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Abstract: The significance of spillways is to allow the flood to be safely discharged from downstream.
There is a strong correlation between the poor design of spillways and the failures of dams. In
order to address this concern, the present study investigates the flow over the Nazloo-ogee spillway
using the CFD 3D numerical model and an artificial intelligence method called Gene Expression
Programming (GEP). In a physical model, discharge and flow depths were calculated for 21 different
total heads. Among different turbulence models, the RNG turbulence model achieved the maximum
compatibility in computational fluid dynamic simulation. In addition, GEP was used to estimate Q, in
which 70% of collected data was dedicated to training and 30% to testing. R2, RMSE, and MAE were
obtained as performance criteria, and the new mathematical equation for the prediction of discharge
was obtained using this model. Finally, the numerical model and GEP outputs were compared with
the experimental data. According to the results, the numerical model and GEP exhibited a high level
of correspondence in simulating flow over an ogee-crested spillway.

Keywords: ogee spillway; flow prediction; numerical modeling; Flow-3D; CFD method; gene
expression programming artificial intelligence model

1. Introduction

Flood control, reliable water supply, navigation, recreation, and hydroelectric power
generation are the most important reasons for dam development around the world [1–4].
Spillways are hydraulic structures built on dams to convey excess flood flow beyond the
dam’s capacity. In order to avoid serious damage, spillways should be strong, reliable, and
high-structures. Accordingly, design and construction play a role in dam spillways. Flood
risks can be prevented if a dam spillway is properly designed and constructed [5–7]. Given
their excellent hydraulic features, ogee-crested spillways are among the most investigated
hydraulic structures. The U.S. Bureau of Reclamation, USBR, (1987) performed detailed
laboratory experiments to investigate the behavior of water flow over a spillway, which
resulted in the development and publication of spillway design manuals [8]. Physical
studies have a number of problems, including high construction costs, the considerable time
required for development and testing, and the presence of errors in results due to scaling
effects [9–11]. The available computing capacity and algorithm improvements helped in
finding solutions for a variety of problems, such as flow over the spillway. Numerical
models provide a tool the fundamental design of spillways to identify operational concerns
at a lower cost and in a shorter time [12–14]. Savage and Johnson investigated both
pressure and discharge in the physical and numerical models in an ogee spillway, which
indicated a satisfactory performance [15]. Kim and Parkn investigated the pressure and
velocity distribution over an ogee spillway using the RNG K − ε turbulence model in
the CFD model, taking into account the surface roughness effects [16]. Peltier et al. used
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experimental modeling of an ogee spillway to estimate velocity and pressure for heads
that were much higher than the design head and validated the data with experimental
data [17]. Nowadays, numerous researchers have utilized the K− ε turbulence model in
their studies, including (Jahad et al. [18]; Aydin et al. [19]; Wan et al. [20]). Moreover,
RNG K− ε model has been applied in (Ghanbari and Heidarnejad [21]; Bayon et al. [22];
Valero et al. [23]), and remarkable accuracy in stimulating the overflow spillway. Artificial
intelligence (AI) is a field of computer science that focuses on developing machines that
can engage in intelligent behaviors. In recent years, machine learning techniques (e.g.,
gene expression programming (GEP), adaptive neuro-fuzzy inference system (ANFIS)
and artificial neural network (ANNs), have been used in a wide range of publications.
These methods are outstanding forecasting tools that have been used in a variety of civil
engineering, hydraulic, and hydrological research in the last decade. Ferreira proposed
gene-expression programming as a new adaptive approach for solving issues [24]. Yildiz
et al. investigated discharge and flow depth over an ogee spillway using the ANFIS andCFD
models in Flow-3D software. According to their results, therewas a reasonable agreement
between the physical, numerical, and ANFIS artificial neural networks models [25]. The
GEP technique has been used to represent a variety of water resource system components.
Ebtehaj et al. utilized this method to predict the discharge coefficient in rectangular side
weirs [26].

