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Abstract: Prediction of pile bearing capacity has been considered an unsolved problem for years.
This study presents a practical solution for the preparation and maximization of pile bearing capacity,
considering the effects of time after the end of pile driving. The prediction phase proposes an
intelligent equation using a genetic programming (GP) model. Thus, pile geometry, soil properties,
initial pile capacity, and time after the end of driving were considered predictors to predict pile
bearing capacity. The developed GP equation provided an acceptable level of accuracy in estimating
pile bearing capacity. In the optimization phase, the developed GP equation was used as input in
two powerful optimization algorithms, namely, the artificial bee colony (ABC) and the grey wolf
optimization (GWO), in order to obtain the highest bearing capacity of the pile, which corresponds to
the optimum values for input parameters. Among these two algorithms, GWO obtained a higher
value for pile capacity compared to the ABC algorithm. The introduced models and their modeling
procedure in this study can be used to predict the ultimate capacity of piles in such projects.

Keywords: pile bearing capacity; genetic programming; artificial bee colony; gray wolf optimization;
optimization purposes

MSC: 68Txx

1. Introduction

Pile foundations are structural elements that are mainly used when the surface soil is
weak and there is an urgent need to transfer the structural load to the further layers of the
soil, or when soil settlement is an essential concern in the designing process. In terms of
the pile’s role in load transmission, calculating the precise ultimate bearing capacity of pile
foundations is an important topic for geotechnical engineers. Besides this, some scholars
have indicated that pile bearing capacity can be considered as a time-dependent parameter,
exhibiting an increasing trend after a specific period [1–3]. Pile setup is a geotechnical
phenomenon referring to a time-dependent increase in the ultimate bearing capacity of pile
foundations. It is assumed that pile setup occurs due to the dissipation of the excess pore
water pressure (EPWP) generated as a result of pile installation [4].

Furthermore, it is widely accepted that this phenomenon develops by incorporating
three main stages, including the non-uniform dissipation of EPWP, the uniform dissipation
of EPWP, and aging [5]. Results of different studies indicate that setup considerably affects
the side resistance, while when it comes to the tip resistance, it has exhibited less change or
a decrease owing to relaxation [1,6–10]. Predicting the time-dependent bearing capacity of
pile foundations has always been an interesting topic for researchers. Moreover, considering
the pile setup, the design process of piles can be more economical.

Many studies have been presented in which analytical or numerical models were
developed to forecast the pile setup [11–13]. One of the most well-known investigations
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in this area is a study conducted by Skov and Denver [14] to find an equation to estimate
the pile setup. The setup equation was revised using different geotechnical properties to
achieve this goal. Finally, a semi-empirical equation was proposed by them introducing a
practical variable called setup parameter (A). This pioneering study was a starting point
for other researchers. For example, Haque and Abu-Farsakh [6] published a paper in which
the application of a nonlinear multivariable regression model in the prediction of pile setup
was investigated. Although the studies conducted using this group of techniques were able
to create an effective equation, pile setup is a complex issue considering the complicated
soil–pile interaction. Therefore, analytical methods and regression analysis do not seem to
be powerful enough for prediction purposes [15].

In recent years, several studies have presented the successful usage of intelligent
algorithms to simulate complex problems in civil and geotechnical engineering [16–29].
Several scholars have highlighted the applicability of these techniques in predicting pile-
related issues, e.g., pile capacity, settlement, lateral deflection [30–33]. In a study conducted
by Lee and Lee [34], the application of artificial neural networks (ANNs) in the prediction
of pile bearing capacity was investigated. The results of the model and in situ pile load
tests were utilized to verify the developed model. Finally, it was concluded that the
error back-propagation neural network used in this study had good performance since
the maximum error in the prediction process did not exceed 25%. Shahin [35] utilized
intelligent computing to model the axial capacity of pile foundations. For this purpose,
an ANN technique was employed to predict the axial capacity of driven piles and drilled
shafts using a total of 174 data points. Furthermore, a comparison was made between
CPT-based methods and the ANN to evaluate their performances in the prediction area.
The results indicated that ANN with a correlation coefficient of 0.85 and 0.97 for driven and
drilled shaft validation datasets showed acceptable performance. Samui [36] investigated
the application of the support vector machine as a powerful machine learning technique to
estimate the pile bearing capacity. Three inputs, including penetration depth ratio, mean
normal stress, and the number of bowls, were considered for this aim. Eventually, using
evaluation criteria such as coefficient of correlation, the developed model predicted the
pile bearing capacity with sufficient accuracy. In another study, Momeni et al. [37] used
the results from 50 dynamic load tests to predict the bearing capacity of piles using an
ANN-based predictive model optimized with a genetic algorithm. The final data indicated
that the developed model, with a correlation coefficient of 0.99, successfully predicted the
target very close to its actual value.

