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ABSTRACT

Transfer learning is gaining incredible attention due to its ability to leverage

previously acquired knowledge from source domain to assist in completing a task

in a similar target domain. Many existing transfer learning methods deal with

single source and single target transfer learning, but rarely consider the fact that

information from a single source can be inadequate to a target domain and there can

be multiple source domains. Few multi-source domain adaptations methods adapt

all source and target data into a same latent feature space. However, domain shifts

can be found among source domains and between each pair of source and target

domains, thus, the model fitting all domains well may not exist. In addition, most

transfer learning methods assume that the source and target domains share the same

label space. But in practice, the source domain(s) sharing the same label space with

the target domain may never be found. Third, data privacy and security are being

magnificently conspicuous in real-world applications, which means the traditional

transfer learning relying on data matching can trigger privacy concerns.

To solve the above-mentioned problems, this thesis develops a series of methods

to tackle transfer learning with multiple source domains. Knowledge transfer with

and without source data are explored under both homogeneous and heterogeneous

label space settings.

To tackle knowledge transfer from multiple source domains, and measure contri-

butions of source domains, multi-source contribution learning and dynamic classifier

alignment methods are developed. In multi-source contribution learning method,

the similarities and diversities of domains are learned simultaneously by extract-

ing multi-view features. One view represents common features (similarities) among

all domains. Other views represent different characteristics (diversities) in a target

domain, in which each characteristic is expressed by features extracted in a source

domain. Then multi-level distribution matching is employed to improve the trans-

ferability of latent features, aiming to reduce misclassification of boundary samples



by maximizing discrepancy between different classes and minimizing discrepancy

between the same classes. Concurrently, when completing a target task by combin-

ing source predictions, instead of averaging source predictions or weighting sources

using normalized similarities, the original weights learned by normalizing similari-

ties between source and target domains are adjusted using pseudo target labels to

increase the disparities of weight values, which is desired to improve the performance

of the final target predictor if the predictions of sources exist significant difference.

In dynamic classifier alignment method, it aligns classifiers driven from multi-

view features via a sample-wise automatic way. As proposed, both the importance

of each view and the contribution of each source domain are investigated. To de-

termine the important degrees of multiple views, an importance learning function is

built by generating an auxiliary classifier. To learn the source combination param-

eters, a domain discriminator is developed to estimate the probability of a sample

belonging to multiple source domains. Meanwhile, a self-training strategy is pro-

posed to enhance the cross-domain ability of source classifiers with the assistance of

pseudo target labels.

To learn similarity of source and target domains to define what to transfer,

sample and source distillation method is proposed. It develops a two-step selective

strategy to distill source samples and define the importance of source domains. To

distill samples, the pseudo-labeled target domain is constructed to learn a series

of category classifiers to identify transfer and inefficient source samples. To rank

domains, a domain discriminator, which returns the degrees of a target sample

belonging to the source domains, is developed based on selected transfer samples.

Using the selected samples and ranked domains, transfer between the source and

target domains is achieved by adapting multi-level distribution in a latent feature

space. Furthermore, to explore more usable target information which is expected to

enhance the cross-domain ability of source predictors, an enhancement mechanism

is built by matching selected pseudo-labeled and unlabeled target samples. The

degrees learned by the domain discriminator are finally employed to combine source

predictors when predicting the target task.



To address transfer learning without the access to source data, generally auxil-

iary model training method is explored. The proposed method fits the source models

to the target domain via fine-tuning under the supervision of pseudo target labels

rather than matching data distributions. To collect high-quality initial pseudo tar-

get labels, both specific and generally auxiliary source models are pre-trained to

improve the generality across domains of source models based on auxiliary learning,

where source contributions are determined using an automatic way. Besides, the

generally auxiliary model can take the benefit of sharing knowledge from multiple

source domains without sharing data. Going further, it introduces a class balanced

coefficient of each category based on the number of samples to reduce the misclas-

sification caused by data imbalance.

To deal with soft information in transfer learning, fuzzy rule-based deep neural

network is proposed to achieve multi-source data-free transfer learning. It takes ad-

vantage of a fuzzy system to handle data uncertainty in domain adaptation without

source data. To learn source private models with high generality, which is impor-

tant to collect low noisy pseudo target labels, auxiliary tasks are designed by jointly

training source models from multiple domains which share source parameters and

fuzzy rules while protecting source data. To transfer fuzzy rules and fit source pri-

vate parameters to the target domain, self-supervised learning and anchor-based

alignment are built to force target data to source feature spaces.

To handle transfer learning where source and target domains have unshared

label space, partial and open-set transfer learning with generally auxiliary model

training and fuzzy rules are explored under source-free setting. Universal transfer

learning method is developed under multi-source-absent setting. In partial source-

free transfer learning, a selection method is built to remove source samples from

unshared categories, which is expected to eliminate the negative transfer resulting

from the source outliers. In open-set transfer learning, a threshold generated from

the predictions of the pre-trained source models is defined to identify the unknown

target samples, aiming to eliminate the pseudo label noise caused by introducing

unshared target samples.



In universal transfer learning, a unified learning model is proposed. The proposed

method designs a module that can transfer knowledge from multi-source domains

with both homogeneous and heterogeneous label spaces in universal scenario with-

out accessing the source data. To classify known target classes, source anchors are

generated to build data-matching between source and target domains via a con-

trastive method. In addition, class center consistency is adopted to distinguish

source private samples when pseudo-labeling the target data to reduce label noise.

To detect unknown classes, a clustering strategy which combines global and source

local entropy assumptions is adopted to recognize the known and unknown target

samples. By removing source private classes and target unknown samples, highly

confident target samples are collected to self-supervise the adaptation of the pre-

trained source model. At the same time, constraints enlarging the distance among

target known classes and between the known and unknown samples are applied

based on the pseudo-labels to enhance the performance of the proposed model.
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Chapter 1

Introduction

1.1 Background

Machine learning becomes an effective and powerful tool for data mining espe-

cially in the situation where the original data is out of structure with high volume,

high verity and high velocity. To make machine learning methods work well on learn-

ing tasks, there is always an assumption that the training data (source domain) and

test data (target domain) have the same feature space or follow the same distribu-

tion. However, in practice, for a target task, sufficient labeled training data drawn

from the same feature space or same distribution cannot always be found because

of the high cost of collecting labeled data, or because that sometimes, the original

data cannot be accessed considering privacy issues. Thus the traditional machine

learning methods might lose their power. To solve this problem, transfer learning

gains attention which can transfer knowledge from a source domain to another sim-

ilar target domain, where source and target domains follow different distributions

and have different original feature spaces or different label spaces.

One crucial condition to the success of domain adaptation is that the source

and target domains can be connected closely. In consideration of this, three central

issues of transfer learning proposed in previous research (Pan and Yang, 2009) play

important roles for achieving domain adaptation: when, what and how. When to

transfer identifies whether the source and target domains are related or if the knowl-

edge from a source task will benefit the target task; what to transfer ascertains what

kind of knowledge is appropriate for transferring across different domains; and how
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to transfer provides an algorithm to collect transferable knowledge and accomplish

the transfer.

In relation to when to transfer, a theoretical study (Ben-David et al., 2010) anal-

yses the precise state required for transferring a classifier between source and target

domains and gives a bound of a classifier on the target domain error, taking account

of its source domain error and the source-target distribution divergence. In (Gret-

ton et al., 2012a), the researchers build a framework that measures the discrepancy

between two distributions, which has been a prominent tool for comparing the data

from the source and target domains to determine any similarity. Based on this, deep

kernels (Liu et al., 2020a) parameterized by deep neural networks are explored to

extend the measurement to fit data with a high dimension and complex structure.

To explore the transferability of deep representations, an experiment-based study

(Liu et al., 2019b) investigates the condition of transferring pre-trained networks via

changing inputs and labels.

In deeming what to transfer, there are four types of transferable knowledge

to consider: instance, feature, parameter and relationship (Pan and Yang, 2009).

Instance-based methods focus on re-weighting source samples during training to

guarantee the importance of those closer to the target domain. A represent study

is boosting for transfer learning (Dai et al., 2007b), a boosting-based learning al-

gorithm which utilizes some newly labeled data that follows the same distribution

of target domain to leverage acknowledgement obtained from source domain and

construct target task with high quality. Some recent instance selection methods,

for example, transitive transfer learning and distant domain transfer learning (Tan

et al., 2015, 2017), deal with transfer learning where source and target domains have

little overlap, and connect them using auxiliary concepts.

Feature-based methods, the most widely explored category in transfer learning,
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aim to learn a robust representation of the source and target domains by transform-

ing the original data into the same latent feature space (Wu et al., 2017). According

to the original feature spaces of source and target data, it can be divided into ho-

mogeneous feature based methods and heterogeneous feature based methods (Weiss

et al., 2016; Liu et al., 2018, 2020b). Homogeneous transfer learning means the

dimensions of source and target features are the same, while that of heterogeneous

transfer learning are different. A typical study is the multi-device indoor localization

problem proposed in (Zheng et al., 2008), instead of assuming that the original data

spaces of multiple tasks are similar, it hypothesizes that the latent feature spaces

of related spaces can be similar. With development of deep learning (Krizhevsky

et al., 2012; He et al., 2016), recent feature based transfer learning methods are

combined with pre-trained deep networks to enhance the transferability of latent

features (Long et al., 2015; Ganin and Lempitsky, 2015; Sun and Saenko, 2016).

Parameter-based methods primarily discover the shared parameters or prior dis-

tributions of two domains. A popular approach is joint active learning (Li et al.,

2012), a support vector machine based method applying to cross-domain video con-

cept detection, which combines the generative query strategy and traditional dis-

criminative query strategy. Recent studies mostly employ parameter based method

to solve transfer learning problem in the situation where the source access is un-

available (Lee et al., 2019).

Relationship-based procedures assume that some relationships between source

and target domains are similar and employ available statistical relational learning

techniques. Under this assumption, statistical relational learning techniques based

on Markov logic become the dominating methods (Mihalkova and Mooney, 2008;

Davis and Domingos, 2009). More recently, a framework has been built to identify

the transferable knowledge in deep neural networks (Jang et al., 2019).
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Regarding how to transfer, according to learning methods, it is known the algo-

rithms contain neural networks (Kouw and Loog, 2019; Zhao et al., 2020b), Bayes

and fuzzy systems (Lu et al., 2015; Wang et al.). Deep neural networks are widely ex-

plored, including convolutional (Wang et al., 2020b) and graph neural networks (Ma

et al., 2019). Attention bridging based on convolutional neural network transfers

knowledge from a single-labeled source domain to a complex multi-labeled target

domain using visual attention mechanism, which can learn from not only image-

level labels but also from the region-level information (Li et al., 2019b). Graph

adaptive knowledge transfer model jointly optimizes target labels generated by the

graph-based label propagation strategy and domain-invariant features collected us-

ing a semi-supervised class-wise adaptation strategy in a unified framework, which

can benefit each other during training (Ding et al., 2018a). Lifelong learning (Wei

et al., 2018), reinforcement learning (Keneshloo et al., 2019), adversarial learning

(Dai et al., 2019) and meta-learning (Li and Hospedales, 2020) are applied to deep

networks to enhance the transfer performance.

Transferring based on naive Bayes classifiers uses EM algorithm and Kullback-

Leibler (KL) divergence to handle text classification task (Dai et al., 2007a), the

former aims to estimate initial probabilities following the distribution of source do-

main, the latter aims to revise distribution of target domain using the learned prob-

abilities. Transfer naive Bayes is a software defect prediction method which uses the

knowledge of all the proper features in source domain to estimate the distribution

of target data (Ma et al., 2012), then transfers learning information into weights of

cross-company data and builds the corresponding prediction model. Model-agnostic

meta-learning is treated as a hierarchical Bayesian model which can effectively adapt

domains using the learned priors over task-specific parameters (Grant et al., 2018).

Fuzzy systems have superiority to deal with the ambiguity and permit the incor-

poration of approximation caused by the uncertainty oflearning tasks without precise
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information (Shell and Coupland, 2015). Since target labels are inaccessible, there

is a limit to the amount of information with certainty that can be extracted, caus-

ing a high level of uncertainty in the target domain. Fuzzy multiple-source transfer

learning deals with regression tasks in both homogeneous and heterogeneous scenar-

ios with multiples source domains (Lu et al., 2020). It determines dominant source

domains which contain more suitable transferable information for the given target

domain by measuring the distance between each source and target class centres.

Multi-source heterogeneous unsupervised domain adaptation extracts shared infor-

mation from multi-dimension spaces using a novel shared-fuzzy-equivalence-relations

neural network, and then transforms the acquired shared fuzzy knowledge into latent

feature spaces to match the distribution discrepancy among heterogeneous domains

(Liu et al., 2021).

In terms of the learning mechanism, there are three settings of transfer learning:

inductive transfer learning, transductive transfer learning and unsupervised transfer

learning (Pan and Yang, 2009). In the first case, source task and target task are

different, no matter if the domains are different or not. With available labeled data

in target domain, it still can be split into two categories: when the source labels

are available, it can be regarded as multi-task learning (Zhang and Yang, 2017),

which is aiming to leverage knowledge among multiple similar tasks and improve

the performance of all tasks. While source labels are unavailable, it is similar to

self-taught learning (Raina et al., 2007), which aims to employ unlabeled source

data to improve performance on another labeled target data.

In the second case, the source task and target task are the same while domains

are different. With unlabeled data in target domain and labeled data in source

domain, the represent research category is domain adaptation (Zhang, 2019; Kouw,

2018), which aims to complete target task using knowledge learned based on source

task by reducing discrepancy between source and target domains.
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In the third case, source task and target task are different but related. With

unavailable source data and target data, the main method is clustering (Dai et al.,

2008), which aims to tackle unsupervised task in target domain with the assistance

of unlabeled source domain.

Transfer learning attracts much attention and displays an upward tendency in

a decade. However, there still are many research gaps. For instance, most existing

studies focus on transfer learning with single source domain, but in practice, a target

domain can be similar to multiple source domains which carry richer transfer infor-

mation. In addition, for transfer learning with multiple source domains, the previous

studies only explore similarities between source and target domains and complete

target task by averaging source performance but fail to consider the differences and

contributions of different source domains, which may harm the final performance and

result in negative transfer. Third, most existing transfer learning methods assume

source and target domains have the same label space, but how to transfer knowledge

across domains where source and target domains contain unshared labels still needs

further exploration, especially in non-satisfied and complex situation like data-free

scenario. Finally, data privacy and security concerns resulting from sharing source

data is ignored in most previous studies. When the source data is unavailable due to

privacy issues, existing transfer learning methods relying on distribution matching

cannot be applied. This thesis aims to tackle these problems by developing transfer

learning methods with multiple source domains based on deep neural networks.

1.2 Research questions, objectives and expected outcomes

1.2.1 Research questions

To handle the mentioned problems for transfer learning and fill the research gaps

in section 1.1, this thesis designs the following research questions (RQs):
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• RQ 1: How to measure contributions of source domains to target domain?

Source contribution is used to describe how important the source is when pre-

dicting the target task. It reflects the degree of similarity between source and

target domains. The more similar the two domains are, the more contribution

the source domain makes. This thesis focuses on transfer learning with multi-

ple source domains, absolutely, the performance on target data of every source

domain cannot be totally the same as each other because of the differences

within source domains. Thus, if we desire to gain high-quality model for tar-

get domain, it is important to explore how to define contributions of different

source domains, which means that the source domain performing superiorly

on target domain should occupy the dominant position when predicting target

task by combining all source performance.

• RQ 2: How to learn similarity of source and target domains to define what

to transfer?

Learning similarity, in other word, reducing discrepancy between source and

target domains is the central idea of transfer learning, since the basic as-

sumption for achieving transfer learning is that the source domain and target

domain are related. However, without an appropriate similarity measurement,

it may fail to match features or distributions of source and target data, which

means the predictions of target data using model trained on source data show

poor performance. Thus it is important to explore how to reduce discrepancy

between two domains and guarantee the transfer performance. Measuring

similarity between domains and selecting transfer knowledge can benefit to

achieve transfer by reducing domain discrepancy.

• RQ 3: How to achieve transfer learning in heterogeneous setting?

Many existing studies focus on transfer learning with homogeneous label space
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but will fail when applying to heterogeneous label settings directly. In practice,

source domain which has the same label space with target domain cannot be

always found. It is important to explore how to develop new approaches to

solve transfer learning with heterogeneous label spaces.

• RQ 4: How to handle transfer learning when the source data is unavailable?

Data security and privacy attract incredible attention in many areas and real-

world applications. Traditional transfer learning relying on the access to source

data to match distributions can trigger privacy concerns. Thus, it is necessary

to explore how to transfer knowledge across domains without source data.

• RQ 5: How to explore soft information in transfer learning?

Most existing transfer learning methods ignore the soft information resulting

from uncertain data during transfer, which can be shared or can benefit the

learning among multiple classes. As there is limited information available

from target domain, data shift between source and target domains can cause

a high level of uncertainty in the target domain, which can harm transfer

performance. It is worthy to explore soft information to improve the positive

transfer, which means learning in the source domain(s) facilitates learning in

target domain.

1.2.2 Research objectives

To answer above research questions, this section sets up four research objectives

(ROs):

• RO 1: Develop a set of frameworks to measure correlation and contributions

of multiple source domains (to answer RQ 1).

Many existing studies on transfer learning with multiple source domains com-

plete target task by averaging performance of source domains. Although some



9

weighted combination rules are employed, there are little disparity within

source weights when combing their predictions, which means when the perfor-

mance of source predictions have significant differences, the target predictor

can fail to bring the superiority of source predictors that perform better on

target domain into full play. Thus it is necessary to develop a set of frame-

works to measure contributions of source domains and increase the disparity

of weights to reduce negative transfer.

• RO 2: Develop a set of methods to select source samples which are more

similar to the target domain by exploring the relationship of source and target

domains. (to answer RQ 2).

There are many techniques to measure discrepancy within two domains. How-

ever, when we apply these existing techniques to multi-source transfer learn-

ing, the learned similarities may disaccord from their performance on target

domain, which means a source domain whose predictor works well on target

domain may display little relatedness to target domain compared with other

source domains with inferior predictors on target domain. Thus it is critical

to improve the learning ability of similarity extracting and distill unrelated

information during transfer to obtain high quality target predictor.

• RO 3: Develop a set of frameworks to transfer knowledge between source and

target domains with heterogeneous label spaces (to answer RQ 3).

Most previous studies focus on transfer learning with homogeneous label space,

where source and target domains share the same label space. When comes to

matching source model to the target domain with different label spaces, tradi-

tional methods developed based on homogeneous label space will fail because

of the difference between dimensions of source and target labels. These encour-

age us to develop frameworks to handle transfer learning with heterogeneous
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label spaces to solve the mismatching problem.

• RO 4: Develop a set of frameworks to deal with source-free transfer learning

(to answer RQ 4).

Few previous studies focus on transferring knowledge across domains without

source data. Existing previous transfer learning methods based on instance

transfer and feature transfer cannot be applied entirely when there is no access

to source data. To handle source-free transfer learning, we explore model adap-

tation methods based on parameter matching to transfer source knowledge to

target domain.

• RO 5: Develop a set of frameworks to deal with soft information in transfer

learning (to answer RQ 5).

Existing transfer learning methods with and without source data rarely con-

sider the data uncertainty in transfer learning caused by limited target in-

formation and data shift. Fuzzy system has the advantage of handling soft

information. To eliminate the influence of data uncertainty, we explore a set

of fuzzy rule-based transfer learning methods to enhance the transfer perfor-

mance by exploring the soft information containing in features.

1.2.3 Expected outcomes

The desired outcomes of this thesis are as follows:

• Frameworks that could allocate weights of multiple source domains based on

their performance on target domain.

• Methods to select transfer information by learning similarity of two domains.

• Frameworks that could handle transfer learning with homogeneous as well as

heterogeneous label spaces.
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• Approaches that could transfer knowledge across domains without referring

source data.

• Frameworks that could handle soft information during transfer.

• A PhD thesis.

1.2.4 Research significance

The theoretical and practical significance of this thesis is summarized as follow-

ing:

• Theoretical significance: This thesis develops approaches to measure the rela-

tionships between the source and target domains in transfer learning, which

can be generally applied to existing methods. The proposed methods enrich

the theoretical analysis of multi-source transfer learning, which explores the

importance of both source samples and source domains, and proves the domi-

nant role of the most similar source domain. Furthermore, it introduces sample

and source distillation model. This work provides an idea to define what infor-

mation is important to transfer in transfer learning, a problem has not been

solved since transfer learning was proposed. Our research has implications

for possible future work. Third, this thesis opens a new direction in transfer

learning dealing with universal multi-source-free transfer learning, which can

handle multiple source domains with both homogeneous and heterogeneous

label spaces. It is the first work to solve transfer learning under universal

multi-source-free setting where source domains have heterogeneous labels. Fi-

nally, this thesis introduces fuzzy model to deep neural networks to tackle

source-free transfer learning, which enriches the theoretical and experiment

analysis of fuzzy rules in knowledge transfer.

• Practical significance: The findings of this thesis contribute to real-world ap-
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plications where there lacks enough labeled training data or exists data pri-

vacy concerns. All models developed in this thesis are validated on real-world

datasets and tasks. Experiment results indicate the superiority of the pro-

posed method compared with most existing methods. The source contribution

measurement and sample and source distillation method can benefit transfer

learning in applications with massive data, it helps select usable information

and remove inefficient information to improve transfer learning performance

while reducing the complexity of training resulting from large data size. The

model based on fuzzy rules benefits real-world applications to make suitable

decisions via considering all possible results.

1.3 Thesis Organization

The organisation of this thesis is listed in Fig. 1.1. Followed by detailed descrip-

tion.

• Chapter 2: This chapter presents a survey of transfer learning. Popular tech-

nologies of filling domain gaps in transfer learning are listed, including dis-

tribution matching based methods and parameter matching based methods.

Then the categories of transfer learning are introduced in view of different

standards. Methods of source-free transfer learning are reviewed at last.

• Chapter 3: Multi-source contribution learning is derived in this chapter. The

proposed method deals with how to learn correlations and contributions of

multiple source domains. Both common and diverse information from source

and target domains are explored to adapt data on multiple distribution levels.

A weight adjustment strategy and a fuzzy rule-based approach are developed

to estimate the combination weights of combining source predictions when

completing the target task. Experiments on real-world visual datasets are car-
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Chapter 1:
Introduction

Chapter 2:
Literature review

Chapter 3: Multi-source contribution
learning

Chapter 4: Dynamic classifier alignment
for unsupervised multi-source domain

adaptation

Chapter 5: Multi-domain adaptation with
Sample and source distillation

Chapter 6: Source-free multi-domain
adaptation with generally auxiliary

model training

Chapter 7: Source-free multi-domain
adaptation with fuzzy rule-based deep

neural networks

Chapter 8: Unified learning for source-
absent universal multi-domain

adaptation

Chapter 9: Conclusion and
future research

Objective 1: Measure
contributions of source

domains

Objective 2: Define what to
transfer

Objective 3: Extend transfer
leaning to heterogeneous

setting

Objective 4: Transfer
knowledge without source

data

Objective 5: Explore soft
information during transfer

Figure 1.1 : Thesis organisation.
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ried out to evaluate the proposed multi-source contribution learning method.

• Chapter 4: Dynamic classifier alignment is presented in this chapter. The

proposed method deals with transfer learning with multi-view features which

containing information extracted by different networks and multi-source do-

mains, where both feature importance and source contribution are explored.

The feature importance learning strategy is flexible to tackle multi-view fea-

tures with the same or different dimensions. The dynamic classifier alignment

builds a sample-wise method to learn source domain combination parameters.

Experiments on real-world image classification tasks show the advantage of

the proposed dynamic classifier alignment method.

• Chapter 5: Multi-source domain adaptation with sample and source distilla-

tion is developed in this chapter. The proposed method constructs a two-step

selective strategy to eliminate negative transfer resulting from both source

outlier samples and unrelated source domain(s). Simultaneously, the two-step

selective strategy can identify the dominant source domain which is the most

similar to the target domain. By defining the dominant source domain, the

transfer knowledge from multiple source domains turns to the most similar

knowledge from single source domain, which can reduce the parameter com-

plexity in multi-source transfer learning and remove negative transfer from

dissimilar domains at the same time. The proposed method is validated on

real-world visual datasets and gains superior performance than most existing

methods.

• Chapter 6: Multi-source-free domain adaptation with generally auxiliary model

training under both homogeneous and heterogeneous label spaces is explored

in this chapter. Generally auxiliary model is constructed from private specific

source models to gain cross-domain ability, which is benefit to collect pseudo
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target labels with high confidence to self-supervise the learning of target model

without the access to source data. To explore the influence of source sample

quality, sample and source distillation is adopted to select similar samples

and domains under source-free setting. Partial and open-set transfer learning

with generally auxiliary model training are extended to deal with source-free

transfer learning with heterogeneous label spaces. Experiments on real-world

visual datasets indicate the superiority of the proposed generally auxiliary

model training method under multiple transfer learning settings.

• Chapter 7: Multi-source-free domain adaptation with fuzzy rule-based deep

neural networks under both homogeneous and heterogeneous label spaces is

explored in this chapter. In the proposed method, source private model based

on fuzzy rules of every source domain is learned by jointly training other

source models using an auxiliary learning strategy, where source parameters

are shared while source data is preserved. Furthermore, anchor-based align-

ment is designed to match target samples to the source anchors according to

the agreements of clustering a target sample to a source category. Since source

data is unavailable, to fit source models better, self-supervised learning based

on pseudo labels is employed to train the target feature extractor which trans-

forms target data into a latent feature space close to the source space. To

reduce the influence of noisy target labels, a sample selection strategy is de-

signed by combining the predictions of the source model and deep clustering

to identify strong target samples, which are then used to update clustering

centers that renew pseudo labels with a high level of certainty. Experiments

on real-world visual datasets indicate the proposed fuzzy rule-based method

is superior to non-fuzzy methods.
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• Chapter 8: Unified learning for multi-source-free universal Domain adaptation

is explored in this chapter. The proposed method deals with multiple source

domains with homogeneous as well as heterogeneous label spaces. To classify

known target samples without accessing to the source data, source generator

is designed first to create source-like samples by combining global and local

entropy assumptions based on contrastive learning, where local assumption

aims to reducing the influence of unshared source categories. The generated

source-like data is employed to match the target data under the supervision

of target pseudo labels. To reduce pseudo label noise, the proposed method

adopts center consistency and clustering to detect both source private and

target unknown categories when pseudo-labeling the target data. By enlarg-

ing the distance between known and unknown samples, the performance on

classifying known samples and detecting unknown categories can be guaran-

teed. Experiments on real-world datasets validate the superiority of the unified

learning model.

• Chapter 9: A brief summary of the thesis and its contributions are given in

the final chapter. Potential future studies are given as well.
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Chapter 2

Literature Review

In this chapter, previous related works on transfer learning are briefly described.

Section 2.1 introduces typical techniques for reducing data gaps in transfer learning,

including distribution matching and parameter matching based methods. Based on

the number of source and target domains, section 2.2 lists transfer learning methods

dealing with single-source single-target, multi-source single-target and multi-source

multi-target transfer learning. Homogeneous and heterogeneous transfer learning

methods are introduced in section 2.3. Section 2.4 describes transfer learning meth-

ods tackle source and target domains with the same and different label spaces. In

section 2.5, a new and challenging problem- source-free transfer learning- is pre-

sented. Following the settings of transfer learning, section 2.6 introduces commonly

used learning schemes to achieve transfer across domains. Section 2.7 summarizes

this chapter.

2.1 Discrepancy Measurement of Transfer Learning

To achieve transfer learning, the main idea is taking the advantage of the relat-

edness of two domains by reducing their discrepancy. Thus, discrepancy measuring

becomes an essential operation of transfer learning. In this section, some discrep-

ancy measuring techniques are introduced, including distribution matching based

technology and parameter matching based technology.
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2.1.1 Distribution Matching Based Methods

Distribution matching based methods are commonly developed based on maxi-

mum mean discrepancy (MMD) (Gretton et al., 2006), Wasserstein distance (Redko

et al., 2019a; Arjovsky et al., 2017; Dai et al., 2019; Zhao et al., 2020a), Kullback-

Leibler (KL) divergence (Pan et al., 2020) and H-divergence (Zhao et al., 2018;

Wen et al., 2020). MMD based distribution matching is the most widely explored

than the others (Ganin and Lempitsky, 2015; Lifshitz and Wolf, 2021). Distribution

matching can be divided into single-level matching and multi-level matching. We

first introduce single-level matching methods.

Single-level distribution matching mainly indicates adapting domains on domain

level only. MMD is a typical method to test if two samples are drawn from the

same distribution (Gretton et al., 2012a). Transfer component analysis first applies

MMD to domain adaptation in order to achieve marginal distribution matching in

a reproducing kernel Hilbert space (Pan et al., 2010), and gives a solution of MMD

instead of using optimization solver. Deep domain confusion uses a pre-trained con-

volutional neural network to optimize the classifier and domain invariant features

automatically by incorporating MMD into deep networks (Tzeng et al., 2014). Based

on these, joint distribution adaptation and joint adaptation networks extend transfer

component analysis to matching both marginal and conditional distributions (Long

et al., 2013, 2017). Deep adaptation networks employ multi-kernel MMD (Gretton

et al., 2012b) to reduce the domain bias and adapt all hidden representations of

task specific layers to match the mean embeddings (Long et al., 2015). Improved

MMD techniques such as central moment discrepancy (Zellinger et al., 2017), deep-

kernel based MMD (Liu et al., 2020a) are extended recently to improve the ability

of discrepancy measuring, the former mainly reduces the computational complexity,

while the latter is more flexible for complex and high-dimension data. Adversarial

learning adapts distributions by making two domains indistinguishable, which aims
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to obtain more stable and robust gradients in the situation where the distributions

of source and target domains have no overlaps (Pei et al., 2018; Yu et al., 2019a).

The graph-matching metric is developed as the domain discrepancy measurement

which has the ability to map both nodes and edges between source and target rep-

resentations. By doing this, not only is distribution knowledge considered, but also

structural and geometric information which is rarely investigated in most previous

studies is considered (Das and Lee, 2018; Yang and Yuen, 2019).

To reduce domain shift and improve the ability of source predictor on target

domain, except for domain-level distribution matching, the adaptation on other

distributions is proposed (Kang et al., 2019). Dynamic adversarial adaptation net-

work learns different contributions of marginal and conditional distributions between

domains dynamically, the former is achieved by training a global domain discrimi-

nator, while the latter is built by training several class-wise domain discriminators

(Yu et al., 2019a). Multi-adversarial domain adaptation enables fine-grained align-

ment by training multiple domain discriminators, which forms multimode structures

based on different data distributions of categories (Pei et al., 2018). Transferable

attention network diminishes multiple region-level and single image-level distribu-

tion discrepancies, where multi-adversarial domain adaptation matches domain-level

and class-level distributions by multi-mode discriminators (Wang et al., 2019b).

Local feature pattern method jointly maps holistic feature distribution and local

pattern distributions. These multi-level distribution matching technologies enable

fine-grained alignment of cross-domain adaptation (Wen et al., 2019). Dual adver-

sarial domain adaptation proposes a 2K-dimension discriminator which aligns both

domain-level and class-level distributions simultaneously, and develops a mechanism

to handle samples without discriminative features using multi-view learning and ad-

versarial learning (Du et al., 2020). Pixel-level and feature-level adaptations are

considered in domain mixup networks (Xu et al., 2020a). In pixel-level matching,
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each pair of source and target samples is linearly interpolated, and the mixed inputs

with soft labels are used to train the domain discriminator via adversarial learning.

In feature-level matching, the source and target embeddings are mixed to ensure

domain alignment and category consistency simultaneously. Classification and clus-

tering distribution adaptations are explored based on self-ensembling (Pan et al.,

2020). It first divides target samples into multiple groups, then a source only model

is performed on the target domain to provide both category and cluster assignment

information. By matching the source global and local mutual information to the

target simultaneously, a target classifier can be learned based on the source model.

2.1.2 Parameter Matching Based Methods

Distribution matching based methods are built on the assumption that transfer

learning can be succeeded via matching distributions of two domains in the trans-

formed latent feature spaces. However, as proven in the previous study (Ben-David

et al., 2010), the model works well on both source and target domains may not exist

even their distributions are matched. Considering adapting domains by matching

distributions can suffer risk because of the non-discriminative features, asymmet-

ric tri-training trains multiple classifiers using labeled data from source domain and

then generates and updates artificial labels of unlabeled samples, the pseudo-labeled

target domain is employed to predict target data using a independent network (Saito

et al., 2017). Multi-source sentiment generative adversarial network forms a cycle-

reconstruction pipeline using consistent adversarial learning and trains target model

directly by minimizing the distance between the generated and true samples in latent

space (Lin et al., 2020).

To handle the transfer situation where there is no access to original source data

but only the pre-train model, fine-tuning based methods (Li et al., 2018c; Lee et al.,

2019; Chin et al., 2020) are developed to minimize the loss of model parameters
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between source and target networks. Source hypothesis transfer develops a self-

supervised labeling method to map feature learning of source and target data by

freezing the prediction layer trained on source domain (Liang et al., 2020). Noisy

feature distillation improves the ability of transfer model to deal with adversarial

attacks caused by traditional fine-tuning methods, which generates clean data via

random initialization during training (Chin et al., 2020).

2.2 Categories of Transfer Learning Based on Number of

Domains

There are four types for transfer learning based on the numbers of source and

target domains, including single source and single target (Zhao et al., 2014; Liang

et al., 2019; Wang et al., 2022; Xiao and Zhang, 2021), single source and multi-

target (Yu et al., 2018; Tian et al., 2020b), multi-source and single target (Lu et al.,

2020; Zhao et al., 2019b; Zhou et al., 2021; Xu et al., 2020a; Feng et al., 2020), and

multi-source and multi-target transfer learning. Since there are very few studies

focusing on multi-source and multi-target transfer learning, here we introduce the

former three settings, respectively.

2.2.1 Single Source and Single Target Transfer Learning

Single source and single target transfer learning (Chen et al., 2020; Li et al.,

2021d) has progressed considerably for varying learning tasks such as classification

(Wen et al., 2019), segmentation (Sun et al., 2019) and regression (Zuo et al., 2016).

Based on feature and parameter transformation, one popular technique to achieve

transfer learning is domain adaptation (Ben-David et al., 2007; Kouw, 2018; Zhang,

2019).

A novel metric function named central moment discrepancy is proposed to mea-

sure the distance between probability distributions which can be solved without
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highly complex and costly kernel matrix computations (Zellinger et al., 2017). Fuzzy

system combined with granular computing is used to achieve regression transfer in

homogeneous and heterogeneous feature spaces (Zuo et al., 2017, 2018b). Benefit-

ing from the development of deep learning, recent surveys employed deep neural

networks to extract common features of source and target domains. To explore the

efficiency of deep structures, transferability of deep feature representations is ex-

plored. Experiments as well as theory analysis on what and where to transfer in

deep networks are provided in recent studies (Liu et al., 2019b; Jang et al., 2019).

Multi-representation adaptation network aligns the distributions of source and tar-

get representations by a multi-structure network which extracts representations from

different aspects (Zhu et al., 2019b). Joint geometrical and statistical alignment is

presented to unify shared space and subspaces of source and target domains via re-

ducing the shifts of the geometries as well as the distributions simultaneously (Zhang

et al., 2017). Dynamic distribution adaptation develops a strategy to evaluate the

importance of the cross-domain marginal and conditional distributions (Wang et al.,

2020b). This work explores both traditional and deep transfer learning. Traditional

transfer learning based on manifold space is developed by extracting Grassmann

manifold features which contain more details and property of domains. Geodesic

flow kernel is used to reduce computational complexity when transforming data into

manifold space. Joint distribution weights are calculated based on geometrical prop-

erty controlled by Laplacian regularization. Deep dynamic distribution adaptation

network constructs an end-to-end structure that leverages the ability of both feature

extractor and classifier. Alignment weights of multi-level distributions are estimated

based on A-distance.
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2.2.2 Multi-Source and Single Target Transfer Learning

Multi-source domain adaptation involves more difficulties and challenges than

single source domain adaptation because simply combining source samples with do-

main shifts is inappropriate without knowing the mixture parameters of the target

distribution (Mansour et al., 2009). For multi-source domain adaptation, combining

all source domains as one and treating it as single source domain adaptation is a

simple way. However, this operation fails to consider the domain shift within source

domains, which can result in negative transfer (Redko et al., 2019b). In order to

solve the mentioned problem caused by domain shift and achieve performance of

target predictor which is desired to be higher than using single domain only, multi-

domain matching network designs a domain adaptor which matches distributions

within all domains by learning their relationships and turns the learned information

into weights of each two domains, the final transfer knowledge is extracted from

a subset of source domains which gain larger weights (Li et al., 2018d). Moment

matching for multi-source defines moment distance to adapt two domains, which

not only considers relatedness between source and target domains, but also among

source domains using adversarial learning, and creates a new multi-domain dataset

to verify the proposed method (Peng et al., 2019a). Multiple feature spaces adap-

tation network aligns cross-domain distributions and designs cross-domain classifier

constraints to improve the performance on target samples which are close to class

boundaries (Zhu et al., 2019a).

Many multi-source transfer learning methods complete target task by averaging

the predictions of source domains. However, different sources usually perform dif-

ferently from each other when applying to target domain. Thus, it is reasonable to

define the weights according to their contributions to target domain. Multi-source

selective transfer method employs three re-weighting strategies to choose appropri-

ate source domains and combine them to complete target task, including nearest
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selection, weighted selection and Top-k selection (Zhang et al., 2019a). Deep cock-

tail network proposes a new setting named category shift, which means the label

space of each source domain is a subset of the label space of target domain, the

union of source label spaces covers the target label space (Xu et al., 2018). Under

this assumption, it uses source-target-specific perplexity scores to re-weight source

distributions and represents target distribution by weighted mean combination rule.

Multi-source distilling domain adaptation distills source samples by measuring the

similarity between source data and target domain, only closer samples are used to

fine-tune the pre-trained model and estimate target labels by re-weighting sources

using standard Gaussian Distribution based on the learned distance between each

source sample and target domain (Zhao et al., 2020a). Multi-source adversarial do-

main aggregation network trains one model for all domains by combining all adapted

domains together closely using adversarial domain aggregation, which avoids learn-

ing weight of each source domain and optimizes the model by minimizing losses of

the two discriminators (Zhao et al., 2021).

To take advantage of every source domain, multi-source transfer across domains

and tasks proposes the gradient mixing strategy based on meta-learning (Li et al.,

2020a). Instead of adding extra constraints for distribution matching, it weights and

mixes the gradients from all the source domains using an online method to preserve

transferable knowledge during training. Hard and soft labeling approaches are em-

ployed to collect pseudo labels predicted by multiple pre-trained models. Domain

generalization with adversarial feature learning extracts domain-invariant represen-

tations from multiple source domains to learn a universal classifier to be performed

on an unseen target domain, where there is entirely no target data available during

training (Li et al., 2018a). Mixture of multiple latent domains for domain general-

ization is developed to tackle a novel case where the label of a sample belonging to a

domain is unknown, and adversarial learning is employed to extract shared features
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from pseudo labeled domains divided by clustering (Matsuura and Harada, 2020) .

Multi-source domain adaptation with graph embedding and adaptive label predic-

tion measures the inter-domain discrepancy on the feature-level and intra-domain

discrepancy on sample-level simultaneously by jointly optimizing moment matching

and geometry alignment. K-means clustering and the nearest neighbor classifier are

used to predict the pseudo target labels in multiple feature spaces, which are later

taken as inputs to update the model (Ma et al., 2020). Dynamic transfer is proposed

to deal with multi-source domain conflicts resulting from a domain-agnostic model

by adapting the model parameters to samples rather than across domains, where the

alignment between source and target domains can be simplified by turning multi-

source domains into a single-source domain (Li et al., 2021e). Multi-source domain

adaptation with guarantees builds a global teacher model by combing local source

experts, and reduces the domain gaps using an adversarial learning method where

a student model is trained to mimic the teacher expert (Nguyen et al., 2021).

2.2.3 Single Source and Multi-Target Transfer Learning

The main challenge of multi-target transfer learning is the transfer knowledge

from one source domain may be inadequate to multiple target domains. To solve

this problem, complementary knowledge is adopted to build target common model

to assist in fitting target individual models, where parameter adaptation framework

is developed by introducing sparse dictionaries (Yu et al., 2018). The parameter

adaptation framework first learns bridging parameter dictionary between each pair

of source and target domains, then target common dictionary is generated by min-

imizing the distance among target common and individual dictionaries. By this,

the knowledge from labeled source and unlabeled target domains can be extracted

simultaneously. Heterogeneous graph attention network deals with semantic asso-

ciation among unlabeled target domains ignored by pairwise adaptation methods
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using a deep semantic information propagation approach, which takes advantages

of attention mechanism to improve the transductive ability of graph network and

optimize the semantic transfer among source and multiple target domains. The

unified target subspace is constructed to predict pseudo target labels, and then the

domain invariant information extracted based on pseudo labels is employed to align

semantic knowledge from source and target domains (Yang et al., 2020b).

2.3 Categories of Transfer Learning Based on Feature Space

According to the dimensions of the feature spaces of source and target domains,

the feature-based approach can be divided into homogeneous and heterogeneous

domain adaptation (Xu et al., 2022; Liang et al., 2021a; Liu et al., 2020b).

2.3.1 Transfer Learning with Homogeneous Feature Space

In homogeneous transfer learning, the source and target feature spaces have

the same dimension. Structurally regularized deep clustering proposes a source

regularized method for unsupervised domain adaption (Tang et al., 2019). Motivated

by the structural similarity, it employs a deep clustering framework to learn class

centres of source and target domains, and generates an auxiliary target distribution

to help explore the intrinsic discrimination in the target domain by matching it to

the source distribution. Certainty-based attention for domain adaptation identifies

adaptable regions by building a Bayesian discriminator (Kurmi et al., 2019). The

predominant areas which can benefit the matching of source and target data are

highlighted by the class probabilities returned using a Bayesian classifier. Dynamic

weighted learning introduces a degree of alignment and discriminability to avoid the

discriminability vanishing problem, and adopts sample weights to deal with sample

imbalance across domains (Xiao and Zhang, 2021). Faster domain adaptation aims

to reduce computational cost in transfer learning, which improves the efficiency
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of the energy-sensitive platforms from two aspects, including optimizing domain

transfer network and the layer selection function, where early stopping and amid

skipping are employed to decrease the time and energy costs (Li et al., 2021b).