Using soft computing techniques, Kisi et al. examined the prediction of lateral outflow
over triangular labyrinth side weirs under subcritical conditions [27]. Salmasi found a
new equation for predicting discharge coefficients in an ogee weir, using gene expression
programming and multiple regression techniques. The results demonstrated that the GEP
technique was more successful than the regression equations [28]. Khan et al. employed
a GEP method, to establish a functional relationship for bridge pier scour. The perfor-
manceof GEP was compared to that of other Al-based techniques, such as artificial neural
networks (ANNs) and conventional reqression-based techniques [29]. Roushangar et al.
used GEP and ANN techniques to estimate energy dissipation over stepped spillways,
and the findings showed that GEP and ANN were extremely beneficial and encourag-
ing in these circumstances [30]. Using GEP, Baxgatur and Onen created flood routing
prediction models [31]. Bertonse et al. used GEP to simulate the concentration of dis-
solved oxygen (Do) in lakes [32]. New algorithms and models, particularly those based on
soft computing, enable researchers to address the most complex systems in a number of
ways [33,34]. In different engineering fields, the forecast methods that are not dependent
on physics equations, including remote sensing methods and AI-based approaches likethe
GEP method, are becoming more common [35,36]. The GEP has the advantage of being
explicit in its formulation. This provides some insight into the nature of the phenomenon
under investigation. It is simple to apply in reality [37]. The GEP is an artificial intelligence
technique that utilizes key principles of genetic algorithms (GA) and genetic programming
(GP) to create a calculation algorithm for forecasting a certain phenomenon. It mimics
biological evolution [38]. Genetic programming is based on evolutionary principles devel-
oped for mathematical modeling. For solving regression and classification problems, GP
provides several computer programs. The optimal values of some predefined parameters
are obtained by GA, while finding both the best models and best parameters for a set of
variables produced by GP is based on the Darwinian evolution theory [39]. There are also
several other applications of such techniques in the literature that have been investigated
insightfully in recent years [40,41].

A review of the literature indicates a lack of exclusive comprehensive research on the
use of CFD and GEP models to estimate discharge values over an ogee-crested spillway
with a pier. In the present study, the statistical performance of the model of an ogee-crested
spillway with a pier was evaluated using error criteria, such as the root-mean-square
error (RMSE), which is a significant criterion, as well as the determination coefficient (R2)
and mean absolute error (MAE) and a new mathematical equation was developed for
predicting the spillway’s discharge. The results of the GEP were then compared to those
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obtained from the physical model. In addition to this analysis, knowledge of discharge
and flow depth can be valuable for hydraulic engineering research as well as determining
the GEP approach’s capability of forecasting a new output variable. The CFD model was
validated with the experimental and Flow-3D data. The results showed that all of the
model’s outputs overlap and are accurate when it comes to tackling fluid problems.

This paper consists of four sections. Section 2 contains a brief discussion of the methods
and components utilized to simulate the ogee-crested spillway as well as the provided
gene expression programming and a Flow-3D numerical model. Section 3 discusses the
findings of the investigation regarding numerical and experimental data comparisons, and
mathematical equations. Finally, Section 4 summarizes the paper’s main findings.

2. Materials and Methods Methods

The head, the inclination of the upstream face of the overflow section, and the height
of the overflow section above the entrance channel’s floor determine the shape of the nappe
profile over an ogee crest, which influences the velocity of approach to the crest. The
general discharge equation for an ogee-crested spillway is as follows:

Q = CoLH
3
2
o (1)

where Q is the design discharge ( m3

s ), Co is the variable coefficient of discharge for free-flow
condition ( m0.5

s ) , L is the effective length of the crest (m), Ho is the design head on the
crest(m), including the velocity of approach, ha (m). Figure 1 demonstrates the ogee profile.

Figure 1. The ogee−crested spillway.

In this study, a physical model of a standard ogee spillway was developed at the Water
Research Institute of the Ministry of Energy, Iran. On the west side of lake Urmia , on the
Nazloo river, the Nazloo dam spillway is under construction with a width of 42 m, a crest
height of 6 m, and a crest level of 1492 m above sea level. The hydraulic performance of the
Nazloo spillway was studied using a physical model with a scale of 1:40 made of Plexiglas
Figure 2. The effective highest measured at a distance of 4 m from the top of the crest of the
water surface. The pier over the crest had a height of 3.51 m, a width of 2 m, and a length
of 10 m.