Other studies tried to improve the performance of the base intelligent models using
optimization algorithms. For instance, Dehghanbanadaki et al. [38] used the gray wolf opti-
mization (GWO) algorithm to enhance the performance of the adaptive neuro-fuzzy inference
system (ANFIS) for estimating the ultimate bearing capacity of single driven piles. The results
showed that the actual values of pile bearing capacity had been successfully estimated using
the GWO-ANFIS model, and their results improved upon the ANFIS model. In another study
implemented by Armaghani et al. [33], a combination of ANFIS and group data handling
methods optimized with a competitive imperialism algorithm (ICA) was utilized to forecast the
pile bearing capacity. Based on the data and the evaluation criteria, the proposed model could
be considered a powerful technique regarding pile foundations’ design process.

Previous works did not include a time component in their input parameters, and
their input parameters were mostly pile geometry-related. However, this study includes a
separate input directly related to time, which is the main difference between this study and
those published previously. Another contribution in this study is related to the optimization
phase. An intelligent equation has been developed to predict pile capacity using the genetic
programming (GP) technique. Then, the proposed GP equation is used in two optimization
techniques, namely artificial bee colony (ABC) and GWO to maximize pile capacity. A
database containing information about 256 data samples has been considered to achieve
these goals. The models mentioned above and their results are discussed and compared to
introduce a new procedure for predicting pile capacity.
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The rest of this paper is organized as follows:
Section 2 describes the methodology background of the used models in predicting and

optimizing pile capacity. Section 3 gives the needed information regarding the database
used for modeling. Section 4 discusses the process of prediction models to develop a GP
model and its evaluation. The optimization process regarding two algorithms, i.e., ABC and
GWO, is given in Section 5. Section 6 discusses both the prediction and optimization phases.
Sections 7 and 8 describe limitations, future works, and concluding remarks of this study.

2. Methodology Background
2.1. Genetic Programming

Genetic programming (GP) is an evolutionary computing algorithm [39], which sim-
ulates natural selection and biological evolution and automatically generates the best
computer program based on the problem in the search space [40]. In GP, the individual
represents the candidate’s solution to the problem. In the process of evolution, GP evaluates
individual fitness, simulates the survival principle of survival of the fittest, and guides the
population to carry out genetic operations (replication, crossover, and mutation) to renew
the population. The goal of the GP algorithm is to gradually make some individuals in the
population have better performance through several generations of evolution.

Figure 1 shows the flow chart to develop GP. First, a predetermined number of
individuals are created as an initial population by randomly combining different elements
of the function set and terminator set according to the program structure. Fitness values
are then given to every individual. The fitness value reflects the ability of the individual to
solve problems where the higher the value, the better the individual’s performance. After
that, individuals are selected based on fitness values, and those with higher fitness are
more likely to be selected. Genetic evolution of selected individuals is used to generate the
next generation’s population. Individuals in the new population are repeatedly evaluated,
selected, replicated, crossed, and mutated to complete genetic evolution. This stops when
the maximum number of evolutions is reached or a certain condition is met. The best
solution to the problem is the individual with the best fitness value.
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2.2. Gray Wolf Optimization

Gray wolf optimization (GWO) is a swarm-based optimization algorithm inspired by
the predation behavior of wolves [41]. Compared with other traditional intelligent swarm
algorithms, GWO has the advantages of fewer parameters, easy implementation, great
convergence speed, and global search ability, so it has been widely used in many fields [42].
Through observation, it is found that wolves hunt mainly in three parts: first tracking,
chasing, and approaching prey; then surrounding and harassing prey from all directions
until it stops moving; and finally, attacking the prey. Figure 2 shows the process of GWO, a
is based on a linear decrease iteration convergence factor, and A is the value in the interval
[−2a, 2a], by setting the |a| < 1 or > 1 to implement the prey. C can be arbitrarily set in the
interval [0,2], indicating the weight of prey affected by the position of the gray wolf. α, β
and δ represent the potential superior solution of the optimization objective, where α is the
optimal solution, β is the suboptimal solution, and δ is the third optimal solution.
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2.3. Artificial Bee Colony