2.3.2 Transfer Learning with Heterogeneous Feature Space

Heterogeneous domain adaptation means features spaces of source and target

domains have different dimensions, both offline (Wei et al., 2016; Luo et al., 2017)

and online heterogeneous transfer learning are explored (Wu et al., 2017; Yan et al.,

2017). Completely heterogeneous transfer learning deals with domain adaptation

where both the feature and label spaces of the source and target domains are different

(Moon and Carbonell, 2017). Transfer independently together gives large weights of

pivot samples and low weights of outliers based on graph optimization, which designs

a projection matrix to solve the mismatching problem of source and target data (Li

et al., 2018b). Deep matrix completion with adversarial kernel embedding employs

an auto-encoder structure to map features in latent space by an adversarial kernel

and handles the mismatching problem by a matrix completion way to reconstruct

the missing values (Li et al., 2019a). Generalized deep transfer networks dealing with

heterogeneous domain adaptation, which transfer the acquired label knowledge from

textual domain to visual domain, are proposed by introducing hidden shared layers

based on parameter and representation, respectively (Shu et al., 2015; Tang et al.,

2016). Various variants with different fine-tuning schemes are explored to improve

the ability of the proposed structures when handling image-text pairs, and a new

dataset is created to validate the method. Discriminative distribution alignment

derives a domain invariant space to match domain discriminative directions as well

as distributions (Yao et al., 2020). To separate class samples, an adaptive classifier

is trained by reducing conditional distribution divergence and enlarging distance

between class centers. Both cross-entropy and squared loss are employed to param-
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eterize the training. Structure and classification space alignment adapts domains

on both data-level and parameter-level, which preforms feature space matching, dis-

tribution alignment and classifier alignment jointly in a unified framework (Tian

et al., 2021). Target-oriented classifier is generated from supervised source domain

and semi-supervised target domain using a balance factor, which gives weight to

the target domain in view of its similarity to the source domain during adaption.

Label distribution alignment is introduced using respective projection matrices to

avoid feature dimension heterogeneity. Spatial structure preservation is employed

to enlarge distance among samples from different classes.

2.4 Categories of Transfer Learning Based on Label Space

In view of label spaces of source and target domains, transfer learning can be

divided into closed set (Rozantsev et al., 2018), open-set (Saito et al., 2018), partial

(Li et al., 2021d) and universal (You et al., 2019) transfer learning. In closed set

transfer learning, source and target domains have the same label spaces. In open-set

transfer learning, source label space is a improper subset of target label space. In

partial transfer learning, source label space contains target label space. In universal

transfer learning, both source and target domains have their own private label spaces

and share the intersection of label sets. In this thesis, closed set is also named as

homogeneous label space setting, while open-set, partial set and universal set are

grouped as heterogeneous label space settings Azizzadenesheli et al. (2019); Sohn

et al. (2019).

Complement label and incomplete label spaces are special settings of heteroge-

neous label spaces. Complement label generated by adversarial network is adopted

to handle transfer learning where acquiring the fully true labels of the source do-

main is overpriced, the generated complementary-labeled source data is used to

replace unavailable fully-true-labeled data (Zhang et al., 2020). Incomplete label is
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the open-set setting with multiple source domains. To solve incomplete label space

among multiple source domains, low-rank matrix based on latent features from tar-

get domain is employed to recover missing labels in source domains (Ding et al.,

2016).

In the following, transfer learning under closed set, open-set, partial and universal

scenarios are listed.

2.4.1 Closed Set Transfer Learning

Closed set transfer learning is the most widely explored. Pseudo labelling strat-

egy becomes popular in transfer learning recently. Transferable prototypical network

collects pseudo labels of the target domain by finding the nearest prototype from

source domain for each target sample, and minimizes the distance between the pro-

totypes for each category in source and target domains as well as their distribution

scores to adapt domains (Pan et al., 2019). Cluster alignment with a teacher matches

both marginal distribution and class-conditional structure of the source domain to

that of the target domain, which enhances existing unsupervised domain adaptation

methods by aligning the clusters across the source and target domains with the help

of the pseudo labels provided by the teacher model (Deng et al., 2019). Enhanced

transport distance, which parameterizes the Kantorovich potential value, has been

developed to measure domain discrepancy. The attention mechanism is used to re-

weight the distance matrix according to the degree of correlation between samples

(Li et al., 2020c). Domain adaptation with gradually vanishing bridge introduces

bridge layers and intermediate domain during adversarial training (Cui et al., 2020).

It is expected that the intermediate domain which provides invariant information

can cover almost all source and target samples after minimizing domain bound-

aries using the bridge. Adversarial-learned loss for domain adaptation attempts to

fill the gap between the pseudo and ground truth labels by introducing a confu-
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sion matrix (Chen et al., 2020). Simultaneously, a regularization term classifying

the source samples is added to the discriminator learning to improve robustness.

Progress domain adaptation employs a self-learning method to progressively update

target model constructed from pre-trained source model, which defines target class

prototypes by selecting reliable samples with lower self-entropy, where set-to-set

distance-based filtering is adopted to reduce the noise of pseudo target labels (Kim

et al., 2020). Instance level affinity-based transfer discovers similar and dissimilar

samples between the source and target domains, where K-nearest neighbor-ranking

is used to pseudo-label target samples and build the affinity matrix, which forces

intra-class grouping and inter-class separating (Sharma et al., 2021)

2.4.2 Open-Set Transfer Learning

Open-set transfer learning or zero-shot transfer learning, aims to recognize tar-

get categories containing shared labels which are the same as that of source domain

and unknown labels which never show up in source domain (Panareda Busto and

Gall, 2017; Busto et al., 2018; Kundu et al., 2020b; Bucci et al., 2022). Separate to

adapt solves open-set domain adaptation by taking the openness of the target do-

main into account, which develops a coarse-to-fine weighting separation mechanism

to recognize unknown samples from known samples by learning similarities between

target data and each source category (Liu et al., 2019a). Data with high similarity is

regarded as known category, while data with low similarity is regarded as unknown

category. Distribution alignment with open difference achieves open-set domain

adaptation using structural risk minimization principle and open set difference reg-

ularization which estimates the generalization bounds controlled by maximum mean

discrepancy based on theoretical analysis (Fang et al., 2021). Mutual to separate

employs a dual-control system to select unknown categories from the known ones,

in which the sample separation network filters out unknown samples while the dis-
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tribution matching network maximizes the domain confusion (Chang et al., 2020).

Domain-augmented meta-learning framework deals with open domain generalization

problem, where knowledge extracted from distinct source domains is transferred to

an unseen target domain (Shu et al., 2021). To fill domain gaps, meta-learning is

adopted to minimize the distance of generalizable representations rather than dis-

tribution distance among source and target domains. Feature-level and label-level

augmentations are developed to overcome the disparate label sets caused by mi-

nor class in open domain generalization. Novel target discovery method explores

the underlying structures from seen classes and interpretable semantic attributes

from unseen classes simultaneously, where partial alignment is preserved to mitigate

domain shift when target label space is larger than source label space. Attribute

propagation is proposed to discover visual semantic matching for unknown classes

based on graph structure (Jing et al., 2021). Soft unknown-class rejection method

overcomes the sensitivity caused by predicting unknown classes according to cru-

cial hyperparameters, which assigns soft weights to target samples in view of their

entropy values (Xu et al., 2021b). Progressive graph learning deals with open-set

transfer learning without source data, which decomposes shared and unknown sub-

spaces of target domain to reduce source partial risk and progressively reject target

samples with low confidence as unknown classes to eliminate open-set risk. At the

same time, both graph-structured sample-level and manifold-level distributions are

aligned to fill conditional shift between domains (Luo et al., 2020, 2022).

2.4.3 Partial Transfer Learning

The challenge of partial transfer learning is how to identify samples from shared

categories to transfer knowledge across domains and remove samples from unshared

categories to reduce negative transfer. Selective adversarial network minimizes the

discrepancy between the source and target distributions in the shared label space
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and filters out unshared labels using the multi-discriminator domain adversarial net-

work (Cao et al., 2018a). Graph partial domain adaptation network develops a label

relational graph controlled by the moving average centroid separation constraint to

match the feature distributions as well as the data structure of the shared categories

(Yang et al., 2020a). Example transfer network proposes a transferability weighting

framework to discover shared label space automatically in terms of the similarity

between each source sample and the target domain (Cao et al., 2019). Domain

adversarial reinforcement learning gradually selects source shared samples by in-

troducing deep Q-learning strategy controlled by the action-value function, which

designs a reward framework to guide the selection policy to automatically select

usable source samples to adapt to the target domain (Chen et al., 2022b). Multiple

self-attention network extracts both effective high-level context features and low-

level structural features by introducing a gradual feature enhancement manner based

on self-attention module to adversarial learning, which filters out unshared source

samples using multiple domain discriminators with a weighting scheme (Zhang and

Zhao, 2021).

2.4.4 Universal Transfer Learning

Universal transfer learning is a pretty new setting, the main challenge is how to

divide shared categories from private categories of each domain. The early research

on universal transfer learning is universal domain adaptation, which develops an

end-to-end solution based on a weighting mechanism by exploring both similarity

and prediction uncertainty to discover shared label set (You et al., 2019). Univer-

sal multi-source adaptation network designs a novel pseudo-margin vector to select

reliable samples belonging to shared label set, which aligns multiple source and

target domains via adversarial learning, and a theory analysis on loss function is

provided (Yin et al., 2022). Domain consensus clustering divides shared categories
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and private categories by exploiting both semantic-level and sample-level consensus

knowledge, where cycle-consistent clusters and cross-domain classification agreement

are used to determine common classes and private classes, respectively (Li et al.,

2021a). Domain adaptative neighborhood clustering via entropy optimization com-

bines neighborhood clustering with entropy-based feature alignment and rejection

to select common class samples and reject unknown samples, where self-supervised

learning is adopted based on the pseudo labels provided by neighborhood cluster-

ing to match each target sample to source domain (Saito et al., 2020). Universal

source-free domain adaptation develops a two-stage learning process to solve univer-

sal domain adaptation without source data, where the procurement stage leverages

available source data to enhance the rejection of out-of-source distribution samples

by building a generative classifier framework, while the deployment stage operates

wide range of category-gaps by defining an instance-level weighting mechanism to

adapt domains (Kundu et al., 2020a). One-vs-all network learns a closed-set clas-

sifier to categorize known classes which is parameterized by cross-entropy loss, and

a classifier for each source class to define the boundary between the positive and

the nearest negative samples by minimizing open-set entropy which determines a

threshold based on the assumptions of all classifiers to reject unknown classes (Saito

and Saenko, 2021). Active universal domain adaptation not only categorizes known

classes but also recognizes the unknown classes, where adversarial and diverse cur-

riculum learning are used to train source model which predicts known samples. To

infer target-private labels, a small budget of annotated target samples provided by

active learning is adopted to assist in dividing unknown classes (Ma et al., 2021b).

Universal model adaptation learns a two-head classifier from the source domain

and applies it to the target domain with an informative consistency score to divide

known and unknown samples in the target domain Liang et al. (2021b). In the

source model training procedure, a closed-set classifier is learned to predict the soft-
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max class probability, while in the model adaptation process, a threshold defined by

the mean informative consistency is used to select unknown samples.

2.5 Source-Free Transfer Learning

To handle data privacy concerns, source-free domain adaptation is proposed

Liang et al. (2020); Zhao et al. (2019a); Liang et al. (2021b, 2022); Wu et al. (2021);

Ahmed et al. (2022). Two approaches are commonly employed to transfer knowledge

across domains without source data, including data generation Li et al. (2020d) and

model adaptation Yang et al. (2021c). Data generation methods are developed

based on generative adversarial network Hou and Zheng (2020). The central idea

is constructing source-like or target-like samples using a generator, then reducing

the difference between the generated and real samples by a discriminator to adapt

the source model to the target domain. A recent study- source data free domain

adaptation- learns joint distribution of source domain by producing source-style

proxy samples from the pre-trained source classifier. The learned distribution is then

used to extract invariant features of the unlabeled target domain to fine-tune the pre-

trained model Kurmi et al. (2021a). Model adaptation methods depend mainly on a

pseudo-labeling strategy Wang et al. (2022). Unsupervised learning techniques, such

as clustering, are employed to provide pseudo target labels. The target model is then

trained based on the source model in a self-supervised way. A previous multi-source

data free domain adaptation method adopts weighted information maximization and

weighted pseudo-labeling to combine source predictions automatically and collect

target labels, the target model is trained by jointly optimizing the source feature

encoders with corresponding weights Ahmed et al. (2021).

Commonly used pseudo-labeling techniques includes clustering and K-nearest

neighbors. To perform source model on a target domain without source data, robust

adaptation is proposed to preserve the robustness and performance of the pre-trained
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source model, where standard models are employed to provide pseudo target labels

with less noise, while robust models are used to generate adversarial target samples

which expect to enhance the domain alignment Agarwal et al. (2021). Casting a

BAIT deals with both online and offline source-free domain adaptation by building

a two-step optimization policy, where an extra classifier which identifies certain and

uncertain features is introduced to find misalignment samples, while the multi-class

source classifier is used to provide class anchors Yang et al. (2021b). Universal black-

box domain adaptation converts the target task into sub-tasks, including in-class

discrimination and out-task detection, where the in-class task learns a multi-class

classifier to categorize target labels in known classes, while out-class task learns a

binary classifier to reject unknown classes (Deng et al., 2021).

2.6 Methods for Transfer Learning

2.6.1 Weakly-Supervised Learning Methods

Weakly-supervised learning is one of the powerful algorithms to handle transfer

learning in the situation where the domain has a proportion of weighted inaccurately

labeled or incomplete labeled samples by training multiple weak predictors (Zhang,

2019).

Semi-supervised transfer learning is a typical method of weakly-supervised learn-

ing (Kipf and Welling, 2016; Yao et al., 2015; Xiao and Guo, 2014). Instance

constraints, an adaptive SVM based transfer learning method including projective

model transfer SVM and max-margin domain transforms, is proposed to transfer

classifiers learned from a source domain containing available labeled and unlabeled

samples (Donahue et al., 2013). Generalized distillation semi-supervised domain

adaptation transfers knowledge obtained from the unlabeled data to target task

without the access to source domain (Ao et al., 2017). Soft labels of target data and

SVM which is treated as the base classifier are employed to solve the problem and
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estimate parameters. Minimax entropy approach is proposed to solve contemporary

domain adaptation where there are very few labeled samples in source domain, which

estimates domain-invariant prototypes by minimizing the discrepancy between the

class prototypes and the unlabeled target domain (Saito et al., 2019).

Active learning is another attractive weakly-supervised learning method that

leverages knowledge gained from the selected informative unlabeled samples from a

target domain (Settles, 2009; Yang et al., 2013; Wang et al., 2014), which genera-

tively labels the chosen samples and uses them to form a new training set combining

with the existing labeled samples. Multi-kernel learning with active learning devel-

ops a hyperspectral image classification method based on active learning and domain

adaptation, which aims to learn a multi-kernel classifier using newly formed train-

ing data containing labeled source samples and selected user-labeled target samples

(Deng et al., 2018a). Deep joint spectral-spatial feature learning handles image

classification task using hierarchical stacked sparse auto-encoder networks and ac-

tive learning. The former aims to extract specific discriminative features, the latter

aims to transfer the learned information based on limited labeled samples from both

source and target domains (Deng et al., 2018b). Infinite Gaussian mixture model

with active learning takes advantage of Gibbs sampling strategy and the interac-

tive query strategy to identify the data correlation in source and target domains

and enhance the transfer performance (Zuo et al., 2018a). Heterogeneous transfer

learning through active correspondences construction handles cross-language text

classification by exploiting correspondences between source and target domains to

complete low-rank matrices and reconstruct the generate unprecise target samples

(Zhou et al., 2016).
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2.6.2 Unsupervised Learning Methods

This section lists two kinds of unsupervised transfer learning methods, including

deep learning based methods and fuzzy system based methods.

Deep learning has been used in many applications, and now becomes the main

trend of most research fields related to artificial intelligence (LeCun et al., 2015;

Zhuang et al., 2020; Caron et al., 2020), such as nature language processing (Dong

et al., 2019; Malte and Ratadiya, 2019), image processing (Qin et al., 2019; Jing

and Tian, 2020), recommendation system (Hu et al., 2018a), biological application

(Gupta et al., 2020; Yu et al., 2019c) and so on. To explore the transferability of deep

networks and find when and where to transfer, previous studies have provided some

related theory analysis and experimental verifications (Liu et al., 2019b; Jang et al.,

2019). Here we divide deep learning based transfer learning methods into three

types: convolutional neural network based method, generative adversarial neural

network based method and graph neural network based method.

For convolutional neural network based methods, pre-trained deep networks are

widely employed to extract shared feature of source and target domains (Zhang

et al., 2017; Zhu et al., 2019b; Kurmi et al., 2019). Transfer channel pruning aims

to reduce the high computational cost of deep transfer networks by compressing

the model, which removes the less important parameters of shared network by re-

weighting contribution degree of channels (Yu et al., 2019b).

For generative adversarial neural network based methods, a typical study is gen-

erative domain adaptation network (Gong et al., 2018). It captures distribution

changes between two domains and generates new data for the extracted latent fea-

tures. To avoid high dimension problems caused by generating all features together,

the improved method causal G-DAN is developed to collect low dimension data

by decomposing the joint distributions into separate modules. Deep adversarial
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attention alignment network combines attention alignment and cycle generative ad-

versarial network to transfer knowledge in all hidden layers under the assumption

that discriminative information in an image rarely changes with the style of the

image (Kang et al., 2018). Generative pseudo-label refinement exploits the ability

of conditional generative adversarial network and applies it to transfer learning to

deal with noise of pseudo labels of target domain resulted from domain shift when

using model trained on source domain, which can generate clean target samples by

adversarial learning (Morerio et al., 2020). Domain impression builds a generative

framework to deal with source-free domain adaptation with noise (Kurmi et al.,

2021b). It includes both generation and adaptation modules. The generation mod-

ule first obtains samples that can be divided correctly by the source classifier to

train a discriminator. Then the adaptation module fits the source classifier to the

target domain by minimizing the likelihood loss using an adversarial way.

Graph neural network is a new type of deep network that differs from convo-

lutional neural network (Kipf and Welling, 2016; Wang et al., 2019c; Ding et al.,

2018a; Das and Lee, 2018; Ma et al., 2019), transfer learning based on this struc-

ture still need further exploration. Adversarial domain adaptation with graph con-

volution handles node classification by combining adversarial learning and graph

convolution, which extracts network invariant representations by minimizing the

Wasserstein-1 distance between source and target domains instead of the binary

classification in original adversarial networks (Dai et al., 2019). By doing this, it

is desired to improve the stability of the model. Domain adaptation through graph

method constructs auxiliary domains based on graphs to describe the dependencies

among domains, and introduces metadata information to deep network structures

to explore the relation between source and target samples (Mancini et al., 2019).

Learning to combine explores the interaction among domains by constructing graph-

structured data, where prototypes of multiple domains are combined to discover the
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information propagation (Wang et al., 2020a). Self-supervised graph neural network

builds a multi-source domain adaptation structure by connecting the self-supervised

and the target tasks, which employs mask token strategy to take each sourced do-

main as a token, and predicts a domain based on random masking domain informa-

tion, where richer representation information can be extracted since the mask token

provides multiple graph maps for the same sample (Yuan et al., 2022).

Fuzzy system learning methods take uncertainty in dynamic environments into

consideration to solve transfer learning problems (Shell and Coupland, 2015; Liu

et al., 2018). Takagi-Sugeno (TS) and Takagi-Sugeno-Kang (TSK) fuzzy models are

two popular rule-based fuzzy systems used in transfer learning (Zuo et al., 2016,

2018a; Deng et al., 2014; Xie et al., 2018). Granular fuzzy regression domain adap-

tation combines fuzzy system and granular computing, and builds three domain

adaptation tasks according to the fuzzy rules and their conclusions in source and

target domains (Zuo et al., 2017). Transfer representation learning with TSK fuzzy

system extracts representations of original data in fuzzy feature space using fuzzy

rules instead of in high-dimensional space using kernel-based nonlinear mapping,

and reduces the complexity of data using linear discriminant analysis and principal

component analysis, which at the same time can protect the discriminant knowl-

edge and geometric properties of data (Xu et al., 2021a). Transfer learning based

on fuzzy residual adopts a residual function to generate target rules from learned

source hypothesis, where TSK fuzzy rules are used to describe the marginal distri-

bution of data, which treat target model as a combination of source tasks, making

it possible for updating target model in a model-agnostic way (Chen et al., 2022a).

Fuzzy multi-output transfer learning considers the shareness and uniqueness of mul-

tiple outputs reflected by source fuzzy rules constructed from both output-input

dependencies and inter-output correlations, and transfers the learned fuzzy rules to

a target domain (Che et al., 2021).
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2.7 Summary

Transfer learning is a powerful tool to predict tasks with inadequate information.

Existing methods gain much progress in solving different types of transfer learning

settings. However, there are still research gaps. For instance, the relationships be-

tween multiple source and target domains need further exploration, multiple source

domains with different label spaces remain unsolved. Therefore, this thesis aims

to fill the mentioned gaps by developing new multi-source transfer learning meth-

ods. Motivated by previous studies mentioned in sections 2.1 and 2.2, in chapters

3, 4 and 5, RO 1 and RO 2 are solved by designing new distribution approaches

to eliminate the data shift and define the transferable information. The heteroge-

neous features introduced in section 2.3 are also considered in chapter 4. To extend

multi-source transfer learning to more challenging settings introduced in sections

2.4 and 2.5, chapters 6, 7 and 8 solve RO 3 and RO 4 to explore the source-free

transfer learning with heterogeneous label spaces. Deep neural networks and fuzzy

model introduced in section 2.6 are adopted to construct new models, where RO 5

is achieved. Following chapters introduce our works in details.
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Chapter 3

Multi-Source Contribution Learning for Domain

Adaptation

3.1 Introduction

As discussed in Chapter 1, many existing transfer learning methods focus on

learning one discriminator with single source domain. Sometimes, knowledge from

single source domain might not be enough for predicting the target task. For ex-

ample, in disease diagnosis, hospital A has rich experience and data on children,

while hospital B provides data on adults. Learning only from hospital A or B is not

enough to obtain a model that can perform well on patients in different ages. Thus,

multiple source domains carrying richer transferable information are considered to

complete the target task. To fully explore transfer knowledge from multiple source

domains, taking advantage of deep learning, convolutional neural networks (CNNs),

such as AlexNet (Krizhevsky et al., 2012) and ResNet (He et al., 2016) pre-trained

on ImageNet, are widely used to transform source and target data into a latent fea-

ture space and extract robust representations (Long et al., 2015; Sun and Saenko,

2016) for visual domain adaptation.

Information from multiple source domains enriches the transfer knowledge com-

pared with that from single source domain. However, multi-source domain adap-

tation also introduces a major challenge to this research field because of domain

shifts, which means we cannot simply combine all source domains as one (Mansour

et al., 2009; Redko et al., 2019b). Some methods are developed to tackle multi-

source domain adaptation (Li et al., 2018d; Zhao et al., 2018; Zhu et al., 2019a; Liu
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et al., 2021), while most previous multi-source domain adaptation methods complete

a target predictor by averaging all source predictions without due consideration of

their different contributions, in other words, how important a source domain is to

the target domain. An important source domain indicates it is more similar to tar-

get domain and should gain larger combination weight. Different source domains

commonly deliver different contributions, which means the combination weights of

sources may need to be designed rather than averaging. Although weighted combi-

nation is employed (Xu et al., 2018; Peng et al., 2019a; Zhao et al., 2020a), in fact,

the weights with minor different quantities might lead to parallel performance as

averaged combination, and it might be invalid where the contributions of sources

have significant difference, which can result in negative transfer. Negative transfer

is a fairly common phenomenon, but identifying when and where it occurs is both

difficult and challenging, and there is still no effective way of identifying it.

To measure contributions of multiple sources and reduce the degrading influ-

ence of negative transfer which harms the final performance of target predictor, we

propose two strategies: a weight learning method with pseudo labels and a fuzzy

combination rule for multi-source domain adaptation. The proposed framework

adapts all source and target domains simultaneously by minimizing their discrepan-

cies. At the same time, since the target domain might contain diverse characteristics

which can be represented by different source domains, the diversities of domains are

learned by maximizing their discrepancies. To measure the discrepancy between

two domains, both domain-level and class-level discrepancies are considered. Our

contributions can be summarized as following:

• Development of a new method to learn weights of source domains using their

predicted pseudo labels of target domain. The learned weights are then applied

to complete the target predictor, which can take advantage of the best per-

forming source domain. In this way, it will guarantee the target performance
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if source predictions exhibit significant difference;

• A representation extraction framework to explore the similarities and the di-

versities among all source and target domains, which enriches transfer infor-

mation by providing multiple views of common and specific features. This is

valuable when we come to explore target features from multiple aspects and

extract comprehensive information, while many existing studies only focus on

similarities but ignore diversities;

• An alignment structure to learn the similarities between source and target do-

mains by measuring domain-level and class-level discrepancies simultaneously,

which undermines the misalignment of boundary samples. It can enlarge the

category distance and reduce the influence of cluster boundaries.

• A fuzzy combination rule for conjoining source classifiers to predict target

labels. This is the first study to employ fuzzy membership to define the source

contribution to the target task.

3.2 Problem Setting and Notations

We focus on homogeneous unsupervised multi-source domain adaptation, where

the feature spaces of labeled source domains and unlabeled target domain have

the same dimension. Given K labeled source domains {Dsk}Kk=1, for each domain

Dsk = {(Xsk , Ysk)} = {(xisk ,y
i
sk
)}nsk
i=1, where Xsk ∈ X represents observed samples

which follow distribution Psk and Ysk ∈ Y indicates corresponding labels of Xsk ,

X ,Y indicate original data space and label set, and ns indicates the number of

samples in each source domain. The unlabeled target domain is represented as

Dt = {Xt} = {xjt}
nt
j=1, where Xt ∈ X follows distribution Pt and nt is the number

of samples. All source and target domains share the same categories, which means

the predicted target label Yt ∈ Y . We apply the proposed method mainly to image
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classification.

3.3 The Proposed Multi-Source Contribution Learning Method

The proposed method contains three parts: multi-view feature extraction, multi-

level distribution matching and source specific predictors and target predictor learn-

ing. The target predictor learning is achieved using two strategies, weight adjustment-

based strategy as shown in Fig. 3.1(a), fuzzy rule-based strategy as shown in Fig.

3.1(b). As showed in Fig. 3.1(a), feature extraction entails extracting features that

are shared, common and diverse. Shared features are obtained using pre-trained net-

works which are learned from a very large dataset ImageNet before being divided

into common and diverse features (detailed in section 3.3.1). The former represents

common knowledge across all domains, the latter specifies knowledge shared by each

source and target domains. This approach is expected to express target domain from

different perspectives and provide richer information for completing the target task.

These extracted multi-view features are then fed into distribution matching, where

domain-level matching is employed to adapt source and target features, while class-

level matching reduces the misalignment of boundary samples. Source predictors

are learned using matched features of source and target domains, while the target

predictor is completed by combining source predictors with adjusted weights, which

is chosen to reduce negative transfer. In Fig. 3.1(b), target predictor is built by

fuzzy rules. Entropy assumption is employed to estimate the similarity of a source

sample belonging to a category. By dividing the estimated similarities into different

groups, training samples in each source domain are split into multiple clusters, thus

fuzzy rules are built to learn new source classifiers. All source classifiers are com-

bined to complete the target task. In order to learn the combination weights, fuzzy

membership is estimated using the domain discriminator.
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(a) Weight adjustment-based method.

(b) Fuzzy rule-based method.

Figure 3.1 : The whole framework of the proposed method. Shared features are

collected using pre-trained networks. Common features represent similarities among

all source and target domains, while diverse features represent diversities contained

in the target domain which can be expressed by different source domains. Target k

means features of target collected using kth source features extraction networks.
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3.3.1 Multi-view Feature Extracting

Aiming to extract latent features of source and target domains for adapting, a

pre-trained deep neural network ϕ is first used to transform the original data into a

shared feature space. The transformation can be expressed as:

f isk = ϕ(xisk ,θ),

f jt = ϕ(xjt ,θ),

i = 1, 2, . . . , nsk ,j = 1, 2, . . . , nt, k = 1, 2, . . . , K,

(3.1)

where fsk ,ft represent features in shared feature space, θ means parameters of deep

network ϕ.

Normally a picture shows features from multiple aspects such as context, edge,

chrominance, luminance and so on. Based on this fact, the target domain may

have multiple aspect characteristics that each view of these characteristics can be

reflected by a source domain as being more similar than others. For example, in

dataset Office-Home (Venkateswara et al., 2017), domain Clipart might resemble

domain Art more on image text since they all have artistic pictures. At the same

time, it might be more similar to domain Product on image edge because they are all

without background. Fig. 3.2 shows an example of diverse characteristics contained

in source and target domains. Assuming each shape in the figure indicates a different

characteristic of the target domain, and if this characteristic can be extracted as one

kind of feature in latent space, what we expect is to find that characteristic in the

source domain which is similar to that from target domain. One source domain

might contain partial views, and the union of all source domains could cover more

target-like characteristics than any single source domain.

Taking the described factor into consideration, the collected shared features are

then split into two parts to represent the target domain more completely. One part

carries common transferable information, and the other holds diverse transferable
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(a) Source doamin (b) Target domain

Figure 3.2 : An example of characteristics contained in source and target domains.

Common means similar information among all domains, view means the information

which is similar between a source and the target but different from other source

domains. View k means information of the kth source domain.

information. The common feature extraction can be represented as:

f icsk
= ϕck(f

i
sk
,θck),

f jctk
= ϕck(f

j
t ,θck),

i = 1, 2, . . . , nsk ,j = 1, 2, . . . , nt, k = 1, 2, . . . , K,

(3.2)

while the diverse feature extraction is:

f idsk
= ϕdk(f

i
sk
,θdk),

f jdtk
= ϕdk(f

j
t ,θdk),

i = 1, 2, . . . , nsk ,j = 1, 2, . . . , nt, k = 1, 2, . . . , K,

(3.3)

where ϕck , ϕdk mean feature extractors of kth source domain, and θck ,θdk are cor-

responding parameters. Each view diverse features can be homogeneous or hetero-

geneous compared with other views, which means the structures of {ϕdk}Kk=1 can be

different. Besides, ϕck and ϕdk can distill redundancy information to some degree
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by reducing the dimension of shared features fsk and ft. This dimension reduction

is widely used in domain adaptation.

3.3.2 Multi-level Distribution Adapting

The common features extracting processing is controlled by minimizing any dis-

crepancy of common features among all domains, including within source domains

and between each source and target domains. Since the target domain has multi-

view features, we first adapt source domains from the common view, while the

adaptation of sources and target will be done later with the diverse features. Here

we choose MMD as the discrepancy measure, measuring the loss function of source

common features extraction. It can be written as:

Lc =
2

K(K − 1)

K−1∑
k1=1

K∑
k2=k1+1

MMD(Dsk1 ,Dsk2 )

=
2

K(K − 1)

K−1∑
k1=1

K∑
k2=k1+1∥∥∥∥∥∥ 1

nsk1

nsk1∑
i=1

ψ(f icsk1
)− 1

nsk2

nsk2∑
j=1

ψ(f jcsk2
)

∥∥∥∥∥∥
2

H

,

(3.4)

where ∥·∥H indicates the reproducing kernel Hillbert space (RKHS) norm, and ψ

is kernel-induced feature transformation. During training, the number of samples,

nsk1 and nsk2 , can be replaced with batch size. This operation is applicable to all

MMD calculations in this chapter.

For diverse views, a preferred solution is training a multiple structure networks

to extract these features from the target domain directly. However, since the target

data is unlabeled, this entirely unsupervised collecting of features for a target task

without any assistance rarely meets requirement. Considering this, it can be adapted

for extracting diverse features of source domains by maximizing the discrepancy of

sources and matching distributions of sources and target simultaneously from diverse

views. This can avoid the high correlation between common and diverse features at
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the same time. The source diverse features extraction loss function is:

Ld =
2

K(K − 1)

K−1∑
k1=1

K∑
k2=k1+1

MMD(Dsk1 ,Dsk2 )

=
2

K(K − 1)

K−1∑
k1=1

K∑
k2=k1+1∥∥∥∥∥∥ 1

nsk1

nsk1∑
i=1

ψ(F i
dsk1

)− 1

nsk2

nsk2∑
j=1

ψ(F j
dsk2

)

∥∥∥∥∥∥
2

H

,

(3.5)

where {Fdsk1 ,Fdsk2 } = {fdsk1 ,fdsk2 }, if fdsk1 ,fdsk2 ∈ Rm, which means homogeneous.

Fdsk1
= [fdsk1

;Om2 ] and Fdsk2
= [Om1 ;fdsk2

] if fdsk1
∈ Rm1 and fdsk2

∈ Rm2 ,m1 ̸= m2,

which means heterogeneous, O is a null matrix. As mentioned before, in this work,

we only explore the homogeneous setting but might focus on a heterogeneous setting

as future work. Then the total loss of source domains adaptation processing is:

Ls = Lc − Ld. (3.6)

The extracting of these features for each source domain is controlled by map-

ping source and target distributions. For each source domain Dsk , the domain-level

distribution matching is:

Ldomain =MMD(Dsk ,Dt) =∥∥∥∥∥ 1

nsk

nsk∑
i=1

ψ(F i
catsk

)− 1

nt

nt∑
j=1

ψ(F j
cattk

)

∥∥∥∥∥
2

H

,
(3.7)

where Fcatsk = [fcsk ;fdsk ], Fcatdk = [fctk ;fdtk ].

Except for adapting each source and target on domain-level, in order to reduce

the misalignment of boundary samples, we also consider the class-level distribution

matching. A simple synthetic example of boundary samples is given in Fig. 3.3.

If the black line is the classifier, samples around it may attract wrong labels. For

most complex classification tasks, softmax function is a widely used technology to

compute the probabilities of a sample belonging to all classes and to choose the
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maximal one as its final label. However, samples near class boundaries may get

the same probabilities of different classes or a wrong maximal class probability, so

we consider maximizing discrepancy among different classes and minimizing the

discrepancy within the same classes to solve this problem.

(a) Original classes (b) Learning classes

Figure 3.3 : An example of boundary samples.

The class-level distribution matching is controlled by:

Lclass =
1

C

C∑
r=1

MMD(Drsk ,D
r
t )

−
( 2λ

3C(C − 1)

C−1∑
r1=1

C∑
r2=r1+1

(MMD(Dr1sk ,D
r2
sk
) +MMD(Dr1t ,Dr2t ))

)
− λ

3C(C − 1)

C∑
rs=1

C∑
rt ̸=rs

MMD(Drssk ,D
rt
t ).

(3.8)

Symbols r, n with superscripts or subscripts in above equations indicate correspond-

ing class index, number of features in each class respectively, C is the total categories

of domains, λ ∈ [0, 1] is a trade-off constant evaluating the contribution of inter-class

discrepancy.
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From equation (3.8), if all inter-class discrepancies are calculated, the compu-

tation will be high especially when the class number C is large. In practice, the

boundary samples are frequently misclassified between two nearest categories. To

reduce computation extent, equation (3.8) can be rewritten as below, where we

only maximizes the margin of the nearest two classes within each source and target

domains:

Lclass =
1

C

C∑
r=1

MMD(Drsk ,D
r
t )

−
(λ
2
(MMD(Drs1sk ,D

rs2
sk

)

+MMD(Drt1t ,Drt2t ))
)
,

(3.9)

where:

MMD(Drsk ,D
r
t ) =∥∥∥∥∥∥ 1

nrsk

nr
sk∑
i=1

ψ(pirsk · F
ir
catsk

)

− 1

nrtk

nr
tk∑

j=1

ψ(pjrtk · F
jr
cattk

)

∥∥∥∥∥∥
2

H

,

(3.10)

MMD(Drs1sk ,D
rs2
sk

)) =∥∥∥∥∥∥ 1

nrs1sk

n
rs1
sk∑
i=1

ψ(pirs1sk
· F irs1

catsk
)

− 1

nrs2sk

n
rs2
sk∑
j=1

ψ(pjrs2sk
· F jrs2

catsk
)

∥∥∥∥∥∥
2

H

,

(3.11)

MMD(Drt1t ,Drt2t ) =∥∥∥∥∥∥ 1

nrt1tk

n
rt1
tk∑
i=1

ψ(pirt1tk
· F irt1

cattk
)

− 1

nrt2tk

n
rt2
tk∑
j=1

ψ(pjrt2tk
· F jrt2

cattk
)

∥∥∥∥∥∥
2

H

.

(3.12)
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p is the probability of a sample belonging to class r, subscript s1, t1 indicate the

maximal class probabilities, s2, t2 represent the second maximal class probabilities.

The total loss of target domain adaptation is :

Lt = Ldomain + Lclass. (3.13)

3.3.3 Predictions Learning Based on Weight Adjustment

After adapting all source and target domains, the predictors of source tasks can

be learned and applied to the target task. Cross entropy is employed to optimize

the predictors, for each source domain Dk, it can be represented as:

Lp = −
1

nsk

nsk∑
i=1

yisk log
(
Psk(F

i
catsk

)
)
, (3.14)

Psk is the predictor of kth source domain. When applying the learned source pre-

dictors to the target task, it is desired that all source predictors could return the

same results as the same target samples. So the cross-domain constraint is added

to minimize errors of different predictions on the same target samples:

Lcro =
2

K(K − 1)

K−1∑
k1=1

K∑
k2=k1+1( 1

nt

nt∑
j=1

∣∣Psk1(F j
cattk1

)
− Psk2

(
F j
cattk2

)∣∣). (3.15)

The total loss of predictor learning of each source is:

L = Lp + αLs + βLt + γLcro, (3.16)

α, β, γ are trade-off parameters.

To complete target task with multiple source predictions, a weights learning

method is developed to evaluate the contributions of sources. Many previous studies

weigh source predictions using average mean method or by normalizing similarities
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based on distribution distance. A simple and usual similarity learning is:

ωksim =
1

Dis(Dsk ,Dt)
,

ωsk =
ωksim∑K
k′=1 ω

k′
sim

,

(3.17)

Dis(Dsk ,Dt) means the distribution distance of kth source and target domains in

shared feature space. In our work, it is:

Dis(Dsk ,Dt) =MMD(Dsk ,Dt) =∥∥∥∥∥ 1

nsk

nsk∑
i=1

ψ(f isk)−
1

nt

nt∑
j=1

ψ(f jt )

∥∥∥∥∥
2

H

.
(3.18)

The corresponding target prediction can be expressed as:

yt =
K∑
k=1

ωsk · Psk(Fcattk ). (3.19)

This method indeed yields larger weights of the more similar source predictions.

However, if the source performances have obvious differences, the minor disparities

of weight values may fail to return preferable results on the target. To increase

the disparities between source weights, we add an adjusting constant controlled by

prediction labels to adjust the weight values. By doing this, the closest source

domain is expected to dominate the prediction of target samples. As mentioned in

equation (3.15), cross-domain constraint is used to ensure that the multiple source

predictors could return the same label of the same target sample. Hence, weight

adjustment mainly affects the target samples that are predicted differently by the

source classifiers. For those samples, strengthening the importance of the target

labels returned by the closest source domain and weakening those returned by the

furthest source domains could guarantee that we get the correct labels with high

probability.

It is assumed that the same predicted pseudo target labels returned by source

predictors are “correct labels”. These “correct labels” are used to decide when
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the original source weights ωsk should be adjusted. Since the prediction learning

is processed based on batches and not the whole dataset, the threshold value of

“correct labels” is set as a, while the number of target samples in every iteration

is b. The threshold means the source classifiers perform quite stably on the target

domain, indicating that there is no need to adjust weights over each sample, which

might be time-consuming.

Pseudo labels returned by each source predictor is:

ytk = Psk(Fcattk ).
(3.20)

Then the “correct labels” can be expressed as:

ytc = Z({ytk}Kk=1),

ntc = C(ytc),
(3.21)

where Z is the operation to get the same predicted labels, C means function to count

the number ntc of “correct labels”. When ntc >= a, the source weights in equation

(3.17) can be rewritten as:

ωsk = R(G(ωsk + (1− a/b))),

ωsk = ωsk +
a

K · b
+

(K − 2) · a
K(K − 1) · b

,

if.ωsk = max[ωs1 , ωs2 , · · · , ωsK ],

ωsk = R(G(ωsk − (1− a/b))),

ωsk = ωsk −
a

K · b
,

if.ωsk = min[ωs1 , ωs2 , · · · , ωsK ],

ωsk = R(G(ωsk)),

ωsk = ωsk −
a

K(K − 1) · b
,

(3.22)

where G is sigmoid function, R is normalized function R = ωsk∑K
sk′=1 ωsk′

, ωsk satisfy∑K
k=1 ωsk = 1. Apply the above new weights to equation (3.19) when ntc is larger
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than threshold, target labels can be predicted. The whole processing is described in

Algorithm 1.

3.3.4 Predictions Learning Based on Fuzzy Rules

The Takagi–Sugeno fuzzy model is a popular fuzzy architecture. For data pair

(x,y), the rule is:

if x is Am, then y is Pm(x),m = 1, 2, · · · ,M. (3.23)

Am is the fuzzy set of the mth rule, Pm is the corresponding output function. The

output of the fuzzy system is expressed as:

y =
M∑
m=1

pm · Pm(x) (3.24)

pm is the membership of data belonging to a set.

In the classification task, the classifier can identify an item in different views, for

example, front view, partial view, rotate view and so on. It cannot distinguish the

different views of the item but only “remembers” its features during learning. The

information level of the same item in different views is actually different, and sam-

ples with the same level information are more similar to each other compared with

those with different level information. Hence, according to the information level,

to construct a fuzzy model for classification, we divide the samples into multiple

groups to learn the multiple classifiers of each source domain, which is expected to

benefit the classification.

Using the estimated similarity to represent the information level contained in a

sample, the similarity of each sample belonging to the class in kth source domain

can be estimated by the classifier:

psk = max(Psk(ϕk(ϕ(xsk)))) = max(Psk(Fcatsk )), psk ∈ [0, 1] (3.25)

where ϕk = (ϕck , ϕdk).
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Algorithm 1 Weight adjustment-based multi-source domain adaptation

1: Input: Source domains {Dsk}Kk=1, target domain Dt, training iteration I, pre-trained

model ϕ(·,θ);

2: Initialization: Feature extraction networks {ϕck(·,θck)}Kk=1, {ϕdk(·,θdk)}Kk=1, and

source predictors {Psk}Kk=1;

3: for ϵ = 1, ϵ < I, ϵ++, do

4: {(xsk ,ysk)}Kk=1 ← collect m batch pairs from corresponding Dsk randomly;

{xt} ← collect m batch pairs from Dt randomly;

5: {fsk ,ft}Kk=1 ← {ϕ({xsk ,xt},θ)}Kk=1, collect shared features according to (3.1);

6: {fcsk ,fctk}
K
k=1 ← {ϕck({fsk ,ft},θck)}Kk=1, collect common features according to

(3.2);

7: {fdsk ,fdtk}
K
k=1 ← {ϕdk({fsk ,ft},θdk)}Kk=1, collect diverse features according to

(3.3);

8: Ls ← Lc − Ld, compute loss within source domains according to (3.4), (3.5) and

(3.6);

9: Lt ← Ldomain + Lclass, compute loss between source and target domains according

to (3.7), (3.9) and (3.13);

10: Compute prediction loss Lp according to (3.14);

11: Compute cross-domain constrain loss Lcro according to (3.15);

12: Compute total loss L according to (3.16);

13: Compute ωsk according to (3.17);

14: {ytk}Kk=1 ← {Psk(Fcattk )}
K
k=1, collect pseudo labels according to (3.20);

15: ytc ← Z({ytk}Kk=1), ntc ← C(ytc), collect the same labels according to (3.21);

16: if ntc >= a then

17: Adjust ωsk according to (3.22);

18: end if

19: yt ←
∑K

k=1 ωsk · Psk(Fcattk ), return target labels according to (3.19)

20: Update ϕ(·,θ), {ϕck(·,θck)}Kk=1, {ϕdk(·,θdk)}Kk=1, and source predictors {Psk}Kk=1;

21: end for

22: Output: Predicted target label yt.
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Divide the closed interval [0, 1] into M sub-intervals, [0, a1), · · · , [ak−1, ak), · · · ,

[aM−1, 1], the source samples are split into different clusters according to the value

of the estimated similarity. For the mth cluster, a classifier Pskm is trained by mini-

mizing the cross-entropy loss:

Lm = − 1

nskm

nskm∑
i=1

yisk log(Pskm(F
i
catsk

)). (3.26)

nskm is the number of cluster samples.