Water 2022, 14, 650 4 of 15

Figure 2. Physical model of Nazloo Spillway.

Crest piers cause the flow to be constructed, reduce the effective length of the crest,
and decrease the discharge compared to an uncontrolled crest. The shape and location of
the pier nose are shown in Figure 3, as well as the thickness of the pier, the head relative
to the design head, and the approach velocity, which all influence the pier construction
coefficient, Kp [42].

Le = L− 2(N ∗ Kp + Ka)Ho (2)

where Le is the effective length of the crest for calculatingthe discharge, L is the net clear
length of the spillway crest, N is the number of piers, Kp is the pier construction coefficient,
Ka is the abutment contraction coefficient and Ho is the total design head on the crest
including velocity head. For round-nosed piers, the Kp and Ka are set to 0.01 and 0.05,
respectively. Dimensional analysis is a fundamental tool used in experimental research to
determine dimensionless quantities. For this purpose, characteristics of the effect of the
ogee spillway discharge should be identified at first. Then, Buckingham’s theory should
be utilized to estimate the dimensionless parameters, which can be used to analyze their
impact on the spillway’s discharge and identify the logical correlation between them [21].
The geometric parameters and flow characteristics might be used to calculate the discharge
capacity of an ogee spillway. The quantities influencing ogee crest discharge can be
summarised as follows:

f (Ho, Le, Hd, P, g, µ, ρ, σ) = 0 (3)

where f is a functional symbol; He and Ho are the total upstream head and the design head,
respectively; P is the ogee crest upstream spillway height; µ and ρ are dynamic viscosity
and density, respectively; and σ is the surface tension. The possible effects of surface tension
on discharge were small in all experiments H > 30 mm. The Weber number was excluded
from the analysis. Furthermore, since the flow was turbulent, the viscosity impact was
minor compared to gravity. As a result, the Reynolds Number effect was also removed from
the analysis. In this study, the ultimate relationship between the dimensionless parameters
impacting the ogee spillway discharge would be stated as:

Q = f (
He

Ho
,

Le

Ho
,

He

p
) (4)

The experiments were performed with 21 total heads over the spillway, ranging from
He
Ho

= 0.123 to He
Ho

= 1.22 .
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Figure 3. Isometric View of an ogee-crested.

2.1. Flow-3D Numerical Modeling

FLOW-3D software is a useful tool for analyzing complex fluid issues such as free-
surface transient three-dimensional flow problems with complex geometries. This software
uses the finite volume method along with regular rectangular grids. In order to simulate
turbulence in hydraulic problems, two-equation models are commonly utilized. To derive
time-averaged Reynolds equations, the Renormalization Group RNG turbulence model
was used in this study. Furthermore, the numerical problems were solved using the FLOW-
3D software, and the transient governing equations were numerically solved using the
finite volume model. The geometry of the finite volume approach was defined in this
software utilizing the Fractional Area-Volume Obstacle Representation (FAVOR) algorithm,
as shown in Figure 4. The in-field obstacles in the computational cells were treated as a
fractional value between 0 and 1. Therefore, if the entire cell was filled with obstacles, the
fractional value of the area-value was equal to 1. The volume-of-fluid (VOF) algorithm was
used to determine the flow’s free surface [43].

For the considered field, the FLOW-3D numerical model provided a three-dimensional
structural grid made up of cuboid cells as shown in Figure 5. As a result, a three-
dimensional model was created in AutoCAD software to build up the geometry of the
models with a stereolithography (STL) file, based on the laboratory models’ specifications.
The data was then loaded into FLOW-3D, where the gird was generated using VOF and
FAVOR, and the boundaries and computational network were determined. The considered
area was constructed using VOF and FAVOR methods after loading the geometric data into
the software.

Figure 4. Depiction of the fractional area volume obstacle (FAVOR) approach that is applied to the
solid contours.