An artificial bee colony (ABC) is an intelligent optimization model that mimics the
honey harvesting operation of bees [43]. Food supplies, hired bees, and non-hired bees are
the three components of the system [44]. Three kinds of artificial bees are used in the ABC
algorithm: lead bees, scouts, and followers. The lead and scout bees seek the optimum
solution sequentially, while the scout bees watch to see whether they fall into the local
optimal. A random search for alternative food sources occurs if they fall within the local
ideal. As the mass of nectar in a food source corresponds to a solution’s mass, each food
source represents one potential answer. The ABC may locate the best food source or the
best solution via a cyclic search. The ABC flowchart is shown in Figure 3.
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3. Database Establishment
3.1. Case Study and Input Parameters

Mahshahr in Khuzestan Province, near the Persian Gulf, located in southwest Iran,
was selected for developing petrochemical industries over the past three decades. Different
types of precast piles were constructed in various projects built or under construction in
this area. The original soil of this region was clay to silty clay with an average plasticity
index range of 8 to 20 and SPT counts (2 to 15) down to at least 30 m. In order to determine
the pile bearing capacity precisely and to optimize the required pile embedment depths,
various “test piles” were driven at different points on the sites. Pile Dynamics Analyzer
(PDA) equipment was used to perform a dynamic load test (DLT) on all test piles at End-
of-Driving (EOD) and Beginning-of-Restrike (BOR) conditions. The DLT program was
performed in three phases to verify the variations in the pile capacities with time. The
first phase of the DLT was carried out simultaneously as driving the test piles (EOD time).
The next phase of tests was performed at different times after the initial driving of piles.
In addition, some axial static load tests (SLTs) were carried out, loading the piles to their
ultimate capacities. Test results show that a significant “soil setup” has occurred.

A database containing information about 256 data samples was utilized to develop
the pile bearing capacity models. There are five independent variables to predict the target
variable: pile setup. Independent variables cover a range of information about pile and
soil properties i.e., pile diameter (PD, m), length of pile (LOP, m), initial bearing capacity
(IC, kPa), time after EOD (T, days), and undrained shear strength (Su, kPa). The dependent
variable in this database is the ultimate capacity (UC) of the pile (kPa) measured through
the site and other mentioned parameters.
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3.2. Statistical Information on the Data

Five relevant factors, including LOP, PD, IC, Su, and T, were measured to build a
database for developing the intelligent model to forecast UC. The database is composed of
256 datasets. Statistical analysis was applied to analyze the collected database. Figure 4
presents the boxplots of input and output variables. The box plots are not symmetrical, the
database is not a normal distribution, and many data points exceed the upper and lower
tentacles of the boxplots. Because the data distribution is unknown, these outliers cannot be
eliminated. As shown in Figure 5, Pearson correlation coefficients in Equation (1) between
any two variables are calculated [45], and the deeper the color, the stronger the positive
correlation, whereas the lighter the color, the stronger the negative correlation. It can be
seen that UC has a negative correlation with LOP and PD in five input variables.

r =
∑n

i=1
(
Xi − X

)(
Yi −Y

)√
∑n

i=1
(
Xi − X

)2
√

∑n
i=1
(
Yi −Y

)2
(1)

where Xi and Yi are variables, X and Y are their mean values, and n is the total number of
data points.
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4. Prediction of Pile Capacity
4.1. GP Modeling Procedure

In this study, UC correlates with LOP, PD, IC, Su, and T; therefore, UC = f (LOP, IC,
PD, Su, and T). GP was implemented to find a function for predicting UC to explore the
relationship between UC and the other five input parameters. In this way, an intelligent
equation that is easy to implement can be established for predicting pile capacity. The steps
to generating the UC prediction formula by GP are as follows:

(1) A training set and a testing set were created by randomly dividing the database. Then,
80 percent of the database (204 datasets) was dedicated to the training set, while the
remaining 20 percent was devoted to testing (52 datasets). The initial population is
randomly generated from the database and function sets. The function sets include +,
−, ×, ÷, √ , sin, cos, and tan.

(2) The testing set is adapted to fit the prediction equation. After the genetic operation, i.e.,
selection, crossover, and variation, the preliminary prediction formula is obtained [46].

(3) The fitness function of the population is defined, and it is employed to evaluate the
fitness of each formula in the population. Root mean square error (RMSE) as the
fitness function was used in this study. The fitness value is calculated according
to Equation (2), where M means the number of training or testing sets, and UC′

represents the predicted value of the formula generated by GP.

