on the quality of data, it is challenging to learn the data
dependency with the intensive noise. In contrast, the matrix
factorization-based method learns from the low-rank space,
and noise is attenuated in the process of factorization, making
it better noise robustness.

F. THE IMPACT OF HISTORICAL DATA
In Section IV-C, through the ablation test, we can see that
the historical data module has a significant role in the miss-
ing data imputation. However, the influence of historical
data with different missing patterns and rates still needs to
be explored. Therefore, in this part, we set different miss-
ing rates, from 10% to 90%, and missing patterns, including
MNAR and MCAR, of historical data to observe their impu-
tation performance for our proposed ADRIN model at 50%
of MCAR and MNAR, respectively.
Figure 9 demonstrates the influence of different historical

data missing cases on the imputation performance. One to
note that the vertical axis indicates the missing rate of his-
torical data, the orange line indicates that the missing pattern
of historical data is MCAR, and the green line means the
MNAR. As can be observed from the above figure, for both
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FIGURE 8. The MAPE results of noise experiment on BJ dataset.

MCAR-50% and MNAR-50%, when the missing pattern of
historical data is MCAR, the overall imputation accuracy is
better than MNAR. This is due to the fact that in MCAR, the
data are more dispersed, and more information is available
for the data matrix than in MNAR, which is more evident
in the case of a high missing rate. In addition, along with
the increase of the historical data missing rate, the available
information decreases, the improvement of the imputation
performance is smaller, and the error of imputation, i.e.,
MAPE, is larger, which is intuitive. As we can see from
the presentation of the completion results, the historical data
with different missing cases have a positive impact on the
imputation effect. However, at the same time, the enhance-
ment effect on the imputation effect is different according
to the distribution and proportion of information.

V. CONCLUSION
In this paper, we propose a novel network structure named
Attention-Driven Recurrent Imputation Network (ADRIN)
for the missing traffic data imputation problem. Compared
with existing deep learning-based imputation approaches,
ADRIN exploits the unique periodicity and volatility of traf-
fic data to extract features and complement missing values
from the incomplete data input and historical average. In
ADRIN, we first propose a Long Short-Term Memory for
Imputation (LSTM-I) model to process the missing inputs.
Following that, we apply a multi-head self-attention mecha-
nism to extract temporal features from the historical averages

FIGURE 9. The MAPE results of MCAR-50% and MNAR-50% with various historical
data missing pattern on BJ dataset.

and LSTM-I outputs, respectively. The outputs are passed
through self-attention and fully connected neural network
layers to fuse and obtain the imputed results. Based on
the ADRIN, we devise spatial information enhanced version
named GCN-ADRIN, which can extract the spatial-temporal
dependency. In addition, we design a tailored loss function
for each module separately during the training process.
To evaluate the performance of the proposed ADRIN, we

conducted comprehensive case studies on three real-world
traffic speed datasets. Compared with baseline methods,
ADRIN achieves superior imputation performance for both
MCAR and MNAR with varying missing rates. Meanwhile,
the effectiveness of different modules in ADRIN are inves-
tigated and analyzed using ablation experiments and param-
eters tests. The results show that historical information is
crucial for the imputation of traffic data. The performance
of GCN-ADRIN demonstrates that the outstanding scala-
bility of ADRIN. In the future, we set about to integrate
more advanced deep learning and data mining approaches
into ADRIN to better incorporate the topological relation-
ships between various road segments. Furthermore, on the
time axis, we will explore the utilization methods in terms
of different periods’ data to further improve the imputation
performance.
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[35] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” 2017, arXiv:1710.10903.

[36] X. Shi, D. Zhao, H. Yao, X. Li, D. K. Hale, and A. Ghiasi, “Video-
based trajectory extraction with deep learning for high-granularity
highway simulation (HIGH-SIM),” Commun. Transp. Res., vol. 1,
Dec. 2021, Art. no. 100014. [Online]. Available: https://www.scien
cedirect.com/science/article/pii/S2772424721000147

[37] X. Shi, D. Zhao, and X. Li, “A car following-based method for vehicle
trajectory connection,” Jul. 2021.

[38] Y. Chen, Y. Lv, and F.-Y. Wang, “Traffic flow imputation using parallel
data and generative adversarial networks,” IEEE Trans. Intell. Transp.
Syst., vol. 21, no. 4, pp. 1624–1630, Apr. 2020.

[39] S. Li et al., “Enhancing the locality and breaking the memory bot-
tleneck of transformer on time series forecasting,” in Proc. Int. Conf.
Adv. Neural Inf. Process. Syst., vol. 32, 2019, pp. 5243–5253.

[40] Z. Zhao, W. Chen, X. Wu, P. C. Chen, and J. Liu, “LSTM network:
A deep learning approach for short-term traffic forecast,” IET Intell.
Transport Syst., vol. 11, no. 2, pp. 68–75, 2017.