The boundary conditions’ most critical aspect is to create a flow situation similar
to the physical status. Each type of boundary condition in the Flow-3D software can
be used for the unique condition of the models. The X-minimum boundary condition,
specified pressure, was applied in this study. An outflow was chosen for the X-maximum
boundary condition since there was nothing to calculate at the flume’s end. Both (Y-min)
and (Y-max) were computed as symmetry, with the bottom (Z-min) as a wall boundary
condition and the top (Z-max) as a symmetry boundary condition. The mesh sensitivity
evaluation comes second. In order to identify and ensure the representation of all the
phenomena involved, a computational mesh sensitivity analysis must be done. The mesh
sizes were examined from the largest to the smallest in a trial-and-error approach. The
model’s precision was improved by fine-tuning the mesh size. A mesh size of 0.007 was
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used for these simulations. The determination of the correct mesh plays an indispensable
role in any numerical model simulation. It is important to minimize the number of cells due
to having sufficient resolution as well as this mesh and cell size affect simulation time. The
mesh and cell size were tested in a sensitivity analysis, and the 0.007 cell size performed
best in terms of results and time spent solving equations.A further decrease in this value in
cell size does not affect the accuracy of results for the Q tests. Different cell sizes were used
in this study (e.g., 0.06, 0.02, 0.01 and 0.006). These were then reduced to 0.007 to provide
more accurate results for the flow tests, as shown in Figure 6. After simulating several
different models, the numerical model was set to 40 s, which is a sufficient time to obtain a
stable result. The SI system was used to determine the length unit, and degrees Celsius
was chosen as the temperature unit. The fluid database was utilized to choose water with
a temperature of 20 ◦C and a viscosity of 10 pa s in the model. A review of the previous
research indicated that a Renormalized group (RNG) turbulence model was appropriate
for the numerical model. The numerical model functioned as a no-slip condition over the
ogee’s surface, No specific material characteristics were defined for the ogee spillway, and
the roughness was 0.002.

 

 

   

 

  

 

 

 

      

                                                         

Figure 5. Boundary conditions and a three-dimensional structural grid model made up of
cuboid cells.

Figure 6. Different resolutions used for sensitivity analysis, (a)—cell size is 0.06, (b)—cell size is 0.02,
(c)—cell size is 0.01, and (d)—cell size is 0.006.
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Estimation of Uncertainty in a CFD Application

Computational Fluid Dynamics (CFD) analysis provided a more detailed evaluation
of flow characteristics than an experiment. The complexity of the phenomenon makes
computer modeling difficult, and its reliability must be evaluated [44]. In this study, error
estimates such as an approximate relative error (e21

a ), an extrapolated relative error (e21
ext)

and the fine-grid convergence index (GCI21
f ine) were used to evaluate the CFD model.

e21
a = |Q1 −Q2

Q1
| (5)

e21
ext = |

Q21
ext −Q1

Q21
ext

| (6)

GCI21
f ine =

1.25e21
a

r21
p − 1

(7)

The calculation procedure for three selected grids showed in Table 1. Where Q represents
the discharge, r indicates the grid refinement factor, which is greater than 1.3 [45].

Table 1. Estimation of discretization error for three cell sizes (0.01, 0.018, 0.02).

Values Values Values

N1, N2, N3
1780000, 305212,

222500
1780000, 305212,

222500,
1780000, 305212,

222500
r21 1.72 1.72 1.72
r32 1.56 1.56 1.56
Q1 5.43 10.29 11.805
Q2 5.51 10.2 11.69
Q3 5.37 10.08 11.58
P 2.48 1.79 1.2

Q21
ext 5.38 10.34 11.93

Q21
a 1.47% 0.87% 0.97%

Q21
ext 0.5% 0.48% 1.04%

Q21
f ine 0.66% 0.67% 1.31%

2.2. Gene Expression Programming Approaches

The gene expression programming method , which is based on genetic programming
and genetic algorithms, was created by Ferreira. GEP is a heuristic search and optimization
technique that uses biological evolution to create computer software that can forecast a
certain event [24].