A cluster discriminator is trained using samples from each cluster to estimate

the membership of new inputs. The cluster discriminator of the kth source domain

Pck is parameterized by:

LPc = −
1

nsk

nsk∑
i=1

yick log(Pck(F
i
catsk

)). (3.27)

yck is cluster label. The membership vector is:

pck = Pck(Fcatsk ). (3.28)

The fuzzy model for each source domain in equations (3.23)-(3.24) can be re-written

as:

if xsk is Am, then ysk is Pskm(ϕk(ϕ(xsk))),m = 1, 2, · · · ,M. (3.29)

The prediction of kth source domain is expressed as:

ysk = pTck · Psk(ϕk(ϕ(xsk))) = pTck ·


Psk1(Fcatsk )

· · ·

PskM (Fcatsk )

 , (3.30)

Cross-entropy loss of Psk is:

LPf = −
1

nsk

nsk∑
i=1

yisk log(p
T
ck
· Psk(F

i
catsk

)). (3.31)

As in equation (3.15), the cross-domain constraint for learning source classifiers in
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the proposed fuzzy model is re-written as:

Lcrof =
2

K(K − 1)

K−1∑
k1=1

K∑
k2=k1+1( 1

nt

nt∑
j=1

∣∣pTck1 · Psk1
(F j

cattk1
)− pTck2

· Psk2
(F j

cattk2
)
∣∣). (3.32)

The loss of learning the fuzzy rule-based source classifier is:

Psk = argmin
Psk

∈H
(xsk

,ysk
)∼Dsk

M∑
m=1

Lm + λ1LPf + λ2Lcrof . (3.33)

To complete the target task, all source classifiers are combined to predict the

target labels, which can be expressed as a fuzzy model:

if xt is Dsk , then yt is pTck · Psk(ϕk(ϕ(xt))), k = 1, 2, · · · , K. (3.34)

The final prediction of the target data is:

yt = pTd ·


pTc1 · Ps1(ϕk(ϕ(xt)))

· · ·

pTcK · PsK (ϕk(ϕ(xt)))

 , (3.35)

pd is the membership vector, indicating the probability of the target samples be-

longing to a source domain.

To define the membership, pseudo label-based and feature-based strategies are

used to determine the combination rule. First, source classifiers directly pseudo label

the target data, noting the number of target samples which obtain the same results

from multiple source classifiers in each batch as nc, batch size as nb, the frequency

of nc = nb is ac, and a threshold a is defined to identify if there is a significant

difference among the predictions. If ac > a, it means multiple source domains

contribute similarly to the target domain, the averaged combination is then used,

the element value of pd is 1
K
, if ac ≤ a, a domain discriminator is used to estimate

the element values.
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We collected the shared features {fsk}Kk=1 and ft, the domain discriminator Pd

is controlled by:

LPd = −
1

ns

ns∑
i=1

yid log(Pd(f
i
s)). (3.36)

yd is domain label, fs =
K⋃
k=1

{fsk}, ns =
∑K

k=1 nsk . The membership vector is:

pd = Pd(ft),pd = [pd1 , · · · , pdK ]T . (3.37)

The combination rule of target classifier can be formulated as:

yt =


1
K

∑K
k=1(p

T
ck
· Psk(ϕk(ϕ(xt))), if ac > a,∑K

k=1 pdk · (pTck · Psk(ϕk(ϕ(xt))), if ac ≤ a,

k = 1, 2, · · · , K.

(3.38)

The whole processing is described in Algorithm 2.

Algorithm 2 Fuzzy rule-based multi-source domain adaptation

1: Input: Source domains {Dsk}Kk=1, target domain Dt, training iteration I, pre-trained

source classifier Psk , feature extractors ϕk, ϕ;

2: Initialization: Cluster discriminator Pck , domain discriminatorPd, fuzzy rules Psk ;

3: Build fuzzy sets according to (3.25)

4: Train cluster discriminator according to (3.27);

5: for ϵ = 1, ϵ < I, ϵ++, do

6: Build fuzzy rules as in (3.28), (3.29) and (3.29);

7: Compute loss of fuzzy rule-based classifier according to (3.33);

8: Update fuzzy rules Psk ;

9: end for

10: Train domain discriminator according to (3.36);

11: Compute target membership according to (3.37);

12: Output: Predicted target label yt.
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3.4 Experiments

In this section, we apply the proposed method to some popular real-world vi-

sual datasets for multiple sources domain adaptation classification tasks. Results,

comparison, and analysis will be provided.

3.4.1 Datasets and Baselines

Experimental datasets include Office-31, ImageCLEF-DA, Office-Home and Office-

Caltech10.

Office-31 is an unbalanced dataset comprising 4110 images from datasets Ama-

zon (A), Webcam (W) and DSLR (D) which share 31 categories, and each dataset

is regarded as a domain. Amazon contains 2817 images, Webcam has 795 images

and DSLR holds 498 images. The number of images in each category is differ-

ent. Proposed method is tested via building three tasks: A,W → D; A,D → W ;

D,W → A.

ImageCLEF-DA is a balanced dataset containing 1800 images from datasets

Caltech-256 (C), ImageNet ILSVRC 2012 (I) and Pascal VOC 2012 (P) which share

12 categories, each domain corresponding to a dataset. Every category contains 50

images and there are 600 images in each domain. Proposed method is tested via

building three tasks: I, C → P ; I, P → C; C,P → I.

Office-Home is a new and large unbalanced dataset consisting of 15588 images

from datasets Art (A), Clipart (C), Product (P) and Real World (R) which share 65

categories. Art has 2427 images, Clipart contains 4365 images, Product comprises

4439 images, and Real World holds 4357 images. Treating each dataset as a domain,

the proposed method is tested via building four tasks: A,C, P → R; A,C,R → P ;

A,P,R→ C, C,P,R→ A.

Office-Caltech10 is an unbalanced dataset extended by Office-31 and Caltech,
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which consists 2533 images sharing 10 categories. Caltech (C) contains 1123 images,

Amazon (A) contains 958 images, Webcam (W) holds 295 images, and DSLR (D)

has 157 images. Treating each dataset as a domain, proposed method is tested via

building four tasks: A,D,W → C; C,D,W → A; A,C,D → W , A,C,W → D.

There are three standards: “Single best”, “Source Combine” and “Multi-Source”.

“Single best” means the best performance of single source domain using the single

source domain adaptation method, “Source Combine” is performance returned by

a single source domain adaptation method with multiple sources, which unites all

source domains as one, “Multi-Source” is domain adaptation with multiple sources,

all methods complete target task using different combination rules. Comparable

state-of-the-art domain adaptation methods are as follows. The single source domain

adaptation methods include:

• DAN: Deep adaptation network (Long et al., 2015);

• RevGrad: Reverse gradient (Ganin and Lempitsky, 2015);

• D-CORAL: Correlation alignment for domain adaptation (Sun and Saenko,

2016);

• MRAN: Multi-representation adaptation network (Zhu et al., 2019b);

• MDDA: Manifold dynamic distribution adaptation (Wang et al., 2020b);

• DDAN: Dynamic distribution adaptation network (Wang et al., 2020b).

• MADA: Multi-adversarial domain adaptation (Pei et al., 2018);

• DAAN: Dynamic adversarial adaptation network (Yu et al., 2019a);

• ADDA: Adversarial discriminative domain adaptation (Tzeng et al., 2017);



62

• CyCADA: Cycle-consistent adversarial domain adaptation (Hoffman et al.,

2018);

The multi-source domain adaptation methods include:

• DCTN: Deep cocktail network (Xu et al., 2018);

• M3SDA: Moment matching for multi-source domain adaptation (Peng et al.,

2019a);

• MFSAN: Multiple feature spaces adaptation network (Zhu et al., 2019a);

• DFRE: Distribution fusion and relationship extraction network (Li et al.,

2020b).

All results for comparison are collected from previous studies based on ResNet,

except for MFSAN on datasets Office-Home and Office-Caltech10, and we ran them

ourselves using code released by authors ∗.

3.4.2 Parameter Setting and Effect of Different Similarity Metrics

Our experiments were performed using Pytorch based on ResNet50 (shared net-

work). Followed by feature extraction networks ϕck(·,θck) and ϕdk(·,θdk) have 3

convolution layers, the source predictors Psk contains 1 fully connected layer. We

fine-tune all convolutional layers using back-propagation with Stochastic Gradient

Descent (SGD), the momentum is 0.9, the learning rate η follows the same strategy

in (Ganin and Lempitsky, 2015), that is η = η0
(1+10p)0.75

, where η0 = 0.01, p is the

training progress changing linearly from 0 to 1. Learning rate of shared network is

one tenth of other layers. Batchsize b = 32, trade-off parameters λ = 0.01, α, β, γ

∗https://github.com/easezyc/deep-transfer-learning
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follow the existing work (Zhu et al., 2019a), that is α = β = γ = 2
1+exp(−10p′)

− 1,

where p′ changes from 0 to 1 linearly.

Threshold value a is defined by target task and varies accordingly. This also

determines when the adjustment of weights should be started. We will explain how

to choose an appropriate threshold value. Fig. 3.4 shows the source training losses of

one experiment using the proposed method, and Fig. 3.5 displays the test accuracy

of experiments with and without using threshold.

Figure 3.4 : Training loss of the proposed method. Taking task Amazon in Office-31

as an example.

It can be seen that early period of the training process (below 2000 times), the

training loss of each source reduces sharply. Combining with Fig. 3.5, the test

accuracy on task increases markedly. If we adjust all weights without the control of

threshold, the accuracy of multi-source domain adaptation is near to single source

performance from the very beginning of training. But at that time, all predictions of

single source domain is not yet convergent, which means they cannot perform well

on the target domain, thus giving a very large weight of a source which can harm

the performance. It is appropriate to adjust weights when the training losses of
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(a) Without threshold (b) With threshold

Figure 3.5 : Test accuracy of the proposed method without and with using threshold.

Taking task Amazon in Office-31 as an example.

sources start to reduce slowly. Changing weights by observing loss reduction during

experiments might be inconvenient to operate, so we turn to observe the same target

labels returned by source domains.

Fig. 3.6 shows the same target labels returned by source predictors in every

batch. As trainning progresses, the number of the same target labels ntc increases.

For small datasets, this number falls largely in the interval between 29 to 32, for

large dataset, the value fluctuates mainly between 18 to 22, for datasets with a

medium number of samples, the value falls between 27 to 30. The most frequent

number means the performance of single source starts to become stable. In other

words, adjustment of weights should be started before the occurrence of these values.

A small threshold value means that the adjustment of weights starts early, while a

large one means that in most cases, there is no need to adjust the weights. Normally,

the larger the ntc is, the less will be the differences among single source predictions.

Fig. 3.7 shows test accuracy with different threshold values. The performance of
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(a) Office-31 (b) ImageCLEF-DA

(c) Office-Home (d) Office-Caltech10

Figure 3.6 : Number of same labels returned by source predictors. Taking target

domain Amazon as example for Office-31, Pascal VOC 2012 for ImageCLEF-DA,

Art for Office-Home and Caltech for Office-Caltech10.
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final target predictor changes with different thresholds. If the threshold is too large

compared with the most frequently occurring number of the same labels (rarely

adjust weights), the accuracy is reduced. When dealing with a large quantity of

experiments if we find the threshold of each different task, for convenience, instead

of learning specific a for each target domain in every dataset, we set a = 30 for small

datasets ImageCLEF-DA and Office-Caltech10, a = 24 for dataset Office-31, a = 20

for large dataset Office-Home.

Figure 3.7 : Test accuracy of the proposed method with different threshold values.

Taking task Amazon in Office-31 as an example, the accuracy is average result of

three times experiments. The red line represents accuracy while the light red area

signifies standard deviation.

In this work, we choose MMD as a similarity metric to measure the distance

between two distributions. To evaluate the effectiveness of MMD, experiments based

on another popular discrepancy measurement named Wasserstein distance (WD)

are taken as a comparison on dataset Office-31. The source order is the same as

described, for example, S1 is domain A while S2 is domain W in task A,W → D.

“S” means single source and “M” means multi-source. Experiments are repeated

for three times. Table. 3.1 indicates that the model trained with MMD outperforms
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the model trained with WD, it achieves higher accuracy of both single source and

multi-source domain adaptation.

Table 3.1 : Accuracy (%) with different similarity metrics.

Standards A, W→D A, D→W W, D→A Avg

WD

S1 96.1 98.0 71.6

89.4
S2 99.7 98.6 72.4

M 99.7 98.6 72.2 90.2

MMD

S1 96.8 98.1 73.3

90.1
S2 99.7 98.8 74.0

M 99.8 98.9 73.9 90.9

3.4.3 Results and Analysis Based on Weight Adjustment

For each dataset, we run the proposed method five times with random initial-

ized parameters and return the average performance. Tables 3.2, 3.3, 3.4 and 3.5

show results of the proposed and compared methods on Office-31, ImageCLEF-DA,

Office-Home and Office-Caltech10, respectively. It can be seen that the proposed

method outperforms other state-of-the-art domain adaptation methods, and obtains

the highest accuracy on most target tasks.

In general, domain adaptation with multiple source domains shows superior re-

sults compared with single best results. That means multiple sources with richer

transferable information have positive influence on target task. At the same time,

multi-source domain adaptation with combination rules performs better than simply

combining all source domains as one. Simply combining them fails to consider the

specific knowledge contained in each source domain, and transforms features of all
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domains into a common latent feature space. However, sometimes, a feature space

that can adapt all domain distributions may not exist, which means the predictions

learned based on these features in that same space may not work as well on both

source and target domains as desired. Multi-source domain adaptation with combi-

nation rules, on the contrary, explores common features as well as specific features,

and learn specific predictors of source domains, by which the distributions of source

and target domains can be better matched.

Table 3.2 : Comparison of classification accuracy (%) on dataset Office-31

Standards Method A, W→D A, D→W W, D→A Avg

ResNet 99.3 96.7 62.5 86.2

DAN 99.5 96.8 66.7 87.7

Single D-CORAL 99.7 98.0 65.3 87.7

best RevGard 99.1 96.9 68.2 88.1

MADA 99.6 97.4 70.3 89.1

MRAN 99.8 96.9 70.9 89.2

Source DAN 99.6 97.8 67.6 88.3

Combine D-CORAL 99.3 98.0 67.1 88.1

RevGard 99.7 98.1 67.6 88.5

Multi- DCTN 99.3 98.2 64.2 87.2

Source MFSAN 99.5 98.5 72.7 90.2

MSCLDA 99.8 98.8 73.7 90.8

Tables 3.6, 3.7, 3.8 and 3.9 present classification accuracy on Office-31, ImageCLEF-

DA, Office-Home and Office-Caltech10 with different combination rules and different

distribution matching strategies. Since the results of averaged combination and of
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Table 3.3 : Comparison of classification accuracy (%) on dataset ImageCLEF-DA

Standards Method I, C→P I, P→C P, C→I Avg

ResNet 74.8 91.5 83.9 83.4

DAN 75.0 93.3 86.2 84.8

Single D-CORAL 76.9 93.6 88.5 86.3

best RevGard 75.0 96.2 87.0 86.1

DAAN 78.5 94.3 91.3 88.0

MADA 75.2 96.0 88.8 86.7

MRAN 78.8 95.0 93.5 89.1

Source DAN 77.6 93.3 92.2 87.7

Combine D-CORAL 77.1 93.6 91.7 87.5

RevGard 77.9 93.7 91.8 87.8

Multi- DCTN 75.0 95.7 90.3 87.0

Source MFSAN 79.1 95.4 93.6 89.4

MSCLDA 79.5 95.9 94.3 89.9
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Table 3.4 : Comparison of classification accuracy (%) on dataset Office-Home

Standards Method A,C,P→R A,C,R→P A,P,R→C C,P,R→A Avg

ResNet 75.4 79.7 49.6 65.3 67.5

DAN 75.9 80.3 56.5 68.2 70.2

Single D-CORAL 76.3 80.3 53.6 67.0 69.3

best RevGard 75.8 80.4 55.9 67.9 70.0

DAAN 74.0 78.8 54.0 66.3 68.3

MRAN 77.5 82.2 60.0 70.4 72.5

Source DAN 82.5 79.0 59.4 68.5 72.4

Combine D-CORAL 82.7 79.5 58.6 68.1 72.2

RevGard 82.7 79.5 59.1 68.4 72.4

Multi- MFSAN 80.8 79.0 60.7 70.0 72.6

Source MSCLDA 80.6 79.9 61.4 71.6 73.4
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Table 3.5 : Comparison of classification accuracy (%) on dataset Office-Caltech10

Standards Method A,D,W→C C,D,W→A A,C,D→W A,C,W→D Avg

Single ResNet 82.5 91.2 98.9 99.2 93.0

best ADDA 88.8 94.5 99.1 98.0 95.1

CyCADA 89.7 96.2 98.9 97.3 95.5

Source DAN 89.7 94.8 99.3 98.2 95.5

Combine ADDA 90.2 95.0 99.4 98.2 95.7

CyCADA 91.0 95.9 99.0 97.8 95.9

DCTN 90.2 92.7 99.4 99.0 95.3

Multi- M3SDA 92.2 94.5 99.5 98.2 96.4

Source MFSAN 93.8 95.1 99.1 98.7 96.7

MSCLDA 94.1 95.3 99.1 98.5 96.8

weighted combination without adjustment we observed show less difference (the de-

tails will be provided below in Fig. 3.8), we only compared results of mean method

and weighted method with adjustment. “Domain-level only” means the proposed

method without class-level distribution matching, “Multi-level” means the proposed

method with domain-level and class-level distributions matching. The source orders

are the same as the task name. For example, in task A,D → W , S1 is domain

A, S2 is domain D. Average result of S1 and S2 represents average accuracy of

all single domain adaptation tasks. “Sbest” means the best performance of single

source domain using the proposed method. “MeanC” is the proposed multi-source

domain adaptation method using the averaged combination rule.

In most cases, multi-source domain adaptation outperforms single source do-

main adaptation. Predictions with multi-level distribution matching return higher
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accuracy than those without matching class-level distribution. Multi-source domain

adaptation with weight adjustment outperforms the results without weight adjust-

ment.

For small datasets ImageCLEF-DA and Office-Caltech10, classification accuracy

of the proposed method has little difference to that of the average mean method.

This may because the performance of single source domain adaptation is fairly sim-

ilar to other singe source domains. Fig. 3.6 in section 3.4.2 also indicates that the

number of the same target labels returned by all single source predictors is near

to batchsize, most often being 31 or 32. This represents that here, average mean

combination can achieve almost the same performance as weighted average mean

combination. It also can be seen that the single best performance of the proposed

method is better than single best results provided in Tables 3.2 - 3.5, which means

the cross-domain constraint can improve the transferability of single source domain.

To detail the impacts of weights, taking DSLR (target domain) in dataset Office-

31 as an example for two-source domain adaptation, and Product in dataset Office-

Home as an example for three-source domain adaptation, Fig. 3.8 indicates the

results of classification accuracy with and without adjustment.

It can be seen that the accuracy of average mean method and that of weighted

mean method without adjustment has no significant difference. The line of average

combination is almost superimposed on that of weighted combination without ad-

justment. If the single source domain adaptation has obvious disparity, the mean

combination or weighted combination without adjustment cannot take the advan-

tage of the single best one and return preferable results. The proposed method,

however, is superior to them in these cases.

The line of the proposed method displays some fluctuations, that could result
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Table 3.6 : Comparison of classification accuracy (%) on dataset Office-31 with

different combination rules

Standards Method A, W→D A, D→W W, D→A Avg

S1 97.5 97.2 71.3

89.4
Domain- S2 99.6 98.6 72.3

level only Sbest 99.6 98.6 72.3 90.2

MeanC 99.1 98.3 71.8 89.7

MSCLDA 99.6 98.7 72.1 90.1

S1 96.7 98.0 72.9

89.9
Multi- S2 99.7 98.7 73.8

level Sbest 99.7 98.7 73.8 90.7

MeanC 98.7 98.7 73.3 90.3

MSCLDA 99.8 98.8 73.7 90.8
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Table 3.7 : Comparison of classification accuracy (%) on dataset ImageCLEF-DA

with different combination rules

Standards Method I, C→P I, P→C P, C→I Avg

S1 79.0 95.7 93.1

89.3
Domain- S2 79.0 95.7 93.2

level only Sbest 79.0 95.7 93.2 89.3

MeanC 79.1 95.8 93.0 89.3

MSCLDA 79.0 95.9 93.2 89.4

S1 79.4 95.7 94.0

89.7
Multi- S2 79.4 95.6 94.2

level Sbest 79.4 95.7 94.2 89.8

MeanC 79.6 95.7 94.4 89.9

MSCLDA 79.5 95.9 94.3 89.9
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Table 3.8 : Comparison of classification accuracy (%) on dataset Office-Home with

different combination rules

Standards Method A,C,P→R A,C,R→P A,P,R→C C,P,R→A Avg

S1 76.4 72.3 57.6 64.5

68.9S2 75.2 73.3 56.7 65.6

Domain- S3 78.2 78.3 59.4 69.8

level only Sbest 78.2 78.3 59.4 69.8 71.4

MeanC 80.3 77.8 60.9 69.5 72.1

MSCLDA 80.6 78.8 61.1 70.0 72.6

S1 78.1 73.3 57.8 66.3

71.0S2 77.6 77.4 59.5 67.4

Multi- S3 80.0 80.3 61.3 72.4

level Sbest 80.0 80.3 61.3 72.4 73.5

MeanC 80.4 78.4 61.2 69.7 72.4

MSCLDA 80.6 79.9 61.4 71.6 73.4
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Table 3.9 : Comparison of classification accuracy (%) on dataset Office-Caltech10

with different combination rules

Standards Method A,D,W→C C,D,W→A A,C,D→W A,C,W→D Avg

S1 92.5 94.8 97.5 96.7

95.8S2 92.4 94.4 97.3 98.1

Domain- S3 93.4 94.3 98.8 99.7

level only Sbest 93.4 94.8 98.8 99.7 96.7

MeanC 93.7 95.4 98.8 98.1 96.5

MSCLDA 93.7 95.3 98.8 98.5 96.6

S1 93.4 94.8 98.4 96.7

96.2S2 93.6 94.4 98.6 96.7

Multi- S3 94.1 94.9 99.2 100.0

level Sbest 94.1 94.9 99.2 100.0 97.1

MeanC 94.1 95.4 99.1 98.5 96.8

MSCLDA 94.1 95.3 99.1 98.5 96.8
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from wrong original weights, which means the well performing source domain is

given small weight while the inferior ones get large weights. We may take this as

future work to explore how to learn more reliable weights that are concordant with

their performance on the target domain.

(a) Without adjustment (b) With adjustment

(c) Without adjustment (d) With adjustment

Figure 3.8 : Classification accuracy without and with adjusting weights. Figures (a)

and (c) are results without adjustment, while figures (b) and (d) are results with

adjustment.

Fig. 3.9 shows weights with and without adjustment. Since the adjustment

is based on batches, there are too many weights during one experiment. So we
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randomly choose 50 values of each task to draw the pictures. Taking DSLR (target

domain) in dataset Office-31 as an example for two-source domain adaptation, and

Product in dataset Office-Home as an examples for three-source domain adaptation,

there is some evidence as to why the results of the average mean method is almost

the same as the results of weighted mean method without adjustment.

The figure shows that all weights without adjustment are around the mean value

of the greater frequencies. Thus, their results rarely differ markedly from each

other, while the adjusted weights show significant disparity. For two-source domain

adaptation, weights are near to 0 and 1, for three-source domain adaptation, only

the smallest weights are near to boundary. It might need further exploration if the

largest weights require extra adjustment to make it more closer to 1.

3.4.4 Results and Analysis Based on Fuzzy Rules

Tables 3.10 and 3.11 show the results on ImageCLEF-DA and Office-31 using

fuzzy rules respectively.

It can be seen the proposed method achieves the highest performance on most

tasks. Generally, multi-source domain adaptation outperforms single source domain

adaptation. Knowledge transfer with considering domain shift is superior to which

simply mixes all source training samples. Sometimes, single source domain adapta-

tion performs best, for example, tasks I, C → P using MDDA and A,W → D using

DDAN, which means when combining all source classifiers or mixing source samples

following different distributions, negative transfer may occur. We will investigate

this as future work to avoid negative transfer when combining source domains.

Tables 3.12 and 3.13 show the performance without and with a fuzzy system,

“S” means single source domain, “M” means multi-source domain. Source order

is the same as described, for example, S1 is A in task A,W → D. It indicates

that for many tasks, both single source and multi-source domain adaptation, the
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(a) Without adjustment (b) With adjustment

(c) Without adjustment (d) With adjustment

Figure 3.9 : Source weights without and with adjusting. Figures (a) and (c) are

results without adjustment, while figures (b) and (d) are results with adjustment.
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Table 3.10 : Comparison of classification accuracy (%) on dataset ImageCLEF-DA

using fuzzy rules

Standards Method I, C→P I, P→C P, C→I Avg

ResNet 74.8 91.5 83.9 83.4

DAN 75.0 93.3 86.2 84.8

Single D-CORAL 76.9 93.6 88.5 86.3

best RevGard 75.0 96.2 87.0 86.1

MRAN 78.8 95.0 93.5 89.1

MDDA 79.8 95.7 92.0 89.2

DDAN 78.0 94.0 91.0 87.7

Source DAN 77.6 93.3 92.2 87.7

Combine D-CORAL 77.1 93.6 91.7 87.5

RevGard 77.9 93.7 91.8 87.8

DCTN 75.0 95.7 90.3 87.0

Multi- MFSAN 79.1 95.4 93.6 89.4

Source DFRE 79.5 95.8 93.7 89.7

MDAFuz 79.4 96.3 94.5 90.1
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Table 3.11 : Comparison of classification accuracy (%) on dataset Office-31 using

fuzzy rules

Standards Method A, W→D A, D→W W, D→A Avg

ResNet 99.3 96.7 62.5 86.2

DAN 99.5 96.8 66.7 87.7

Single D-CORAL 99.7 98.0 65.3 87.7

best RevGard 99.1 96.9 68.2 88.1

MRAN 99.8 96.9 70.9 89.2

MDDA 99.2 97.1 73.2 89.8

DDAN 100.0 96.7 65.3 87.3

Source DAN 99.6 97.8 67.6 88.3

Combine D-CORAL 99.3 98.0 67.1 88.1

RevGard 99.7 98.1 67.6 88.5

DCTN 99.3 98.2 64.2 87.2

Multi- MFSAN 99.5 98.5 72.7 90.2

Source DFRE 99.6 98.7 73.1 90.5

MDAFuz 99.7 99.0 74.0 90.9
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performance with fuzzy rules is better than that without fuzzy rules. For some

tasks like A,W → D, the accuracy without fuzzy rules is higher. The reason for this

is that source domains show different levels of correlation with the target domain,

and for some weakly connected source samples, transferrable information from each

cluster is not enough for learning the target task, in other words, the auxiliary among

training samples may be lost. We will try to solve this in the future.

Table 3.12 : Comparison of classification accuracy (%) on dataset ImageCLEF-DA

without and with fuzzy rules.

Standards I, C→P I, P→C P, C→I Avg

Without S1 78.8 95.4 93.2
89.2

fuzzy S2 79.0 95.2 93.3

M 79.1 95.7 93.4 89.4

With S1 78.9 96.5 94.3

89.8
fuzzy S2 78.7 95.7 94.8

M 79.4 96.3 94.5 90.1

3.4.5 Visualization Analysis of Proposed Method

To show the efficiency of domain adaptation using the proposed method, this sec-

tion displays the visualization of source and target features, which transforms high

dimension data into 2-dimension space to display the domain categories directly.

Figs. 3.10 and 3.11 show t-SNE visualization (Maaten and Hinton, 2008) of classifi-

cation features in target domain with different single source domain. Let Office-31

represents two-source domain adaptation and Office-Home represents three-source

domain adaptation. For dataset with a small number of categories, it shows that
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Table 3.13 : Comparison of classification accuracy (%) on dataset Office-31 without

and with fuzzy rules.

Standards A, W-D A, D-W W, D-A Avg

Without S1 96.3 97.9 73.0
89.8

fuzzy S2 99.8 98.4 73.6

M 98.9 98.6 73.3 90.3

With S1 95.5 98.2 73.0

89.9
fuzzy S2 99.7 99.0 74.2

M 99.7 99.0 74.0 90.9

each category separates clearly from others, while task W-D discriminates the cat-

egories more clearly than task A-D. This is concordant with classification accuracy

shown in Table 3.6, source domain Webcam returns the single best results.

For very large dataset with more categories, only partial boundaries between each

two different categories can be discriminated clearly, while the remaining categories

may seem too close to each other. Combining results provided in Tables 3.4 and

3.8, the target domain classification accuracy of the whole dataset using different

methods falls to a fairly low level compared with other datasets (of which the average

accuracy is commonly around 90%). So, it is reasonable that the distance between

different categories is not as great as that of datasets with small categories.

To display the effects of distribution matching, Figs. 3.12 and 3.13 show t-SNE

visualization of domain features in shared feature space (before adaptation) and

multi-view feature space (after adaptation). The red indicates source domain, while

blue shows target domain.
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(a) A-D (b) W-D

Figure 3.10 : T-SNE visualization of target with different source domain, take task

DSLR in Office-31 as example.

It can be seen that class distribution in multi-view feature space clearly separates

from each other while that in shared feature space has misalignments. For all source

domains, no matter whether the categories and samples are small or large, the

distance between each two classes is sufficient and without any superposition. For

target domains, adaptation is achieved well for dataset with small categories, each

category in the target domain is mapped with that in the source domain by a short

distance. While for Office-Home with large numbers of samples and categories, as

mentioned before, the distance among classes after adaptation may not seem as

clear as with a small dataset, but, compared with that in shared feature space, the

distribution matching still splits the different categories.

3.4.6 Ablation Study and Sample Complexity

An ablation study based on dataset Office-31 is performed to show the effec-

tiveness of the loss components. The constraints of source domain adaptation (Ls),

target domain adaptation on domain-level (Ldomain), target domain adaptation on
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(a) C-A

(b) P-A (c) R-A

Figure 3.11 : T-SNE visualization of target with different source domain, take task

Art in Office-Home as example.
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(a) A-D before adaptation (b) A-D after adaptation

(c) W-D before adaptation (d) W-D after adaptation

Figure 3.12 : T-SNE visualization of features before and after adaptation, taking

task DSLR in Office-31 as example for two-source domain adaptation.
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(a) C-A before adaptation (b) C-A after adaptation

(c) P-A before adaptation (d) P-A after adaptation

(e) R-A before adaptation (f) R-A after adaptation

Figure 3.13 : T-SNE visualization of features before and after adaptation, taking

task Art in Office-Home as example for three-source domain adaptation.
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class-level (Lclass) and cross-domain alignment (Lcro) are regarded as the control

variables, and each of them is removed in turn to show its contribution of the learn-

ing performance. All experiments are repeated for three times, and the results are

shown in Table. 3.14.

It can be seen that the target domain adaptation on domain-level and the cross-

domain alignment contribute more than the other constraints, because the classifier

trained without either of them returns the lowest accuracy. Domain adaptation on

class-level plays an auxiliary role of domain-level adaptation to help improve the

performance. Source domain adaptation shows superiority in the target task which

contains a large number of samples.

Table 3.14 : Accuracy (%) without different loss components

Standards A, W→D A, D→W W, D→A Avg

Without Ls 99.9 98.9 73.0 90.6

Without Ldomain 99.7 98.1 71.4 89.7

Without Lclass 99.7 98.9 72.5 90.4

Without Lcro 99.8 97.9 71.0 89.6

Proposed 99.8 98.9 73.9 90.9

To show the influence of training sample size on the learning performance, sample

complexity experiments are taken on dataset Office-31. For each task, we randomly

select 25%, 50% and 75% source samples to train the classifier and compare its

performance with the classifier that is trained using all source samples. The results

are shown in Table 3.15.

It can be seen that with the growth of the training sample size, the performance

improves. The greatest increase occurs when the sample size increases from 25% to
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50%, after which the growth slows. For task A,D → W , the performance of 50%

and 75% samples are extremely close to each other. This indicates that when the

pre-trained networks are used as the backbone, the training sample quantity might

not be the only main factor affecting the learning performance. Other factors such

as the sample quality and domain similarity should also be taken into consideration.

Table 3.15 : Accuracy (%) with different training sample size.

Standards A, W→D A, D→W W, D→A Avg

25% samples 95.6 96.3 67.1 86.3

50% samples 97.5 98.2 71.7 89.1

75% samples 98.7 98.1 73.4 90.1

100% samples 99.8 98.9 73.9 90.9

3.5 Summary

This section concludes the whole work and formulates the directions for further

study.

In this chapter, we propose a source contributions learning method for multi-

source domain adaption, where the multi-view feature extraction and multi-level

distribution matching are employed to enhance transferability of domain adaptation.

Compared with existing multi-source domain adaptation methods, ours not only

explores the similarities among source and target domains, but also learns diversities

of a target domain and turns it into extracting multiple aspects of source domain

features since the target data is unlabeled. At the same time, domain adaptation is

achieved by adapting source domains to each other as well as adapting source and
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target domains using domain-level distribution matching and class-level distribution

matching, which improve the classification accuracy by reducing the confusion of

boundary samples. When it comes to completing a target task, weight adjustment

strategy and fuzzy combination rule are developed based on pseudo target labels

to increase the disparity of source weights, which can take advantage of the single

best source domain when the performances of sources have significant differences.

Experiments on real-world visual datasets evaluate the superiority of the proposed

method compared with other state-of-the-art domain adaptation methods using deep

neural networks.

In the future, we might explore new methods to learn more reliable weights that

can represent their performance on target domain exactly. By doing this, we expect

to solve the problem where the source domain with poor accuracy on target attracts

large weight. Another work is extending the proposed method to heterogeneous

feature spaces. Features from different views may have their own best represented

ability with different dimensions. This still needs further exploration.
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Chapter 4

Dynamic Classifier Alignment for Unsupervised

Multi-Source Domain Adaptation

4.1 Introduction

As introduced in Chapter 2, a popular way to overcome the data bias in trans-

fer learning is to find a mapping that transforms the source and target data into

a latent feature space where their distributions can be matched. Some methods

employ multi-level matching to minimize the distance of source and target distri-

butions (Tian et al., 2020a), such as pixel-level and feature-level (Xu et al., 2020a),

classification and clustering distribution adaptations (Pan et al., 2020).

To explore richer usable information from the target domain, pseudo labels are

employed to fill the domain gap by self-training the transfer model (Chen et al.,

2019). A typical method, self-supervised noisy label learning, addresses source-

free domain adaptation by transforming the problem into label denoising (Chen

et al., 2021). It divides the target data into a clean part and a noisy part based

on the loss of pre-generating pseudo labels using the source-only classifier, at the

same time, self-generated target labels are collected using k-means clustering. By

jointly training the clean part with pre-generated labels and the noisy part with

self-generated labels, true-labeled samples in the noisy set will be selected into the

clean set until the classifier is fixed with the smallest loss.

How to collect enough information for transferring is essential when leveraging

source knowledge to solve the target task. Domain adaptation methods with multi-

view representations and multiple sources attract considerable attention since they
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can provide richer transferable knowledge (Niu et al., 2015; Lu et al., 2020). Multi-

view features enrich the usable information on the data-level, while multiple sources

enrich domain-level knowledge. Multi-view learning for domain adaptation first

unifies the problems of view alignment and knowledge transfer (Ding et al., 2018b).

To fuse view-invariant knowledge from multi-viewpoint features, mappings among

multiple views are introduced to learn the data correspondence in a common space.

To transfer knowledge to the target view, marginal and conditional distributions

are adapted simultaneously in both sample space and feature space. To avoid the

incompleteness of categories in a single source domain, multiple source domains are

explored to develop a cross-domain and cross-source algorithm which overcomes the

gaps resulting from missing categories.

However, many previous domain adaptation methods which employ multi-view

features focus on merging features in a common space or simply concatenate them

together but ignore the view-specific information or the importance of each view

of features. Additionally, some methods mix domains to learn a general performed

classifier on multiple domains but disregard the fact that a common feature space

for all domains may not exist (Ben-David et al., 2010). In this chapter, we propose

an unsupervised multi-source domain adaptation method named dynamic classifier

alignment (DCA), which explores the importance of multi-view features and aligns

the multiple view predictions from multiple domains via an automatic method to

complete the target task. Our contributions are threefold:

• We propose a new method to learn the importance of multi-view features and

re-weight them to ensure the dominant features contribute more when merging

their predictions. Different from existing methods which treat all view features

equally and connect them as a series, the proposed method considers specific

information carried by features and avoids information redundancy resulting

from concatenation.
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• We build a self-training strategy by selecting pseudo target labels with high

confidence in the training progress. It improves the cross-domain ability of the

source classifiers by iteratively splitting the target domain into training and

testing sets. Different from many pseudo-labeling domain adaptation methods,

no prototypes are needed to initialize the labels.

• We develop an automatic sample-wise method to learn the weight vectors

for conjoining multiple predictions from different views and source classifiers

to estimate the target labels. This differs from existing combination rules

relying on feature distance. Meanwhile, the proposed method explores the

view importance and the correlation between domains over the sample not

over the batch, which is more accurate.

4.2 Problem Setting and Notations

We focus on homogeneous unsupervised multi-source domain adaptation. Table

4.1 displays the notations and corresponding descriptions used in this chapter.
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Table 4.1 : Notations and descriptions.

Notation Description

Dsk , Dt source/target domain, k is source index

nsk , nt number of samples from source/target domain

xsk , xt sample from the source/target domain

ysk corresponding label of xsk

ϕ shared feature extractor

ϕkm mth view feature extractor for kth source domain

Mk number of views for kth source domain

fsk , ft shared source / target feature

fskm , ftkm mth view specific source/target feature

Pskm mth view classifier for kth source domain

θskm parameter of Pskm transforming input to output

P a
k auxiliary classifier for kth source domain

Gc
k importance learning function

P c
k aligned classifier for kth source domain

ωa
k generation parameter for kth source domain

ωc
k alignment parameter for kth source domain

Gd domain discriminator

ω domain combination parameter

Pt target classifier

H reproducing kernel Hillbert space (RKHS)

ψ kernel-induced feature map
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4.3 The Proposed Dynamic Classifier Alignment

We focus on homogeneous unsupervised multi-source domain adaptation. The

whole framework of the proposed classifier alignment method is shown in Fig. 4.1.

It includes feature extraction, classifier alignment, pseudo label selection and target

task completion. Feature extraction collects shared features and specific multi-view

features. Shared source features are used to learn a domain discriminator which iden-

tifies the probabilities of a sample belonging to the source domains, while adapted

specific multi-view features are used to train a series of classifiers. An auxiliary

classifier of each source domain is generated by linearly mixing the multiple classi-

fiers learned from different views, then an importance learning function is developed

based on the auxiliary classifier to learn the importance of multi-view features for

aligning classifiers. At the same time, pseudo labels are provided by the learned

classifiers to supervise further training. Using the degrees of the target samples be-

longing to the source domains calculated by the domain discriminator trained with

shared features, source classifiers are finally combined to predict the target labels.

4.3.1 Feature Extraction

In an image classification task, original images are transformed into a feature

space to avoid its original high dimension and complex structure. Since invariant

information from the source and target domains is needed to achieve transfer, to

measure the similarity between domains, pre-trained deep networks are first em-

ployed to transform the original data to extract those features carrying invariant

information. We note the features extracted using pre-trained networks as shared

features, where the term “shared” indicates the extracted features are in a same

latent space. The extraction can be expressed as:

fsk =ϕ(xsk),

ft =ϕ(xt).

(4.1)
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Figure 4.1 : The whole framework of the proposed DCA. Shared features are ex-

tracted to learn a domain discriminator which defines the contributions of source

domains when predicting target task. Specific multi-view features are extracted to

adapt domain distributions and train classifiers. Auxiliary classifier in each source

domain is generated to assist in aligning multi-view classifiers. Target samples are

pseudo-labeled by the learned classifiers to supervise the further training.
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Shared features can carry invariant information from source and target domains.

Based on this, a domain discriminator driven from source features is trained, which

calculates the probabilities of extracted shared features belonging to the source

domains. The correlation between the source and target domains can be obtained to

assist in predicting the target task when applying the learned domain discriminator

to target features. The domain discriminator Gd can be expressed as:

Gd =argmin
Gd

L(Gd(fsk), d)

=argmin
Gd

− 1∑K
k=1 nsk

∑K
k=1 nsk∑
i=1

di log(Gd(f isk))

(4.2)

L is cross-entropy loss, d indicates domain label.

As proved in (Ben-David et al., 2010), a feature space that can represent all

domains well may not exist, hence specific features are needed to adapt each pair

of source and target domains. Here we extract multi-view specific features. For the

kth source domain, the mth view features can be expressed as:

fskm =ϕkm(fsk),

ftkm =ϕkm(ft).

(4.3)

To provide the cross-domain ability of the source classifiers, source and target

distributions are matched to reduce the discrepancy. Here MMD is employed to

measure the distribution distance. According to previous research (Pan et al., 2010),

given data sets X⋆,X∗ following different distributions, the solution of MMD can

be written as:

MMD
ψ∈H

(X⋆,X∗)

=

∥∥∥∥∥ 1

n⋆

n⋆∑
i=1

ψ(X i
⋆)−

1

n∗

n∗∑
j=1

ψ(Xj
∗)

∥∥∥∥∥
2

H

,

(4.4)

where n⋆, n∗ are corresponding sample quantities, and H represents reproducing

kernel Hilbert space, ψ is kernel-induced feature map. Applying this to the extracted
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multi-view specific features, for the kth source domain, we adapt each view of the

source and target features to ensure that each view source classifier has the ability

to predict target samples transformed into the same view feature space. The loss

function of domain-level adaptation on mth view features can be expressed as:

Ladpt =MMD
K∈H

(fskm ,ftkm)

=

∥∥∥∥∥ 1

nsk

nsk∑
i=1

ψ(f iskm)−
1

nt

nt∑
j=1

ψ(f jtkm)

∥∥∥∥∥
2

H

.

(4.5)

During the training, since the parameters are updated over the batch, nsk , nt can be

replaced with batch size.

4.3.2 Classifier Alignment

Generally, aligning multi-view features is more common to learn a classifier.

However, concatenating features may result in redundant information. Some stud-

ies mix features, but features from different views may have different dimensions,

causing a heterogeneity problem. This chapter proposes classifier alignment. In

terms of the structural risk minimization principle (Vapnik and Vapnik, 1998), the

loss of supervised learning processing of the kth source classifier based on the mth

view features Pskm can be expressed as:

Pskm = argmin
Pskm

∈H
(xsk

,ysk
)∼Dsk

L(Pskm(xsk),ysk) + λLadpt. (4.6)

L is the cross-entropy loss estimating the error between the predictions and the

ground truth labels, which is:

L(Pskm(xsk),ysk)

=− 1

nsk

nsk∑
i=1

yisk log(Pskm(ϕkm(ϕ(x
i
sk
))).