RMSE =

√√√√ 1
M

M

∑
i=1

(
UC−UC′

)2 (2)

(4) Repeat steps (2–3) until the training time reaches the termination rule.
(5) At the end of GP, the final optimal formula is evaluated from the goodness of fit

coefficient R2 between the predicted UC obtained by the formula and the real UC. R2

is calculated according to Equation (3).

R2 = 1− ∑M
i=1
(
UC− ÛC

)2

∑M
i=1(UC−UC)2 (3)

where ÛC represents mean values of the UC.

4.2. Results

The number of iterations is set to 4000, and Figure 6 exhibits the convergence of
fitness values during iterations. When the iteration reaches 2000, the fitness value does
not descend. Accordingly, the result returned at the end of the iteration is considered the
optimal solution. Figure 7 presents the tree structure of optimal results. The tree structure
can be simplified to Equation (4). Equation (4) is the final equation developed by GP to
estimate the UC.

UC = IC + 2T + (IC + Su(sin(
√
(LOP + Su))

+ sin(LOP + Su)) + 3T − 2 sin(PD− T) + sin(sin(LOP)
+ cos(sin(tanPD− T)))

(4)
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For evaluating the performance of the developed equation, R2, RMSE, mean absolute
error (MAE), variance account for (VAF), and A-20 index were introduced to evaluate the
performance of Equation (4) in training and testing sets [46–49]. Equations (5)–(7) display
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the calculation equations for MAE, VAF, and A-20 index, respectively. When the MAE gets
closer to 0, the model has better accuracy. When the VAF reaches 100, the predicted UC is
perfectly equated to the actual. When the predicted UC is equal to the actual UC, the A-20
index is 1.

MAE =
1
M

M

∑
i=1

∣∣UC−UC′
∣∣ (5)

VAF = [1− var(UC−UC′)
var(UC)

]U × 100 (6)

A− 20 =
m20
M

(7)

where var(·) means the variance, and m20 is the number of samples with a ratio of the
predicted value to the actual value in the range (0.8–1.2).

Figure 8 shows the predicted results and five regression indicators in training and
testing tests. When the predicted UC equals the true UC, the corresponding point falls on
the red line in the figure. The points falling between the two purple dotted lines indicate
that the ratio of the predicted UC to the real UC is between 0.8 and 1.2. The A-20 index
indicates that some of the predicted values are different from the actual values.
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5. Optimizing Pile Capacity Using Metaheuristic Algorithms
5.1. Gray Wolf Optimization

In the last section, the performance of the developed equation is evaluated. Some
optimization techniques have been introduced to maximize Equation (4) to improve the UC.
GWO was implemented to find the maximum UC. To perform GWO, an open-source Python
library, Mealpy, was applied [50]. The main parameters of GWO used the default parameters
in Mealpy. To see more about how to implement GWO in Python, the reference [50] used in
this study is useful.

Before optimization modeling, the range of parameters needs to be determined. As
shown in Table 1, the input range of five parameters was selected as the optimization range.
The maximum UC is found in the range. The swarm is set to 50, 100, 150, and 250 [22].
Figure 9 shows the fitness variation during GWO. When the swarm is 50, the found UC
is the maximum. When LOP is 38.59, PD is 0.247, IC is 2273, Su is 157.46, T is 153.18, the
maximum UC is 6098.488.
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Table 1. The input parameters range.

Parameters Range

LOP 12.009–64.008
PD 0.236–1.067
IC 57.3–2276
Su 26.97–191.52
T 0.008–154
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5.2. Artificial Bee Colony Algorithm

ABC was also implemented to compare optimization techniques to find the maximum
UC in Equation (4). The default parameters suggested in Mealpy [50] were also considered
in this study to construct an ABC optimization model. The optimization range used the
parameters range in Table 1. The swarm is set to 50, 100, 150, and 250. Figure 10 shows the
fitness variation during the process of ABC. When the swarm is set to 100, 150, and 200, the
found UC is the maximum. When LOP is 38.47, PD is 0.240, IC is 2276, Su is 157.46, and T
is 170.16, the maximum UC is 6043.64. It is apparent that GWO performs better than ABC
in finding the maximum UC.
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6. Discussion

GP was adopted to develop the equation for predicting the UC, and the developed
equation received R2 of 0.897 in the training set and R2 of 0.844 in the testing set. Five
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regressions revealed that the developed equation can better forecast the UC than previous
methods. To analyze the strength of GP for predicting UC, some other widely used
machine learning models were also developed to build intelligent models for predicting
UC. These widely used models include random forest (RF), gradient boosting machine
(GBM), adaptive boosting machine (AdaBoost), ANN, support vector machine (SVM),
k-nearest neighbor (KNN), and decision tree (DT). These models were developed according
to the default parameters in Scikit-learn [51].