One of the GEP’s advantages is that it is multigenic, allowing for the creation of
increasingly complex programs with many subprograms. From genetic algorithms, it
inherited fixed-length linear chromosomes, as well as expressive parse trees of various
sizes and shapes via genetic programming. The GA is a probabilistic search approach that
is based on evolution in nature. The following provides the GA’s general procedure [46]:
Step 1: a population is created by randomly selecting n chromosomes (potential problem
solutions). Step 2: determine the compatibility of each chromosome (x) using the fitness
function [f (x)] . Step 3: The following stages are iterated to create new ones. (i) (Selection):
Based on their compatibility, two parent chromosomes are chosen from the population.
(ii) (Crossover): Step 1’s parent chromosomes intercross with a particular probability and
create two children. (iii) (Mutation): The chromosomes of the created children mutate
at a random rate with a given probability. (iv) The children generated as a result of the
genetic operators (selection, crossover, and mutation) are added to the new population.
Step 4: in the new generation, the parents of the created population are replaced. Step 5:
the algorithm terminates and the existing population shows the desired response if favor-
able circumstances, such as the desired accuracy or the number of iterations stated in the
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problem,are reached. Step 6: if the algorithm does not end in Step 5, Steps 2–6 are repeated
until the desired results are reached. The chromosomes and Expression Trees (ETs) are two
primary components of GEP. One or more genes representing a mathematical expression
may be found on the chromosomes. A gene’s mathematical code can be expressed in two
languages: the language of genes and the language of Expression Trees (ET). The GEP
genes are divided into two sections: the head and the tail. The head contains mathematical
operators, variables, and constants (+,−, ∗, /, ln, exp, 1, a, b, c) used to represent a mathe-
matical expression. Variables and constants (1, a, b, c) are included as terminal symbols in
the tail. Additional symbols are used if the terminal symbols in the head are insufficient
to explain a mathematical equation. Starting at the top line of the tree and reading left to
right, top to bottom, the translation of the expression tree is performed. This method’s gene
sequences are similar to biological gene sequences [31].

Three input parameters were used in the GEP model (flow head ratio, crest height,
crest length). Table 2 shows the parameters of the GEP models. The fitness function used in
this study was the root mean square error (RMSE)of the training set. The powerful soft
computing software package GeneXproTools (Version 5.0.3926) was applied to generate
GEP-based discharge prediction models. The program was run for a number of generations
before being stopped since the fitness function value did not change. In the GEP model,
five options were considered using the various operators listed in Table 3 , as well as the
output results.

Table 2. Parameters of the GEP Model.

Setting Parameters Value

Functions set +, −, /, x2, exp, ln, cube root, Atan, Tanh
Chromosomes 30

Head size 8
Number of genes 3
Linking function Addition

Fitness function error type RMSE
Mutation rate 0.044
Inversion rate 0.1

One-point recombination rate 0.3
Two-point recombination rate 0.3

Gene recombination rate 0.1
Gene transposition rate 0.1

Table 3. Different GEP operators with errors of prediction for the Training and Testing datasets.

Type Operator Train Phasing Test Phasing
R2 RMSE MAE R2 RMSE MAE

Option 1 +, −, *, / 0.9 1.57 1.07 0.86 1.73 1.13

Option 2 +, −, *, /, x2 0.91 1.53 1.05 0.86 1.73 1.12

Option 3 +, −, *, /, x2, exp 0.9 1.65 1.03 0.86 1.59 1.01

Option 4 +, −, *, /, x2, exp, ln, cube root 0.9 1.59 1.06 0.87 1.61 1.06

Option 5 +, −, *, /, x2, exp, ln, cube root, Atan,Tanh, min, max 0.972 0.85 0.64 0.912 1.42 1.12

Performance Criteria

A number of evaluation indicators can be used to assess the created models’ forecasting
performance using statistical metrics of the goodness of fit [47]. In this study, Performance
measures such as root mean square error (RMSE), determination coefficient (R2) and
mean absolute error (MAE) were used to evaluate the GEP model.
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RMSE =