(4.7)

To define the alignment parameters, an auxiliary classifier for each source domain

is generated first. It can expressed as:

P a
k = Ga

k(({Pskm}
Mk
m=1);ω

a
k) =

Mk∑
m=1

ωakm · Pskm , (4.8)
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where Mk is number of views, ωa
k = [ωak1, · · · , ωakMk

] is initialized randomly, Ga
k is

a linear function. However, this combination cannot ensure that the weight ωakm is

nonnegative or
∑Mk

m=1 ω
a
km = 1. In addition, ωak is shared by all samples without con-

sidering the characteristic of each sample. Hence, we build an importance learning

function based on the the auxiliary classifier to fix this problem, which calculates

the weights dynamically over the sample. This function estimates the contributions

of multi-view classifiers, and the constraint of the function in the kth source domain

is:

Gc
k =argmin

Gc
k

Mk∑
m=1

L(Gc
k(Pskm(xsk)),m)

=argmin
Gc

k

Mk∑
m=1

(− 1

nsk

nsk∑
i=1

mi log(Gc
k(Pskm(x

i
sk
)))),

(4.9)

m is the view label. Apply the auxiliary classifier to source samples and feed corre-

sponding outputs to the importance learning function, the weight vector is:

ωc
k = Gc

k(P
a
k (xsk)) = [ωck1, · · · , ωckMk

]. (4.10)

The aligned classifier is:

P c
k =

Mk∑
m=1

ωckm · Pskm . (4.11)

Importance learning is further controlled by minimizing the error between the aux-

iliary classifier and the aligned classifier under the supervision of the source labels.

Loss function of the matching classifiers can be expressed as:

Lca =L1(P
c
k , P

a
k )

=
1

nsk

nsk∑
i=1

∣∣P c
k (x

i
sk
)− P a

k (x
i
sk
)
∣∣

=
1

nsk

nsk∑
i=1

∣∣ Mk∑
m=1

ωckm · Pskm
(
ϕkm(ϕ(x

i
sk
))
)

−
Mk∑
m=1

ωakm · Pskm
(
ϕkm(ϕ(x

i
sk
))
)∣∣.

(4.12)
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The supervision loss is:

L(P c
k (xsk),ysk) =

− 1

nsk

nsk∑
i=1

yisk log(

Mk∑
m=1

ωckm · Pskm(ϕkm(ϕ(xisk)))).
(4.13)

Since we have multiple source domains, it is expected that the multiple source

classifiers can obtain the same labels when predicting the same target samples.

Hence, cross-domain constraint is employed to reduce the predicted target errors

between multiple classifiers from different source domains, which can be expressed

as:

Lcro =
2

K(K − 1)

K−1∑
k1=1

K∑
k2=k1+1

(
1

nt

nt∑
i=1

∣∣P c
k1
(xit)− P c

k2
(xit)

∣∣)
=

2

K(K − 1)

K−1∑
k1=1

K∑
k2=k1+1

(
1

nt

nt∑
i=1

∣∣ Mk1∑
m=1

ωck1m · Psk1m
(
ϕk1m(ϕ(x

i
t))

)
−

Mk2∑
m=1

ωck2m · Psk2m
(
ϕk2m(ϕ(x

i
t))

)∣∣).

(4.14)

Then the total loss function of the aligned source classifier is:

Ltotal =L(P
c
k (xsk),ysk)

+

Mk∑
m=1

(L(Pskm(xsk),ysk) + λLadpt)

+α

Mk∑
m=1

L(Gc
k(P

a
k (xsk)),m) + βLca + γLcro.

(4.15)

4.3.3 Pseudo Label Selection and Target Task Completion

To enhance the cross-domain ability of the learned source classifiers, an extra

constraint -the supervision of pseudo labels -is introduced to improve the transfer
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performance from the source domains to the target domain except for the cross-

domain constraint.

Not all pseudo labels can be used to supervise the training because of the label

noise. It is very risky to introduce incorrect target labels which may degrade the

performance. To collect the pseudo labels with high a probability of being correct,

a selection strategy is developed, thresholds E and step q relating to the train-

ing progress are set to define when the pseudo labels can be added. As shown in

Fig. 4.2, unlabeled target samples are fed into the source classifiers from multiple

views, and the outputs can be divided into two groups, namely easy-to-predict and

hard-to-predict samples. Easy-to-predict samples obtain the same labels with high

probability, while hard-to-predict samples obtain multiple labels or obtain the same

labels with low probability. Pseudo-labeled target samples with high confidence are

collected for further training.

Since we have multiple view classifiers in each source domain, when the training

iteration is larger than E, denote the pseudo target label with a high confidence of

being correct and the corresponding probability as:

ŷt = ∧(Ps11(ϕ11(ϕ(xt))), · · · , Ps1M1
(ϕ1M1(ϕ(xt))),

Ps21(ϕ21(ϕ(xt))), · · · , Ps2M2
(ϕ2M2(ϕ(xt))),

· · · ,

PsK1
(ϕK1(ϕ(xt))), · · · , PsKMk

(ϕKMk
(ϕ(xt)))),

(4.16)

and

p̂t =
1∑K

k=1Mk

max

(Ps11(ϕ11(ϕ(xt))) + · · ·+ Ps1M1
(ϕ1M1(ϕ(xt)))+

Ps21(ϕ21(ϕ(xt))) + · · ·+ Ps2M2
(ϕ2M2(ϕ(xt)))+

· · ·+

PsK1
(ϕK1(ϕ(xt))) + · · ·+ PsKMk

(ϕKMk
(ϕ(xt)))),

(4.17)
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Figure 4.2 : The procedure of selecting pseudo labels. Solid arrows indicate training

under the supervision of source labels and target pseudo labels. Dashed arrows indi-

cate the prediction and selection of target samples. At the beginning, classifiers are

supervised by source labels only. Unlabeled target samples are fed into the learned

classifiers to be divided into easy-to-predict and hard-to-predict groups. Predicted

target labels with high probability are selected to supervise further training of the

classifiers.
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respectively. ∧ is an operation to select the target samples which obtain the same

predicted labels using multiple classifiers. A threshold ar for the rth category is

defined to select pseudo labels for training. If p̂t ≥ ar, we regard the corresponding

target sample as a high confident sample. Otherwise, it will not be selected. The

collected pseudo target samples will be used to supervise the further training. The

selection is taken iteratively (by step q) until the training ends or there are no

unlabeled target samples available. The loss function of the kth source classifier

under pseudo label supervision can be expressed as:

Lt =

Mk∑
m=1

L(Pskm(xt), ŷt) + L(P c
k (xt), ŷt)

=−
Mk∑
m=1

(
1

n̂t

n̂t∑
i=1

ŷit log(Pskm(ϕkm(ϕ(x
i
t))))

− 1

n̂t

n̂t∑
i=1

ŷit log(

Mk∑
m=1

ωckm · Pskm(ϕkm(ϕ(xit)))),

(4.18)

The loss function in (4.15) of further training can be rewritten as following when

pseudo labels are available:

Ltotal =L(P
c
k (xsk),ysk)

+

Mk∑
m=1

(L(Pskm(xsk),ysk) + λLadpt)

+α

Mk∑
m=1

L(Gc
k(P

a
k (xsk),m) + βLca + γLcro + Lt.

(4.19)

To complete the target task, combining source predictions is a common strategy.

Employing the domain discriminator learned in equation (4.2), then the correlation

between a target sample and the source domains can be calculated as:

ω = Gd(ft) = [ω1, · · · , ωK ]. (4.20)

Target classifier can be expressed as:

Pt =
K∑
k=1

ωk · P c
k . (4.21)



104

The target label is:

yt =Pt(xt)

=
K∑
k=1

ωk · P c
k (xt)

=
K∑
k=1

ωk · (
Mk∑
m=1

ωckm · Pskm(xt)).

(4.22)

The process of the proposed classifier alignment is described in Algorithm 3.
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Algorithm 3 Dynamic classifier alignment for multi-source domain adaptation

1: Input: Source domains {Dsk}Kk=1, target domain Dt;

2: Initialization: Shared feature extraction network ϕ, multi-view specific feature

extraction networks {ϕkm}K,Mk

k,m=1 and multi-view classifiers {Pskm}
K,Mk

k,m=1, auxiliary

classifiers {P a
k }Kk=1, discriminators {Gc

k}Kk=1 and Gd.

3: for e = 1, e < I, e++, do

4: Extract shared features fsk , ft as in (4.1);

5: Train domain discriminator as in (4.2);

6: Extract multi-view specific features fskm , ftkm as in (4.3);

7: Calculate adaptation loss as in (4.5);

8: Train classifiers as in (4.6);

9: Align source classifiers as in (4.11);

10: if pseudo label available then

11: Collect pseudo target label and corresponding probability ŷt, p̂t for further

training as in (4.16), (4.17);

12: Select pseudo target labels according to the threshold ar;

13: Update all parameters as in (4.19);

14: else

15: Update all parameters as in (4.15);

16: end if

17: end for

18: Predict target labels as in (4.22);

19: Output: Target label yt.
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4.4 Experiments

This section discusses the results of a series of experiments on four commonly

used real-world visual datasets. The classification performance, parameter sensi-

tivity and an ablation study of the proposed method are explored. Section 4.4.1

introduces the datasets and baselines. Section 4.4.2 details the parameter settings

and the influence of adjusting the learning rate when introducing pseudo labels.

Section 4.4.3 analyses the results of the proposed method and the baselines. Sec-

tion 4.4.4 compares the performance between a single-view classifier and an aligned

classifier. Section 4.4.5 analyses the results of using feature alignment and classifier

alignment. Section 4.4.6 explores when to add pseudo labels, Section 4.4.7 describes

an ablation study of the proposed method and Section 4.4.8 shows data visualization

in multiple views.

4.4.1 Baselines and Datasets

All our experiments focus on the image classification task, baselines contains both

single source and multi-source domain adaptation methods. Single source methods

include:

• Deep adaptation network (DAN) (Long et al., 2015);

• Reverse gradient (RevGrad) (Ganin and Lempitsky, 2015);

• Correlation alignment for domain adaptation (D-CORAL) (Sun and Saenko,

2016);

• Multi-representation adaptation network (MRAN) (Zhu et al., 2019b);

• Multi-adversarial domain adaptation (MADA) (Pei et al., 2018);

• Manifold dynamic distribution adaptation (MDDA) (Wang et al., 2020b);
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• Dynamic distribution adaptation network (DDAN) (Wang et al., 2020b);

• Adversarial discriminative domain adaptation (ADDA) (Tzeng et al., 2017);

• Cycle-consistent adversarial domain adaptation (CyCADA) (Hoffman et al.,

2018);

• Adversarial-learned loss for domain adaptation (ALDA) (Chen et al., 2020).

Multi-source methods include:

• Deep cocktail network (DCTN) (Xu et al., 2018);

• Moment matching for multi-source domain adaptation (M3SDA) (Peng et al.,

2019a);

• Multiple feature spaces adaptation network (MFSAN) (Zhu et al., 2019a);

• Multi-source distilling domain adaptation (MDAN) (Zhao et al., 2020a);

• Multi-source adversarial domain aggregation network (MADAN) (Zhao et al.,

2021);

• Online meta-learning for multi-source domain adaptation (MetaMDA) (Li and

Hospedales, 2020);

• Multi-source contribution learning for domain adaptation (MSCLDA) (Li et al.,

2021c).

The experiment datasets are ImageCLEF-DA, Office31, Office-Caltech10 and Of-

ficeHome. Office-31 contains 4110 images from three libraries sharing 31 categories

in total. The images are captured by different photographic devices, named Ama-

zon (A), Webcam (W) and DSLR (D). Amazon comprises 2817 images, Webcam

comprises 795 and DSLR comprises 498.
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ImageCLEF-DA includes three image libraries and contains 1800 images. It

is built by collecting the 12 shared categories from the datasets Caltech-256 (C),

ImageNet ILSVRC 2012 (I) and Pascal VOC 2012 (P), and each categories holds 50

images and every library holds 600 images in total.

Office-Caltech10 consists of four libraries with 10 categories shared by datasets

Office-31 and Caltech-256. It has 2533 images in total, where the library Caltech (C)

holds 1123 images, Amazon (A) holds 958 images, Webcam (W) holds 295 images,

and DSLR (D) holds 157 images.

Office-Home contains 15588 images sharing 65 categories. It has four image

libraries named datasets Art (A), Clipart (C), Product (P) and Real World (R).

Library Art holds 2427 images, Clipart holds 4365 images, Product holds 4439

images, and Real World holds 4357 images.

Let one of the libraries in each dataset be the target domain and the others

be the source domains, the proposed DCA is validated on dataset Office-31 by

completing tasks A,W → D; A,D → W ; W,D → A; on dataset ImageCLEF-DA

by completing tasks I, C → P ; I, P → C; C,P → I; on dataset Office-Caltech10 by

completing tasks: A,D,W → C; C,D,W → A; A,C,D → W , A,C,W → D; and

on dataset OfficeHome by completing tasks A,C, P → R; A,C,R → P ; A,P,R →

C, C,P,R→ A.

4.4.2 Parameter Setting

This chapter employs ResNet50 as the shared feature extraction network ϕ, and

all experiments are complemented by Pytorch. We add multi-scale kernels to the

specific extraction layers used in previous studies (Zhu et al., 2019a,b; Li et al.,

2021c) to collect multi-view features. The number of views in each source domain is

3. The parameters are updated based on back-propagation with Stochastic Gradient

Descent (SGD), the momentum is 0.9, and the initial learning rate η0 = 0.01. The
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learning rate of the shared network is one tenth of the other layers. Batch size

b = 32, and the trade-off parameters α, β, γ, λ follow existing work (Zhu et al.,

2019a), that is α = β = γ = λ = 2
1+exp(−10(e−1)/((I)))

− 1, where e is training iteration,

and I = 15000 is the maximum iteration. Early stop is used to control the training

progress. E for dataset Office-Caltech10 is 500, and for datasets ImageCLEF-DA,

Office-31 and Office-Home, it is 2000. The threshold ar in each category is the

medium probability when selecting pseudo labels the first time, then the value is the

maximum probability. The step q of adding pseudo labels in datasets ImageCLEF-

DA, Office-31, Office=Caltech10 is 500, and in dataset Office-Home, it is 1000.

Generally, the learning rate η follows the same strategy in (Ganin and Lempitsky,

2015), which is η = η0
(1+10(e−1)/((I)))0.75

. Since we add new samples to supervise the

learning during training, for some tasks, an extra adjustment of the learning rate

is needed when pseudo target labels are added for the first time. This adjustment

aims to accelerate the convergence rate and reduce training time. From the Eth

iteration, where we introduce pseudo labels for the first time, let the learning rate

η = η0
(1+10(e−E)/((I)))0.75

.

Taking datasets Office-31 and Office-Home as examples, the influence of adjust-

ing the learning rate on the performance is shown in Tables 4.2, 4.3. “No” means

without adjustment, “Yes” means with adjustment. It can be seen that adjusting

the learning rate does not harm the transfer performance. For the target domains

containing a few samples, the classification accuracy of the learning rate with ad-

justment is almost the same as that without adjustment. But when target domains

have more samples, the adjustment can improve the accuracy. Hence, we define that

when the number of target samples is larger than 1000, the extra learning rate is

needed.

Figs. 4.3 shows the changes in the classification accuracy with the training
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Table 4.2 : Accuracy (%) on dataset Office-31 with and without adjusting the

learning rate when adding pseudo labels.

Standards A, W→D A, D→W W, D→A Avg

No 99.6 98.9 74.7 91.1

Yes 99.6 98.8 75.1 91.2

Table 4.3 : Accuracy (%) on dataset Office-Home with and without adjusting the

learning rate when adding pseudo labels.

Standards A,C,P→R A,C,R→P A,P,R→C C,P,R→A Avg

No 81.3 80.4 63.3 72.1 74.3

Yes 81.4 80.5 63.6 72.1 74.4

progress on datasets Office-31 and Office-Home with and without adjustment, tak-

ing tasks W,D → A and A,P,R → C as examples. The red line indicates the

performance without adjustment, the blue line indicates the performance with ad-

justment. It shows that the accuracy with the learning rate adjustment increases

more rapidly than that without adjustment. Tables 4.4 and 4.5 show the average

training iterations needed for the tasks at the lowest test loss with and without

adjusting the learning rate. The results indicate that the learning rate adjustment

can reduce the training time. For dataset Office-31, the average training iteration

reduces by nearly 30%, while for dataset Office-Home which has a large number of

samples, the training iteration reduces by nearly 40% on average.
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(a) Office-31: A (b) Office-Home: C

Figure 4.3 : Accuracy (%) on target domains A from Office-31 and C from Office-

Home as the training progresses. Red line means training without adjusting learning

rate when adding pseudo labels, blue line indicates that with adjusting learning rate.

Table 4.4 : Training iterations on dataset Office-31 with and without adjusting the

learning rate when adding pseudo labels.

Standards A, W→D A, D→W W, D→A Avg

No 2080 2260 5260 3200

Yes 1780 2240 2820 2280

Table 4.5 : Training iterations on dataset Office-Home with and without adjusting

the learning rate when adding pseudo labels.

Standards A,C,P→R A,C,R→P A,P,R→C C,P,R→A Avg

No 5080 6300 8540 5920 6460

Yes 3160 6140 2640 3900 3960



112

4.4.3 Results and Analysis

Tables 4.7, 4.6, 4.8 and 4.9 show the accuracy of the proposed and compared

methods, where the highest accuracy is highlighted in bold. Validation standards

include the performance of “Single best”, “Source Combine” and “Multi-Source”.

“Single best” shows the performance of the source domain which achieves the highest

accuracy using previous state-of-the-art domain adaptation methods with a single

source; “Source Combine” shows the performance of some previous single source

domain adaptation methods which mix multiple source domains into one; “Multi-

Source” shows the performance of multi-source domain adaptation methods taking

domain shifts into consideration.

The results indicate that the transfer performance of multiple source domains is

generally superior to that of single source domains. Even when the data bias among

source domains is disregarded, the models trained on mixed source domains achieve

higher accuracy than most models trained on samples from a single domain. When

taking source data bias into account and adapting each pair of source and target

domains in specific feature spaces, the source models perform better on the target

domain than adapting all domains in the same latent feature space.

Compared with previous studies employing multi-view features (MRAN and

MSCLDA) and pseudo labels (ALDA), the accuracy of classifier alignment on most

tasks is higher than the baselines. On several tasks, the compared methods achieve

the best performance. The performance of MSCLDA on dataset ImageCLEF-DA

is better than the proposed DCA. MSCLDA enriches transferable information at

feature-level rather than classification-level. Feature-level concatenation generally

requires extra constraint when extracting features, the proposed DCA adapts do-

main distributions under the supervision of pseudo-labels. It uses fewer loss func-

tions when matching domains and extracting features, and outperforms the baselines
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on most tasks and datasets. Compared with other multi-source domain adaptation

methods employing different combination rules, including average mean combination

(MFSAN), weighted average mean combination based on perplexity scores (DCTN),

weighted averaged mean combination with adjustment strategy (MSCLDA), adver-

sarial learning based on combination (MADAN), the proposed method obtains the

highest average accuracy on most datasets.

Table 4.6 : Accuracy (%) of the proposed and comparison methods on dataset

Office-31.

Standards Method A, W→D A, D→W W, D→A Avg

ResNet 99.3 96.7 62.5 86.2

DAN 99.5 96.8 66.7 87.7

Single D-CORAL 99.7 98.0 65.3 87.7

best RevGard 99.1 96.9 68.2 88.1

MRAN 99.8 96.9 70.9 89.2

MDDA 99.2 97.1 73.2 89.8

DDAN 100.0 96.7 65.3 87.3

ALDA 100.0 97.7 72.5 90.1

Source DAN 99.6 97.8 67.6 88.3

Combine D-CORAL 99.3 98.0 67.1 88.1

RevGard 99.7 98.1 67.6 88.5

Multi- DCTN 99.3 98.2 64.2 87.2

Source MFSAN 99.5 98.5 72.7 90.2

MSCLDA 99.8 98.8 73.7 90.8

DCA 99.6 98.9 75.1 91.2
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Table 4.7 : Accuracy (%) of the proposed and comparison methods on dataset

ImageCLEF-DA.

Standards Method I, C→P I, P→C P, C→I Avg

ResNet 74.8 91.5 83.9 83.4

DAN 75.0 93.3 86.2 84.8

Single D-CORAL 76.9 93.6 88.5 86.3

best RevGard 75.0 96.2 87.0 86.1

MRAN 78.8 95.0 93.5 89.1

MDDA 79.8 95.7 92.0 89.2

DDAN 78.0 94.0 91.0 87.7

Source DAN 77.6 93.3 92.2 87.7

Combine D-CORAL 77.1 93.6 91.7 87.5

RevGard 77.9 93.7 91.8 87.8

Multi- DCTN 75.0 95.7 90.3 87.0

Source MFSAN 79.1 95.4 93.6 89.4

MSCLDA 79.5 95.9 94.3 89.9

DCA 78.9 96.2 93.9 89.7
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Table 4.8 : Accuracy (%) of the proposed and comparison methods on dataset

Office-Caltech10.

Standards Method A,D,W→CC,D,W→AA,C,D→WA,C,W→D Avg

Single ResNet 82.5 91.2 98.9 99.2 93.0

best ADDA 88.8 94.5 99.1 98.0 95.1

CyCADA 89.7 96.2 98.9 97.3 95.5

Source DAN 89.7 94.8 99.3 98.2 95.5

Combine ADDA 90.2 95.0 99.4 98.2 95.7

CyCADA 91.0 95.9 99.0 97.8 95.9

DCTN 90.2 92.7 99.4 99.0 95.3

Multi- M3SDA 92.2 94.5 99.5 98.2 96.4

Source MFSAN 93.8 95.1 99.1 98.7 96.7

MSCLDA 94.1 95.3 99.1 98.5 96.8

DCA 94.7 96.0 99.7 99.1 97.4
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Table 4.9 : Accuracy (%) of the proposed and comparison methods on dataset

Office-Home.

Standards Method A,C,P→R A,C,R→P A,P,R→C C,P,R→A Avg

ResNet 75.4 79.7 49.6 65.3 67.5

DAN 75.9 80.3 56.5 68.2 70.2

Single D-CORAL 76.3 80.3 53.6 67.0 69.3

best RevGard 75.8 80.4 55.9 67.9 70.0

MRAN 77.5 82.2 60.0 70.4 72.5

MDDA 77.8 81.8 57.6 67.9 71.3

DDAN 72.7 78.9 56.6 65.1 68.3

ALDA 77.1 82.1 56.3 70.2 71.4

Source DAN 82.5 79.0 59.4 68.5 72.4

Combine D-CORAL 82.7 79.5 58.6 68.1 72.2

RevGard 82.7 79.5 59.1 68.4 72.4

MFSAN 80.8 79.0 60.7 70.0 72.6

Multi- MADAN 81.5 78.2 54.9 66.8 70.4

Source MetaMDA 83.4 81.2 60.5 70.2 73.8

MSCLDA 80.6 79.9 61.4 71.6 73.4

DCA 81.4 80.5 63.6 72.1 74.4
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4.4.4 Comparison of Single-view Classifier and Multi-view Aligned Clas-

sifier

This section analyses the performance of single-view classifiers and multi-view

aligned classifiers. To align view classifiers, alignment parameters are defined in each

source domain. This chapter introduces the auxiliary classifier and the importance

learning function to control the alignment parameters. The auxiliary classifier gives

initial alignment parameter values over the batch, and outputs a linear combina-

tion of the multi-view classifiers. Taking this linear combination as the input of

the importance function, the importance function learns the contribution of each

view classifier and returns new alignment parameters which satisfy the alignment

conditions mentioned in section 4.3.2 over the sample.

To validate the influence of the proposed alignment strategy, Table 4.10 shows the

results of the experiments when calculating the alignment parameters using different

strategies. Except for the proposed strategy, attention module SElayer (Hu et al.,

2018b) and L2 regularization are employed to determine the alignment parameters of

multi-view classifiers. “None” indicates alignment without the importance learning

function, “Attention” indicates the alignment parameters calculated using SElayer,

“Regularization” indicates the alignment parameters optimized by L2 regularization.

Taking datasets Office-31 as an example, it can be seen that the proposed alignment

parameter learning strategy achieves the highest accuracy. The proposed strategy

can guarantee that the alignment parameters satisfy the mentioned conditions, and it

has the superiority of fusing information from different aspects over other strategies.

Except for alignment parameters to align view classifiers, source combination

parameters are used to combine source predictions when completing the target task.

Combination parameters are calculated using the domain discriminator, the input is
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Table 4.10 : Accuracy (%) of different alignment parameter calculation strategies

on dataset Office-31

Standards A, W-D A, D-W W, D-A Avg

None 99.4 98.8 74.5 90.9

Attention 99.5 98.8 74.0 90.8

Regularization 99.4 99.1 74.1 90.9

Proposed 99.6 98.9 75.1 91.2

the sample feature extracted by the backbone, and the outputs are the probability

of the target sample belonging to the source domains. To better understand the

learning of source combination parameters, Fig. 4.4 displays source combination

parameters by randomly selecting 50 samples from target domains A in Office-31

and A in Office-Home, respectively.

(a) Office-31: A (b) Office-Home: A

Figure 4.4 : Combination parameters of target domains A from Office-31 and A

from Office-Home.
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Based on the learned alignment parameters and combination parameters, Tables

4.11, 4.12, 4.13 and 4.14 show the target classification performance of the source

classifier trained on single view features and that of the aligned multiple classifiers.

“C” indicates a single view classifier from a single source domain, “CA” indicates

an aligned classifier in each source domain, “S” indicates the source domain (the

source order is the same as described in Section 4.4.1), “M” indicates the combined

multiple source classifiers, where “Mean” indicates the average combination, and

“Weighted” indicates the proposed combination using the weights returned by the

domain discriminator.

Commonly, when performing on the target domain, the single source aligned clas-

sifier outperforms the single view classifier, and the accuracy of the combined multi-

source classifier is superior to the single source aligned classifier, and the weighted

combination rule is superior to the average combination rule. The single view clas-

sifier performs similarly on the target domain in most situations, which may be a

consequence of that the specific multi-view features we collected are based on the

same pre-trained networks. For fair comparison, we employ commonly used network

structures in previous studies to extract features and may take the robustness and

heterogeneity of features as future study. The results of the aligned source classifier

are higher than the single view classifier, which validates that employing the contri-

butions of multi-view features has positive effects. When introducing multiple source

classifiers, a noticeable growth in the accuracy can be seen on almost all datasets,

and defining the importance of source domains can improve the performance.

4.4.5 Comparison of Feature Alignment and Classifier Alignment

Enriching feature-level information generally requires extra constraints such as

orthogonality to eliminate redundancy, which may make the feature extraction more

complex. Replacing feature alignment with classifier alignment can avoid the prob-
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Table 4.11 : Accuracy (%) of classifier alignment and classifier trained on single

view representations on dataset Office-31.

Standards A, W→D A, D→W W, D→A Avg

C1 S1 96.3 97.5 74.9
90.4

S2 99.9 98.8 74.8

C2 S1 96.3 97.8 74.8
90.4

S2 100.0 98.8 74.9

C3 S1 96.9 97.7 74.7
90.4

S2 99.9 98.7 74.7

CA S1 97.1 97.8 74.8
90.6

S2 99.9 98.9 75.0

M Mean 99.4 98.9 75.1 91.1

Weighted 99.6 98.9 75.1 91.2



121

Table 4.12 : Accuracy (%) of classifier alignment and classifier with single view

representations on dataset ImageCLEF-DA.

Standards I, C→P I, P→C P, C→I Avg

C1 S1 77.7 95.9 93.3
88.6

S2 76.3 95.3 93.0

C2 S1 77.4 95.9 93.6
88.8

S2 76.7 95.5 93.5

C3 S1 77.4 96.0 93.5
88.8

S2 76.7 95.6 93.8

CA S1 78.1 96.0 93.7
89.0

S2 77.0 95.7 93.6

M Mean 79.0 96.2 93.9 89.7

Weighted 78.9 96.2 93.9 89.7
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Table 4.13 : Accuracy (%) of classifier alignment and classifier with single view

representations on dataset Office-Caltech10.

Standards A,D,W→CC,D,W→AA,C,D→WA,C,W→D Avg

C1 S1 94.3 95.4 98.8 98.0

96.7S2 94.0 95.0 98.5 97.2

S3 94.4 95.4 99.7 99.5

C2 S1 94.0 95.4 98.7 97.6

96.7S2 94.2 95.2 98.4 97.3

S3 94.5 95.2 99.6 99.9

C3 S1 94.1 95.5 98.6 97.8

96.7S2 94.4 95.3 98.4 96.9

S3 94.5 95.3 99.5 99.7

CA S1 94.2 95.4 98.8 98.0

96.7S2 94.4 95.2 98.3 97.1

S3 94.6 95.3 99.7 99.7

M Mean 94.7 95.9 99.7 99.2 97.4

Weighted 94.7 96.0 99.7 99.1 97.4
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Table 4.14 : Accuracy (%) of classifier alignment and classifier with single view

representations on dataset Office-Home.

Standards A,C,P→R A,C,R→P A,P,R→C C,P,R→A Avg

C1 S1 80.4 77.7 62.4 70.3

72.6S2 79.5 78.5 62.2 70.0

S3 77.4 79.9 61.3 71.4

C2 S1 80.2 77.7 62.4 70.2

73.0S2 79.3 78.2 62.2 70.3

S3 80.0 80.4 62.6 72.4

C3 S1 80.5 77.7 62.6 70.3

73.0S2 79.5 78.1 62.4 70.0

S3 80.1 80.1 63.2 72.0

CA S1 80.5 77.9 62.7 70.3

73.2S2 79.6 78.1 62.4 70.2

S3 80.2 80.5 63.2 72.3

M Mean 81.3 79.3 63.7 72.0 74.1

Weighted 81.4 80.5 63.6 72.1 74.4
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lem caused by feature concatenation. Rather than considering what kind of in-

formation the multi-view features provide, we only need to ensure the predictions

of multi-view classifiers are similar, which is advantageous when fusing the label

information to obtain correct predictions with a high probability. To show the in-

fluence of feature alignment and classifier alignment, referring to feature alignment

used in previous studies (Zhu et al., 2019b; Li et al., 2021c), Tables 4.15, 4.16, 4.17

and 4.18 compare the performance of a classifier trained on the aligned features

with that of the aligned classifier. “FA” indicates training the classifier using con-

catenated multi-view features, “CA” indicates classifier alignment, “S” indicates a

single source classifier, the source order is the same as described, and “M” indicates

a multi-source classifier driven from a weighted combination rule.

It can be seen from the tables that classifier alignment results in higher perfor-

mance than feature alignment, and the performance of the combined multi-source

aligned classifier is usually better than the single source aligned classifier. It indicates

that the classifier alignment which considers the importance of feature views signif-

icantly increases the performance compared with feature alignment which treats

features from different views equally.

4.4.6 Influence of Pseudo Labels

This section explores the influence of pseudo labels, including when to add pseudo

labels and the step involved in adding pseudo labels. Taking datasets Office-31

and Office-Home as examples, Tables 4.19 and 4.20 show the performance of the

proposed method when adding pseudo labels at different iterations (the value of

E), and Tables 4.21 and 4.22 show the performance of the proposed method when

adding pseudo labels by different steps (value of q).

It indicates that with the training progresses, the probability of the pseudo la-

bels being correct is becoming increasingly higher, resulting in an improvement in
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Table 4.15 : Accuracy (%) of classifier alignment and feature concatenation on

dataset Office-31.

Standards A, W→D A, D→W W, D→A Avg

FA S1 97.8 97.9 73.4

90.1
S2 99.6 98.5 73.5

M 99.6 98.5 73.5 90.5

CA S1 97.1 97.8 74.8

90.6
S2 99.9 98.9 75.0

M 99.6 98.9 75.1 91.2

Table 4.16 : Accuracy (%) of classifier alignment and feature concatenation on

dataset ImageCLEF-DA.

Standards I, C→P I, P→C P, C→I Avg

FA S1 79.0 95.5 93.4

89.2
S2 78.7 95.1 93.6

M 78.9 95.6 93.7 89.4

CA S1 78.1 96.0 93.7

89.0
S2 77.0 95.7 93.6

M 78.9 96.2 93.9 89.7
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Table 4.17 : Accuracy (%) of classifier alignment and feature concatenation on

dataset Office-Caltech10.

Standards A,D,W→C C,D,W→A A,C,D→W A,C,W→D Avg

FA S1 94.0 95.7 99.4 97.7

97.1S2 94.7 95.5 99.6 98.1

S3 94.7 95.6 99.9 100.0

M 94.9 95.9 99.8 99.5 97.5

CA S1 94.2 95.4 98.8 98.0

96.7S2 94.4 95.2 98.3 97.1

S3 94.6 95.3 99.7 99.7

M 94.7 96.0 99.7 99.1 97.4

Table 4.18 : Accuracy (%) of classifier alignment and feature concatenation on

dataset Office-Home.

Standards A,C,P→R A,C,R→P A,P,R→C C,P,R→A Avg

FA S1 79.6 76.9 60.9 67.5

71.8S2 77.8 77.2 60.1 67.8

S3 80.1 80.5 61.9 70.7

M 81.7 79.6 62.5 71.3 73.8

CA S1 80.5 77.9 62.7 70.3

73.2S2 79.6 78.1 62.4 70.2

S3 80.2 80.5 63.2 72.3

M 81.4 80.5 63.6 72.1 74.4



127

classification accuracy. When adding pseudo labels at the very start of training

(E = 100), we are actually at a high risk of introducing the wrong labels to super-

vise the training, which leads to a degradation of the transfer ability on the target

domain.

Table 4.19 : Accuracy (%) of adding pseudo labels at different epochs on dataset

Office-31. Adding step is set as q = 500.

Standards A, W→D A, D→W W, D→A Avg

E=100 98.9 98.4 69.2 88.8

E=1000 99.4 98.8 74.1 90.8

E=2000 99.6 98.9 75.1 91.2

Table 4.20 : Accuracy (%) of adding pseudo labels at different epochs on dataset

Office-Home. Adding step is set as q = 1000.

Standards A,C,P→R A,C,R→P A,P,R→C C,P,R→A Avg

E=100 80.5 77.5 61.2 70.5 72.4

E=1000 81.2 78.9 63.3 71.3 73.7

E=2000 81.4 80.5 63.6 72.1 74.4

In a similar way, when adding pseudo labels using a small step (q = 100), the

risk of introducing the wrong target labels is high, because target samples them-

selves can be divided into easy-to-predict samples and hard-to-predict samples. The

sample belonging to the former cluster is given the same pseudo labels from the

multiple source classifiers with high confidence, while the hard-to-predict sample in

the latter cluster gets multiple pseudo labels or the same labels with low probability,
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and it is difficult for us to define which label is right. Hence, it is preferable to add

pseudo labels using large steps. As shown in the tables, for dataset Office-31 with

a few samples, q = 500 is appropriate. When the step becomes larger, the per-

formance degrades, which means introducing pseudo labels when training becomes

convergent may not make much difference. For dataset Office-Home with a large

number of samples, q = 2000 has the highest average accuracy, meaning a large step

is preferable for large dataset.

Table 4.21 : Accuracy (%) of adding pseudo labels using different steps on dataset

Office-31. Start iteration is set as E = 2000.

Standards A, W→D A, D→W W, D→A Avg

q=100 99.3 98.6 73.6 90.5

q=500 99.6 98.9 75.1 91.2

q=1000 99.3 98.8 74.2 90.8

Table 4.22 : Accuracy (%) of adding pseudo labels using different steps on dataset

Office-Home. Start iteration is set as E = 2000

Standards A,C,P→R A,C,R→P A,P,R→C C,P,R→A Avg

q=100 80.3 77.7 62.1 70.8 72.7

q=500 81.6 80.1 63.9 71.7 74.3

q=1000 81.4 80.5 63.6 72.1 74.4

q=2000 81.6 80.3 64.5 72.1 74.6
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4.4.7 Ablation Study

This section describes the ablation study of the proposed method on datasets

Office-31 and Office-Home. We explore the influence of the main modules which

directly affect the training and alignment of the classifiers, including domain adap-

tation (optimized by loss Ladpt), cross-domain constraint (reflected by loss Lcro),

self-training module using pseudo target labels (parameterized by loss Lt), and clas-

sifier alignment (controlled by Lca). Both the classification accuracy and MMD

scores are employed as criteria to determine the effects of the modules. Tables

4.23-4.26 show the details. We use loss functions to denote corresponding network

module, for example, standard “Lt” refers to the results returned by the model

trained without self-training. “All” refers to all modules and constraints which are

employed to train the model.

It can be seen from Tables 4.23 and 4.24 that domain adaptation and super-

vision of the pseudo target labels are the two most important constraints, since

without either of these two modules, the classification accuracy decreases signifi-

cantly. For dataset Office-31, the performance without self-training Lt is lower than

that without domain adaptation Ladpt, meaning that the supervision of pseudo la-

bels contributes more than domain adaptation. While for dataset Office-Home, the

performance without self-training Lt is higher, indicating that domain adaptation

Ladpt contributes more than pseudo labels. This is due to the number of pseudo

labels with high confidence that we collected. For a dataset with only a few samples

and categories, a small number of target samples can provide enough information to

represent the target domain well. However, for a large dataset, a few pseudo-labeled

target samples can enhance the learning but source samples are still necessary to

dominate the classifier. The results without cross-domain constraint Lcro and clas-

sifier alignment Lca are similar. Compared with results with all modules, these two

modules also have a positive influence on ensuring the performance of the source
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classifiers on the target domain. Cross-domain constraint Lcro is helpful to collect

pseudo labels with high probability, while classifier alignment Lca is advantageous

when fusing predictions from multiple aspects.

Table 4.23 : Accuracy (%) of different constraints on dataset Office-31.

Standards A, W→D A, D→W W, D→A Avg

Lt 99.4 90.0 72.1 87.2

Lcro 99.4 98.9 74.4 90.9

Ladpt 99.8 98.6 71.7 90.0

Lca 99.4 98.8 74.5 90.9

All 99.6 98.9 75.1 91.2

Table 4.24 : Accuracy (%) of different constraints on dataset OfficeHome.

Standards A,C,P→R A,C,R→P A,P,R→C C,P,R→A Avg

Lt 81.1 79.7 61.9 70.7 73.4

Lcro 81.6 79.6 64.0 71.1 74.1

Ladpt 81.2 78.8 61.7 69.1 72.7

Lca 81.5 80.1 64.0 71.9 74.4

All 81.4 80.5 63.6 72.1 74.4

Tables 4.25 and 4.26 show the MMD scores of different modules. “C” indicates

single view classifier, “S” indicates single source, the order is the same as described.

High MMD scores mean large domain gaps. It can be seen that domain adaptation

Ladpt is the most important module for reducing domain gaps, as without it, MMD

scores gain the highest values, meaning the domain gap is the largest. MMD scores
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without self-training Lt are affected by the noise of pseudo labels. Self-training

contributes more than other modules when the noise is lower. Otherwise, classifier

alignment Lca which achieves higher MMD scores is more important. On some

tasks, cross-domain constraint Lcro has a negative influence on reducing domain

gaps as without this module the MMD scores achieve the lowest value. This is

not surprising because the cross-domain constraint aims to reduce the gaps among

multiple domains. If there is a large gap between a source and the target domains,

other closer source domains can be affected when fitting the farthest one. But cross-

domain constraint is helpful in collecting the correct pseudo labels, referring to the

classification results, it has a positive effect on the classifiers.

4.4.8 Data Visualization

Taking task W,D → A from dataset Office-31 as an example, Fig. 4.5 shows

the data visualization of the target samples in multiple feature spaces. Different

colors indicate the categories. It can be seen that most samples are divided into

correct classes with clear boundaries. Compared with views 1 and 2, features in the

3rd view have larger inter-class distance, and source D separates the target samples

better than source W.



132

Table 4.25 : MMD scores (10−3) of different constraints on dataset Office-31.

Standards S1 S2

C1 C2 C3 C1 C2 C3

A, W→D

Lt 15.0 12.2 11.7 12.2 11.6 10.7

Lcro 11.5 9.9 9.9 12.0 11.3 10.2

Ladpt 13.0 11.3 11.6 12.1 11.6 10.8

Lca 7.8 7.4 8.3 10.7 10.4 9.9

All 9.3 8.5 8.7 10.2 9.6 9.7

A, D→W

Lt 8.0 6.4 7.2 15.7 13.6 12.5

Lcro 5.6 5.0 5.8 12.1 11.5 11.0

Ladpt 8.4 7.3 7.8 15.6 13.7 12.7

Lca 6.1 5.3 5.9 13.4 12.1 11.3

All 5.3 4.9 5.8 13.4 12.3 11.7

W, D→A

Lt 10.3 9.1 10.0 24.3 21.3 20.3

Lcro 12.1 9.5 9.0 13.4 12.9 12.9

Ladpt 60.6 45.6 37.2 64.3 53.4 44.0

Lca 9.1 8.0 9.3 18.1 16.7 16.2

All 7.5 6.9 7.2 13.5 13.1 13.3
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Table 4.26 : MMD scores (10−3) of different constraints on dataset Office-Home.

Standards S1 S2 S3

C1 C2 C3 C1 C2 C3 C1 C2 C3

A,C,P→R

Lt 5.8 6.1 5.2 9.8 8.9 6.7 16.6 15.0 10.8

Lcro 6.7 5.6 5.3 4.3 4..3 4.0 7.8 7.2 5.9

Ladpt 7.8 8.0 6.3 9.4 8.0 6.0 13.5 11.3 8.5

Lca 7.3 5.9 5.8 4.7 4.6 4.2 8.1 7.3 5.9

All 5.5 4.8 5.0 3.9 4.1 4.0 5.0 4.9 4.4

A,C,R→P

Lt 7.0 6.8 6.8 7.7 7.5 6.6 8.4 7.5 6.3

Lcro 11.2 9.5 9.2 5.6 5.5 5.4 3.8 3.8 3.7

Ladpt 14.3 13.9 11.7 10.8 9.5 7.6 6.4 5.8 5.4

Lca 11.2 9.4 9.1 5.7 5.7 5.4 3.7 3.9 3.7

All 13.1 10.4 9.4 6.9 5.7 6.2 3.4 3.4 3.4

A,P,R→C

Lt 6.3 6.4 6.2 13.7 12.7 10.2 11.9 12.9 9.1

Lcro 10.5 8.5 8.4 7.7 7.9 6.5 5.1 5.5 4.7

Ladpt 24.3 23.1 15.8 48.3 38.0 25.5 23.5 21.6 15.6

Lca 10.7 8.7 8.7 9.2 8.9 7.7 5.7 6.3 5.4

All 9.1 7.8 8.1 8.1 8.3 7.2 4.9 5.2 5.0

C,P,R→A

Lt 10.5 9.5 8.5 21.6 18.4 15.3 23.4 19.2 14.5

Lcro 7.5 7.1 7.1 10.0 9.7 9.0 9.3 7.7 6.9

Ladpt 50.0 34.5 22.2 74.4 56.7 36.7 36.5 29.4 20.6

Lca 7.9 7.5 7.3 10.8 10.5 9.7 10.1 8.9 7.4

All 8.5 8.4 7.9 11.8 11.3 10.3 7.1 6.5 5.9



134

(a) W→A view 1 (b) D→A view 1

(c) W→A view 2 (d) D→A view 2

(e) W→A view 3 (f) D→A view 3

Figure 4.5 : T-SNE visualization of multi-view features in target domain.
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4.5 Summary

This section provides an overall summary of this work and offers suggestions

for potential future study. This chapter proposes dynamic classifier alignment for

multi-source domain adaptation, where the multi-view features and multi-source do-

mains are investigated together to improve the transfer learning performance. To

take advantage of the specific information carried by representations from different

views, instead of concatenating multi-view features directly as in previous studies,

we train multiple classifiers and align the multi-view classifiers to build the final

source classifier with the assistance of a generated auxiliary source classifier. Com-

pared with existing multi-source domain adaptation methods which combine the

source domains averagely or calculate the combination weights relying on feature

distance over batch, we develop a domain discriminator to learn the combination

parameters with respect to the probabilities of a target sample belonging to the

source domains. In addition, to explore more usable information from the target

domain to enhance the cross-domain ability of the source classifier, pseudo labels

are introduced during training to provide supervision. Experiments on four popular

real-world image classification datasets show the proposed method achieves higher

performance compared with most baselines.