These models were developed using the training set, and the testing set was used
to evaluate their performance. An easy way to compare the results of several modeling
approaches is to use a Taylor diagram. The Taylor diagram cleverly combines the correlation
coefficient, the centered RMSE, and the standard deviation into a polar diagram as a result of
these inputs. A cosine connection [52] may be seen in Equation (8) between the correlation
coefficient, the center RMSE, and the standard deviation.

E′2 = σp
2 + σa

2 − 2σpσaR (8)

In Equation (8), E′ is the centered RMSE between measured and predicted parameters,
σp

2 is the variance of predicted parameters, σa
2 is the variance of measured parameters,

and R is the correlation coefficient between measured and predicted parameters.
The Taylor diagrams for the training and testing sets are shown in Figures 11 and 12,

respectively. The closer the model is to the reference point, the smaller the centered RMSE
of the model, the higher the correlation coefficient between the prediction results and the
actual results, and the better performance of the model. According to this graph, a model’s
performance improves as it gets closer to its associated “Reference” point. It can be found
that GP has outstanding performance during the training and testing stages.
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Additionally, GWO and ABC were implemented to find the maximum UC. Table 2
shows the optimized parameters. The GWO performs better than ABC. The maximum UC
found by GWO is 6089.488, which is an increase of 54% compared to the maximum UC in
this database. The maximum UC found by ABC is 6043.64, which is an increase of 52.6%
compared to the maximum UC in this database. It is apparent that using the optimized
parameters can improve UC.

Table 2. Optimized values of input parameters for the maximum UC.

Parameter Actual Value Optimized Value

GWO ABC
LOP 24.0 38.59 38.47
PD 0.457 0.247 0.240
IC 1642.7 2273 2276
Su 172.0 157.46 157.46
T 6.0 153.18 170.16

Maximum UC 3960.0 6098.488 6043.64

7. Limitations and Future Works

According to the previous research on this subject, it is essential to consider that other
variables may have a profound impact on the prediction process of pile setup, such as
coefficient of consolidation, or over consolidation ratio, which have not been considered in
this study due to the lack of appropriate data sets. In addition, to make these types of studies
more informative for civil engineers, previous empirical equations or developed theories in
the area of pile capacity can be considered and used in the portion of data preparation. In
this way, a civil engineer or a geotechnical engineer has enough knowledge regarding data
preparation. A combination of these theories together with AI models makes these types of
studies different and more applicable than an application of AI methodologies. The proposed
techniques in both the prediction and optimization phases of this study were constructed
based on the entire database described in Section 3 and are valid in the range of this database.
The results may be different if out-of-range inputs are used.
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8. Conclusions

A different view regarding the common pile capacity studies was considered in this
study. To evaluate the effect of the soil setup on the pile bearing capacity over time, an
intelligent equation using a GP model was proposed. To develop the prediction models, a
comprehensive database obtained from some geotechnical projects carried out in Mahshahr,
Iran, was used. In addition, a new section, namely optimization, has been proposed for
maximizing the bearing capacity. The following conclusions and remarks can be drawn
from this study:

• The proposed GP equation is easy to implement and is of interest to civil and geotech-
nical engineers. An intelligent equation proposed by GP showed an acceptable level
of accuracy in predicting pile capacity. Results with R2 values of 0.897 in the training
stage and 0.844 in the testing stage indicate that this GP model is capable enough to be
implemented for predicting pile capacity.

• In the optimization phase, two powerful algorithms, namely GWO and ABC, were
applied to maximize pile capacity. Obtaining the highest capacity of the pile is consid-
ered the ultimate objective of such projects. Although both algorithms are powerful in
maximizing pile capacity, GWO performed better. Increase percentages of 52.6 and 54
were obtained by ABC and GWO, respectively, in their pile capacity results.

• For the best optimization algorithm (i.e., GWO), values of 38.59 m, 0.247 m, 2273 kPa,
157.46 kPa, 153.18 days, and 6098.488 kPa were obtained for LOP, PD, IC, Su, T, and
UC, respectively. The proposed models and obtained results of this study can be used
in designing pile capacity before implementing relevant projects.
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