√
∑N

i=1(Qp −Qo)2

N

R2 =
∑N

i=1[(Qo − Q̄o)(Qp − Q̄p)]2

∑N
i=1(Qo − Q̄o)2(Qp − Q̄p)2

MAE =
1
N

N

∑
i=1
|Qo −Qp|

(8)

where N is the number of observations, Qo indicates the observed data, Qp indicates the
predicted data, Q̄o refers to observed data, and Q̄p refers to the mean of the predicted
data. The mean of the errors is represented by the RMSE, which varies from 0 to ∞, with
lower values indicating better model performance. The simulation accuracy of the model is
described by R2, ranging from 0 to 1. The MAE is a comparison of two continuous variables.
The average vertical distance between each point and the y = x line, commonly known as
the one-to-one line, is called MAE.

3. Discussion

The numerical model had to be calibrated with experimental data in the first stage. The
experimental investigation conducted at the Ministry of Energy’s Water Research Institute,
provided discharge values and flow depth that were compared with those of the numerical
model evaluated by Flow-3D and GEP models.

To reach steady-state conditions, it is crucial to extract the exact values from the data
of a physical or numerical model. In this research, after running numerous different models
with the existing numerical model, the acceptable time to extract the results was determined
to be 40 s. There is no separation between the flow and the crest bottom, demonstrating the
solid boundary condition’s true simulation.

Baffles are two-dimensional surfaces that come in a variety of shapes, including planes,
cylinders, cones, and spheres. They come in both porous and non-porous varieties, and
they may be used to quantify mass flows, heat streams, and applied forces. The number of
elements in the computational mesh depends on the transit flow, which is directly acquired
from the section where the baffle is positioned [48]. The flow rate was measured using
baffle, and the X-minimum boundary condition was used with a specified pressure. The
design head was set to 0.19 m, and the design discharge coefficient and discharge were
calculated at 2.15 and 0.0175 m3/s, respectively, based on the scale of 1:40. For all data, the
physical and numerical models are in good agreement. To make a more objective comparison
between models, the results are non-dimensionalized. He

Ho
and Q

Qd
values are calculated and

shown on graphs in Figure 7 for all models. The experiments conducted in water institute
studies were simulated in three dimensions by Flow-3D, as shown in Figure 8.

Figure 7. Numerical and physical model comparison.
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Figure 8. Numerical modeling for simulating flow depth.

In order to verify the numerical simulation results the grid size and boundary condition
are critical, and it should be remembered that a wrong boundary condition results in
a completely different result. Darwin’s theory of evolution is the foundation for gene
expression programming [49]. This technique can select the input variables that have
the greatest impact on the model automatically. The GEP model formulations were used
to extract the most effective indicators. Ferreira [49] provided more information on the
technical formulation of the GEP approach.

The GEP is the newest evolutionary algorithm approach, and it is becoming more
prominent due to its high accuracy [50]. The main advantage of gene expression program-
ming is that it may express the link between variables explicitly. It should be noted that
each run of the GEP method produces a different formula. Accordingly, each model was
run multiple times with various GEP parameter settings, and the best models (with the
lowest amount of error) were chosen. 70% and 30% of the data were used to train and
test discharge estimating models, respectively. The GEP approach demonstratedthat the
predicted discharge and experimental discharge were in good agreement. The head over
the spillway crest was Ho = h + V2

a /2 g, in which Va was the approach velocity. The crest
height and crest length were utilized as inputs, while discharge was used as an output.