[41] J. Mackenzie, J. F. Roddick, and R. Zito, “An evaluation of HTM and
LSTM for short-term arterial traffic flow prediction,” IEEE Trans.
Intell. Transp. Syst., vol. 20, no. 5, pp. 1847–1857, May 2019.

[42] X. Shi, H. Qi, Y. Shen, G. Wu, and B. Yin, “A spatial–temporal
attention approach for traffic prediction,” IEEE Trans. Intell. Transp.
Syst., vol. 22, no. 8, pp. 4909–4918, Aug. 2021.

[43] R. Jiang et al., “DL-Traff: Survey and benchmark of deep learning
models for urban traffic prediction,” 2021, arXiv:2108.09091.

[44] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. Int. Conf. Learn. Represent. (ICLR),
2017, pp. 1–14.

[45] B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional
networks: A deep learning framework for traffic forecasting,” in Proc.
27th Int. Joint Conf. Artif. Intell., 2018, pp. 3634–3640.

[46] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

736 VOLUME 3, 2022



[47] C. Zhang, J. J. Q. Yu, and Y. Liu, “Spatial-temporal graph attention
networks: A deep learning approach for traffic forecasting,” IEEE
Access, vol. 7, pp. 166246–166256, 2019.

[48] J. J. Q. Yu, C. Markos, and S. Zhang, “Long-term urban traffic speed
prediction with deep learning on graphs,” IEEE Trans. Intell. Transp.
Syst., vol. 23, no. 7, pp. 7359–7370, Jul. 2022.

[49] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” 2014, arXiv:1412.6980.

[50] X. Chen and L. Sun, “Bayesian temporal factorization for
multidimensional time series prediction,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 44, no. 9, pp. 4659–4673, Sep. 2022.

[51] J. J. Q. Yu, “Citywide traffic speed prediction: A geometric
deep learning approach,” Knowl. Based Syst., vol. 212, Jan. 2021,
Art. no. 106592. [Online]. Available: https://www.sciencedirect.com
/science/article/pii/S0950705120307218

SHUYU ZHANG received the B.Eng. degree in
computer science from the Southern University
of Science and Technology, Shenzhen, China, in
2021. He is currently pursuing the master’s degree
in Urban Informatics and Smart Cities with The
Hong Kong Polytechnic University. His research
interests include smart cities, urban computing,
and deep learning.

CHENHAN ZHANG (Student Member, IEEE)
received the B.Eng. degrees in telecommunication
engineering from the University of Wollongong,
Wollongong, Australia, and Zhengzhou University,
Zhengzhou, China in 2017 and 2018, respectively,
and the M.S degree in engineering manage-
ment from the City University of Hong Kong in
2019. He is currently pursuing the Ph.D. degree
with the Faculty of Engineering and Information
Technology, University of Technology Sydney,
Australia. His research interests include secu-

rity and privacy of graph neural networks and trustworthy intelligent
transportation systems.

SHIYAO ZHANG (Member, IEEE) received the B.S.
degree (Hons.) in electrical and computer engi-
neering from Purdue University, West Lafayette,
IN, USA, in 2014, the M.S. degree in electrical
engineering (electric power) from the University
of Southern California, Los Angeles, CA, USA,
in 2016, and the Ph.D. degree from the University
of Hong Kong, Hong Kong, China. He was a
Postdoctoral Research Fellow with the Academy
for Advanced Interdisciplinary Studies, Southern
University of Science and Technology from 2020

to 2022. He is currently a Research Assistant Professor with the Research
Institute for Trustworthy Autonomous Systems, Southern University of
Science and Technology. His research interests include smart energy
systems, intelligent transportation systems, optimization theory and algo-
rithms, and deep learning applications.

JAMES J. Q. YU (Senior Member, IEEE) received
the B.Eng. and Ph.D. degrees in electrical and
electronic engineering from the University of
Hong Kong, Hong Kong, in 2011 and 2015,
respectively. He is an Assistant Professor with the
Department of Computer Science and Engineering,
Southern University of Science and Technology,
Shenzhen, China, and a Honorary Assistant
Professor with the Department of Electrical and
Electronic Engineering, The University of Hong
Kong. He was a Postdoctoral Fellow with the

University of Hong Kong from 2015 to 2018. His general research interests
are in smart city and privacy computing, deep learning, intelligent trans-
portation systems, and smart energy systems. His current work mainly
on forecasting and decision making of future transportation systems and
artificial intelligence techniques for industrial applications. He was ranked
World’s Top 2% Scientists of 2019 and 2020 by Stanford University. He
is an Editor of the IET Smart Cities.

VOLUME 3, 2022 737



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


