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ABSTRACT

Transfer learning is gaining incredible attention due to its ability to leverage

previously acquired knowledge from source domain to assist in completing a task

in a similar target domain. Many existing transfer learning methods deal with

single source and single target transfer learning, but rarely consider the fact that

information from a single source can be inadequate to a target domain and there can

be multiple source domains. Few multi-source domain adaptations methods adapt

all source and target data into a same latent feature space. However, domain shifts

can be found among source domains and between each pair of source and target

domains, thus, the model fitting all domains well may not exist. In addition, most

transfer learning methods assume that the source and target domains share the same

label space. But in practice, the source domain(s) sharing the same label space with

the target domain may never be found. Third, data privacy and security are being

magnificently conspicuous in real-world applications, which means the traditional

transfer learning relying on data matching can trigger privacy concerns.

To solve the above-mentioned problems, this thesis develops a series of methods

to tackle transfer learning with multiple source domains. Knowledge transfer with

and without source data are explored under both homogeneous and heterogeneous

label space settings.

To tackle knowledge transfer from multiple source domains, and measure contri-

butions of source domains, multi-source contribution learning and dynamic classifier

alignment methods are developed. In multi-source contribution learning method,

the similarities and diversities of domains are learned simultaneously by extract-

ing multi-view features. One view represents common features (similarities) among

all domains. Other views represent different characteristics (diversities) in a target

domain, in which each characteristic is expressed by features extracted in a source

domain. Then multi-level distribution matching is employed to improve the trans-

ferability of latent features, aiming to reduce misclassification of boundary samples



by maximizing discrepancy between different classes and minimizing discrepancy

between the same classes. Concurrently, when completing a target task by combin-

ing source predictions, instead of averaging source predictions or weighting sources

using normalized similarities, the original weights learned by normalizing similari-

ties between source and target domains are adjusted using pseudo target labels to

increase the disparities of weight values, which is desired to improve the performance

of the final target predictor if the predictions of sources exist significant difference.

In dynamic classifier alignment method, it aligns classifiers driven from multi-

view features via a sample-wise automatic way. As proposed, both the importance

of each view and the contribution of each source domain are investigated. To de-

termine the important degrees of multiple views, an importance learning function is

built by generating an auxiliary classifier. To learn the source combination param-

eters, a domain discriminator is developed to estimate the probability of a sample

belonging to multiple source domains. Meanwhile, a self-training strategy is pro-

posed to enhance the cross-domain ability of source classifiers with the assistance of

pseudo target labels.

To learn similarity of source and target domains to define what to transfer,

sample and source distillation method is proposed. It develops a two-step selective

strategy to distill source samples and define the importance of source domains. To

distill samples, the pseudo-labeled target domain is constructed to learn a series

of category classifiers to identify transfer and inefficient source samples. To rank

domains, a domain discriminator, which returns the degrees of a target sample

belonging to the source domains, is developed based on selected transfer samples.

Using the selected samples and ranked domains, transfer between the source and

target domains is achieved by adapting multi-level distribution in a latent feature

space. Furthermore, to explore more usable target information which is expected to

enhance the cross-domain ability of source predictors, an enhancement mechanism

is built by matching selected pseudo-labeled and unlabeled target samples. The

degrees learned by the domain discriminator are finally employed to combine source

predictors when predicting the target task.



To address transfer learning without the access to source data, generally auxil-

iary model training method is explored. The proposed method fits the source models

to the target domain via fine-tuning under the supervision of pseudo target labels

rather than matching data distributions. To collect high-quality initial pseudo tar-

get labels, both specific and generally auxiliary source models are pre-trained to

improve the generality across domains of source models based on auxiliary learning,

where source contributions are determined using an automatic way. Besides, the

generally auxiliary model can take the benefit of sharing knowledge from multiple

source domains without sharing data. Going further, it introduces a class balanced

coefficient of each category based on the number of samples to reduce the misclas-

sification caused by data imbalance.

To deal with soft information in transfer learning, fuzzy rule-based deep neural

network is proposed to achieve multi-source data-free transfer learning. It takes ad-

vantage of a fuzzy system to handle data uncertainty in domain adaptation without

source data. To learn source private models with high generality, which is impor-

tant to collect low noisy pseudo target labels, auxiliary tasks are designed by jointly

training source models from multiple domains which share source parameters and

fuzzy rules while protecting source data. To transfer fuzzy rules and fit source pri-

vate parameters to the target domain, self-supervised learning and anchor-based

alignment are built to force target data to source feature spaces.

To handle transfer learning where source and target domains have unshared

label space, partial and open-set transfer learning with generally auxiliary model

training and fuzzy rules are explored under source-free setting. Universal transfer

learning method is developed under multi-source-absent setting. In partial source-

free transfer learning, a selection method is built to remove source samples from

unshared categories, which is expected to eliminate the negative transfer resulting

from the source outliers. In open-set transfer learning, a threshold generated from

the predictions of the pre-trained source models is defined to identify the unknown

target samples, aiming to eliminate the pseudo label noise caused by introducing

unshared target samples.



In universal transfer learning, a unified learning model is proposed. The proposed

method designs a module that can transfer knowledge from multi-source domains

with both homogeneous and heterogeneous label spaces in universal scenario with-

out accessing the source data. To classify known target classes, source anchors are

generated to build data-matching between source and target domains via a con-

trastive method. In addition, class center consistency is adopted to distinguish

source private samples when pseudo-labeling the target data to reduce label noise.

To detect unknown classes, a clustering strategy which combines global and source

local entropy assumptions is adopted to recognize the known and unknown target

samples. By removing source private classes and target unknown samples, highly

confident target samples are collected to self-supervise the adaptation of the pre-

trained source model. At the same time, constraints enlarging the distance among

target known classes and between the known and unknown samples are applied

based on the pseudo-labels to enhance the performance of the proposed model.
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