In the GEP model, five options were explored utilizing different operators listed in
Table 3, in addition to the ultimate results. The four basic arithmetic operators (+, −,*, / ),
were used as well as several basic mathematical functions (x2, exp, ln, cube root, Atan, Tanh,
min, max ). The GEP’s mathematical equation for option 5 is as follows (9). The parameter
d in this equation represents the input parameters, while the parameter c donates constant
values determined by GEP. For R2 = 0.972 , RMSE = 0.85, and MAE = 0.64 , option 5 was
the best alternative. Before 5 was chosen as the best option, a variety of performances were
carried out, some of which are listed in Table 4. As well as this, different equations of these
runs are shown based on changing the test and train stages. Moreover, the scatter plot
in Figure 9 indicates that the training and testing data points are close to the y = x line
and, providing that, GEP can properly predict relative discharge values. The GEP model’s
output is typically displayed as mathematical equations, and decision trees Figure 10. The
following is the optimal model obtained through GEP modeling for discharge prediction:

Y = 0.0

Y = (d(2)− (1.0/((((d(1) + d(1))/G1C1)− (
d(0) + d(0)

2
)))))

Y = Y + atan(((((1.0/d(0))) + (1.0/d(0))))/2.0) + ((1.0/(d(0)))− d(0))))

Y = Y + ((atan((atan(G3C6)− d(2))) + tanh(
d(0)
d(2)

)))/2.0)

result = Y

(9)

where d0, d1 and d2 correspond to the model input variables and G1C1 and G3C6 are
constant values. The numerical constants are shown in Table 5 and the equation derived
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from the expression trees is shown in Figure 10. The following GEP prediction approach is
highlighted in the Materials and Methods section.

Figure 9. Comparison between estimated and observed values of Q
Qd

for Train set and Test set.

Table 4. Different run cases of option 5 (equations are provided in Appendix A, Table A1).

Case Number Train Phasing Test Phasing
R2 RMSE MAE R2 RMSE MAE

Case 1 0.9 1.611 0.95 0.86 1.49 0.97

Case 2 0.92 1.43 0.85 0.89 1.71 1.28

Case 3 0.96 0.94 0.74 0.86 1.19 0.87

Case 4 0.94 1.21 0.95 0.71 2.11 1.3

Case 5 0.91 1.48 0.83 0.87 1.89 1.01

Case 6 0.92 1.47 0.94 0.85 1.49 0.93

Case 7 0.96 0.97 0.7 0.87 1.47 1.07

Case 8 0.93 1.32 0.86 0.82 1.73 1.016

Case 9 0.91 1.48 0.95 0.89 1.51 1.02

Case 10 0.91 1.54 1.02 0.86 1.69 1.06

(a)

(b)

(c)
Figure 10. Expression tree (ET) for presented model (Equation (8)) and the overall discharge is
Q = a+b+c. The first line of an equation is represented by (a,b) stands for the equation’s second line,
and the third line of the equation is shown by (c).



Water 2022, 14, 650 12 of 15

Table 5. The values of the input and constant parameters used in ET.

Parameters Value Coefficients Value

d0
Le
Ho

G1C1 2.02
d1

He
Ho

G3C6 0.06
d2

He
p - -

4. Conclusions

An ogee spillway is an essential hydraulic structure that can be developed on a variety
of sites where concurrent flooding is a concern. Numerous studies based on numerical
and analytical relationships have been undertaken to evaluate the discharge values in
ogee spillways. The analysis of the behavior and hydraulic parameters of flow overa
spillway dam is a difficult and time-consuming task. Flow-3D was utilized for modeling
21 various water levels. In computational fluid dynamics modeling, RNG turbulence
model has the highest level of compatibility. Artificial intelligence approaches were also
applied to estimate the flow over the spillway. The input (independent) variables in
the proposed GEP technique included He

Ho
, Le

He
and He

p , whereas the output (dependent)

variable was the discharge of the ogee spillway. R2, RMSE and MAE were employed as
evaluation indicators. Using these tools aids a designer in establishing the best condition for
a hydraulic construction in which the flow pattern is critical. The modeling findings suggest
that the CFD methods and GEP models are useful tools for simulating the flow pattern
in the ogee spillways. They can be utilized to estimate Q with no need for complicated
and time-consuming laboratory techniques. The proposed method is simple to use and
accurate enough for practical usage.
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Appendix A

Mathematical equations from GEP model for estimating Q showed in Table A1, per-
formance results of GEP model for option 5 described in Table 4. where d1, d2 and d3
correspond to the model input variables and numbers related to coefficients are also in-
cluded in the equations.
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Table A1. Each case’s formulation for option 5, described in Table 4.