The current study aligns classifiers from different views to avoid the feature

heterogeneity problems of multiple views and domains. In real-world applications,

not only the features spaces, but also the label space can be heterogeneous. Thus,

based on this work, we will try to extend the alignment to a heterogeneous setting

to make the algorithm more practicable in the future.
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Chapter 5

Multi-Source Domain Adaptation with Sample

and Source Distillation

5.1 Introduction

Multi-source domain adaptation attracts increasing attention as it delivers richer

information. Most related works use all samples to train the transfer model but

rarely consider the fact that some outliers or dissimilar samples might introduce

additionally confusing information which degrades the performance. It is the quality

of training samples, not just the quantity, that influences transfer performance.

There might be source samples that relate weakly (inefficient samples) to the target

samples which might confuse the classifier on both source and target tasks and result

in negative transfer. As shown in Fig. 5.1, in relation to the class backpack, for

example, although pictures with the dashed line from Source 1 and Source 2 contain

information of backpack, the one in Source 1 provides extra unrelated information

(people and bird) which may mislead the predictor, while the other in Source 2

can only provide incomplete information which may confuse the predictor. Samples

from Source 3 are not real-world pictures which provide fewer details compared with

other sources, meaning that Source 3 transfers inadequate knowledge to the target

domain which contains real-world pictures.

To filter out unrelated information, distilling algorithms are proposed. Distant

transfer algorithm builds a mixture of intermediate domains as a bridge to filter out

unusable samples (Tan et al., 2017). Multi-source distilling network selects training

samples using the estimated Wasserstein distance between a source sample and the
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Figure 5.1 : Example of inefficient source samples and domains.

whole target domain (Zhao et al., 2020a). Partial feature selection and alignment

network filters out unimportant feature dimensions and builds multiple adaptation

losses to preserve both category-level and domain-level information (Fu et al., 2021).

However, the existing methods rely mainly on measuring the distance between

the source samples and the whole target domain to select training samples close

to the target domain, but disregard the correlation between source samples and

the target classes, and the influence of boundary samples. Although these samples

might be close to the target domain, they can cause misalignment. In addition,

existing widely used combination rules based on feature distance fail to indicate

source domains which are most related to the target domain.

To solve these problems, this chapter proposes a transfer sample and source

distillation (SSD) method for multi-source domain adaptation, which develops a

two-step selective strategy to distill the inefficient source samples as well as the

domains based on the similarity between a source sample and the target category.

Our contributions are threefold:

• We propose a two-step selective strategy to select transfer source samples and

the dominant source domain. The proposed strategy can extract similar source

knowledge that is more noticeable to the target domain. Simultaneously, it
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identifies the most similar source domain to guarantee the source predictor

dominates the target prediction, which is of benefit in reducing negative trans-

fer. This has rarely been considered in previous studies. The selection can also

avoid misalignment resulting from outliers and preserves transferable informa-

tion.

• We build an enhancement mechanism to improve the performance across do-

mains of source predictors by adapting pseudo-labeled and unlabeled target

samples, which explores the accessible target information directly except for

domain feature matching on which most existing domain adaptation methods

rely.

• We build a new combination rule to complete the target task. Compared with

existing combination rules, the proposed rule not only estimates the combina-

tion weights but also identifies the dominant source domain to ensure the most

similar source domain contributes the most in target task prediction, which

previous multi-source domain adaptation methods disregard.

5.2 Problem setting and Notations

We focus on domain adaptation with multiple sources under a homogeneous set-

ting, where the source and target domains have the same feature space and share the

same label space. The proposed sample and source distillation method is evaluated

on real-world image classification tasks.

Table 5.1 displays the notations and corresponding descriptions used in this

chapter.
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Table 5.1 : Notations and descriptions.

Notation Description

Dsk , Dt source/target domain, k is source index

D′
sk distilled source domain

Dtl target domain with selected pseudo labels

Dtu target domain with unlabeled samples

nsk , nt number of samples from source/target domain

xsk , xt sample from the source/target domain

ysk corresponding label of xsk

ϕ pre-trained backbone

ϕk feature extractor for kth source domain

Psk the kth source predictor

Pc category classifier learned from pseudo-labeled target domain

Pd domain discriminator learned from distilled source domains
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5.3 The Proposed Method: Sample and Source Distillation

The proposed method is illustrated in Fig. 5.2. As shown in Fig. 5.2(a), first,

given pre-trained source models which are learned only based on source data, a por-

tion of target labels being correct with a high probability are collected by ranking

target predictions when applying target data to source predictors. Then, the cate-

gory classifier is learned from the pseudo-labeled target domain, which is expected

to select source samples highly related to the target domain and distill inefficient

samples. Only source samples strongly connected to the target domain are kept

for further training. Fig. 5.2(b) shows domain adaptation based on distilled source

domains. First, a domain discriminator is learned from the selected source samples

which defines the dominant source domain given its similarity to the target domain.

At the same time, it returns the alignment weights for merging source predictions to

complete the classification in target domain. Simultaneously, an enhancement mech-

anism based on self-supervised learning is built to improve the performance across

domains of source models, where the selected target pseudo labels are adopted to pa-

rameterize the training. In addition, multi-level distribution matching is adopted to

fine-tune the source models based on the selected source samples, which fits source

models to the target domain by reducing data gaps. The target task is finally

completed using the combination weights estimated by the learned domain discrim-

inator. The operation of selecting highly similar source samples in Fig. 2(a) and

the dominant source domain in Fig. 2(b) is named as a two-step selective strategy.

5.3.1 Source Model Training and Pseudo Target Label Collection

In terms of the structural risk minimization principle (Vapnik and Vapnik, 1998),

the learning processing of the kth source predictor Psk can be expressed as:

Psk = argmin
Psk

∈H
(xsk

,ysk
)∼Dsk

L(Psk(ϕk(ϕ(xsk))),ysk), (5.1)
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Source K

Pseudo label selection

Pseudo label selection

... ...

Backbone Predictor

Target Pseudo-labeled Target

Pre-trained source models

Category classifier

Source 1...

...
Distilled Source KFeature extractor

Specific
Distilled Source 1

(a) Target pseudo label collection and source sample distillation.

Self-training

Self-training

Distilled Source K Predictor

Distilled Source 1... ... ...
Backbone

Domain discriminator

Target with selected pseudo labels

Target label

Dominant source selection

Feature extractor
Specific

(b) Domain adaptation and target task completion.

Figure 5.2 : The whole framework of the proposed method. Figure (a) indicates tar-

get label collection and source sample distillation. Given pre-trained source models

comprised of shared backbone, specific feature extractors and predictors, pseudo tar-

get labels are collected first. The selected target labels are then employed to train

the category classifier which distills inefficient source samples. Figure (b) indicates

domain adaptation and dominant source domain selection. A domain discriminator

is first built based on the distilled source domains to identify the dominant source

domain and learn the relationships between source and target domains. Simultane-

ously, pre-trained source models are fine-tuned based on the distilled source domains

by minimizing the discrepancy between the source and target distributions. Self-

supervised training is also adopted based on the selected target labels to enhance

the cross-domain ability of source models and guarantee the performance of transfer.
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L is the cross-entropy loss function on labeled source data, which can be formulated

as:

L = − 1

nsk

nsk∑
i=1

yisk log(Psk(ϕk(ϕ(x
i
sk
))), (5.2)

ϕ, ϕk are feature extraction networks, H represents reproducing kernel Hilbert

space and ns can be replaced with the batch size as the training progresses over the

batch. This replacement is applied to all update processing.

To improve the cross-domain ability of each source classifier, cross-domain con-

straint among source domains is adopted to ensure the generality of source classifiers

by jointly training source models simultaneously. For the kth source domain, the

jointly training with other source classifiers is formulated as:

Lcro =
1

(K − 1)

K∑
k′ ̸=k

L(Psk′ (ϕk′(ϕ(xsk))),ysk). (5.3)

Psk in equation (5.1) can be re-written as:

Psk = argmin
Psk

∈H
(xsk

,ysk
)∼Dsk

L(Psk(ϕk(ϕ(xsk))),ysk) + βLcro. (5.4)

Then pseudo target label is predicted as:

ŷt = ∧(Ps1(ϕ1(ϕ(xt))), · · · , PsK (ϕK(ϕ(xt)))), (5.5)

∧ is an operation to return the target labels predicted as the same by multiple

source predictors. This operation aims to collect pseudo labels with low noise,

which is important to guarantee the performance of source sample selection. If a

target sample obtains the most votes from source predictors, it will be selected to

train the distillation model. Otherwise, it will not be regarded as a transfer sample.

In addition, a threshold act of each class is established to choose the pseudo labels

with high probabilities. This can also help reduce the label noise. In this chapter, act

is defined as the median value of the target samples which are predicted to belong
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to the same class. If no selected target samples belong to a class, we think there are

very large gaps in this class among all source and target domains. In this situation,

it is preferable to keep all source samples without distillation to gain enough class

information.

5.3.2 The Two-step Selective Strategy

To select the source samples which are strongly connected to the target domain,

the pseudo-labeled target domain is used to learn a series of category classifiers

that discriminate transfer and inefficient source samples in each category. Category

classifier, which is composed of multiple binary classifiers {Pc}Cc=1, is trained by

minimizing the cross-entropy loss:

Lbce =
C∑
c=1

L(Pc(ϕ(xt)), I(ŷt, c)). (5.6)

ŷt is pseudo target label, I(ŷt, c) = 1ŷt=c. Feed the kth source samples into the

learned classifiers, the prediction of a source sample belonging to a target category

is:

I(ŷsk , c) = Pc(ϕ(xsk)). (5.7)

Compare predictions of sample xsk returned by c classifiers, if I(ŷsk , c) = 1 gains

the highest probability value, denote ŷsk = c. If the ground-truth label ysk = c,

the source sample is regarded as a similar sample to the target domain. Otherwise,

it will be removed from the corresponding source domain. After collecting similar

source samples, to ensure that we select the source samples most related to the

target domain, we rank the similar samples according to their probability values

predicted by the corresponding binary classifier, and choose the top half of source

samples as transfer samples to re-train the source model to fit the target domain.

Considering the label noise or scarcity in the pseudo-labeled target domain, to

avoid that there is no source sample belonging to a target category, denote the proba-

bility vector of a source sample belonging to the category as psk = [p1sk , p
2
sk
, · · · , pCsk , ],
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where pcsk is the maximum probability returned by the cth category classifier, a

threshold ac of each class is defined to guarantee at least one source sample in each

category is selected as a transfer sample. The selective rule for a source sample

ysk = c is: if pcsk > ac, then the source sample is kept for transferring. ac is the

median probability value of source samples from the cth class which are distilled by

category classifier in the first selection. This ensures that source samples that gain

a higher agreement of belonging to their category can be selected.

The source sample selection based on the assumption of the category classifier

learned from pseudo-labeled target samples can extract more noticeable source in-

formation to the target domain, since the category classifier learns both invariant

and specific information from the target domain.

Denote source domains with transfer samples as {D′
sk}Kk=1, a domain discrimi-

nator Pd is trained to learn the degrees of a sample belonging to the source domains.

It can be expressed as:

Ldce =
K∑
k=1

L(Pd(ϕ(xsk)), k),xsk ∈ {D′
sk}Kk=1, (5.8)

k is the domain label. Relatedness between target sample and source domains is

defined as:

ptd = Pd(ϕ(xt)) = [p1td , p
2
td
, · · · , pKtd ]. (5.9)

The maximum element of ptd indicates target sample belongs to the corresponding

source domain.

By applying domain discriminator to a target sample, the similarity between a

target sample and the whole source domain can be found. Then the predictor from

this nearer source domain will gain a larger weight when predicting the target label

by combining all source predictions. If there is a large portion of target samples

showing high similarity to the same source domain, this source domain will be

regarded as dominant source domain, whose prediction will be taken as the final
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prediction of target domain. The selection of the dominant source domain has

the advantage of reducing negative transfer resulting from some unrelated source

domains by giving the dominant source predictor a very large combination weight.

Let the number of the target samples belonging to the kth source domain be nk,

define if nk

nt
− nt−nk

nt
> 1

K
, the kth source domain is a dominant domain for the target

task.

5.3.3 Domain Adaptation and Target Task Completion

When completing the target task, pre-trained source models are re-trained using

the selective transfer source samples by adapting source and target domains. Even

though we have the most similar source samples/domains, there are still data gaps.

To ensure that the source predictors can perform reasonably well, source and target

data are adapted on both domain-level and class-level. It can be expressed as:

Ld(D′
sk ,Dt) =MMD

ψ∈H
(D′

sk ,Dt) (5.10)

and

Lc(D′
sk ,Dt) =

1

C

C∑
c=1

MMD
ψ∈H

(D′c
sk
,Dct )−

1

2C(C − 1)

C∑
c1=1

C∑
c2 ̸=c1

(MMD
ψ∈H

(D′c1
sk
,D′c2

sk
)+

MMD
ψ∈H

(Dc1t ,Dc2t )),

(5.11)

where Ld is the divergence of adapting distributions on domain-level, Lc indicates

that on class-level. D′c
sk
,Dct denote domains only containing the cth class samples.

MMD (Pan et al., 2010) is formulated as:

MMD
ψ∈H

(D1,D2)

=

∥∥∥∥∥ 1

n1

n1∑
i=1

ψ(ϕk(ϕ(x
i
1)))−

1

n2

n2∑
j=1

ψ(ϕk(ϕ(x
j
2)

∥∥∥∥∥
2

H

,

(5.12)
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ψ is a nonlinear function transforming data into RKHS with a universal kernel K

satisfying K(x1,x2) = ⟨ψ(x1), ψ(x2)⟩, n1, n2 are numbers of samples which can be

replaced with batch size during training.

At the same time, cross-domain constraint is applied on target domain to reduce

the misalignment of boundary samples by minimizing the error of results returned

by all source predictors on the same target samples. The loss function in equation

(5.3) is re-written as:

Lcro =
1

(K − 1)

K∑
k′ ̸=k( 1

nt

nt∑
j=1

∣∣Psk(ϕk(ϕ(xjt)))− Psk′(ϕk′(ϕ(xjt)))∣∣).
(5.13)

Motivated by previous study (Li and Hospedales, 2020) which splits source do-

main, an enhancement strategy is built to improve the cross-domain ability of source

predictors.

Dividing the pseudo-labeled target domain into Dtl and Dtu , Dtu contains the

target samples gaining low probabilities when they are pseudo labeled by the pre-

trained source predictors, of which the probabilities are lower than atc, while Dtl

contains samples reaching probabilities higher than atc. For the kth source domain,

the constraint based on the pseudo labeled target domain is expressed as:

Lsupt =
K∑
k=1

L(Psk(ϕk(ϕ(xtl))), ŷtl) + δLd(Dtl ,Dtu). (5.14)

Ld is the adaptation loss, L is the cross-entropy loss of pseudo-labeled target domain,

δ is the trade-off parameter.

The total loss is:

Psk = argmin
Psk

∈H
(xsk

,ysk
)∼D′sk

L(Psk(ϕk(ϕ(xsk))),ysk)

+ α(Ld + Lc) + βLcro + Lsupt.

(5.15)
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When completing target task, if the dominant source domain exists, the target

predictor will be the dominant source predictor (denote as Psdmnt
). Otherwise, the

target predictor is a weighted combination of the source predictors, and the weights

are returned by the domain discriminator in equation (5.9). The target predictor is

formulated as:

Pt =


∑K

k=1 p
k
td
· Psk , if dominant domain is false;

Psdmnt
, if dominant domain is true.

(5.16)

The processing of the transfer sample selection is described in Algorithm 4, and

the target task prediction is outlined in Algorithm 5.

Algorithm 4 Transfer sample selection

1: Input: Source domain {Dsk}Kk=1, target domain Dt;

2: Initialization: Feature extraction networks ϕ, ϕk and source predictor Psk ;

3: for ϵ = 1, ϵ < I1, ϵ++, do

4: Enhance cross-domain ability as in (5.3);

5: Train source model as in (5.4);

6: end for

7: Calculate pseudo target label ŷt as in (5.5);

8: Learn category classifiers as in (5.6);

9: Select transfer source samples as in (5.7);

10: Output: Distilled source domains {D′
sk
}Kk=1.
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Algorithm 5 Target task prediction

1: Input: Distilled source domains {D′
sk
}Kk=1, target domain Dt, pseudo labeled

training domain Dtl , and unlabeled domain Dtu . Pre-trained feature extraction

networks ϕ, ϕk and source predictor Psk ;

2: Learn domain discriminator as in (5.8);

3: Calculate the weight vector ptd of the target sample belonging to source domains

as in (5.9);

4: Select source dominant domain if exists;

5: for ϵ = 1, ϵ < I2, ϵ++, do

6: Adapt source and target data by minimizing MMD as in (5.10) and (5.11);

7: Enhance cross-domain ability as in (5.13);

8: Fit source model to target domain using self-supervised enhancement strategy

as in (5.14);

9: Update ϕ, ϕk and Psk as in (5.15);

10: end for

11: Complete target predictor as in (5.16);

12: Output: Target labels.
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5.4 Experiments

In this section, the proposed transfer sample selection method is validated on

five popular real-world visual datasets, comprising ImageCLEF-DA, Office31, Office-

Caltech10 and OfficeHome. All the experiments are classification tasks under the

multi-source domain adaptation scenario. Classification accuracy is the only cri-

terion used to evaluate the performance. The dataset details, parameter settings,

experiment results and the analysis are detailed in the following.

5.4.1 Datasets and Baselines

Five real-world datasets are used in this chapter to valid the proposed SSD.

ImageCLEF-DA has three domains sharing 12 categories, the proposed method is

applied by completing three tasks: I, C → P ; I, P → C; C,P → I. Office-Caltech10

contains four domains sharing 10 categories. The proposed method is validated by

completing four tasks: A,D,W → C; C,D,W → A; A,C,D → W , A,C,W →

D. Office-31 comprises three domains and contains 4110 images which share 31

categories. The proposed method is tested by completing three tasks: A,W → D;

A,D → W ; W,D → A. Office-Home holds 15588 images which share 65 categories.

Experiments are conducted by completing four tasks: A,C, P → R; A,C,R → P ;

A,P,R→ C; C,P,R→ A. DomainNet is the largest dataset containing 0.6 million

images sharing 345 categories. The proposed method is tested on six tasks. For each

task, two unrelated source domains defined by the domain discriminator are distilled,

the target tasks are finally predicted using three selected domains: I, R, S → C,

P,Q,R → I, C, I,R → P , C, I, S → Q, I,Q, S → R and C,P,Q → S. All results

of the compared multi-source domain adaptation methods are predicted using five

source domains, the proposed method uses three selected source domains.

Baselines with single source domain include:
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• DAN: Deep adaptation network employing joint distribution merging (Long

et al., 2015);

• RevGrad: Reverse gradient based adaptation (Ganin and Lempitsky, 2015);

• D-CORAL: Adaptation employing correlation alignment (Sun and Saenko,

2016);

• CyCADA: Adaptation based on cycle-consistent adversarial learning (Hoffman

et al., 2018);

• MRAN: Adaptation with multi-view representations (Zhu et al., 2019b);

• CAT: Teacher guided adaptation with cluster alignment (Deng et al., 2019);

• SAFN: Adaptive feature norm adaptation (Xu et al., 2019a);

• MDE: Deep network with minimum discrepancy estimation (Rahman et al.,

2020);

• ETD: Adaptation with enhanced transport distance (Li et al., 2020c);

• FDA: Faster domain adaptation network (Li et al., 2021b);

• DWL: Dynamic weighted learning for unsupervised domain adaptation (Xiao

and Zhang, 2021);

• CRSL: Adaptation employing cycle-reconstructive subspace learning (Xu and

Yan, 2022).

Multi-source domain baselines include:

• MFSAN: Deep network combining feature and classifier alignment (Zhu et al.,

2019a);

• FADA: Adaptation with federated adversarial learning (Peng et al., 2019b);
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• MDDA: Adaptation with source distillation (Zhao et al., 2020a);

• MADAN: Multi-source adaptation with adversarial aggregation network (Zhao

et al., 2021);

• MetaMDA: Meta-learning based adaptation employing an online optimization

strategy (Li and Hospedales, 2020);

• MIAN: Multi-source domain adaptation with information-theoretic regulariza-

tion (Park and Lee, 2021);

• WBT: Multi-source domain adaptation with Wasserstein barycenter transport

(Montesuma and Mboula, 2021);

• MSCLDA: Multi-level and multi-view adaptation with source contribution

learning (Li et al., 2021c);

• MLAN: Joint and separate adaptation with mutual learning (Xu et al., 2022);

• DCA: Multi-view adaptation with sample-wise classifier alignment (Li et al.,

2022a).

5.4.2 Parameter Setting

Our experiments employ ResNet50 as the backbone on datasets Office-31, ImageCLEF-

DA and Office-Home, ResNet101 as the backbone on datasets Office-Caltech10 and

DomainNet, complemented by Pytorch. Parameters are updated based on back-

propagation with Stochastic Gradient Descent (SGD), the momentum is 0.9, the

learning rate η follows the same strategy in (Ganin and Lempitsky, 2015), which is

η = η0
(1+10ϵ)0.75

, where η0 = 0.01, ϵ is the training progress changing linearly from 0

to 1. The learning rate of the shared network is one tenth of other layers. Batch

size b = 32, trade-off parameters α, β, δ follow existing work (Zhu et al., 2019a),

that is α = β = δ = 2
1+exp(−10ϵ′)

− 1, where ϵ′ is a linearly changing number from 0
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to 1. Early stop is used to control the training process. Considering the large mem-

ory requirement, for class-level distribution matching, we only enlarge the distance

between the nearest classes, not them all.

Threshold ac is defined to guarantee that each source category contains at least

one training sample. We choose the medium value of the predicted probabilities in

each category as the threshold in selecting the transfer source samples. Threshold

act is the median value of traget samples belonging to the same class predicted by

source classifiers.

5.4.3 Results and Analysis

Tables 5.2, 5.3, 5.4, 5.5 and 5.6 show the performance of what we propose (SSD)

and the baselines under three standards: “Single best”, “Source Combine” and

“Multi-Source”. “Single best” shows the best performance of some state-of-the-art

single source domain adaptation methods; “Source Combine” displays the perfor-

mance of several compared single source domain adaptation methods using multiple

source domains where all source samples are mixed; “Multi-Source” lists the per-

formance of multi-source domain adaptation methods which consider domain shifts.

Comparison with the single source domain adaptation method considers two aspects:

first, it aims to show that the proposed method can avoid negative transfer result-

ing from combining multiple source predictions. Second, if the dominant source

domain exists, the comparison reveals the superiority of the proposed method based

on single source domain. The text in bold indicates the highest accuracy of each

task.

It shows that the predictors learned with the transfer samples achieve the high-

est average performance on most datasets. The performance of multi-source domain

adaptation under both standards -“Source Combine” and “Multi-Source” -is usu-

ally better than that of single source domain adaptation, and the performance of
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“Multi-Source” is generally superior to what is achieved with the “Source Com-

bine”. This means richer training samples can enhance the learning processing in

most situations. When considering the domain shifts between source domains, the

learned predictor can perform better than what can be obtained by simply com-

bining all training samples. The proposed method trained with selective samples

and domains outperforms most existing methods trained with all source samples. It

indicates that the quantity of the training samples is not the only factor that affects

the performance. The sample quality is more important. Distilling the inefficient

training samples even domains does not degrade the learning performance in most

situations. On dataset ImageCLEF-DA, baseline DWL gains significant superiority

over other methods. DWL dynamically weights all source samples to ensure simi-

lar source samples control domain alignment. Compared with DWL, the proposed

method uses fewer source samples, and outperforms the baseline on other datasets.

The compared multi-source domain adaptation methods involve the widely used

combination rules, including the averaged combination (MFSAN); the weighted

mean combination (DCTN, MDAN), in which the weight is calculated using the dis-

tance between the source and target domains; and the adversarial learning strategy

(MADAN). Results indicate that the proposed method with the developed combi-

nation rule, which takes the dominant source domain into account, achieves higher

performances on most target tasks than the other methods compared.

Compared with multi-source domain adaptation method which considers both

the importance of source domains and source samples (MDDA), the proposed mehtod

(SSD) achieves higher performance on most tasks and the highest average perfor-

mance. MDDA distills source samples based on the Wasserstein distance between

a source sample and the whole target domain, and calculates source weights using

standard Gaussian distribution to combine source predictions. The proposed SSD

distills source samples by measuring the distance between a source sample and the
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target category, and automatically learns the source importance by designing a do-

main discriminator to accept a target sample as a source insider. It can align source

information that is more noticeable to the target domain.

5.4.4 Influence of the Combination Rule

The proposed combination rule is related to the quantities of the target samples

belonging to the source domains, and for each target domain, there might be a

dominant source domain. Fig. 5.3 shows how many target samples are divided

into each source domain. The source rank is consistent with the description: for

instance, for task A,D → W , “Source 1” (S1) indicates domain A, “Source 2”

(S2) indicates domain D. If the quantity of the target samples belonging to a

source domain exceeds the threshold, which is nk >
(K+1)·nt

2K
, as mentioned in 5.3.2,

the corresponding kth source domain is a dominant source domain. Calculations

illustrate that, for target tasks I, C → P from ImageCLEF-DA, A,W → D, A,D →

W from Office31, A,C,W → D from Office-Caltech10 and C,P,R→ A, A,C,R→

P from OfficeHome, the dominant source domains exist. For DomainNet, although

dominant source domain does not exist, the source domains gaining very low weights

can be distilled. For example, when predicting target task Q, Sources 3 and 4 are

distilled as there are fewer target samples belonging to these two source domains,

meaning they are weakly-connected to the target domain.

Tables 5.7, 5.8, 5.9, 5.10 and 5.11 show the performance of the proposed method

with different combination rules. “S” is the performance of single source domain

adaptation with cross-domain constraint. “Mean” indicates the performance of

multi-source domain adaptation using an averaged combination. “Weighted” in-

dicates the performance of multi-source domain adaptation using a weighted mean

combination, the source weights are calculated as shown in equation (5.9). “Pro-

posed” indicates the performance of multi-source domain adaptation using the pro-
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Table 5.2 : Accuracy (%) on dataset Office31 of the proposed and comparison

methods

Standards Method A, W→D A, D→W W, D→A Avg

ResNet 99.3 96.7 62.5 86.2

DAN 99.5 96.8 66.7 87.7

D-CORAL 99.7 98.0 65.3 87.7

Single RevGard 99.1 96.9 68.2 88.1

best MRAN 99.8 96.9 70.9 89.2

CAT 100.0 986 70.4 89.7

SAFN 99.8 98.4 69.8 89.3

ETD 100.0 100.0 71.0 90.3

FDA 100.0 99.1 74.3 91.1

MLAN 99.6 98.9 75.7 91.4

DWL 100.0 99.2 73.1 90.8

Source DAN 99.6 97.8 67.6 88.3

Combine D-CORAL 99.3 98.0 67.1 88.1

RevGard 99.7 98.1 67.6 88.5

MFSAN 99.5 98.5 72.7 90.2

Multi- MIAN 98.5 99.5 74.7 90.9

Source MSCLDA 99.8 98.8 73.7 90.8

DCA 99.6 98.9 75.1 91.2

SSD 99.8 99.1 76.0 91.6
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Table 5.3 : Accuracy (%) on dataset ImageCLEF-DA of the proposed and compar-

ison methods

Standards Method I, C→P I, P→C P, C→I Avg

ResNet 74.8 91.5 83.9 83.4

DAN 75.0 93.3 86.2 84.8

D-CORAL 76.9 93.6 88.5 86.3

Single RevGard 75.0 96.2 87.0 86.1

best MRAN 78.8 95.0 93.5 89.1

CAT 76.7 97.9 93.3 89.3

SAFN 78.0 96.2 91.7 88.6

ETD 81.0 97.9 93.3 90.7

FDA 79.2 97.2 93.0 89.8

DWL 82.3 98.1 94.8 91.7

Source DAN 77.6 93.3 92.2 87.7

Combine D-CORAL 77.1 93.6 91.7 87.5

RevGard 77.9 93.7 91.8 87.8

Multi- MFSAN 79.1 95.4 93.6 89.4

MSCLDA 79.5 95.9 94.3 89.9

Source DCA 78.9 96.2 93.9 89.7

SSD 79.2 96.6 94.8 90.2
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Table 5.4 : Accuracy (%) on dataset Office-Caltech10 of the proposed and compar-

ison methods

Standards Method A,D,W→C C,D,W→A A,C,D→W A,C,W→D Avg

Single ResNet 82.5 91.2 98.9 99.2 93.0

best MDE 89.1 94.8 99.4 100.0 95.8

CyCADA 89.7 96.2 98.9 97.3 95.5

Source ResNet 87.8 86.1 99.0 98.3 92.8

Combine DAN 89.7 94.8 99.3 98.2 95.5

CyCADA 91.0 95.9 99.0 97.8 95.9

Multi- WBT 91.4 95.0 96.8 94.7 94.5

Source MFSAN 93.8 95.1 99.1 98.7 96.7

FADA 88.7 84.2 88.1 87.1 96.4

MSCLDA 94.1 95.3 99.1 98.5 96.8

CRSL 86.5 92.3 99.0 100.0 94.5

DCA 94.7 96.0 99.7 99.1 97.4

SSD 95.0 95.8 99.1 100.0 97.5
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Table 5.5 : Accuracy (%) on dataset OfficeHome of the proposed and comparison

methods

Standards Method A,C,P→R A,C,R→P A,P,R→C C,P,R→A Avg

ResNet 75.4 79.7 49.6 65.3 67.5

DAN 75.9 80.3 56.5 68.2 70.2

Single RevGard 75.8 80.4 55.9 67.9 70.0

best D-CORAL 76.3 80.3 53.6 67.0 69.3

MRAN 77.5 82.2 60.0 70.4 72.5

SAFN 81.5 77.1 57.1 70.9 71.7

ETD 82.1 85.7 57.5 70.2 73.9

Source DAN 82.5 79.0 59.4 68.5 72.4

Combine D-CORAL 82.7 79.5 58.6 68.1 72.2

RevGard 82.7 79.5 59.1 68.4 72.4

Multi- MFSAN 80.8 79.0 60.7 70.0 72.6

Source MADAN 81.5 78.2 54.9 66.8 70.4

MIAN 80.4 79.6 63.1 69.4 73.1

MetaMDA 83.4 81.2 60.5 70.2 73.8

MSCLDA 80.6 79.9 61.4 71.6 73.4

DCA 81.4 80.5 63.6 72.1 74.4

SSD 83.2 81.2 64.5 72.5 75.4
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Table 5.6 : Accuracy (%) on dataset DomainNet of the proposed and comparison

methods

Standards Method C I P Q R S Avg

Single ResNet 39.6±0.6 8.2±0.8 33.9±0.6 11.8±0.7 41.6±0.8 23.1±0.7 26.4

best DAN 39.1±0.5 11.4±0.8 33.3±0.6 16.2±0.4 42.1±0.7 29.7±0.9 28.6

ADDA 39.5±0.8 14.5±0.7 29.1±0.8 14.9±0.5 41.9±0.8 30.7±0.7 28.4

MCD 42.6±0.3 19.6±0.8 42.6±1.0 3.8±0.6 50.5±0.4 33.8±0.9 32.2

Source DAN 45.4±0.5 12.8±0.9 36.2±0.6 15.3±0.4 48.6±0.7 34.0±0.5 32.1

Combine ADDA 47.5±0.8 11.4±0.7 36.7±0.5 14.7±0.5 49.1±0.8 33.5±0.5 32.2

MCD 54.3±0.6 22.1±0.7 45.7±0.6 7.6±0.5 58.4±0.7 43.5±0.6 38.5

M3SDA 58.6±0.5 26.0±0.9 52.3±0.6 6.3±0.6 62.7±0.5 49.5±0.8 42.6

Multi- MDDA 59.4±0.6 23.8±0.8 53.2±0.6 12.5±0.6 61.8±0.5 48.6±0.8 43.2

Source MetaMDA 62.8±0.2 21.4±0.1 50.5±0.1 15.5±0.2 64.6±0.2 50.4±0.1 44.2

SSD 67.2±0.1 21.7±0.1 52.4±0.2 20.8±02 67.8±0.1 55.3±0.2 47.5
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(a) ImageCLEF-DA (b) Office-Caltech10

(c) Office31 (d) OfficeHome

(e) DomainNet

Figure 5.3 : Quantities of the target samples belonging to the source domains. Red

line indicates the threshold of the dominant source domain for each target task.

Source order is described in section 5.4.1.
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posed combination rule in equation (5.16).

The accuracy of the proposed combination rule overtakes the greatest accuracy

returned by both single source domain adaptation and the results of other combi-

nation rules. Even single source performance of SSD is superior to many baselines

in Tables 5.2, 5.3, 5.4, and 5.5. It also indicates a phenomena that the transferable

information is asymmetric. Taking tasks from dataset Office31 as examples, for

target task W,D → A, the model trained with the source domain D outperforms

that trained with the source domain W . It is expected that, when learning target

task A,W → D, the model trained with the source domain A should perform better

than that trained with the source domain W , as domains A and D show stronger

connection in task W,D → A. However, the fact is that the predictor from the

source domain W is superior to that from the source domain A. This means that

the information from domain D can be transferred to domain A, but the information

from domain A might not be ideal for domain D. In other words, the transferable

information between two domains is unbalanced, or one-way.

For DomainNet, the selected source domains achieve higher performance than

applying all source domains using average mean and weighted average mean com-

binations. The proposed SSD applies three source domains, but outperforms the

transfer model employing all five source domains. It indicates our method can re-

duce negative transfer caused by weakly-connected source domains and enhance

the positive transfer. For most target tasks, the proposed combination rule can

identify the dominant source domain, if it exists, and return the best performance.

Even for those target tasks where the accuracy produced by the single best domain

adaptation is better than that returned by the multi-source domain adaptation,

A,C, P → R, A,P,R→ C from dataset OfficeHome, the domain discriminator can

divide most target samples into the closest connected source domain. We may take

as a future study the defining of a more sensitive threshold to choose the dominant
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source domain, and to explore the auxiliary function of other source domains when

transferring knowledge across domains.

Table 5.7 : Accuracy (%) on dataset Office31 with different combination rules

Standards A, W→D A, D→W W, D→A Avg

S1 98.0 98.9 75.8

91.3
S2 99.8 99.1 76.0

Mean 98.9 99.1 75.9 91.3

Weighted 99.3 99.0 76.0 91.4

Proposed 99.8 99.1 76.0 91.6

Table 5.8 : Accuracy (%) on dataset ImageCLEF-DA with different combination

rules

Standards I, C→P I, P→C P, C→I Avg

S1 79.2 96.4 94.4

90.1
S2 79.2 96.4 94.7

Mean 79.2 96.5 94.6 90.1

Weighted 79.2 96.6 94.8 90.2

Proposed 79.2 96.6 94.8 90.2

5.4.5 Sample Complexity Analysis

The threshold ac for each class is defined to guarantee at least one source sample

in each category is selected as a transfer sample, a measure which aims to avoid
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Table 5.9 : Accuracy (%) on dataset Office-Caltech10 with different combination

rules

Standards A,D,W→C C,D,W→A A,C,D→W A,C,W→D Avg

S1 94.5 95.6 98.6 97.5

97.0S2 94.9 95.8 98.6 98.5

S3 95.0 95.9 99.7 100.0

Mean 95.0 95.8 99.2 99.4 97.3

Weighted 95.0 95.8 99.1 98.9 97.1

Proposed 95.0 95.8 99.1 100.0 97.5

Table 5.10 : Accuracy (%) on dataset OfficeHome with different combination rules

Standards A,C,P→R A,C,R→P A,P,R→C C,P,R→A Avg

S1 82.0 76.6 62.9 68.7

73.9S2 81.8 78.5 63.7 70.3

S3 83.6 81.2 64.4 72.5

Mean 83.2 79.6 64.1 71.1 74.5

Weighted 83.2 80.6 64.5 71.6 74.9

Proposed 83.2 81.2 64.5 72.5 75.4
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Table 5.11 : Accuracy (%) on dataset DomainNet with different combination rules.

Result with symbol * is the selected source domain.

Value C I P Q R S Avg

S1 64.6±0.2* 21.1±0.1 51.5±0.1* 20.9±0.2* 67.1±0.2 54.7±0.2*

46.4

S2 64.2±0.7 21.5±0.1* 51.2±0.3* 20.3±0.1* 67.1±0.2* 53.4±0.2

S3 64.6±0.9 21.3±0.1* 50.5±0.1 20.5±0.2 67.2±0.2 54.6±0.2*

S4 66.5±0.2* 21.3±0.2* 52.1±0.1* 20.4±0.1 66.9±0.2* 54.5±0.0*

S5 66.8±0.1* 21.3±0.1 51.6±0.1 20.7±0.1* 67.5±0.1* 54.4±0.1

Mean 65.6±0.8 21.7±0.0 51.5±0.2 20.6±0.2 67.7±0.2 54.7±0.2 47.0

Weighted 65.6±0.8 21.7±0.0 51.5±0.2 20.6±02 67.7±0.2 54.8±0.2 47.0

Proposed 67.2±0.1 21.7±0.1 52.4±0.2 20.8±02 67.8±0.1 55.3±0.2 47.5

the possibility of any unshared category. The value of ac affects the quantity of

source samples used for training. In other words, it is connected directly with the

sample complexity. Taking datasets ImageCLEF-DA and OfficeHome as examples,

Tables 5.12 5.13 shows the performance of source models using different quantities

of training samples. ac = 1 means only source samples collected by the multiple

binary classifiers in equation (5.7) are used for training; ac = medium means the

source samples selected using (5.7) and the threshold ac are used for training; ac = 0

means all source samples are used.

For dataset ImageCLEF-DA, which contains fewer samples and fewer categories,

using the source samples selected only by the target category classifiers can achieve

performances matching the high levels attained when using all source samples.

Therefore, we can see for dataset OfficeHome, which has many samples as well

as categories, the model trained with the half source samples achieves the highest
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average performance on four target tasks. When ac = 1, there might be too few or

even no training samples in one category, which degrades the transfer performance;

when ac = 0, however, there are too many inefficient source samples showing a weak

connection with the target domain, which even introduces negative transfer.

Table 5.12 : Accuracy (%) on dataset ImageCLEF-DA with different quantities of

the transfer source samples

Value I, C→P I, P→C P, C→I Avg

ac=1 79.2 96.6 94.7 90.2

ac=medium 79.2 96.6 94.8 90.2

ac=0 79.1 96.7 94.9 90.2

Table 5.13 : Accuracy (%) on dataset OfficeHome with different quantities of the

transfer source samples

Value A,C,P→R A,C,R→P A,P,R→C C,P,R→A Avg

ac=1 81.2 79.2 62.2 70.6 73.3

ac=medium 83.2 81.2 64.5 72.5 75.4

ac=0 82.0 81.2 62.9 72.5 74.7

Figs. 5.4 and 5.5 show the accuracy of sample complexity with the standard

deviation. “Without ac” indicates ac = 1, where only source samples predicted

correctly by the category classifier are used without considering if there is no sample

in some classes. “Proposed” indicates the proposed selective strategy with threshold

ac = medium, and “All” indicates ac = 0, where all source samples are used. It can

be seen that the models trained with the distilled source domains with threshold
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ac perform with greater stablility than those trained with all source samples, and

achieves the best performance on most tasks.

(a) I (b) C

(c) P

Figure 5.4 : Accuracy (%) on dataset ImageCLEF-DA with different quantities of

the transfer source samples.

5.4.6 Ablation study

Tables 5.14 and 5.15 show the ablation study of the proposed method on datasets

ImageCLEF-DA and OfficeHome. The influence of the domain adaptation loss on

the domain-level Ld, domain adaptation loss on the class-level Lc, pseudo-labeled
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(a) A (b) C

(c) P (d) R

Figure 5.5 : Accuracy (%) on dataset OfficeHome with different quantities of the

transfer source samples.
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constraint Lsupt, cross-entropy loss on source domain L and cross-domain loss Lcro

is validated by moving each of them when training.

The proposed method achieves the highest transfer performance. The cross-

entropy loss L on the source domain is the most essential factor for training a well

performed transfer model, since without it, the performance decreases significantly.

Model trained with constraint Lsupt based on the pseudo-labeled target domain gains

higher performance than that trained without, meaning it plays an important role

in training the model compared with other loss functions except for the source cross-

entropy loss Lcro. Domain adaptation loss on the domain-level Ld and that on the

class-level Lc, and the cross-domain constraint Lcro contribute as much as each other

to the transfer model training.

Table 5.14 : Accuracy (%) of the ablation study on dataset ImageCLEF-DA

Constraint I, C→P I, P→C P, C→I Avg

Lsupt 79.3 96.4 94.4 90.0

L 79.2 96.4 94.4 90.0

Ld 79.3 96.4 94.7 90.1

Lcro 79.5 96.3 94.7 90.2

Lc 79.3 96.5 94.7 90.2

Proposed 79.2 96.6 94.8 90.2

5.4.7 Application of Sample and Source Distillation in Existing Methods

Our strategy can be applied to existing domain adaptation methods, whereby

learning a small scale of parameters with the selected source samples, the perfor-

mance on the target domain can be improved. Table. 5.16 shows the performance
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Table 5.15 : Accuracy (%) of the ablation study on dataset OfficeHome

Constraint A,C,P→R A,C,R→P A,P,R→C C,P,R→A Avg

Lsupt 79.1 81.9 62.1 72.5 73.9

L 80.8 79.3 61.9 70.0 73.0

Ld 82.0 81.1 63.4 72.2 74.7

Lcro 81.7 81.3 63.2 72.3 74.6

Lc 82.1 81.0 63.8 72.4 74.8

Proposed 83.2 81.2 64.5 72.5 75.4

of applying the proposed method to some existing domain adaptation methods. Dy-

namic adversarial adaptation network (DAAN) (Yu et al., 2019a) learns the relation-

ship between the marginal and conditional distributions dynamically, and matches

the domains based on the adversarial metric. MRAN (Zhu et al., 2019b) employs

multi-representation to collect richer transferable knowledge, and extends MMD to

adapt conditional distributions. MFSAN (Zhu et al., 2019a) is a multi-source do-

main adaptation network aligning both distributions and classifiers based on MMD.

By adding the transfer samples selection strategy and re-training the model using

self-training, the performance has been improved beyond the original algorithms.

5.4.8 Visualization Analysis

To better show the transferable ability between source and target domains, taking

target tasks I, C → P from dataset ImageCLEF-DA and A,D,W → C from dataset

Office-Caltech10 as examples for two-source and three-source domain adaptation,

Figs. 5.6 and 5.7 show the T-SNE visualization of the corresponding target domains,

respectively.

T-SNE provides a direct observation for the classification ability of different
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Table 5.16 : Accuracy (%) on dataset OfficeHome of existing methods with transfer

sample selection

Standards Method A,C,P→R A,C,R→P A,P,R→C C,P,R→A Avg

DAAN 74.2 78.5 53.1 64.8 67.7

Single DAAN+SSD 76.3 79.5 54.5 65.6 69.0

best MRAN 77.5 82.2 60.0 70.4 72.5

MRAN+SSD 80.3 83.2 61.8 72.0 74.3

MFSAN 80.8 79.0 60.7 70.0 72.6

Multi- MFSAN+SSD 82.2 81.1 62.8 72.4 74.6

Source MSCLDA 80.6 79.9 61.4 71.6 73.4

MSCLDA+SSD 82.3 81.2 62.9 72.4 74.7

(a) W-A (b) D-A

Figure 5.6 : T-SNE visualization of target domain A from dataset Office-31.
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(a) C-A (b) P-A

(c) R-A

Figure 5.7 : T-SNE visualization of target domain A from OfficeHome.
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source domains, and indicates misalignment samples. The source classifier trained

with samples from domain I separates the target samples more clearly with a large

distance compared with the source classifier from domain C, although the accuracy

of two classifiers is the same. The same situation can be found for target domain W

from dataset Office-Caltech10, as source classifier D groups samples with both quite

short intra-class distance and large inter-class distance. It is obvious that different

source domains perform differently on the target domain, making the choice of the

most suitable source domain and defining its dominating position during training

absolutely are essential for enhancing the performance.

5.5 Summary

This chapter proposes a transfer sample and source distillation method. Com-

pared with many existing methods, instead of measuring the distance between the

source and target samples, we build a series of binary classifiers based on the simi-

larity of a sample belonging to a category to divide transfer and inefficient samples.

A two-step selective strategy is developed to filter out inefficient samples and the

source domains. According to the results of our experiment, a reduction of training

samples does not always degrade classification accuracy. On the contrary, a classi-

fier learned with the selected transfer samples can improve accuracy by eliminating

information that might confuse the classifier.

In the future, measuring the relationships and exploring the asymmetric transfer

information between source and target domains will be valuable topics to pursue.

These investigations could possibly lead to important discoveries in the mechanism

of transferable information and their influences on a broad range of different data.
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Chapter 6

Multi-Source-Free Domain Adaptation with

Generally Auxiliary Model Training

6.1 Introduction

As mentioned before, most existing domain adaptation methods require the ac-

cess to source data without considering the privacy issue. Data privacy and security

attract attention in many situations and applications. To handle privacy concerns

in domain adaptation, source data free methods are proposed (Liang et al., 2020;

Agarwal et al., 2021; Hou and Zheng, 2020). Two techniques are widely used when

transferring source knowledge to the target domain without source data- data gen-

eration (Li et al., 2020d) and pseudo-labeling (Kim et al., 2020). A recent method-

progressive graph learning- adapts source model to the target domain containing

unshared label subset without matching data distributions (Luo et al., 2022). The

original hypothesis space is divided into shared label space and unknown label space,

where the source and target risks are minimized by learning a tighter error bound.

sample-level and manifold-level shifts are filled by replacing the source label with

the pseudo labels gradually using an adversarial training strategy.

Data generation methods generate fake samples from source classes based on the

pre-trained source model, and adapt the generated samples to the target domain to

achieve distribution adaptation. Domain impression builds a generative framework

to deal with source-free domain adaptation with noise (Kurmi et al., 2021b). It in-

cludes generation module and adaptation module. Generation module first obtains

samples which can be divided correctly by the source classifier to train a discrimi-
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nator, then the adaptation module fits the source classifier to the target domain by

minimizing the likehood loss using an adversarial way.

Since data generation methods often generate extra fake source samples which

require more computer memory, to avoid this problem, pseudo-labeling learned from

target domain becomes popular recently. Pseudo-labeling can provide pseudo target

labels to help fit the source model to the target domain under the supervision of

pseudo labels. Generalized source-free domain adaptation proposes local structure

clustering to divide target samples into multiple groups by finding the semantically

similar neighbors (Yang et al., 2021c). Spare domain attention layer is applied

to the source model to ensure its performance on target domain and protect the

performance on source domain at the same time. And continual domain adaptation

without source data is extended to deal with target domains in sequence.

Aforementioned source-free methods focus on single source domain adaptation,

but rarely consider the situation of multiple source domains. In addition, they lack

enough exploration of the influence of the imbalanced data in domain adaptation. In

this chapter, we propose a multi-source data-free domain adaptation method with

generally auxiliary model training (GAM). For each source domain, the method

constructs a generally auxiliary task from other source domains to improve the gen-

erality of the source model when performing on a new domain, and protect the data

privacy of other source domains by sharing only source parameters. Furthermore, we

introduce coefficients based on the number of samples to solve the class imbalance

problem. The contributions of this chapter are summarized as follows.

• We propose a multi-source data-free domain adaptation method which is rarely

explored in previous studies. Both specific and general source models are

learned to provide across-domain ability to perform on a new domain.

• We develop a general model based on auxiliary training that can fit multiple
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domains by sharing source parameters, which can improve the generality of

source models to provide initial pseudo target labels with high quality, and

concurrently protect data privacy.

• We introduce class balance coefficients to source-free domain adaptation, which

is ignored in previous studies. It can eliminate the influence of class imbalance

and improve the performance of learned classifiers.

6.2 Problem Setting and Notations

In this chapter, we deal with unsupervised data-free domain adaptation with

multiple sources under closed set, and extend the method to partial and open-set

domain adaptation in experiment. Notations used in this chapter are described in

Table 6.1.

Table 6.1 : Notations and descriptions.

Notation Description

Dsk , Dt source/target domain, k is source index

nsk , nt number of samples from source/target domain

ncsk number of samples in cth category

xsk , xt sample from the source/target domain

ysk corresponding label of xsk

ỹsk corresponding smooth label of xsk

Bysk
class balance coefficient of ysk

Psk private classifier of the kth source domain

Pg generally auxiliary classifier of source domains

ω combination parameter for generating generally auxiliary classifier

vct deep clustering center of the cth class from target domain
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6.3 The Proposed Generally Auxiliary Model Method under

Closed Set

The proposed method includes specific source model training, generally auxil-

iary model training, pseudo label collecting and target task predicting. Specific

source model training learns specific multiple source models. Generally auxiliary

model training constructs a general model from multiple source domains, which we

anticipate will improve the generality of source models when performing on a new

domain. Pseudo label collecting provides pseudo target labels using a deep cluster-

ing method, which is used to supervise the model re-training when fitting the source

models to the target domain. The re-trained source models finally predict the tar-

get task. The whole framework is shown in Fig. 6.1, the top figure (a) displays

the training of source models, including specific source model training and generally

auxiliary model training; the bottom figure (b) indicates the process of fitting the

source models to the target domain, including pseudo label collecting and target

task predicting.

6.3.1 Specific Source Model Pre-training

In this section, we introduce the training of specific source models. For the kth

source domain, based on the structural risk minimization principle (Vapnik and

Vapnik, 1998), the error between the predictions of the classifier and the ground-

truth labels is minimized to learn the classifier, which is expressed as:

Psk = argmin
Psk

(xsk
,ysk

)∈Dsk

L(Psk(ϕk(ϕ(xsk))),ysk), (6.1)

ϕ indicates the pre-trained backbone, ϕk is the specific feature extractor for each

source domain. L indicates cross-entropy loss, which is:

L = − 1

nsk

nsk∑
i=1

yisk log(Psk(ϕk(ϕ(x
i
sk
)))). (6.2)
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Loss K

Loss 1

... ...

Source 1

Source K
Feature extractor Classifier

Ground-truth label

General prediction

Specific prediction

Specific prediction

Class balanced

Class balanced

Dataflow

Specific model

General prediction

General model

Ground-truth label

Compute loss Paremeter flow

Specific model

(a) Source model pre-training: specific source model training and generally auxiliary model

training.

Pseudo label

Pseudo label

General prediction

Target

Clustering

Clustering

Loss

Frozen

Class balanced

Specific model

...

Specific model

Feature extractor

General model

Classifier

(b) Model adapting: pseudo label collecting and target task predicting.

Figure 6.1 : The procedure of the proposed method.
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To avoid over-confidence within the network and improve the learning speed of

multi-class classifiers, we apply label smoothing to transform the labels from hard

to soft (Müller et al., 2019; Liang et al., 2020). For target label ysk , a one-hot vector

where the value of its correct class equals 1 while the others equal 0, label smoothing

turns the original label to:

ỹsk = (1− µ)ysk + µ/C, (6.3)

where µ is smoothing parameter, C is the number of classes. Equation (6.2) can be

re-written as:

L = − 1

nsk

nsk∑
i=1

ỹisk log(Psk(ϕk(ϕ(x
i
sk
)))). (6.4)

Considering the imbalanced data distribution, especially in a real-world dataset,

we introduce the class balance coefficient to overcome the data under-representation

problem caused by imbalanced data, which can affect the performance of the classi-

fier on any classes containing fewer samples (Cui et al., 2019). For a source sample

in the cth class, the class balance coefficient is:

Bysk
=

1− ξ
1− ξnc

sk

, (6.5)

ξ is balance parameter. Loss function function in equation (6.4) is re-formulated as:

L = − 1

nsk

nsk∑
i=1

Byi
sk
ỹisk log(Psk(ϕk(ϕ(x

i
sk
)))). (6.6)

Private specific source classifier in equation (6.1) can be re-written as:

Psk = argmin
Psk

(xsk
,ysk

)∈Dsk

L(Psk(ϕk(ϕ(xsk))), ỹsk , Bysk
). (6.7)

6.3.2 Generally Auxiliary Model Training

Generally, where multiple source domains share the same classes, richer informa-

tion is beneficial to the classifier learning. As our final purpose is predicting a new
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unlabeled target domain, one that is different from all source domains, it encour-

ages us to learn a model that has better generality than specific source domains. An

entirely new and independent model, however, will introduce more parameters. So,

to avoid this, we build a general model based on all specific source models to ensure

that the learned source models can be performed on multiple domains. Considering

the data privacy, for each source domain, only model parameters alone are shared,

without access to the data from other source domains. The general source model is

expressed as:

Pg = G(Psk ,ω) =
K∑
k=1

ωkPsk , (6.8)

ω is combination parameter learned automatically in the training.

The general model acts as an auxiliary task for each source domain to improve

the generality of specific source models, for the kth source domain, the general model

is parameterized by:

Pg = argmin
Pg

(xsk
,ysk

)∈Dsk

L(Pg(Φ(xsk)), ỹsk , Bysk
), (6.9)

where Pg(Φ(xsk)) = G(Psk′ (ϕk′(ϕ(xsk))),ω), k′ = 1, · · · ,K, L is defined in equation

(6.6).

The total loss function of Psk is:

Psk = argmin
Psk

(xsk
,ysk

)∈Dsk

L(Psk(ϕk(ϕ(xsk))), ỹsk , Bysk
)+

L(Pg(Φ(xsk)), ỹsk , Bysk
).

(6.10)

6.3.3 Pseudo Label Collecting and Target Task Predicting

When tackling the target task, only pre-trained source models are available, since

traditional domain adaptation relying on data matching essentially fails to handle

this setting. To fit the source models to the target domain, we expect to transform

the target data into a latent feature space similar to the corresponding source feature
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space where the classifier is trained. Since the target domain is unlabeled, one

method is to generate pseudo labels to supervise the data transformation. A self-

supervised clustering strategy is used to pseudo-label the target samples (Liang

et al., 2020; Caron et al., 2018). For the cth class in the kth source domain, the

initial clustering center can be expressed as:

vct =

∑n̂c
t
i=1 Pg(Φ(x

i
t)) · ϕk(ϕ(xit))∑n̂c

t
i=1 Pg(Φ(x

i
t))

, (6.11)

n̂ct is the number of samples in the cth class predicted by the classifier Pg. The initial

pseudo label of sample xt is:

ŷt = argmin
c

Dis(ϕk(ϕ(xt)),vt),vt = [v1
t , · · · ,vCt ], (6.12)

Dis indicates cosine distance, which has the advantage of learning the similarity

between features even their geometric distance is far.

Updating the initial centers using the pseudo labels obtained in equation (6.12),

the new cluster center of the cth class and pseudo label can be expressed as:

vct =

∑n̂′c
t

i=1 1ŷi
t=c
· ϕk(ϕ(xit))∑n̂′c

t
i=1 1ŷi

t=c

,

ŷt = argmin
c

Dis(ϕk(ϕ(xt)),vt),

vt = [v1
t , · · · ,vCt ],

(6.13)

n̂′c
t is the number of samples in the cth class predicted by clustering.

After collecting the target pseudo labels, the training process of fitting the source

models is achieved by reducing the error between the outputs of the general model

and the pseudo labels, which is formulated as:

Pg = argmin
ϕ,ϕk
xt∼Dt

L(Pg(Φ(xt)), ŷt, Bŷi
t
), (6.14)
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where entropy loss L is:

L = − 1

nt

nt∑
i=1

Bŷi
t
ŷit log(Pg(Φ(x

i
t))),

Bŷi
t
=

1− ξ
1− ξn̂′c

t

.

(6.15)

the parameters of Pg are frozen, and feature extraction network Φ is re-trained.

To balance the large domain gap which may harm the transfer, information

maximization loss which parameterizes the target outputs being individually certain

and globally diverse is employed to control the target outputs as with the one-hot

vector (Hu et al., 2017; Liang et al., 2020).

Ldiv =
∑

p̄t log(p̄t), (6.16)

p̄t =
1
nt

∑nt
i=1 Pg(Φ(x

i
t)) is a C-dimension vector. The re-training process is parame-

terized by:

Pg = argmin
Φ

xt∼Dt

L(Pg(Φ(xt)), ŷt, Bŷi
t
) + Ldiv. (6.17)

The target label is:

yt = Pg(Φ(xt)). (6.18)

The whole algorithm is summarized in Algorithms 6 and 7
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Algorithm 6 Multi-source-free domain adaptation: Pre-training

1: Input: Source domains {Dsk}Kk=1.

2: Initialize: Feature extractors ϕ and ϕk, specific source classifier Psk .

3: for ϵ = 1, ϵ < Is, ϵ++, do

4: Transform the source labels into smoothing labels as in (6.3),

5: Calculate class balanced coefficient as in (6.5);

6: Construct generally auxiliary source model as in (6.8);

7: Train specific source model and general model as in (6.10).

8: end for

9: Output: Specific source model and general model.

Algorithm 7 Multi-source-free domain adaptation: Adapting

1: Input: Target domain Dt.

2: Pre-trained: Specific source model and general model.

3: for ϵ = 1, ϵ < It, ϵ++, do

4: Calculate initial cluster centers and pseudo labels as in (6.11), (6.12),

5: Update cluster centers and pseudo target labels as in (6.13);

6: Compute balance coefficient of target domain as in (6.15);

7: Compute information maximization loss as in (6.16);

8: Re-train source model by freezing classifier layers as in (6.17).

9: end for

10: Predict target label as in (6.18).

11: Output: Target label yt.
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6.4 The Proposed Generally Auxiliary Model Method under

Closed Set with Sample and Source Distillation

As discussed in chapter 5, it is the sample quality not only quantity that affects

the performance of transferring. To enhance the transfer ability, the two-step selec-

tive strategy, which distills both source inefficient samples and domains, is adopted

to improve the proposed generally auxiliary model training method.

To select source samples, target pseudo labels with high confidence being correct

are first collected. The collection is expressed as:

ŷt = ∧Pg(Φ(xt)), (6.19)

∧ is the operation to select target pseudo labels whose maximum probability value

returned by Pg is higher than the median value of the target samples from the same

class predicted by Pg. After collection target pseudo labels, category classifier Pc is

trained to identify a sample from its corresponding class, which is:

Lbce =
C∑
c=1

L(Pc(ϕ(xt)), I(ŷt, c)). (6.20)

where I(ŷt, c) = 1ŷt=c, c indicates the cth class.

Apply source samples to {Pc}Cc=1, denote the prediction as:

I(ŷsk , c) = Pc(ϕ(xsk)). (6.21)

If I(ŷsk , c) = 1 with the highest probability value, denote ŷsk = c, if the ground-

truth label ysk = c, the source sample is kept for further training.

Since the generally auxiliary classifier Pg is constructed from specific source clas-

sifiers {Psk}Kk=1 with combination vector ω = [ω1, ω2, · · · , ωK ], if the kth source

weight ωk gains very large value compared with other source domain weights, the

corresponding source domain is regarded as dominant source domain. Here we define
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the threshold as:

Dominant is true :

if : ωk − (1− ωk) >
1

K
.

(6.22)

Denote the distilled source domains as {D′}Kk=1, the private source specific and

general models in equation (6.10) are re-trained using the selected source samples

as:

Psk = argmin
Psk

(xsk
,ysk

)∈D′sk

L(Psk(ϕk(ϕ(xsk))), ỹsk , Bysk
)+

L(Pg(Φ(xsk)), ỹsk , Bysk
),

(6.23)

Adapt the re-trained source generally auxiliary model to target domain as in

section 6.3.3, the target task can be completed.

The whole algorithm is summarized in Algorithms 8
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Algorithm 8 Multi-source-free domain adaptation with source and sample distil-

lation.
1: Input: Target domain Dt.

2: Pre-trained: Specific source model and general model.

3: Collect target pseudo labels as in (6.19);

4: Train target category classifier as in (6.20);

5: Distill source samples as in (6.21);

6: Select dominant source domain as in (6.22);

7: for ϵ = 1, ϵ < Is, ϵ++, do

8: Re-train source specific and general models based on distilled source domains as in

(6.23).

9: end for

10: Input source general model based on distilled source domains;

11: for ϵ = 1, ϵ < It, ϵ++, do

12: Calculate initial cluster centers and pseudo labels as in (6.11), (6.12);

13: Update cluster centers and pseudo target labels as in (6.13);

14: Compute balance coefficient of target domain as in (6.15);

15: Compute information maximization loss as in (6.16);

16: Re-train source model by freezing classifier layers as in (6.17).

17: end for

18: Predict target label as in (6.18).

19: Output: Target label yt.
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6.5 The Proposed Generally Auxiliary Model Method under

Partial Set

In partial domain adaptation, given the pre-trained source private specific and

general models using equation (6.10) in section 6.3.2, the main problem is how to

reduce the effect of unshared source classes. When initializing clustering centers

and pseudo labels of target domain as in equations (6.11) and (6.12), ideally, the

unshared source classes gain very small probability values in target domain, which

result in the low probability of the target samples belonging to the unshared source

classes. Based on this assumption, we remove the target clustering centers which

contain none samples during training iteratively to eliminate the negative influence

of outlier source classes. Denote source label space as C containing C classes, target

label space as Ct where Ct ⊆ C, this operation can be expressed as:

N = Count(Rank(Pg(Φ(xt)))),

N = [n1, · · · , nC ], c ∈ C.
(6.24)

Rank means the operation to rank the probability values returned by classifier Pg,

Count means the operation to count the number of a class gaining the maximum

value. If nc > 0, corresponding class c is added to target label space Ct, otherwise,

we remove the corresponding class from corresponding source domain.

The initial target clustering centers and pseudo labels in equations (6.11) and

(6.12) are expressed as:

vct =

∑nc

i=1 Psk(ϕk(ϕ(x
i
t))) · ϕk(ϕ(xit))∑nc

i=1 Psk(ϕk(ϕ(x
i
t)))

, c ∈ Ct (6.25)

and

ŷt = argmin
c

Dis(ϕk(ϕ(xt),vt)),vt = {vct}c∈Ct , (6.26)

nc is the number of samples in the cth class computed using equation (6.24).
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The update in equation (6.13) can be re-written as:

vct =

∑n̂c

i=1 1ŷi
t=c
· ϕk(ϕ(xit))∑n̂c

i=1 1ŷi
t=c

, c ∈ Ct

ŷt = argmin
c

Dis(ϕk(ϕ(xt),vt)),

vt = {vct}c∈Ct ,

(6.27)

n̂c is the number of samples in the cth class predicted by clustering.

Entropy loss and balance coefficient in equation (6.15) is:

L = − 1

nt

nt∑
i=1

Bŷi
t
ŷit log(Pg(Φ(x

i
t))),

Bŷi
t
=

1− ξ
1− ξn̂c , c ∈ Ct.

(6.28)

The whole algorithm is summarized in Algorithms 9

Algorithm 9 Multi-source-free domain adaptation under partial set.

1: Input: Target domain Dt.

2: Pre-trained: Specific source model and general model.

3: Predict target class number N as in (6.24);

4: Select target label if nc > 0, nc ∈N ;

5: for ϵ = 1, ϵ < It, ϵ++, do

6: Calculate initial cluster centers and pseudo labels as in (6.25), (6.26);

7: Update cluster centers and pseudo target labels as in (6.27);

8: Compute balance coefficient of target domain as in (6.28);

9: Compute information maximization loss as in (6.16);

10: Re-train source model by freezing classifier layers as in (6.17).

11: end for

12: Predict target label as in (6.18).

13: Output: Target label yt.
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6.6 The Proposed Generally Auxiliary Model Method under

Open-Set

In open-set domain adaptation, the main problem is how to identify unknown tar-

get classes and divide shared classes simultaneously based on the given pre-trained

source private specific and general models. Denote source label space as Cs con-

taining Cs classes, target label space as C containing C classes, where Cs ⊆ C, the

unknown target label space C\Cs is denoted as class Cs + 1 in the source domain.

Given Psk and Pg trained using equation (6.10) in section 6.3.2, generally, the un-

known target samples can gain lower probability values than the known samples.

To determine unknown samples from the known, a threshold is defined to divide

samples, which is:

ao =

∑
−Pg(Φ(xt)) log(Pg(Φ(xt)))

log(Cs)
. (6.29)

If the maximum probability value of a target sample is higher than ao, we regard it

as a sample from known classes. Otherwise, we regard it as unknown classes with

label Cs+1, and these unknown samples are not used to calculate clustering centers.

The initial target clustering centers and pseudo labels in equations (6.11) and

(6.12) are re-written as:

vct =

∑n̂c
t
i=1 Psk(ϕk(ϕ(x

i
t))) · ϕk(ϕ(xit))∑n̂c

t
i=1 Psk(ϕk(ϕ(x

i
t)))

, c ∈ Cs (6.30)

and

ŷt = argmin
c

Dis(ϕk(ϕ(xt),vt)),vt = {vct}c∈Cs , (6.31)

n̂ct is the number of samples in the cth class computed by classifier Psk .
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The update in equation (6.13) can be re-written as:

vct =

∑n̂′c
t

i=1 1ŷi
t=c
· ϕk(ϕ(xit))∑n̂′c

t
i=1 1ŷi

t=c

, c ∈ Cs

ŷt = argmin
c

Dis(ϕk(ϕ(xt),vt)),

vt = {vct}c∈Cs ,

(6.32)

n̂′c
t is the number of samples in the cth class predicted by clustering.

Entropy loss and balance coefficient in equation (6.15) is:

L = − 1

nt

nt∑
i=1

Bŷi
t
ŷit log(Pg(Φ(x

i
t))),

Bŷi
t
=

1− ξ
1− ξn̂′c

t

, c ∈ Cs.
(6.33)

The whole algorithm is summarized in Algorithms 10

Algorithm 10 Multi-source-free domain adaptation under open-set.

1: Input: Target domain Dt.

2: Pre-trained: Specific source model and general model.

3: for ϵ = 1, ϵ < It, ϵ++, do

4: Calculate threshold ao as in (6.29);

5: Divide unknown target samples if its maximum probability value is lower than ao;

6: Calculate initial cluster centers and pseudo labels as in (6.30), (6.31);

7: Update cluster centers and pseudo target labels as in (6.32);

8: Compute balance coefficient of target domain as in (6.33);

9: Compute information maximization loss as in (6.16);

10: Re-train source model by freezing classifier layers as in (6.17).

11: end for

12: Predict target label as in (6.18).

13: Output: Target label yt.
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6.7 Experiments

6.7.1 Datasets and Parameter Setting

This chapter employs three imbalanced real-world visual datasets to validate the

proposed generally auxiliary model training method on image classification task.

Office-31 contains 4110 images collected from 31 categories, across three domains:

Amazon (A), Webcam (W) and DSLR (D). Amazon has 2817 images, Webcam has

795 images, and DSLR has 498 images taken by different devices.

Office-Home collects 15588 images from 65 categories. It has four domains Art

(A), Clipart (C), Product (P) and Real World (R) which share . Art has 2427

images, Clipart contains 4365 images, Product comprises 4439 images, and Real

World holds 4357 images.

Office-Caltech10 consists of 2533 images from 10 categories shared by datasets

Office-31 and Caltech-256. It has four domains Caltech (C), Amazon (A), Web-

cam (W) and DSLR (D), where Caltech has 1123 images, Amazon has 958 images,

Webcam has 295 images, and DSLR has 157 images.

This work employs ResNet50 as the backbone ϕ, specific source feature extrac-

tion layer ϕk reduces the dimension of ResNet50 outputs from 2048 to 256. Learning

rate η is η = η0
(1+10ϵ)0.75

, where η0 = 0.01, ϵ is the training progress changing linearly

from 0 to 1, the momentum is 0.9 and weight decay is 5e − 4. The smoothing

parameter µ = 0.1, balance parameter ξ = 0.9999.

6.7.2 Comparison and Analysis under Closed Set

We evaluate the proposed method on real-world visual datasets Office-31 and

Office-Home. Both datasets are class imbalanced. Tasks include A,W → D; A,D →

W ; D,W → A from Office-31 and A,C, P → R; A,C,R → P ; A,P,R → C,

C,P,R→ A from Office-Home.
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The comparison closed set methods include domain adaptation methods with

and without source data. Source data available methods include:

• DAN: Deep adaptation network (Long et al., 2015);

• MRAN: Multi-representation adaptation network (Zhu et al., 2019b);

• MDDA: Manifold dynamic distribution adaptation (Wang et al., 2020b);

• DDAN: Dynamic distribution adaptation network (Wang et al., 2020b);

• ALDA: Adversarial-learned loss for domain adaptation (Chen et al., 2020);

• MFSAN: Moment matching for multi-source domain adaptation (M3SDA)

(Zhu et al., 2019a);

• MSCLDA: Multi-source contribution learning for domain adaptation (Li et al.,

2021c);

• LtC-MSDA: Learning to combine: knowledge aggregation for multi-source do-

main adaptation (Wang et al., 2020a);

• DCA: Dynamic classifier alignment for unsupervised multi-source domain adap-

tation (Li et al., 2022a).

Source free methods include:

• BAIT: Domain adaptation without source data by casting a bait (Yang et al.,

2021b);

• PrDA: Progressive domain adaptation (Kim et al., 2020);

• SHOT: Source hypothesis transfer with information maximization (Liang et al.,

2020);
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• SDDA: Source data free domain adaptation- domain impression (Kurmi et al.,

2021b);

• G-SFDA: Generalized source-free domain adaptation (Yang et al., 2021c).

All experiments are repeated for three times and the results are averaged accu-

racy. Tables 6.2 and 6.3 show the results of the proposed method and the baselines.

Standard “Source data” means domain adaptation with the access of source data,

while “Source free” indicates domain adaptation without source data. The results

specify that the method we propose achieves the highest average classification accu-

racy. Results of baselines indicate that domain adaptation methods with source data

generally outperform those methods without it. Except for the proposed method,

few source-free methods (G-SFDA) achieve a higher average performance than the

methods with source data.

6.7.3 Influence of General Model under Closed Set

Tables 6.4 and 6.5 show the results of the proposed specific source models and

the global model when performing directly on the target domain directly. Tables 6.6

and 6.7 show the performance of specific and general models after fitting the source

models to the target. Standard “Bef” indicates the results of performing the source

models on the target domain without fitting, “Aft” designates the results of fitted

source models.

The performance of the general model is higher than that of specific source

models on most tasks, highlighting that the general model has better generality

than specific source models. The general model is trained by treating the tasks

from other sources as auxiliary tasks. Only parameters are shared to provide rich

learning information, thereby improving the cross-domain ability and generality of

the general model. The general model is expected to predict target labels with high
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Table 6.2 : Classification accuracy (%) of the proposed generally auxiliary model

and the compared methods on Office-31.

Standards Method A, W→D A, D→W W, D→A Avg

ResNet 99.3 96.7 62.5 86.2

DAN 99.5 96.8 66.7 87.7

Source MRAN 99.8 96.9 70.9 89.2

data MDDA 99.2 97.1 73.2 89.8

DDAN 100.0 96.7 65.3 87.3

ALDA 100.0 97.7 72.5 90.1

MFSAN 99.5 98.5 72.7 90.2

MSCLDA 99.8 98.8 73.7 90.8

DCA 99.6 98.9 75.1 91.2

ResNet 97.5 95.4 60.2 84.4

BAIT 98.8 98.5 71.1 89.5

Source PrDA 96.7 93.8 73.2 87.9

free SHOT 99.9 98.5 74.1 90.8

SDDA 99.8 99.0 67.7 88.8

GAM 99.5 98.7 75.4 91.2
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Table 6.3 : Classification accuracy (%) of the proposed generally auxiliary model

and the compared methods on Office-Home.

Standards Method A,C,P→R A,C,R→P A,P,R→C C,P,R→A Avg

ResNet 67.8 71.3 51.8 53.4 61.1

DAN 75.9 80.3 56.5 68.2 70.2

Source MRAN 77.5 82.2 60.0 70.4 72.5

data MDDA 77.8 81.8 57.6 67.9 71.3

DDAN 72.7 78.9 56.6 65.1 68.3

ALDA 77.1 82.1 56.3 70.2 71.4

MFSAN 80.8 79.0 60.7 70.0 72.6

MetaMDA 83.4 81.2 60.5 70.2 73.8

MSCLDA 80.6 79.9 61.4 71.6 73.4

LtC-MSDA 80.1 79.2 64.1 67.4 72.7

DCA 81.4 80.5 63.6 72.1 74.4

ResNet 76.3 78.8 50.1 50.9 64.0

BAIT 77.2 79.4 59.6 71.1 71.8

Source PrDA 76.8 79.1 57.5 69.3 70.7

free SHOT 81.5 83.0 57.2 72.1 73.5

G-SFDA 82.2 83.4 57.9 72.0 73.9

GAM 83.1 83.1 60.1 73.5 75.0
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quality at the beginning of fitting the source model, which is helpful to learn cluster

centers to obtain more correct pseudo labels.

Table 6.4 : Source-only classification accuracy (%) of specific and general models on

Office-31.

Standards Method A, W→D A, D→W W, D→A Avg

S1 96.6 95.9 63.2 85.2

Bef S2 98.4 96.1 63.5 86.0

G 98.6 96.4 64.9 86.6

Table 6.5 : Source-only classification accuracy (%) of specific and general models on

Office-Home.

Standards Method A,C,P→R A,C,R→P A,P,R→C C,P,R→A Avg

S1 80.0 75.0 52.6 63.5 67.8

S2 78.5 76.0 52.0 63.9 67.6

Bef S3 77.1 79.1 51.5 65.2 68.2

G 80.7 78.0 53.8 65.8 69.6

With the process of re-training, as shown in Tables 6.6 and 6.7, specific source

models and general model perform similarly on the target domain. Since the clas-

sifiers are frozen in re-training, when the training is convergent, the performance of

all specific source models become stable. As a linear combination of specific source

models, the performance of the general model will also be stable, and it is close to

the prediction of local models.
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Table 6.6 : Classification accuracy (%) of specific and general models on Office-31

after fitting.

Standards Method A, W→D A, D→W W, D→A Avg

S1 99.3 98.7 75.4 91.1

Aft S2 99.5 98.2 75.3 91.0

G 99.5 98.7 75.4 91.2

Table 6.7 : Classification accuracy (%) of specific and general models on Office-

Home after fitting.

Standards Method A,C,P→R A,C,R→P A,P,R→C C,P,R→A Avg

S1 83.1 83.1 60.0 73.2 74.9

Aft S2 82.8 82.8 60.1 73.4 74.8

S3 82.9 83.2 60.1 73.7 75.0

G 83.1 83.1 60.1 73.5 75.0
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6.7.4 Influence of Class Balanced Coefficient under Closed Set

Tables 6.8, 6.9 and 6.10 show the performance of the general and source local

models with and without class balanced coefficient before and after fitting the model

to the target domain. Standard “Bef” indicates the accuracy before fitting the source

model, while “Aft” indicates that after fitting. “N” is the model trained without

class balanced coefficient, and “Y” is that trained with balanced coefficient. It

can be seen that the model trained with class balanced coefficient achieves higher

performance than that without it, meaning that balancing the class data has a

positive influence on the learning of both specific and general models.

Table 6.8 : Classification accuracy (%) of the general model with and without class

balanced coefficient. “Bef” means source only model, “Aft” is adapted model.

Standards Method A, W→D A, D→W W, D→A Avg

Bef N 99.2 95.9 64.2 86.4

Y 98.6 96.4 64.9 86.6

Aft N 99.8 98.6 73.3 90.6

Y 99.5 98.7 75.4 91.2

6.7.5 Influence of Distance Measurements in Deep Clustering

We employ cosine similarity to measure the distance between a target sample and

the target clusters when predicting pseudo labels (in equation (6.12) and (6.13)).

Cosine distance has the advantage of defining the similarity between two multi-

dimensional features by returning the angle of data, while the Euclidean distance

can be far. To validate the superiority of cosine distance in this situation, Table 6.11

shows the results of the proposed method using cosine distance and Euclidean dis-
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Table 6.9 : Classification accuracy (%) of the specific source model 1 with and

without class balanced coefficient. “Bef” means source only model, “Aft” is adapted

model.

Standards Method A, W→D A, D→W W, D→A Avg

Bef N 98.4 86.5 62.9 82.6

Y 96.6 95.9 63.2 85.2

Aft N 99.8 97.5 71.5 89.6

Y 99.3 98.7 75.4 91.1

Table 6.10 : Classification accuracy (%) of the specific source model 2 with and

without class balanced coefficient. “Bef” means source only model, “Aft” is adapted

model.

Standards Method A, W→D A, D→W W, D→A Avg

Bef N 99.2 96.9 64.6 86.9

Y 98.4 96.1 63.5 86.0

Aft N 99.8 98.7 73.2 90.6

Y 99.5 98.2 75.3 91.0
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tance, it shows that the model based on cosine distance achieves higher classification

accuracy than that with Euclidean distance.

Table 6.11 : Classification accuracy (%) of specif and general models on Office-Home

with different distance measurements.

Standards Method A,C,P→R A,C,R→P A,P,R→C C,P,R→A Avg

S1 82.8 82.1 59.9 72.5 74.3

Euclidean S2 82.5 81.6 60.5 72.6 74.3

S3 82.5 82.3 60.3 72.8 74.5

G 83.1 82.0 60.3 72.6 74.5

S1 83.1 83.1 60.0 73.2 74.9

Cosine S2 82.8 82.8 60.1 73.4 74.8

S3 82.9 83.2 60.1 73.7 75.0

G 83.1 83.1 60.1 73.5 75.0

6.7.6 Data Visualization under Closed Set

Figures 6.2 and 6.3 show the T-SNE visualization (Maaten and Hinton, 2008) of

the proposed method. Different colors indicates the classes. Taking tasks W,D →

A and C,P,R → A as examples, compared with performing a source model on

the target domain directly, the proposed method can divide most target samples

correctly with clear boundaries.

6.7.7 Comparison and Analysis under Closed Set with Sample and Source

Distillation

To explore how the quality of source samples and domains effects the performance

of the proposed generally auxiliary model method under source-free setting, we
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(a) W→A source only (b) W→A proposed

(c) D→A source only (d) D→A proposed

Figure 6.2 : T-SNE visualization of Office-31 under closed set.
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(a) C→A source only (b) C→A proposed

(c) P→A source only (d) P→A proposed

(e) R→A source only (f) R→A proposed

Figure 6.3 : T-SNE visualization of Office-Home under closed set.
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distill inefficient samples and sources from datasets Office-31 and Office-Caltech10

to validate the proposed method. Transfer tasks include A,W → D; A,D → W ;

D,W → A from Office-31, and A,D,W → C; C,D,W → A; A,C,D → W ,

A,C,W → D from Office-Caltech10.

The comparison closed set methods include domain adaptation methods with

and without source data. Source data available methods include:

• DAN: Deep adaptation network (Long et al., 2015);

• MRAN: Multi-representation adaptation network (Zhu et al., 2019b);

• MDDA: Manifold dynamic distribution adaptation (Wang et al., 2020b);

• DDAN: Dynamic distribution adaptation network (Wang et al., 2020b);

• ALDA: Adversarial-learned loss for domain adaptation (Chen et al., 2020);

• MFSAN: Moment matching for multi-source domain adaptation (M3SDA)

(Zhu et al., 2019a);

• MSCLDA: Multi-source contribution learning for domain adaptation (Li et al.,

2021c);

• LtC-MSDA: Learning to combine: knowledge aggregation for multi-source do-

main adaptation (Wang et al., 2020a);

• DCA: Dynamic classifier alignment for unsupervised multi-source domain adap-

tation (Li et al., 2022a).

Source free methods include:

• BAIT: Domain adaptation without source data by casting a bait (Yang et al.,

2021b);
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• PrDA: Progressive domain adaptation (Kim et al., 2020);

• SHOT: Source hypothesis transfer with information maximization (Liang et al.,

2020);

• SDDA: Source data free domain adaptation- domain impression (Kurmi et al.,

2021b);

• CDCL: Cross-domain contrastive learning for unsupervised domain adaptation

(Wang et al., 2022);

• DECISION: Unsupervised multi-source domain adaptation without access to

source data (Ahmed et al., 2021).

Experiment results are shown in Table 6.12 and 6.13. It can be seen the proposed

method achieves higher performance than most compared methods. On dataset

Office31, the proposed method gains the highest accuracy on all tasks, while on

data Office-Caltech10, it achieves the highest average accuracy. It also indicates

that the proposed method under a source-free setting gains higher performance

than that with source data. It is because the model trained with source data is

dominated by source domains, which means only invariant information is extracted.

However, in source-free domain adaptation, both invariant and specific information

of the target domain are employed. In addition, the source-free method employs

more target pseudo labels than the proposed method with source data, which uses

at most half of the target pseudo labels.

Table 6.14 shows the influence of sample quality. “Source” means the source

domain with all samples, “Distilled Source” means source domain with selected

samples. “S1” and “S2” indicate specific source models, “G” indicates generally

auxiliary model. It can be seen that with sample and source distillation, both

specific and general source models achieve the higher performance than the models
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Table 6.12 : Accuracy (%) on dataset Office31 of the proposed and comparison

methods under source-free domain adaptation.

Standards Method A, W→D A, D→W W, D→A Avg

ResNet 99.3 96.7 62.5 86.2

DAN 99.5 96.8 66.7 87.7

Source MRAN 99.8 96.9 70.9 89.2

data MDDA 99.2 97.1 73.2 89.8

DDAN 100.0 96.7 65.3 87.3

ALDA 100.0 97.7 72.5 90.1

MFSAN 99.5 98.5 72.7 90.2

MSCLDA 99.8 98.8 73.7 90.8

DCA 99.6 98.9 75.1 91.2

ResNet 97.5 95.4 60.2 84.4

BAIT 98.8 98.5 71.1 89.5

Source PrDA 96.7 93.8 73.2 87.9

free SHOT 94.9 97.8 75.0 89.2

SDDA 99.8 99.0 67.7 88.8

CDCL 97.2 95.3 75.3 89.3

DECISION 99.6 98.4 75.4 91.1

GAM+SSD 100.0 99.6 75.8 91.8
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Table 6.13 : Accuracy (%) on dataset Office-Caltech10 of the proposed and com-

parison methods under source-free domain adaptation.

Standards Method A,D,W→C C,D,W→A A,C,D→W A,C,W→D Avg

Source ResNet 82.5 91.2 98.9 99.2 93.0

data MFSAN 93.8 95.1 99.1 98.7 96.7

MSCLDA 94.1 95.3 99.1 98.5 96.8

DCA 94.7 96.0 99.7 99.1 97.4

ResNet 92.1 96.3 98.0 99.5 96.5

BAIT 95.7 97.5 98.0 97.5 97.2

Source PrDA 94.6 97.3 97.6 97.1 96.7

free SHOT 95.8 95.7 99.6 96.8 97.0

DECISION 95.9 95.9 99.6 100.0 98.0

GAM+SSD 95.8 96.0 100.0 100.0 98.0
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without sample and source selection.

Table 6.14 : Accuracy (%) on dataset Office31 of the source only model with and

with out distillation.

Standards Method A, W→D A, D→W W, D→A Avg

S1 98.6 95.7 65.0 86.4

Source S2 98.4 95.0 65.2 86.2

G 98.6 95.5 66.0 86.7

Distilled S1 99.0 96.6 65.9 87.2

Source S2 99.0 96.7 66.3 87.3

G 99.2 96.7 66.7 87.5

6.7.8 Data Visualization under Closed Set with Sample and Source Dis-

tillation

Figure 6.4 shows the data visualization of the proposed method with sample and

source selection. Compared Figures 6.4(a) and 6.4(b) with 6.4(c) and 6.4(d), it can

been seen that distilling source samples dose not degrade the classification perfor-

mance. Figures 6.4(e) and 6.4(f) indicate the proposed method after adaptation

based on distilled source domains divides most samples correctly.

6.7.9 Comparison and Analysis under Partial Set

We validate the proposed method on dataset Office-Home, transfer tasks include

A,C, P → R; A,C,R → P ; A,P,R → C, C,P,R → A, where source domains

contain 65 categories, while target domain contains 25 categories.

The partial domain adaptation methods used for comparison include:
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(a) W→A source only (b) D→A source only

(c) W→A distilled source only (d) D→A distilled source only

(e) W→A proposed (f) D→A proposed

Figure 6.4 : T-SNE visualization with sample and source distillation.



208

• SAN: Partial transfer learning with selective adversarial networks (Cao et al.,

2018a);

• ETN: Learning to transfer examples for partial domain adaptation (Cao et al.,

2019);

• SAFN: Adaptive feature norm approach for unsupervised domain adaptation

(Xu et al., 2019b);

• DARL: Domain adversarial reinforcement learning for partial domain adapta-

tion (Chen et al., 2022b)

• MSAN: Attention guided for partial domain adaptation (Zhang and Zhao,

2021);

• SHOT: Source hypothesis transfer with information maximization (Liang et al.,

2020).

Table 6.15 shows the results of applying the proposed method to partial domain

adaptation, respectively. The proposed method achieves highest performance on

most tasks under both settings, indicating the superiority of multi-source domains

and the generally auxiliary model.

6.7.10 Data Visualization under Partial Set

Figure 6.5 shows the data visualization of the proposed method under partial

set, where source label space is larger than target label space.