Case Number Equation

Case 1

Y = −3.87
Y = Y + (d(3)/atan((((d(1)2) ∗ d(2)) + (−3.4)
Y = Y + gep3Rt(((((d(3) + d(3))2) + ((−8.61 ∗ −8.61) + d(3)))/2.0))
result = Y

(A1)

Case 2

Y = min(((min((3.95 + 9.42), min(d(3), 3.95)) + (4.6− d(2)))/2.0), (−2.4))
Y = Y + max(atan(exp(atan(d(1)))), (((d(3) + d(2)) + (d(2)/d(1)))/2.0))
Y = Y + tanh((((min(−4.18, d(2)) + (d(1) ∗ d(1)))/2.0)− ((d(3)− 3.3) + 2.52)))
result = Y

(A2)

Case 3

Y = (1.0/((((((d(1)− d(2)) ∗ (d(1)2) + reallog(0.51))/2.0)2)))
Y = Y + (((((7.2 + d(3))/2.0) + (d(2)− d(2)))/2.0)− ((7.57 + 2.09)− ((d(2) + 7.57)/2.0)))
Y = Y + reallog((((reallog(d(2)) + (4.157 + d(2))) + (((3.74 + d(3))/2.0))/2.0))
result = Y

(A3)

Case 4

Y = (1.0/(atan(gep3Rt(((reallog(d(2) + (−6.03)) + ((d(2) + (−6.03))/2.0))))))
Y = Y + ((1.0−max(reallog(d(2)), (−5.78))) ∗ ((d(2)− d(3)) + (1.0/(2.28))))
Y = Y + d(3)
result = Y

(A4)

Case 5

Y = (d(3)− ((atan(2.39)− (d(1)− d(1)))− (1.0/(d(1)))))
Y = Y + tanh(((max(2.86, d(1)) + (−7.93 + d(1))) + ((d(1) + d(1))− d(2))))
Y = Y + tanh(((((6.7− (−1.05) + (−5.52 ∗ (−7.54)))/2.0)− ((d(1)2)− d(3))))
result = Y

(A5)

Case 6

Y = ((1.0/(d(2)))− 1.58)
Y = Y + d(3)
Y = Y + (1.0/(((((d(1)− d(3)) ∗ (8.1 + (−1.55)) + (1.0− ((−3.74 + 1.30)/2.0)))
result = Y

(A6)

Case 7
Y = gep3Rt(((min(d(3), d(1))/tanh(d(1))) + (min(2.68, 2.34)− d(1))))
Y = Y + tanh(tanh((((−3.98− d(3))− (d(3)− (−7.59)) + (d(1) ∗ d(1)))))
Y = Y + (((((d(2)/d(1)) + ((−7.26 + d(1))/2.0))/2.0) + ((d(3)/0.97) ∗ atan(d(3))))/2.0)
result = Y

(A7)

Case 8

Y = ((gep3Rt((1.0− tanh(d(2)))) + ((d(2) + reallog(d(3)))/2.0))/2.0)
Y = Y + ((min(gep3Rt((d(1)− 6.6)), ((d(3) + (−8.98)/2.0)) + d(3))/2.0)
Y = Y + ((gep3Rt(d(3))/(d(1))) + atan(tanh(3.3)))
result = Y

(A8)

Case 9

Y = ((((d(3)− 7.21)− (−4.07− d(3))) + ((1.0/(d(1))) + (1.0/(d(2)))))/2.0)
Y = Y + atan((((tanh(−1.7) ∗ d(2)) + d(1)) ∗ d(1)))
Y = Y + atan(((9tanh(−1.706)− (d(1)− d(3))) + atan((d(3)− d(1)))))
result = Y

(A9)

Case 10

Y = gep3Rt(−6.92)
Y = Y + (1.0− (((((d(2) ∗ (−0.327) + reallog(d(2))/2.0) ∗ (d(3)− d(2)))2))
Y = Y + ((d(2) + d(2))/2.0)
result = Y

(A10)
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