6.7.11 Comparison and Analysis under Open-Set

We validate the proposed method on dataset Office-Home, transfer tasks include

A,C, P → R; A,C,R → P ; A,P,R → C, C,P,R → A, where source domains

contain 65 categories, while target domain contains 25 categories.
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(a) C→A source only (b) C→A proposed

(c) P→A source only (d) P→A proposed

(e) R→A source only (f) R→A proposed

Figure 6.5 : T-SNE visualization under partial domain adaptation.
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Table 6.15 : Comparison of classification accuracy (%) on Office-Home under partial

domain adaptation.

Standards Method A,C,P→R A,C,R→P A,P,R→C C,P,R→A Avg

ResNet 71.2 67.2 45.4 61.6 61.4

Source SAN 77.5 70.8 46.4 66.5 65.3

data ETN 79.6 75.7 57.4 69.0 70.4

SAFN 79.9 76.4 58.2 72.9 71.9

DARL 84.2 77.5 54.5 72.0 72.1

MSAN 80.4 76.2 56.7 67.2 70.1

Source SHOT 88.4 82.4 64.0 77.6 78.1

free GAM 91.1 85.9 68.7 81.5 81.8

Comparison open-set domain adaptation methods include:

• OSBP: Open set domain adaptation by backpropagation (Saito et al., 2018);

• STA: Separate to adapt: Open set domain adaptation via progressive separa-

tion (Liu et al., 2019a);

• DAOD: Open set domain adaptation: theoretical bound and algorithm (Fang

et al., 2021);

• SHOT: Source hypothesis transfer with information maximization (Liang et al.,

2020);

• PGL: Source-free progressive graph learning for open-set domain adaptation

(Luo et al., 2022).

Table 6.16 shows the results of applying the proposed method to partial and
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open-set domain adaptation, respectively. The proposed method achieves highest

performance on most tasks under both settings, indicating the superiority of multi-

source domains and the generally auxiliary model.

Table 6.16 : Comparison of classification accuracy (%) on Office-Home under open-

set domain adaptation.

Standards Method A,C,P→R A,C,R→P A,P,R→C C,P,R→A Avg

ResNet 65.3 63.1 62.8 69.8 65.3

Source OSBP 64.2 62.8 65.4 70.2 65.7

data STA 70.4 67.7 66.4 73.3 69.5

DAOD 79.8 73.5 58.6 67.2 69.8

Source SHOT 82.4 79.3 61.4 64.5 71.9

free PGL 86.1 79.2 63.8 75.1 76.1

GAM 84.7 83.0 66.5 73.3 76.9

6.7.12 Data Visualization under Open-Set

Figure 6.6 shows the data visualization of the proposed method under open-set

domain adaptation, where source label space is a subset of target label space. Taking

task C,P,R → A as an example, it can be seen the proposed method can identify

both known and unknown classes.
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(a) C→A source only (b) C→A proposed

(c) P→A source only (d) P→A proposed

(e) R→A source only (f) R→A proposed

Figure 6.6 : T-SNE visualization under open-set domain adaptation.
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6.8 Summary

In this chapter, we propose a multi-source-free domain adaptation method with

generally auxiliary model training. It constructs a global model from multiple source

domains as an auxiliary task to improve the cross-domain ability and generality of

the source models. In addition, the class balanced coefficient is introduced to en-

sure the classification performance on the classes which containing fewer samples.

Experiments on real-world datasets on both homogeneous and heterogeneous la-

bel spaces with and without sample and source distill show the superiority of the

proposed method. Under closed set, on dataset Office-31, the accuracy of the pro-

posed method is improved by 0.4% compared with the baselines, and on dataset

Office-Home, the accuracy of the proposed method increases by 1.1%.

Combining specific source models has a positive influence on the transferring

in most situations. But multiple source domains requires more parameters and

computer memory to train the models. Experiments also show that the global

model may introduce negative transfer on some tasks. We will take these problems

as a focus of future study to explore a more efficient method to transfer information

from multiple source domains to the target domain.
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Chapter 7

Source-Free Multi-Domain Adaptation with

Fuzzy Rule-Based Deep Neural Networks

7.1 Introduction

Neither existing domain adaptation methods with source data nor the meth-

ods without source data ignore the soft information caused by uncertain data dur-

ing transfer. To solve this problem, fuzzy domain adaptation attracts attention in

light of its advantages in building soft information to handle data uncertainty (Lu

et al., 2015). A theory-based study- learning from imprecise observations- investi-

gates multi-class classification with fuzzy observations and protects data privacy by

transferring original data into concepts, thereby considering both data uncertainty

and security (Ma et al., 2021a). It creates fuzzy vectors from real observations and

provides an estimation error bound learned from fuzzy random variables. Fuzzy

multi-source transfer learning focuses on selecting and merging fuzzy rules from

multiple domains to generate target rules under both homogeneous and heteroge-

neous domain adaptation scenarios (Lu et al., 2020). Interactive transfer learning

distills useless source information by a knowledge filter, and designs a self-balancing

mechanism to learn the scene difference and inherent uncertainty, which are used

match source and target domains by reducing unbalanced diversity (Han et al.,

2021).

Previous fuzzy domain adaptation methods focus on transferring the invariant

knowledge extracted from data, but fuzzy domain adaptation without source data

remains unsolved. Most source-free domain adaptation methods rarely take the
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inherent soft information into account, especially in deep neural networks, where

the data is trained over the batch by extracting region information using convolu-

tion kernels. The extracted regions and samples belonging to the same category

but from different scales contain multiple information levels, while samples from

different categories can contain similar regions, which contribute differently to its

category and the whole classifier. In this situation, dividing samples into multiple

groups according to their information levels might benefit the classification. The

fuzzy model has the advantage of describing the degrees of multi-level information

belonging to multiple categories. Hence, in this chapter, we propose source-free

multi-domain adaptation with fuzzy rule-based deep neural networks (SF-FDN) to

extract soft information from precise data, which introduces fuzzy C-means cluster-

ing and Takagi-Sugeno fuzzy rules to source-free domain adaptation. The proposed

method improves the generality of a source private model on multiple domains by

establishing auxiliary tasks, which derive benefit from similar tasks and preserve the

data privacy in source domains simultaneously. When transferring source rules and

parameters to a target domain, to guarantee the accuracy of pseudo labels, a target

sample selection strategy is adopted to collect pseudo labels with low noise. We use

the pseudo labels to supervise the training of the target model on the label-level,

and develop anchor-based alignment to reduce data bias between domains on the

distribution-level. This approach allows us to extract both invariant and specific

information of target domains to parameterize the target model. Our contributions

are summarized as follows:

• We propose source-free multi-domain adaptation with fuzzy rule-based deep

neural networks. To the best of our knowledge, this is the first work adopt-

ing fuzzy rules to deal with source-free transfer learning. The proposed method

deals with soft information to enrich transferable knowledge among both classes

and domains, which most non-fuzzy methods rarely consider. It develops fuzzy
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C-means clustering in a deep structure to construct fuzzy rules and introduces

the Takagi-Sugeno model to solve domain adaptation without source data.

Based on experiments, the fuzzy source-free domain adaptation method is su-

perior to non-fuzzy methods by transferring knowledge on multiple information

levels;

• We develop an auxiliary learning mechanism to enhance the multi-domain

performance of the private source models. Few existing source-free methods

handle multiple source domains. The proposed method takes advantage of

category information from other source domains by jointly training source pa-

rameters. Compared with existing source-free multi-domain adaptation meth-

ods which train source models independently, by doing this, multiple source

domains can now share invariant knowledge without sharing data;

• We generate source anchors from source fuzzy rules to collect highly represen-

tative class features, which are employed to define an anchor-based alignment

strategy to fit the pre-trained source model to the target domain while pro-

tecting the source data. By reducing the distance between source and target

anchors which highly represent class information, the target feature extractor

is forced to transform target data into the latent feature space which is closer

to source distribution. Compared with existing source data generation meth-

ods, the proposed source anchors based on fuzzy rules can collect more usable

knowledge on multiple information levels;

• We build a selection strategy in assistance with fuzzy outputs and nearest

clustering to collect strong target samples to calculate clustering centers which

we employ to predict pseudo labels with high confidence. In comparison to

existing methods computing clustering centers using all pseudo target labels,

the proposed strategy can reduce the label noise which is known to result in
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negative transfer.

7.2 Problem Setting and Notations

In this chapter, we focus on data-free domain adaptation with multiple source

domains for the image classification task. Table 7.1 describes the symbols in this

chapter.

Table 7.1 : Symbol descriptions.

Notation Description

Dsk , Dt the private source/target domain

nsk , nt number of source/target samples

xsk , xt source/target sample

ysk source label of xsk

ϕ pre-trained deep-structured backbone

ϕk the kth source private feature extractor

vlsk , v
l
tk

clustering prototype from the source/target domain

ulsk , u
l
tk

membership of the source/target sample belonging

to lth fuzzy set

f csk , f
c
tk

class anchor from the source/target domain

wc deep clustering center from target domain

r probability vector estimated by classifier

7.3 The Proposed Fuzzy Source-Free Multi-Domain Adap-

tation Method

We design a new fuzzy rule-based deep neural network to tackle data-free do-

main adaptation with multiple source domains. The proposed method is illustrated
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in Fig. 7.1. The top figure displays the process of source private model training

with auxiliary tasks, while the bottom figure indicates the model adaptation based

on self-supervised training. As shown in Fig. 7.1(a), for each source domain, the

original data is first transformed into a latent feature space by the feature extractor.

To leverage soft information, we adopt fuzzy C-means clustering to calculate proto-

types of each source domain and memberships of samples to define fuzzy rules and

predict the final outputs. Source anchors are generated based on the fuzzy model to

describe class information distinctly and preserve data privacy for other users. The

error between fuzzy outputs and the ground-truth labels are employed to parameter-

ize the training. To provide better generality of source private models in predicting

target task, source parameters and fuzzy rules are shared among domains as auxil-

iary models for each other using a joint training method. In Fig. 7.1(b), given the

pre-trained source models based on fuzzy rules, pre-learned source rules are frozen

to match target data to source distribution where source models can be transferred,

while feature extractors are re-trained. Anchor-based alignment is designed to force

the target data to source feature space by extracting invariant information. Besides,

to extract specific information from target domain, self-supervision is constructed to

parameterize the re-training. The success of self-supervision relies on the high qual-

ity of pseudo labels. To guarantee these pseudo labels provided by deep clustering

come with low noise, a sample selection strategy based on fuzzy outputs is built to

select target labels confidently and generate reliable clustering centers. The cross-

entropy loss between pseudo labels and the fuzzy outputs is employed to fine-tune

the feature extractors.

7.3.1 Source Private Model Training

In this chapter, we employ Takagi-Sugeno fuzzy rules to build the source model.

Given source domains {Dsk}Kk=1, for input data xsk ∈ Rs and the corresponding
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(b) Model adaption with self-supervised learning.

Figure 7.1 : The procedure of the proposed method. The solid arrow means data-

flow, the dashed arrow means loss computing. Figure (a) indicates source model

training. Auxiliary tasks are constructed by sharing source parameters. Fuzzy C-

means clustering is employed to learn the prototypes and memberships to build the

fuzzy rules. Source anchors are extracted to describe the source class information

without referring to the original data. Figure (b) demonstrates domain adaptation.

By freezing source rules, self-supervised learning is employed to fine-tune feature

extractors. Anchor-based alignment is built to match domains on the data-level by

extracting invariant information. Deep clustering and a sample selection strategy

are designed to predict pseudo labels with low noise which learn specific target

information.
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output ysk ∈ Rc in the kth source domain, a rule can be described as:

if xsk is Akl(ϕk(ϕ(xsk))),

then ysk is Pkl(ϕk(ϕ(xsk))),

l = 1, 2, · · · , Lk.

ϕk is the private feature extractor in the kth source domain, while ϕ is a pre-trained

deep-structured backbone on a very large dataset. Parameters of ϕ are shared among

all domains. Feature extractors transform original data to feature space Rd. Akl

represents the fuzzy condition of the lth rule, Pkl is a function transforming data

from Rd to Rc. Lk represents the number of rules in the kth source domain.

The final prediction of the Takagi-Sugeno fuzzy model in each source domain is

the linear combining of the outputs of all rules, which is:

ysk =

Lk∑
l=1

ulsk · Pkl(ϕk(ϕ(xsk))), (7.1)

ulsk is the membership of data xsk belonging to the lth fuzzy set.

There are three problems to be solved to build the source model: first, how

to define fuzzy rule number Lk; second, how to learn function Pkl; third, how to

measure the membership ulsk to calculate the final prediction.

To solve the first problem, we design a class grouping strategy based on the sim-

ilarities among each pair of classes. Here, the correlation coefficient is employed to

measure the similarity between every two classes. Denote any class pair as (xci ,xcj),

the correlation coefficient between each two classes is calculated as:

ρij =
E(xcixcj)− E(xci)E(xcj)√

E(x2
ci
)− (E(xci))2

√
E(x2

cj
)− (E(xcj))2

, (7.2)

where

xc =

∑nc
sk
i=1 1yi

sk
=c · ϕ(xisk)∑nc

sk
i=1 1yi

sk
=c

, (7.3)
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ncsk denotes the number of source samples in the cth class. When ρij > aρ, where aρ

is a threshold, we think classes ci and cj are similar, and they can share the same

rule. Here, we use Yl to denote the label set containing similar classes.

To solve the second problem, we apply a structural risk minimization principle

(Vapnik, 1999) to learn the function. In the classification task, Pkl is a classifier

parameterized by minimizing the assumption between the prediction and the ground-

truth source labels, which can be expressed as:

Pkl = argmin
Pskl

(xsk
,ysk

)∈Dsk

L(Pkl(ϕk(ϕ(xsk))),ysk), (7.4)

where

L = − 1

nsk

nsk∑
i=1

yisk log(Pkl(ϕk(ϕ(x
i
sk
))). (7.5)

To improve the training speed and prevent source model parameters from overfit-

ting which may fail the transfer, a label smoothing strategy is adopted to transform

hard labels to soft labels (Müller et al., 2019; Liang et al., 2020), which is:

ỹsk = (1− µ)ysk + µ/C, (7.6)

where µ is the smoothing parameter, and C is the number of source classes. Classifier

Pkl in equation (7.4) with smooth label is:

Pkl = argmin
Pkl

(xsk
,ỹsk

)∈Dsk

L(Pkl(ϕk(ϕ(xsk))), ỹsk), (7.7)

where L is re-written as:

L = − 1

nsk

nsk∑
i=1

ỹisk log(Pkl(ϕk(ϕ(x
i
sk
)))). (7.8)

To solve the third problem, fuzzy C-mean clustering is adopted which is a popular

technique for calculating the memberships. Setting the cluster number as the rule

number defined using equation (7.2), it calculates a prototype in every cluster to
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estimate data membership. Generally, the cluster prototypes and data memberships

are updated alternately by fixing the other. In this work, cluster prototypes are

initialized as the mean values of samples from the same cluster grouped according

to their labels, expressed as:

vlsk =

∑nl
sk
i=1 1yi

sk
∈Yl
· ϕk(ϕ(xisk))∑nl

sk
i=1 1yi

sk
∈Yl

, (7.9)

Yl is a label set containing similar classes. nlsk is the number of samples in the label

set Yl. Given cluster prototypes {vlsk}
Lk
l=1, the membership of data xsk ∈ Akl is

generally defined as:

ulsk =
1∑Lk

i=1(
∥vl

sk
−ϕk(ϕ(xsk

))∥
∥vi

sk
−ϕk(ϕ(xsk

))∥)
2

m−1

. (7.10)

Using the membership calculated via equation (7.10), the cluster prototypes are

updated with training processing as:

vlsk =

∑nsk
i=1(u

li
sk
)m · ϕk(ϕ(xisk))∑nsk
i=1(u

li
sk
)m

. (7.11)

The loss function of training classifiers defined by fuzzy rules in each source

domain is:

Lk =L(Pkl(ϕk(ϕ(xsk))), ỹsk)+

L(
Lk∑
l=1

ulsk · Pkl(ϕk(ϕ(xsk))), ỹsk).

To enhance the performed generality across tasks of the private source models,

the auxiliary learning strategy is designed to training multiple source models jointly,

and is expected to make full use of the classification information from other source

domains. Not all fuzzy rules from a source domain can be performed on other

different source domains because of data shift. Hence, for the kth source domain,

we choose half nearest rules (denote as Lnear) from different source domains as

auxiliary tasks to improve the generality of source models. The auxiliary tasks are
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trained as:

Laux =
1

K − 1

K∑
k′ ̸=k

L(
∑

l∈Lnear

ulsk′ · Pk′l(ϕk′(ϕ(xsk))), ỹsk). (7.12)

Then the overall objective of the kth source model is:

Ls = Lk + Laux. (7.13)

Grouping similar classes to construct fuzzy rules can enrich information of every

fuzzy set but degrade the representation of each class. To preserve the identification

of each class, source class anchors of each domain are generated to extract present

features that highly reflect class information. By this, the anchors can describe

classes without referring to the original data. When fuzzy rule number is equal

to the class number, which means each class has its individual rule, the clustering

prototypes in equation (7.11) will act as source anchors. Otherwise, the averaged

mean values of normalized classifier weight vectors are adopted as source anchors.

By learning the anchors based on the source private model parameters, source data

will not be leaked by decoding these anchors. Thus, employing these anchors does

not harm data privacy. The anchor of the cth class is calculated as:

f csk =


1
Lk

∑Lk

l=1 Norm(Pkl) if LK ̸= C;∑nsk
i=1 (u

li
sk

)m·ϕk(ϕ(xi
sk

))∑nsk
i=1 (u

li
sk

)m
, if LK = C;

c = l, c = 1, 2, · · · , C

(7.14)

7.3.2 Pseudo Target Label Collection

Given target domain Dt = {xjt}nt
j=1, without access to source data, traditional

domain adaptation methods relying on matching source and target samples cannot

be adopted. To tackle the target task, we employ a pseudo labelling strategy to

generate the target model from source models. As source models are available,

we feed target data to the kth source model, and select most half nearest rules
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(denote as Lnear) to predict target labels. At the very beginning, initializing the

target clustering prototypes {vltk}
Lk
k=1 as source clustering prototypes {vlsk}

Lk
k=1, the

membership is calculated as:

ultk =
1∑Lk

i=1(
∥vl

tk
−ϕk(ϕ(xt))∥

∥vi
tk
−ϕk(ϕ(xt))∥)

2
m−1

. (7.15)

The prediction of applying source classifiers is expressed as:

ŷtp =
∑

l∈Lnear

ultk · Pkl(ϕk(ϕ(xt))); (7.16)

Target prototypes and memberships are then updated alternately with the process

of training by fixing the other, which can be expressed as:

vltk =

∑nt

i=1(u
li
tk
)m · ϕk(ϕ(xit))∑nt

i=1(u
li
tk
)m

;

ultk =
1∑Lk

i=1(
∥vl

tk
−ϕk(ϕ(xt))∥

∥vi
tk
−ϕk(ϕ(xt))∥)

2
m−1

.
(7.17)

The pseudo target labels provided by the pre-trained source model could be noisy

due to the data bias between domains. To reduce the label noise, the distillation

strategy is designed to collect high-confident target labels assumed to be correct. We

call these target samples strong samples. The strong samples are used to further

update the pseudo labels of all target samples, which is expected to improve the

accuracy of target predictions.

First, denote r = [r1, r2, ..., rC ] as the probability vector returned by source

classifiers {Pkl}Lk
l=1 as in equation (7.16) which indicates the probability of a target

sample belonging to the source classes. A threshold ac of the cth class is defined to

identify the potential of a target label being correct. For a pseudo label ŷtp = c, if

rc ⩾ ac, we think this target label is correct with a high probability.

In addition, based on deep clustering (Liang et al., 2020; Caron et al., 2018),

we adopt the nearest neighbor to estimate the target labels. Since target data is
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unlabeled, to estimate the clustering center in each class of target domain, target

samples are fed to source classifiers to calculate the probability vectors. The initial

clustering center by applying the kth source model then can be written as:

w0
c =

∑n̂c
tp

i=1 r
i
c · ϕk(ϕ(xit))∑n̂c

tp

i=1 r
i
c

, (7.18)

n̂ctp is the number of samples in the cth class predicted by equation (7.16). The

clustering label of target sample is then estimated by:

ŷtd = argmax
c

xt∼Dt

1∑C
i=1(

∥w0
c−ϕk(ϕ(xt))∥

∥w0
i−ϕk(ϕ(xt))∥)

2
. (7.19)

The target domain is unlabeled with higher data uncertainty, but we hope to

collect accurate class information to predict its labels. Thus, the soft class infor-

mation reflected by probability vector r is transformed into hard class information

by replacing the probability vector r with the predicted label ŷtd . This means the

initial cluster centers and labels in equations (7.18) and (7.19) are upgraded as:

w1
c =

∑n̂c
td
i=1 1ŷi

td
=c · ϕk(ϕ(xit))∑n̂c
td
i=1 1ŷi

td
=c

,

ŷtd = argmax
c

xt∼Dt

1∑C
i=1(

∥w1
c−ϕk(ϕ(xt))∥

∥w1
i−ϕk(ϕ(xt))∥)

2
.

(7.20)

n̂ctd is the number of cluster samples predicted by equation (7.19).

When ŷtp = ŷtd and rytp=c ⩾ ac, we select the corresponding target sample as a

strong sample. After collecting strong samples, we update the clustering centers in

equation (7.20) using the selected target samples and corresponding predicted labels,

and then renew the pseudo labels of all target samples, which can be expressed as:

w2
c =

∑n̂c
sel
i=1 1ŷi

tp
=c · ϕk(ϕ(xit))∑n̂c

sel
i=1 1ŷi

tp
=c

,

ŷt = argmax
c

xt∼Dt

1∑C
i=1(

∥w2
c−ϕk(ϕ(xt))∥

∥w2
i−ϕk(ϕ(xt))∥)

2
.

(7.21)

ncsel denotes the number of selected samples in the cth class.
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7.3.3 Model Adaptation and Target Task Prediction

When predicting the target task, to fit source models to the target domain, we

design a self-supervised strategy to train the target model using the collected pseudo

labels. Anchor-based alignment is built to force target data to the source feature

spaces.

In freezing source classifiers, only feature extractors are fine-tuned to extract

invariant information. When applying the kth fuzzy model, the corresponding gen-

erated target model is trained by minimizing the errors between the predictions and

the pseudo labels, which is:

Ptk = argmin
ϕk,ϕ
xt∼Dt

L(Ptk(ϕk(ϕ(xt))), ŷt), (7.22)

where

L = − 1

nt

nt∑
i=1

ŷt log(Ptk(ϕk(ϕ(x
i
t)))). (7.23)

Ptk is a linear combination of source classifiers under fuzzy rules, which is:

Ptk =
∑

l∈Lnear

ultk · Pkl. (7.24)

ultk is calculated as in equation (7.17).

To reduce the domain shift between source and target domains on the label-level,

information maximization loss is employed to parameterize the target outputs being

individually certain and globally diverse by encoding the target outputs to one-hot

vectors, which is:

Lkdiv =
∑

p̄t log(p̄t), (7.25)

p̄t =
1
nt

∑nt
i=1 Ptk(ϕk(ϕ(x

i
t))) is a C-dimension vector.

To transform target data to source feature space on the data-level, anchor-based

alignment is designed to reduce the data bias. Source anchors {f csk}
C
c=1 are generated



227

from source data as in equation (7.14), which highly represent the class feature infor-

mation. These anchors will not weaken the data privacy as they are transformations

of the original data. Other users (e.g. target domain) cannot estimate source data

by decoding the anchors. Target anchors are calculated according to the soft class

information returned by applying source fuzzy rules, we still denote it as vector r,

the target anchor is:

f ctk =

∑nb

i=1 r
i
c · ϕk(ϕ(xit))∑nb

i=1 r
i
c

, (7.26)

nb is the batch size. The advantage of calculating target anchors over the batch is

that when there is no sample of class c in the randomly selected batch, the anchor

can still be generated according to the probabilities of samples from other classes

belonging to class c.

The loss function of matching source and target anchors is:

Lkanc =
C∑
c=1

∥f ctk − f csk∥
2. (7.27)

The total loss of training for the target model is:

Lt =
K∑
k=1

(L(Ptk(ϕk(ϕ(xt))), ŷt) + Lkdiv + Lkanc). (7.28)

The target label is a mean average combination of the predictions provided by

all source classifiers:

yt =
1

K

K∑
k=1

Ptk(ϕk(ϕ(xt))). (7.29)

The processing of the proposed source-free multi-domain adaptation with fuzzy

rule-based deep neural networks (SF-FDN) are described in Algorithms 11 and 12.
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Algorithm 11 SF-FDN: Source private model training.

1: Input: Source domains;

2: Define the number of fuzzy rules of each source domain as in equations (7.2);

3: Initialize cluster prototypes as in equation (7.9);

4: for ϵ = 1, ϵ < Is, ϵ++, do

5: Calculate membership as in equation (7.10);

6: Update cluster prototypes as in equation (7.11);

7: Update the source model as in equation (7.13)

8: end for

9: Generate source class anchors as in equation (7.14)

10: Output: Source models, source anchors.

Algorithm 12 SF-FDN: Target model adaptation.

1: Input: Source models, source anchors, target domain;

2: Initialize target cluster prototypes as source prototypes;

3: Initialize target memberships as in equation (7.15);

4: for ϵ = 1, ϵ < It, ϵ++, do

5: Calculate pseudo labels predicted by source classifiers as in equation (7.16);

6: Update target cluster prototypes and membership as in equation (7.17);

7: Calculate pseudo labels predicted by deep clustering as in equation (7.20);

8: Collect pseudo target labels as in equation (7.21);

9: Generate target class anchors as in equation (7.26);

10: Update the target model as in equation (7.28)

11: end for

12: Predict target labels as in equation (7.29);

13: Output: Target labels.
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7.4 Experiments

In this section, the proposed fuzzy rule-based source-free multi-domain adap-

tation method is validated on four popular real-world visual datasets, comprising

ImageCLEF-DA, Office-31, Office-Caltech10 and Office-Home. All the experiments

are classification tasks under the multi-source domain adaptation scenario, both

homogeneous and heterogeneous label spaces are applied to validate the proposed

method. Classification accuracy is the only criterion used to evaluate the perfor-

mance.

In the following, section 7.4.1 introduces the datasets, compared methods and

parameter settings. Experiment results and analysis are displayed in section 7.4.2.

Section 7.4.3 analyzes the generality of the source-only model. Section 7.4.4 analyzes

the influence of rule numbers. The ablation study is carried out in section 7.4.5.

Section 7.4.7 validates the proposed method under partial and open-set domain

adaptation scenarios. Section 7.4.8 displays the data visualization.

7.4.1 Datasets and Baselines

The proposed method is tested on four real-world datasets. Datasets details are

listed in Table 7.2.

Office-31 and ImageCLEF-DA include three domains sharing 31 and 12 cate-

gories, respectively. For closed-set domain adaptation, three tasks of each dataset

can be built: AW −D; AD−W ; WD−A from Office-31 and I, C → P ; I, P → C;

C,P → I from ImageCLEF-DA.

Office-Caltech10 and Office-Home contain four domains sharing 10 and 65 cat-

egories, respectively. Each of them has four tasks: A,D,W → C; C,D,W → A;

A,C,D → W , A,C,W → D from Office-Caltech10 and A,C, P → R; A,C,R→ P ;

A,P,R→ C; C,P,R→ A from Office-Home.
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Table 7.2 : Classes, domains and samples in experiment datasets.

Dataset\ Domain\ Total Tasks

Classes Samples Samples

Office-31\31

Amazon\2817

4110

W,D→A

Webcam\795 A,D→W

DSLR\498 A,W→D

ImageCELF-DA\12

Caltech\600

1800

I,P→C

ImageNet\600 P,C→I

Pascal\600 I,C→P

Office-Caltech\10

Amazon\958

2533

C,D,W→A

Webcam\295 A,C,D→W

DSLR\157 A,C,W→D

Caltech\1123 A,D,W→C

Office-Home\65

Art\2427

15588

C,P,R→A

Clipart\4365 A,P,R→C

Product\4439 A,C,R→P

RealWorld\4357 A,C,P→R
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Domain adaptation with heterogeneous label spaces are validated on Office-

Home.

The baselines include related domain adaptation methods with and without

source data under both homogeneous and heterogeneous settings which employ the

same learning schemes such as self-supervision to adapt the target model. For fair

comparison, the baseline methods are trained based on ResNet50. Comparison with

single-source methods aims to prove the superiority of learning from multiple do-

mains. Comparison with non-fuzzy methods not only indicates the advantage of

fuzzy model, but also shows the superiority of the proposed techniques in data-

matching and pseudo label selection. Source data available methods include:

• TransN: Transferable Normalization (Wang et al., 2019a);

• MDD: Margin disparity discrepancy (Zhang et al., 2019b);

• JUMBOT: Joint unbalanced minibatch optimal transport (Fatras et al., 2021);

• RBDA: Reducing bias to source samples (Ye et al., 2021);

• RWOT: Reliable weighted optimal transport (Xu et al., 2020b);

• LtC-MSDA: Learning to combine (Wang et al., 2020a);

• MSCLDA: Learning source contribution for multi-domain adaptation (Li et al.,

2021c);

• DCA: Multi-domain adaptation with dynamic classifier alignment (Li et al.,

2022a);

• SAN: Partial transfer learning with selective adversarial networks (Cao et al.,

2018a);
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• ETN: Learning to transfer examples for partial domain adaptation (Cao et al.,

2019);

• SAFN: Adaptive feature norm approach for unsupervised domain adaptation

(Xu et al., 2019b);

• DARL: Domain adversarial reinforcement learning for partial domain adapta-

tion (Chen et al., 2022b);

• MSAN: Attention guided for partial domain adaptation (Zhang and Zhao,

2021);

• OSBP: Open set domain adaptation by backpropagation (Saito et al., 2018);

• STA: Separate to adapt: Open set domain adaptation via progressive separa-

tion (Liu et al., 2019a);

• DAOD: Open set domain adaptation: theoretical bound and algorithm (Fang

et al., 2021);

• LtGUR: Learning to generate the unknowns as a remedy for open-set adapta-

tion (Baktashmotlagh et al., 2022).

Source free methods include:

• BAIT: Domain adaptation without source data by casting a bait (Yang et al.,

2021b);

• PrDA: Progressive domain adaptation (Kim et al., 2020);

• SHOT: Source hypothesis transfer with information maximization (Liang et al.,

2020);

• SDDA: Source data free domain adaptation- domain impression (Kurmi et al.,

2021b);
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• G-SFDA: Generalized source-free domain adaptation (Yang et al., 2021c);

• AAN: Adaptive adversarial network (Xia et al., 2021);

• NRC: Intrinsic neighborhood structure for source-free domain adaptation (Yang

et al., 2021a);

• JNUSF: Source-free domain adaptation with Jacobian Norm (Li et al., 2022b);

• CDCL: Cross-domain contrastive learning for unsupervised domain adaptation

(Wang et al., 2022);

• PGL: Source-free progressive graph learning for open-set domain adaptation

(Luo et al., 2022).

ETN, SAFN, DARL and MSAN are compared under a partial domain adaptation

setting, while OSBP, STA, DAOD, LtGUR and PGL are compared under an open-

set domain adaptation setting. All compared results are collected from previous

publications. For single source-free domain adaptation methods, we take the average

predictions from all source domains as the multi-source results.

ResNet50 is employed as the backbone complemented by Pytorch. Parameters

are updated based on back-propagation with Stochastic Gradient Descent (SGD),

the momentum is 0.9, the learning rate η follows the same strategy in (Ganin and

Lempitsky, 2015), which is η = η0
(1+10ϵ)0.75

, where η0 = 0.01, ϵ is the training progress

changing linearly from 0 to 1. The learning rate of the shared network is one tenth

of other layers. Batch size nb = 64, the smoothing parameter µ = 0.1. Threshold

ac is defined as medium value of the predicted probabilities in each category. For

datasets ImageCLEF-DA and Office-Caltech10, we set the rule numbers as their

class numbers. For datasets Office-31 and Office-Home, rules numbers are defined

by their correlation coefficient among classes. The value of threshold aρ is affected

by the sample number in each domain. Domains containing few samples applies a
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small value while domains containing a large number of samples take on a greater

value. For dataset Office-31, ImageCLEF-DA, Office-Caltech10, the value of aρ is

between [0.4, 0.5], for Office-Home, the value is between [0.45, 0.65]. Domains A,

D and W have 15, 16 and 15 rules respectively, domains A, C, P and R have 5,

6, 7 and 7 rules respectively. Under heterogeneous label space settings on dataset

Office-Home, for partial domain adaptation, domains A, C, P and R have 5, 6, 7

and 7 rules respectively, while for open-set domain adaptation, domains A, C, P and

R have 5, 6, 8 and 8 rules respectively.

7.4.2 Results and Analysis

Tables 7.3, 7.4, 7.5 and 7.6 show the results of the proposed method and the

baselines under closed-set domain adaptation. We compare the proposed method

SF-FDN with a fuzzy rule-based baseline MDAFuz, and other non-fuzzy baselines.

It indicates that the proposed method performs the best on most tasks and achieve

the highest average performance on four datasets.

To compare the proposed SF-FDN method with the source-free domain adap-

tation methods, the average accuracy is improved by 1.5% on dataset Office-31,

0.6% on dataset ImageCLEF-DA, 0.5% on dataset Office-Caltech10 and 1.3% on

dataset Office-Home, respectively. This indicates that introducing a fuzzy system

to handle soft information among samples from different categories can leverage

richer transfer knowledge across domains. The proposed SF-FDN improves the av-

erage accuracy of baselines with source data by 0.4% on dataset Office-31, 0.3%

on dataset Office-Caltech10 and 0.8% on dataset Office-Home compared with the

latest domain adaptation method with source data. On dataset ImageCLEF-DA,

the proposed SF-FDN and baseline MDAFuz, another method based on fuzzy rules,

achieve the same average performance. It means extracting soft information is more

suitable for this dataset. Even though the two methods gain the same average per-
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formance, we deal with domain adaptation under a more difficult setting, and obtain

a superior performance on most tasks in this dataset. It also shows that, except for

the proposed method, several source-free methods based on pseudo-labelling, such

as SHOT and BAIT, produce a similar performance compared with other methods

with source data, meaning that self-supervised training is advantageous in taking

usable information in the target domain to help the transfer.

7.4.3 Generality Analysis of Source Private Model

When handling source-free domain adaptation employing a self-training strategy.

there are two main questions: how to improve the generality of the source only model

and how to collect pseudo labels with low noise. In this section, we expect fuzzy

rules to have the superiority to take full use of class information to learn classifiers

with high cross-domain ability, and design auxiliary tasks to enhance the generality

of source-only models. The high cross-domain performance of the source model is

beneficial to collecting low noisy pseudo target labels at the very beginning. This

section conducts experiments on a source-only model for analyzing the performance

of the proposed enhancement strategy.

Taking datasets Office-31 and Office-Home as examples, Tables 7.7 and 7.8 show

the performance of source-only models trained without fuzzy rules and auxiliary

tasks. The results are returned by applying source models on the target domain di-

rectly without fine-tuning, which indicates the ability across tasks of source models.

Method “S” represents predictions of single source domain, “M” indicates the per-

formance of multi-source domains. “Non-fuzzy” means the models are trained with

auxiliary tasks but without fuzzy rules, “Non-auxiliary” means training with fuzzy

rules but without auxiliary tasks, “Proposed” means both fuzzy rules and auxiliary

tasks are used.

It can be seen that the multi-source model outperforms the single source model,
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Table 7.3 : Comparison (%) of the proposed fuzzy rule-based deep network and the

baselines on dataset Office-31

Standards Method A,W→D A,D→W W,D→A Avg

ResNet 99.3 96.7 62.5 86.2

TransN 97 97.2 73.8 89.3

RBDA 100.0 99.0 74.2 91.1

Source MDD 96.8 96.6 73.4 88.9

data RWOT 97.3 97.3 77.7 90.8

MSCLDA 99.8 98.8 73.7 90.8

MDAFuz 99.7 99.0 74.0 90.9

DCA 99.6 98.9 75.1 91.2

ResNet 97.5 95.4 60.2 84.4

BAIT 98.8 98.5 71.1 89.5

Source PrDA 96.7 93.8 73.2 87.9

free SHOT 94.9 97.8 75.0 89.2

SDDA 99.8 99.0 67.7 88.8

AAN 97.3 96.6 76.1 90.1

NRC 97.9 94.9 75.2 89.3

JNUSF 97.9 95.5 76.4 89.9

CDCL 97.2 95.3 75.3 89.3

SF-FDN 100.0 99.2 75.8 91.6
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Table 7.4 : Comparison (%) of the proposed fuzzy rule-based deep network and the

baselines on dataset ImageCLEF-DA

Standards Method I,C→P I,P→C P,C→I Avg

ResNet 74.8 91.5 83.9 83.4

RBDA 78.5 98.0 91.4 89.3

RWOT 80.2 97.3 92.8 90.1

Source data MSCLDA 79.5 95.9 94.3 89.9

MDAFuz 79.4 96.3 94.5 90.1

DCA 78.9 96.2 93.9 89.7

Source SHOT 79.2 96.2 93.2 89.5

free SF-FDN 80.2 97.3 92.7 90.1

Table 7.5 : Comparison (%) of the proposed fuzzy rule-based deep network and the

baselines on dataset Office-Caltech10

Standards Method A,D,W→C C,D,W→A A,C,D→W A,C,W→D Avg

ResNet 82.5 91.2 98.9 99.2 93.0

Source MSCLDA 94.1 95.3 99.1 98.5 96.8

data DCA 94.7 96.0 99.7 99.1 97.4

ResNet 92.1 96.3 98.0 99.5 96.5

BAIT 95.7 97.5 98.0 97.5 97.2

Source PrDA 94.6 97.3 97.6 97.1 96.7

free SHOT 95.8 95.7 99.6 96.8 97.0

SF-FDN 94.9 95.9 100.0 100.0 97.7
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Table 7.6 : Comparison (%) of the proposed fuzzy rule-based deep network and the

baselines on dataset Office-Home

Standards Method A,C,P→R A,C,R→P A,P,R→C C,P,R→A Avg

ResNet 67.8 71.3 51.8 53.4 61.1

TransN 76.7 75.7 54.1 64.1 67.6

Source MDD 75.9 75.8 56.2 64.6 68.1

data RWOT 77.3 75.8 52.8 64.5 67.7

JUMBOT 78.3 77.8 55.9 67.0 70.0

MSCLDA 80.6 79.9 61.4 71.6 73.4

LtC-MSDA 80.1 79.2 64.1 67.4 72.7

DCA 81.4 80.5 63.6 72.1 74.4

ResNet 76.3 78.8 50.1 50.9 64.0

BAIT 77.2 79.4 59.6 71.1 71.8

Source PrDA 76.8 79.1 57.5 69.3 70.7

free SHOT 81.5 83.0 57.2 72.1 73.5

G-SFDA 82.2 83.4 57.9 72.0 73.9

AAN 81.4 81.1 58.4 69.9 73.9

NRC 81.2 81.9 57.6 68.1 72.2

JNUSF 81.2 81.1 56.8 70.8 72.5

SF-FDN 82.7 83.7 60.7 73.7 75.2
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indicating that enriching source knowledge is helpful in learning a classifier that

can perform on multiple domains. The proposed method performs best on two

datasets compared with models trained without fuzzy rules or auxiliary tasks. For

a dataset with fewer categories and samples (Office-31), models trained with fuzzy

rules but without auxiliary tasks achieve greater accuracy than those trained with

auxiliary tasks but without fuzzy rules. It means fuzzy rules have a significant

advantage to improve the generality of source models. While for a dataset with

more categories and samples (Office-Home), auxiliary learning is more important to

leveraging source knowledge as the models trained with auxiliary tasks outperform

those without. This is because Office-Home contains more domains than Office-

31, and some domains with low relatedness are learned together, degrading the

performance of classifiers since a classifier fitting all domains well may not exist.

This encourages us to explore which tasks should be learned together to reduce the

negative transfer and improve future positive transfer.

7.4.4 Influence of Rule Numbers

To explore how the number of rules affects the performance of the transfer,

this section shows the results of the proposed method trained with different rule

numbers. Tables 7.9 and 7.10 show the classification results of the proposed fuzzy

rule-based method with different rule numbers on datasets Office-31 and Office-

Home. Standard “non” indicates only one rule is used, which can be treated as

non-fuzzy classification. Standard “C/2” means the rule number is half of the class

number, while “C” means the rule number is set as a class number. The results show

that rule numbers defined by the proposed grouping strategy based on correlation

coefficient achieve the highest performance on target domain. It indicates that too

few or too many rules can result in degradation of the transfer.

Fewer rules might fail to discover the specific information among different classes.
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Table 7.7 : Accuracy (%) on dataset Office-31 of source only models.

Standards Method A,W→D A,D→W W,D→A Avg

Non- S 98.6 96.2 64.7

86.5
fuzzy 98.6 96.2 64.5

M 98.8 96.4 65.8 87.0

Non- S 99.0 95.2 63.5

86.6
auxiliary 99.6 97.2 65.0

M 99.4 97.4 66.0 87.6

S 99.6 95.2 65.0

87.1
Proposed 99.8 97.2 65.9

M 99.8 97.4 66.4 87.9

Setting the rule number as a value equal to or greater than the number of classes

should be advantageous in extracting class information and learning high-performance

classifiers, but experiments reveal different assumptions on datasets containing many

categories. We think this is caused by the data unbalance of categories and domains.

For a classifier under a rule that contains fewer highly representative samples, the

learning may fail to provide correct predictions because other class samples occu-

pying a large proportion will dominate the training. Besides, having too many

rules requires a high computing environment such as computer memory and com-

pute units. Thus, defining appropriate fuzzy rules is beneficial in overcoming the

problems mentioned above.
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Table 7.8 : Accuracy (%) on dataset Office-Home of source only models.

Standards Method A,C,P→R A,C,R→P A,P,R→C C,P,R→A Avg

81.5 76.9 51.7 68.2

69.7Non- S 80.8 77.3 52.2 68.2

fuzzy 81.1 78.5 51.4 68.8

M 81.6 78.1 52.0 69.6 70.3

76.0 71.7 49.7 61.4

65.1Non- S 73.5 72.2 47.2 60.0

auxiliary 75.3 77.2 50.4 66.1

M 79.7 76.9 53.1 66.7 69.1

80.4 76.5 53.5 67.2

69.8Proposed S 79.5 77.6 54.0 68.2

80.6 78.7 53.1 67.8

M 80.7 78.7 54.1 68.7 70.6

Table 7.9 : Accuracy (%) on dataset Office-31 of ablation study.

Standards A,W→D A,D→W W,D→A Avg

non 99.5 98.7 75.5 91.3

C 99.8 98.7 75.3 91.2

Proposed 100.0 99.2 75.8 91.6
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Table 7.10 : Accuracy (%) on dataset Office-Home of ablation study.

Standards A,C,P→R A,C,R→P A,P,R→C C,P,R→A Avg

non 83.1 83.1 60.1 73.3 74.9

C/2 82.0 82.4 61.1 72.6 74.5

C 82.8 79.7 56.5 66.0 71.3

Proposed 82.7 83.7 60.7 73.7 75.2

7.4.5 Ablation Study

To validate the performance of different modules used in the proposed method,

Tables 7.12 and 7.13 display the ablation study on datasets Office-31 and Office-

Home. Three modules affect the training of the target model:(1) selecting strong

target samples to predict low noisy pseudo labels (denote as Lsel); (2) balancing

domain shift using information maximization loss (reflected by Ldiv), and (3) forcing

target data to source feature space using anchor-based alignment (reflected by Lanc),

the setting of ablation study is detailed in Tabel 7.11, “×” means training without

the module, while “✓” means training with the module.

It indicates that information maximization loss Ldiv is more important than

other modules as the model trained without it produces a lower performance on both

datasets. Target model of dataset Office-Home trained without sample selection Lsel

is inferior to that trained without anchor-based alignment Lanc, while on dataset

Office-31, the situation is different. It means sample selection mainly affects the

model on the dataset with a large number of samples and categories, while a dataset

with fewer samples relies more on anchor-based alignment. The difference is due to

the quality of source anchors. Even in supervised learning, predicting a dataset

containing a large number of samples and categories is more difficult than in a
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Table 7.11 : Setting of ablation study.

Standards Target

sample

selection

Information

maximiza-

tion loss

Anchor-

based

alignment

Ldiv ✓ × ✓

Lanc ✓ ✓ ×

Lsel × ✓ ✓

Proposed ✓ ✓ ✓

dataset with fewer categories. Thus, the anchors from a small dataset can describe

class information more accurately than those from a large dataset.

Table 7.12 : Accuracy (%) on dataset Office-31 of ablation study.

Standards A,W→D A,D→W W,D→A Avg

Ldiv 99.9 98.4 73.1 90.5

Lanc 99.6 98.4 72.9 90.3

Lsel 99.9 98.6 74.8 91.1

Proposed 100.0 99.2 75.8 91.6

7.4.6 Trade-off Parameter Sensitivity Analysis

This section analyzes the sensitivity of trade-off parameter. Trade-off parameters

control the contribution level of auxiliary task Laux, information maximization loss

Ldiv and anchor-based alignment Lanc. α (Laux) and β (Ldiv) are experience values

in previous domain adaptation methods (Liang et al., 2020; Li et al., 2021c). Here
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Table 7.13 : Accuracy (%) on dataset Office-Home of ablation study.

Standards A,C,P→R A,C,R→P A,P,R→C C,P,R→A Avg

Ldiv 82.0 81.8 55.4 70.6 72.4

Lanc 82.8 83.7 60.3 73.0 75.0

Lsel 82.8 83.7 60.4 73.3 75.1

Proposed 82.7 83.7 60.7 73.7 75.2

we provide the experiment on λ, which refects the term Lanc. Taking datasets

Office-31 and Office-Home as examples, the results are shown in Tables 7.14 and

7.15. It can been seen that when λ = 0.5, the proposed method achieves the highest

performance.

Table 7.14 : Accuray (%) on dataset Office-31 with different values of parameter λ.

λ A, W→D A, D→W W, D→A Avg

0.3 99.8 98.5 75.2 91.2

0.5 100.0 99.2 75.8 91.6

0.7 99.9 98.4 75.3 91.2

1 99.8 98.6 75.2 91.2

7.4.7 Validation under Heterogeneous Label Space Setting

This section describes the experiments on the dataset Office-Home under hetero-

geneous label spaces settings, including partial and open-set domain adaptation. In

partial domain adaptation where target label space is a proper subset of source label

space, we choose 25 classes as target domain, and source domains include all classes.
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Table 7.15 : Accuray (%) on dataset Office-Home with different values of parameter

λ.

λ A,C,P→R A,C,R→P A,P,R→C C,P,R→A Avg

0.3 82.0 83.6 60.4 73.0 74.8

0.5 82.7 83.7 60.7 73.7 75.2

0.7 82.6 82.9 60.8 73.5 75.0

1 82.1 83.6 60.6 73.2 74.9

In open-set domain adaptation, source label space is contained inside target label

space. We select 25 classes to build source domains while target domain includes all

classes. The results are shown in Tables 7.16 and 7.17.

Compared with non-fuzzy baselines, the proposed method achieves the highest

accuracy under both partial and open-set scenarios, meaning the proposed method

based on fuzzy rules has superiority over other methods. In addition, it indicates

that the target model generated from multiple source domains with joint training

takes advantage of similar tasks to improve the transfer across domains.

7.4.8 Visualization Analysis

Taking task WD − A from dataset Office-31 as an example, Fig. 7.2 shows the

target data in classification space before and after adapting source models under

the closed-set domain adaptation setting using T-SNE visualization (Maaten and

Hinton, 2008). Categories are shown in different colors. It can be seen that, before

adaptation, features from different classes are mixed, while the proposed method

divides target samples with clear boundaries.

Fig. 7.3 shows the data visualization of target domain A from Office-Home
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Table 7.16 : Comparison (%) of the proposed fuzzy rule-based deep network and

the baselines on dataset Office-Home under partial domain adaptation.

Standards Method A,C,P→R(25) A,C,R→P(25) A,P,R→C(25) C,P,R→A(25) Avg

ResNet 71.2 67.2 45.4 61.6 61.4

Source SAN 77.5 70.8 46.4 66.5 65.3

data ETN 79.6 75.7 57.4 69.0 70.4

SAFN 79.9 76.4 58.2 72.9 71.9

DARL 84.2 77.5 54.5 72.0 72.1

JUMBOT 83.3 78.2 63.3 77.0 75.5

MSAN 80.4 76.2 56.7 67.2 70.1

Source SHOT 88.4 82.4 64.0 77.6 78.1

free SF-FDN 88.3 83.3 66.3 78.2 79.0

Table 7.17 : Comparison (%) of the proposed fuzzy rule-based deep network and

the baselines on dataset Office-Home under open-set domain adaptation.

Standards Method A,C,P(25)→R A,C,R(25)→P A,P,R(25)→C C,P,R(25)→A Avg

ResNet 65.3 63.1 62.8 69.8 65.3

Source OSBP 64.2 62.8 65.4 70.2 65.7

data STA 70.4 67.7 66.4 73.3 69.5

DAOD 79.8 73.5 58.6 67.2 69.8

LGUR 82.3 78.5 58.8 71.3 72.7

Source SHOT 82.4 79.3 61.4 64.5 71.9

free PGL 86.1 79.2 63.8 75.1 76.1

SF-FDN 83.1 83.5 66.5 73.2 76.6
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(a) W-A source only: closed-set (b) W-A proposed: closed-set

(c) D-A source only: closed-set (d) D-A proposed: closed-set

Figure 7.2 : T-SNE visualization on target domain A from dataset Office-31.
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under both homogeneous and heterogeneous domain adaptation settings. We can

see target classes distinctly separate from each other distinctly after adaptation. In

partial domain adaptation, the target domain contains 25 classes, and quiet large

distances can be seen within each pair of classes. In open-set domain adaptation,

there are 65 classes in the target domain. However, source classifiers can only

identify 25 classes, the other unshared 40 classes in the target domain are treated

as unknown classes (samples in very deep red color). We can see the unknown

classes are grouped after fine-tuning, while the share classes are divided clearly into

different classes.
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(a) Task A source only: closed-set (b) Task A proposed: closed-set

(c) Task A source only: partial (d) Task A proposed: partial

(e) Task A source only: open-set (f) Task A proposed: open-set

Figure 7.3 : T-SNE visualization on target domain A from dataset Office-Home.
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7.5 Summary

This chapter proposes a fuzzy rule-based deep structure for source-free multi-

domain adaptation. It is an early study of fuzzy domain adaptation without source

data. The proposed method introduces the Takagi-Sugeno fuzzy model to source-

free domain adaptation. It defines source fuzzy rule numbers by grouping similar

classes into the same cluster according to the correlation coefficient within each pair

of classes. To train source models with high generality, which is of advantage in

predicting target labels with low noise at the beginning, auxiliary tasks are designed

by jointly training fuzzy rules from other source domains. The auxiliary training

strategy shares source parameters without referring to the original data from other

domains, which can protect data privacy. To collect high confident target pseudo

labels, a samples selection strategy is built by combining the predictions of source

classifiers and deep clustering. Experiments on real-world datasets validate the

superiority of the proposed method. The proposed method based on fuzzy rules

results in higher performance than baselines trained with and without source data.

Some questions remain unsolved. For example, multiple source domains have

their individual models, which requires a large memory of computer memory due

to the sizeble number of parameters needed during training and transferring. Fur-

thermore, similarities among each pair of source and target domains are different,

meaning multiple source domains contribute to target domain differently. However,

without access to source data, it is difficult to measure the similarities between

source and target domains. In the future studies, we will try to solve the problems

we have illustrated to reduce the computing complexity and learn the contribution

of source domains in improving the transfer performance.
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Chapter 8

Unified Learning for Multi-Source-Free Universal

Domain Adaptation

8.1 Introduction

In previous chapters, we deal with transfer learning under homogeneous scenario,

where the source and target domains have the same label spaces (Yue et al., 2021;

Chen et al., 2022c; Huang et al., 2022). However, this condition cannot always be

satisfied in real world applications. Source and target domains containing different

categories are more common. Thus, transfer learning tackling heterogeneous label

spaces is developed, including partial (Cao et al., 2018a; Zhang and Zhao, 2021),

open-set (Saito et al., 2018; Xu et al., 2021b) and universal settings (Li et al., 2021a).

Partial transfer learning deals with knowledge transfer across domains where the

source label space is larger than that of the target domain (Cao et al., 2019). A

general solution for selecting unshared source samples in partial domain adaptation

is based on the relevance between source samples and the target domain. Samples

gaining low relevance are regarded as outliers from unshared classes. By removing

these samples during adaptation, it is expected to reduce the influence of unshared

classes when transferring source model to the target domain. (Chen et al., 2022b).

Open-set transfer learning is designed to handle transfer learning where the target

domain contains more categories than the source domain (Fang et al., 2021). It

has to classify known classes (classes shared by source and target domains) and

unknown classes (target private classes). To detect unknown samples, hard rejection

and soft rejection based on a threshold defined by clustering or entropy assumption
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are developed (Jing et al., 2021; Xu et al., 2021b).

Universal transfer learning handles a more challenging scenario where source and

target domains have private categories respectively (You et al., 2019). Compared

with partial and open-set domain adaptation, universal domain adaptation has to

classify known classes without introducing too much unrelated information of source

private classes, and distinguish target unknown classes simultaneously. Combining

relevance measurement and entropy assumption is a popular method to identify

known classes and unknown classes (Saito et al., 2020). Most existing universal

domain adaptation methods rely on access to the source data to achieve transfer

across domains. However, source data is not always available due to privacy issues,

especially in real applications. For example, in healthcare, patient information like

disease history is very private information and cannot be public or shared. Besides,

there can be multiple source domains for a target domain. Transferring information

from multi-source domains and the label heterogeneity issue among multi-source

domains remain unsolved.

To address universal transfer learning without source data, encouraged by source-

free domain adaptation, data generation is employed to generated source data, in-

cluding positive and negative samples (Kundu et al., 2020a). Positive samples are

used to adapt source and target data while negative samples are used to train un-

known classifier. However, these method requires a very large number of generated

data, which can be space consuming. In addition, when there are multiple source

domains, existing methods cannot be applied efficiently, especially when the source

domains have different label spaces. As shown in Fig. 8.1(a), given multi-source

domains, existing universal domain adaptation methods transfer knowledge from a

single source domain to the target domain. This requires training individual source

model in every source domain, the individual source model can only classify sam-

ples from the classes shared by the corresponding source and target domains. For
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example, source model 1 can classify Dog and Cat, while source model 2 can clas-

sify Clock. Training individual model requires learning more parameters and the

individual model cannot classify all known classes. That is why we propose univer-

sal multi-source-free domain adaptation. As shown in Fig. 8.1(b), the purpose of

handling multi-source universal domain adaptation is to combine knowledge from

the source domains to identify more transferable information to assist in the target

domain. If the model can tackle source domains with heterogeneous label spaces, it

has the ability to handle multi-source domains with the same label space.

(a) Universal single-source domain adaptation

(b) Universal multi-source domain adaptation

Figure 8.1 : Universal domain adaptation with single and multiple source domains.

In this chapter, we propose a unified learning model for universal multi-source-

free domain adaptation. The proposed method learns one model to predict multiple

tasks from both source and target domains. The unified learning model combines

source invariant information that can be transferred among domains to predict tar-

get known classes. At the same time, it designs a source category classifier to

assist in generating source class anchors which are employed to match target data

to source categories. The source category discriminator can guarantee the flexibil-
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ity of the proposed model to handle multi-source domains with homogeneous and

heterogeneous label spaces. Both target unknown classes and source private classes

are identified when pseudo-labeling target samples, which is expected to improve

the classification performance on known and unknown classes. Our contributions

are summarized as follows:

• We propose a unified learning model to learn multiple tasks for universal

source-free domain adaptation. Compared with most existing universal adap-

tation methods, it has the ability to handle multi-domains without accessing

or sharing source data. Besides, different from many multi-domain adaptation

methods, the proposed model avoids the need to train an independent model

for each source domain which can reduce the number of parameters.

• We propose a learning scheme that is flexible for source domains with homo-

geneous and heterogeneous label spaces. Label heterogeneity among multiple

source domains is rarely considered in domain adaptation methods with and

without source data. In the proposed method, both homogeneous and hetero-

geneous source label spaces are explored to transfer knowledge to the target

domain.

• We design an anchor-based clustering strategy to adapt target data to the

source domain. A generation function is built to create source anchors based

on contrastive learning. The adaptation considers not only target unknown

classes, but also source private classes which many existing methods ignored

to guarantee the ability of the proposed model to classify known and unknown

classes.
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8.2 Problem Setting and Notations

We focus on universal multi-source-free domain adaptation, where source do-

mains with both homogeneous and heterogeneous label spaces are considered. Table

8.1 describes the symbols used in this chapter.

Table 8.1 : Notations and descriptions.

Notation Description

Dsk , Dt source/target domain, k is source index

Csk , Ct source/target label space

xsk , xt source/target data

ysk label of xsk

x̂s generated source sample

v̂s generated source center

vt clustering prototype from the target domain

ϕ feature extractor

G source sample generator

P unified learning classifier

Pc source category discriminator

8.3 The Proposed Unified Learning Model for Universal Multi-

Source-Free Domain Adaptation

The proposed method is illustrated in Fig. 8.2. Fig. 8.2(a) indicates the source

model training. The unified learning model is trained on multi-source domains

by combining the feedback from source domains without sharing source data. To

provide source data information for adapting the source model to the target domain

without accessing the source data, taking the source ground-truth labels as inputs,

a generator is built to create source-like samples. Considering multi-source domains

can have different label spaces, to guarantee that the generator can handle the source

heterogeneity, source category discriminator is designed for each source domain to
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provide constraint for its own source classes and reduce the influence of unshared

source classes. Fig. 8.2(b) is the procedure of model adaptation in the target domain.

Intent to perform the source model on target task, classifier layers are frozen while

the backbone is fine-tuned under the supervision of self-training and data-matching.

To match source and target data, generated source anchors are adopted to reduce

their distance. To self-supervise the training, source private and target unknown

classes are identified to reduce pseudo label noise and collect high confident target

labels.

8.3.1 Unified Learning Model Training

In this section, to avoid training an independent source model in each source do-

main which requires more computation and generates a large number of parameters,

we propose a unified learning model to handle multiple source tasks. It is important

to guarantee that the unified learning model can be performed on multiple source

domains with both homogeneous and heterogeneous label spaces. To achieve this,

denote the source label space as Cs = Cs1 ∪ · · · ∪ Csk , a classifier P ∈ RCs is trained

based on multiple source domains, where Cs indicates Cs-dimension. The classifier P

can be trained by minimizing the error between the outputs and the ground-truth

labels with regard to the risk minimization principle (Vapnik and Vapnik, 1998),

which is expressed as:

P = argmin
P

(xsk
,ysk

)∈Dsk

L(P (ϕ(xsk)),ysk),

k =1, · · · , K.

(8.1)

L is cross-entropy loss:

L = − 1

nsk

nsk∑
i=1

yisk log(P (ϕ(x
i
sk
))),

k =1, · · · , K.

(8.2)
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Source 1

Source K

Source category discriminator

Unified learning model
...

Backbone

GeneratorGenerated source

True label

Predicted label

Loss ~ ~ ~ ~

(a) Unified source model training. Unified model is trained on multi-source domains without

sharing data. Source category discriminator is built to assist in source data generating which

can handle source heterogeneity.

Common label

identification
Pseudo label

Self-training

...

Target

Source private class identification

Open-set thershold

Data matching

Unknown class identification

(b) Target model adaptation. Data matching is designed based on the generated source-like

data to reduce data shift. Source private and target unknown classes are identified to collect

high confident target labels to provide self-supervision.

Figure 8.2 : The procedure of the proposed method.
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8.3.2 Source Data Generation

To adapt source and target domains without accessing the source data, we gen-

erate source-like data to match the source and target distributions. Considering

that generating a large number of source-like samples can occupy a large amount

of computer memory, here we generate the source class anchors which represent the

source information to reduce the amount of memory being used. The generated

source anchors should satisfy two conditions: one is that the class anchors are as-

sumed to be classified to its corresponding categories, another is that the source

samples from the same class should be close to the corresponding anchors. Denote

the source label as ys ∈ Cs, the generation of source data can be expressed as:

x̂s = G(ys) (8.3)

For the first condition, following the work in (Qiu et al., 2021), source data gener-

ator G is optimized by minimizing the cross-entropy loss between the classification

predictions of the generated anchors and their labels, which is:

G = argmin
G

L(P (ϕ(G(ys))),ys), (8.4)

where

L = − 1

mCs

mCs∑
i=1

yis log(P (ϕ(x̂
i
s))), (8.5)

m is the number of anchors in each class.

It is the expected that the proposed model can handle both multiple source do-

mains with homogeneous and heterogeneous label spaces, and by minimizing equa-

tion (8.4), we can guarantee data distribution on a global level. However, when

multi-source domains have heterogeneous label spaces, for the second condition, in-

troducing unshared anchors to a source domain can have a negative influence. To

solve this problem, a source local category discriminator is designed to ensure a
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source domain to optimize its own class anchors on the category level while reduc-

ing the influence of unshared source anchors. The source category discriminator can

be expressed as:

Lbce =
Cs∑
c=1

L(Pc(ϕ(xsk)), I(ysk , c)),

k =1, · · · , K.

(8.6)

where I(ysk , c) = 1ysk=c. For the kth source domain with label space Csk , the cat-

egory discriminators {Pc}c∈Csk are optimized. The source data generator is further

controlled by:

G = argmin
G

L(Pc(ϕ(G(ys))), I(ys, c)), (8.7)

The loss function of the source data generator satisfying the first condition is further

updated as the combination of global-level and category-level constraints:

LG =L(P (ϕ(G(ys))),ys)+

L(Pc(ϕ(G(ys))), I(ys, c)).

(8.8)

For the second condition, denote the source class center as the mean value of

the generated source samples from the corresponding category, the source generated

center is:

v̂cs =
1

m

m∑
i=1

ϕ(G(ycis )),

c = 1, · · · , Cs.

(8.9)

In every source domain, we minimize the distance between source samples and its

own class centers, which is expressed as:

Lc =

Csk∑
c=1

∥∥∥∥∥
b∑
i=1

Pc(ϕ(x
i
sk
))ϕ(xisk)− v̂cs

∥∥∥∥∥
2

,

k = 1, · · · , K.

(8.10)

b is the batch size.
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To enhance the representation of the generated source class anchors, except for

forcing source samples to be close the corresponding source anchors, we enlarge the

distance between anchors from different classes to learn clear boundaries among

classes. Denote a positive sample of a source anchor as x̂+
s and a negative sample

as x̂−
s , contrastive loss (Khosla et al., 2020) is employed to separate anchors from

different classes, which is:

Lcon = −log exp(ψ(x̂s, x̂
+
s )/τ)

exp(ψ(x̂s, x̂+
s )/τ) +

∑Cs−1
i=1 exp(ψ(x̂s, x̂i−s )/τ)

(8.11)

where ψ is a distance measurement calculating the similarity between samples and

τ is the temperature factor.

The total loss of optimizing the source data generator is then expressed as:

Lgen = LG + Lc + Lcon. (8.12)

8.3.3 Target Model Adaptation

In the domain adaptation procedure, source data access is unavailable. To per-

form the source model on the target domain, we adopt cluster matching to group the

target samples to the source categories which can classify known samples. At the

same time, we learn thresholds to identify both source private classes and unknown

target samples to reduce the influence of unshared categories. To achieve this, target

samples are pseudo-labeled first to provide self-supervision of extracting invariant

information and select known target samples. To collect highly confident target

pseudo labels, both the predictions of clustering and classification are considered to

reduce the pseudo label noise.

After feeding the target samples to the pre-trained unified learning model and

category discriminators, the predicted outputs are:

ωG = [ω1
G, · · · , ωCs

G ] = P (ϕ(xt)), (8.13)
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and

ωS = [ω1
S, · · · , ωCs

S ] = [Pc(ϕ(xt)), · · · , PCs(ϕ(xt))]. (8.14)

where ωP and ωPc denote the probability vectors indicating the degrees of a target

sample belonging to the source classes. The predicted target label is:

ŷt =Max
c

ωG + ωS

2
,

ωG,ωS ∈ RCs , c ∈ Cs.
(8.15)

Since there are unknown classes in the target domain and unshared classes in

the source domain, if all pseudo target labels are used to calculate target clustering

centers, unrelated information from unshared classes can degrade the classification

performance and result in negative transfer when adapting the source model to the

target domain. To avoid this, we first learn a threshold that divides the known and

unknown samples from the target domain, which is:

ao =
Cs∑
c=1

(ωG + ωS) log(P (ϕ(xt)))

2 log(Cs)
. (8.16)

If the maximum probability value of a target sample is higher than ao, we regard

it as a sample from the known classes. Otherwise, we regard it as a sample from

the unknown classes with label Cs + 1, and these unknown samples are not used to

calculate clustering centers.

After removing the unknown samples defined by the learned threshold ao, we

gather target samples with label space C∫ . This sample set can include target

unknown samples which are given source private labels. To identify these target

samples, we first adopt another threshold to select target samples with highly con-

fident pseudo labels. Denote the pseudo label of cth class as ŷct , the corresponding

maximum probability returned by source classifiers as ωcmax, the threshold to select

highly confident target labels is:

acp = med{ωcimax}nc
i=1, (8.17)
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where nc is the number of target samples divided into the cth source class. We group

samples whose maximum probability is larger than acp as confident target samples.

Initial target clustering centers are calculated based on these selected target

samples, which is:

vct =

∑n̂c

i=1(ω
i
G + ωi

S) · ϕ(xit)∑n̂c

i=1(ω
i
G + ωi

S)
. (8.18)

To further reduce the target pseudo label noise by removing the source private

classes, a strategy is designed to identify source unshared classes. First, when feeding

the target samples to the source classifier, if there is no target sample classified into

a source class, we remove the corresponding source class as a source private class.

This operation can be expressed as:

N = Count({ωcmax}),

N = [n1, · · · , nCs ], c ∈ Cs.
(8.19)

Count means the operation to count the number of target samples with label c.

If nc > 0, corresponding class c is added to the common label set of source and

target domains, otherwise we remove the corresponding class as a source private

class. Furthermore, assuming the cluster centers of the common categories from

the source and target domains are close to each other, we calculate the similarity

between target clustering centers and source anchors, which is:

r = argmin
i

Dis(vit, v̂
c
s). (8.20)

where Dis is cosine similarity, r is the class index of the target clustering center

which is closest to the cth source class center. If the cth target cluster center gets

the closest source class anchor as v̂cs, where r = c, we regard that the cth class is a

common category of source and target domains. Denote the final common label set

selected by equations (8.19) and (8.20) as C, the target pseudo label is initialized as:

ỹt = argmin
c

Dis(ϕ(xt),vt),vt = {vct}c∈C, (8.21)
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Combining the predictions returned by equation (8.15), we design a memory bank

to store the samples whose predictions ỹt and ŷt are the same, which is denoted as

D′
t = {xt}ỹt=ŷt . The target cluster centers and pseudo labels are then updated as:

vct =

∑n̂′
c
i=1 1ỹi

t=c
· ϕ(xit)∑n̂′

c
i=1 1ỹi

t=c

,

ỹt = argmin
c

Dis(ϕ(xt),vt),

vt = {vct}c∈C,

(8.22)

n̂′
c is the number of samples in the cth class stored in the memory bank.

Employing the pseudo labels obtained by equation (8.22), freeze the classifier

layer, the source model is adapted to the target domain using a self-supervision

strategy by fine-tuning the feature extractor, which is:

ϕ = argmin
ϕ

xt∼D′
t

Lϕ(P (ϕ(xt))), ỹt), (8.23)

where

Lϕ = −
1∑C
c=1 n̂

′
c

∑C
c=1 n̂

′
c∑

i=1

ỹt log(P (ϕ(x
i
t))). (8.24)

Following previous data-free domain adaptation methods, information maximization

loss is employed to balance the domain (Liang et al., 2020; Hu et al., 2017):

Ldiv =
∑

p̄t log(p̄t), (8.25)

where

p̄t =
1∑C
c=1 n̂

′
c

∑C
c=1 n̂

′
c∑

i=1

P (ϕ(xit)). (8.26)

Except for the label-level constraint controlled by self-supervision, to better

transform the target data distribution to the source feature space, data-level con-

straints are adopted to group samples from the same classes, and enlarge the distance

among known target classes as well as between known and unknown samples. To
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match the target samples to the shared source classes, the distance between target

samples and the source anchors is minimized by:

Lst =

∥∥∥∥∥
b∑
i=1

P (ϕ(xit))ϕ(x
i
t)− v̂s

∥∥∥∥∥
2

,

v̂s = {v̂cs}c∈C

(8.27)

To separate known classes from each other, contrastive loss is adopted on the

pseudo-labeled data, which is:

Lcont = −log
∑
c∈C

exp(ψ(xt,x
c+
t )/τ)

exp(ψ(xt,x
+
t )/τ) +

∑
i ̸=c exp(ψ(xt,x

i−
t )/τ)

(8.28)

where xt is any target sample belonging to the cth class, x+
t is the positive sample

from the same class, x−
t indicates a negative sample from the other classes, ψ is the

similarity measurement which is the same as that in equation (8.11), and τ is the

temperature factor.

To separate the known and unknown target samples, we enlarge the distance

between the samples in memory bank D′
t and the unknown samples defined by

equation (8.16). As the size of the unknown samples is often larger than the known

samples, we rank the unknown samples by their entropy assumptions and select 1
3
of

the samples with the highest entropy loss, denoted as Dut = {xuit }n
u

i=1. We maximize

the distance between the known and unknown samples by:

Luk =argmax
ϕ

=

∥∥∥∥∥∥ 1∑C
c=1 n̂

′
c

∑C
c=1 n̂

′
c∑

i=1

h(ϕ(xit))−
1

nu

nu∑
j=1

h(ϕ(xujt ))

∥∥∥∥∥∥
2

H

,

(8.29)

The total loss function of adapting source model to target domain is:

Ltotal = Lϕ + αLdiv + βLst + γLcont + λLuk. (8.30)

The processing of the proposed unified learning model for multi-source-free do-

main adaptation is described in Algorithms 13 and 14.
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Algorithm 13 ULMSFDA: Source model training.

1: Input: Source domains;

2: for ϵ = 1, ϵ < Is, ϵ++, do

3: Update classifier by unifying source knowledge as in equation (8.1);

4: Update source category discriminator as in equation (8.6);

5: Calculate entropy-loss of source data generator as in equation and (8.8);

6: Calculate source generated class center as in equation and (8.9);

7: Calculate contrastive loss of source data generator as in equations (8.10) and

(8.11);

8: Update source data generator as in equation (8.12);

9: end for

10: Output: Unified learning model, source category discriminator, source gener-

ated center.
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Algorithm 14 ULMSFDA: Target model adaptation.

1: Input: Unified learning model, source category discriminator, source generated

center, target domain;

2: for ϵ = 1, ϵ < It, ϵ++, do

3: Calculate target pseudo labels as in equation (8.15);

4: Learn the threshold to identify unknown samples as in equation (8.16);

5: Select confident target labels as in equation (8.17);

6: Calculate target class centers as in equation (8.18);

7: Identify common classes as in equation (8.20);

8: Predict target labels using clustering as in equation (8.21);

9: Update target class centers and pseudo labels as in equation (8.22);

10: Calculate loss of self-supervision as in equations (8.24);

11: Calculate information maximization loss as in equations (8.25);

12: Adapt target data to source generated centers as equation (8.27);

13: Calculate contrastive loss on target domain as equation (8.28);

14: Enlarge distance of known and unknown classes as equation (8.29);

15: Fine-tune feature extractor as equation (8.30);

16: end for

17: Output: Target labels.
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8.4 Experiments

In this section, the proposed unified learning model is validated on three pop-

ular real-world visual datasets under three settings. The datasets include Office31,

OfficeHome and DomainNet. Office31 camprises 31 object categories collected from

three domains. Three tasks can be built: A,W → D; A,D → W ; W,D → A.

OfficeHome consists of four domains with each domain containing 65 categories, the

tasks are A,C, P → R; A,C,R → P ; A,P,R → C; C,P,R → A. DomainNet con-

sists of 6 domains with each domain consisting of 345 categories. Following previous

studies (Li et al., 2021a; Saito and Saenko, 2021), we run subset experiments which

are R, S → P ; P, S → R; P,R→ S.

All the experiments are classification tasks under the multi-source domain adap-

tation scenario, where both source domains with homogeneous and heterogeneous

label spaces are applied to validate the proposed method. Harmonic mean (HM) on

the accuracy of known and unknown classes is employed to measure the performance

of the proposed unified learning model (Fu et al., 2020). The results are the mean

values of three repeat runs on each task. The experiment settings are shown in Fig.

8.3. For multi-source domains with homogeneous label space (Set I), we follow the

work in (You et al., 2019; Li et al., 2021a) to set the known and unknown classes.

For multi-source domains with heterogeneous label spaces (Sets II and III), the label

set of the source and target domains are shown in Table 8.2.

The compared baselines include heterogeneous single source and multi-source

domain adaptation methods with and without source data, all results are collected

under universal setting. Methods with source access include:

• RTN: Residual transfer networks (Long et al., 2016);

• IWAN: Importance weighted adversarial nets (Zhang et al., 2018);
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Source 1
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(a) Set I
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Target
Unknown

Source K

...

Known

(b) Set II
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Target
Unknown

...

Known

(c) Set III

Figure 8.3 : Settings of universal multi-source-free domain adaptation.
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Table 8.2 : Label set division under three settings. In source domain, the division

is listed as source shared/private classes. In target domain, the division is listed as

known/unknown classes.

Dataset Domain Set II Set II Set III

Office31 S1 20 10/5 6/7

S2 20 10/5 6/7

T 10/11 10/11 10/11

OfficeHome S1 15 10/5 4/7

S2 15 10/5 4/7

S3 15 10/5 4/7

T 10/50 10/40 10/40

DomainNet S1 200

S2 200 - -

T 150/145
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• PADA: Partial adversarial domain adaptation (Cao et al., 2018b);

• ATI: Open set domain adaptation for image and action recognition (Busto

et al., 2018);

• OSBP: Open set domain adaptation by backpropagation (Saito et al., 2018);

• UAN: Universal domain adaptation (You et al., 2019);

• CMU: Learning to detect open classes for universal domain adaptation (Fu

et al., 2020);

• DCC: Domain consensus clustering for universal domain adaptation (Li et al.,

2021a);

• OVA: One vs all net (Saito and Saenko, 2021);

Source-free methods include:

• SHOT: Source hypothesis transfer with information maximization (Liang et al.,

2020);

• USFDA: Universal source-free domain adaptation (Kundu et al., 2020a);

• UMAD: Universal model adaptation under domain and category shift (Liang

et al., 2021b);

• OneRing: One ring (Yang et al., 2022);

• UB2DA: Universal black-box domain adaptation (Deng et al., 2021).

Results of the partial (PADA) and open-set (ATI, OSBP) domain adaptation base-

lines are re-run under universal settings. All the compared results are obtained from

previous publications. For single source-free domain adaptation methods, we take
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the average predictions from all source domains as the multi-source results similar

to previous studies.

ResNet50 is employed as the backbone on datasets Office31 and OfficeHome

complemented by PyTorch, while ResNet101 is applied on DomainNet. Parame-

ters are updated based on backpropagation with stochastic gradient descent, the

momentum is 0.9, the learning rate η follows the same strategy in (Ganin and Lem-

pitsky, 2015), which is η = η0
(1+10ϵ)0.75

, where η0 = 0.01, ϵ is the training progress

which changes linearly from 0 to 1. The learning rate of the shared network is one

tenth of the other layers. Batch size nb = 64, and the smoothing parameter µ = 0.1.

8.4.1 Results and Analysis

Tables 8.3, 8.4 and 8.5 show the HM on tasks from DomainNet, OfficeHome and

Office31 respectively. The proposed unified learning model (ULMSFDA) achieves

the highest average performance on most tasks and datasets. On the datasets Do-

mainNet and OfficeHome, the proposed ULMSFDA performs better than both base-

lines with and without source data. The averaged HM is improved by 0.7% and

3.4% respectively. On tasks R, S → P and P, S → R from DomainNet, the method

OneRing shows higher HM than the proposed ULMSFDA. OneRing regards the

non-ground-truth category as an unknown category to train a classifier whose last

dimension indicates the probability of the sample is unknown, which requires ex-

tra parameter leaning in the model to distinguish unknown samples from known.

The proposed ULMSFDA learns a threshold to identify unknown samples, which

is easy to calculate without introducing extra parameters. The performance of the

proposed ULMSFDA on tasks from the datasets OfficeHome and Office31 is better

than OneRing. Furthermore, compared with OneRing and other baselines, the pro-

posed method can handle more complex settings for universal domain adaptation.

On the dataset Office31, our method achieves the second best average performance



272

with a very small gap between it and and the best method UMAD. UMAD designs

an informative consistency score to measure the similarity between samples and de-

tect unknown classes. To learn the score, it generates negative samples by mixing

any two known target samples. This mix can introduce more generated samples

than the proposed ULMSFDA. For datasets containing a large numbers of samples

and categories, where there are more unknown samples than known samples, such

as OfficeHome and DomainNet, the approach of generating negative samples is not

as significant as when it is used on a samll dataset. The proposed ULMSFDA has

an advantage on large datasets over UMAD which introduces too many negative

samples.

As claimed in previous studies (Fu et al., 2020; Yang et al., 2022), classification

accuracy based on per-class is not a reasonable evaluation of universal domain adap-

tation, because high accuracy over a per-known-class can lead to a high mean result

on both known and unknown classes even when the accuracy of unknown classes

is 0. However, it is expected that universal domain adaptation methods should

guarantee accuracy on both known and unknown classes. Thus, we take HM as the

evaluation metric to measure the performance of the proposed method. Considering

many existing universal domain adaptation methods only provide classification ac-

curacy results, we also compare classification accuracy on the datasets OfficeHome

and Office31 under Set I to provide sufficient validation of the proposed ULMSFDA.

Tables 8.6 and 8.7 show the classification accuracy of the proposed method and the

baselines. It can be seen that the proposed ULMSFDA outperforms the existing

methods on both datasets.

Tables 8.8 and 8.9 show the HM of the proposed methods and baselines ResNet

and SHOT under Set II, where multi-source domains have homogeneous label spaces.

Tables 8.10 and 8.11 show their results under Set III, where multi-source domains

have heterogeneous label spaces. It can be seen that the proposed ULMSFDA
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Table 8.3 : HM (%) on dataset DomainNet of the ULMSFDA and baselines under

Set I

Method SF R,S→P P,S→R P,R→S Avg

RTN × 29.5 32.1 28.7 30.1

IWAN × 32.1 35.2 31.1 32.8

PADA × 26.7 27.4 27.3 27.1

ATI × 29.8 32.4 28.9 30.4

OSBP × 31.8 33.6 30.6 32.0

UAN × 41.3 42.8 38.9 41.0

CMU × 48.5 50.9 45.4 48.3

DCC × 47.6 56.5 43.4 49.2

OVA × 48.9 56.3 44.4 49.8

SHOT ✓ 34.6 33.6 29.6 32.6

UMAD ✓ 41.1 57.2 43.2 47.1

OneRing ✓ 50.8 57.9 45.3 51.3

UB2DA ✓ 48.1 54.3 45.6 49.3

ULMSFDA ✓ 50.3 57.5 48.1 52.0
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Table 8.4 : HM (%) on dataset OfficeHome of the ULMSFDA and baselines under

Set I

Method SF A,C,P→R A,C,R→P A,P,R→C C,P,R→A Avg

RTN × 45.6 44.4 38.3 43.3 42.9

IWAN × 47.6 46.2 41.5 45.7 45.3

PADA × 44.1 42.3 34.2 40.2 40.2

ATI × 46.6 45.2 41.0 44.6 44.4

OSBP × 46.2 45.7 40.6 45.3 44.5

UAN × 59.2 58.2 50.6 58.3 56.6

CMU × 64.5 63.6 55.0 63.3 61.6

DCC × 70.1 68.4 68.9 73.2 70.2

OVA × 79.1 74.9 59.5 71.3 71.2

SHOT ✓ 41.0 31.0 33.9 56.7 40.7

UMAD ✓ 78.2 73.7 59.1 69.4 70.1

OneRing ✓ 78.8 72.1 62.7 73.4 71.8

UB2DA ✓ 76.3 70.0 61.1 74.3 70.4

ULMSFDA ✓ 81.7 76.5 65.6 76.8 75.2
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Table 8.5 : HM (%) on dataset Office31 of the ULMSFDA and baselines under Set

I

Method SF A,W→D A,D→W W,D→A Avg

RTN × 52.7 52.4 48.5 51.2

IWAN × 53.0 52.1 49.7 51.6

PADA × 52.8 51.1 46.0 50.0

ATI × 53.0 51.8 48.7 51.2

OSBP × 54.2 52.9 50.0 52.3

UAN × 65.6 64.6 60.2 63.5

CMU × 74.3 73.3 71.8 73.1

DCC × 88.6 78.9 73.1 80.2

SHOT ✓ 79.0 77.8 68.2 75.0

USFDA ✓ 83.4 85.2 86.0 84.9

UMAD ✓ 92.2 89.7 87.5 89.8

OneRing ✓ 90.9 89.5 85.2 88.5

UB2DA ✓ 84.4 85.4 91.0 86.9

ULMSFDA ✓ 90.3 93.7 84.8 89.6
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Table 8.6 : Accuracy (%) on dataset OfficeHome of the ULMSFDA and baselines

under Set I

Method SF A,C,P→R A,C,R→P A,P,R→C C,P,R→A Avg

RTN × 86.0 77.0 60.0 68.7 72.9

IWAN × 85.6 77.1 56.5 74.3 73.4

PADA × 77.8 71.6 40.0 62.3 62.9

ATI × 85.3 77.1 57.0 73.8 73.3

OSBP × 76.8 65.9 49.1 63.8 63.9

UAN × 86.7 80.3 61.7 79.5 77.1

SHOT ✓ 70.1 68.4 68.9 73.2 70.2

USFDA ✓ 87.6 81.3 62.2 77.1 77.1

UB2DA ✓ 92.9 84.2 57.3 76.8 77.7

ULMSFDA ✓ 90.2 85.4 59.5 76.3 77.9
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Table 8.7 : Accuracy (%) on dataset Office31 of the ULMSFDA and baselines under

Set I

Method SF A,W→D A,D→W W,D→A Avg

ResNet × 85.7 82.8 80.1 82.9

IWAN × 87.1 87.6 85.2 86.6

PADA × 86.3 82.3 69.0 79.2

ATI × 87.2 86.0 80.2 84.5

OSBP × 79.3 69.9 53.9 67.7

UAN × 92.3 90.2 85.3 89.2

SHOT ✓ 88.6 78.9 73.1 80.2

USFDA ✓ 93.1 90.4 87.1 90.2

OneRing ✓ 92.1 86.8 81.5 86.8

UB2DA ✓ 93.3 90.6 91.2 91.7

ULMSFDA ✓ 95.3 94.7 86.5 92.2
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performs better than the other methods. Set II and Set III are situations rarely

explored in previous universal domain adaptation methods. One advantage of the

proposed method is that it can handle both homogeneous and heterogeneous source

label spaces without training an independent model in each source domain. Many

previous universal domain adaptation methods cannot deal with multiple source

domains simultaneously. For a target task, if there are multiple source domains,

they have to adapt each pair of source and target domains to predict the target

task. The proposed ULMSFDA learns one model to predict multiple tasks, it is

flexible enough to combine knowledge from multiple source domains to explore more

information to complete the target task.

Table 8.8 : HM (%) on dataset OfficeHome of the ULMSFDA and baselines under

Set II

Method SF A,C,P→R A,C,R→P A,P,R→C C,P,R→A Avg

ResNet ✓ 82.1 75.3 54.8 68.0 70.1

SHOT ✓ 77.3 70.2 56.4 72.1 69.0

ULMSFDA ✓ 78.8 72.8 62.4 76.8 72.7

Table 8.9 : HM (%) on dataset Office31 of the ULMSFDA and baselines under Set

II

Method SF A,W→D A,D→W W,D→A Avg

ResNet ✓ 90.7 85.2 62.5 79.5

SHOT ✓ 88.6 90.0 79.9 89.2

ULMSFDA ✓ 93.3 92.7 85.5 90.5
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Table 8.10 : HM (%) on dataset OfficeHome of the ULMSFDA and baselines under

Set III

Method SF A,C,P→R A,C,R→P A,P,R→C C,P,R→A Avg

ResNet ✓ 78.5 71.4 51.8 64.9 66.7

SHOT ✓ 73.8 66.9 54.3 71.0 66.5

ULMSFDA ✓ 73.1 70.9 59.2 73.2 69.1

Table 8.11 : HM (%) on dataset Office31 of the ULMSFDA and baselines under Set

III

Method SF A,W→D A,D→W W,D→A Avg

ResNet ✓ 82.7 71.7 54.3 69.6

SHOT ✓ 76.7 77.7 71.6 75.3

ULMSFDA ✓ 95.4 90.7 81.3 89.1
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8.4.2 Ablation Study

Tables 8.13, 8.14 and 8.15 show the results of the ablation study on the dataset

OfficeHome under set I, II and III respectively. We evaluate three modules in the do-

main adaptation procedure when training the target model: the influence of match-

ing target data to generated source data is reflected by loss function Lst, the influence

of contrastive learning is reflected by loss function Lcont, the influence of separating

known and unknown classes is reflected by loss function Luk. The details of ablation

study setting are listed in Table 8.12.

Table 8.12 : Setting of ablation study

Method generated data Contrastive Known and unknown

matching loss separation

Lst × ✓ ✓

Lcont ✓ × ✓

Luk ✓ ✓ ×

Proposed ✓ ✓ ✓

It can seen that the model trained without contrastive loss Lcont performs worst

under the three settings, which indicates that the contrastive loss which forces sam-

ples from the same class to be close to each other and separates samples from differ-

ent classes is the most important module for the proposed method. The performance

of the model without loss function Luk shows a larger decrease in most settings. This

indicates that the operation to enlarge the distance between the known and unknown

classes also plays an essential role in guaranteeing the transfer performance. The

employment of generated matching can have a positive influence on the proposed

ULMSFDA. Without adapting target data to source generated centers controlled by
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Lst, the value of HM reduced under all settings.

Table 8.13 : Ablation study (HM (%)) on dataset OfficeHome under Set I

Method A,C,P→R A,C,R→P A,P,R→C C,P,R→A Avg

Lst 82.2 75.4 64.4 76.9 74.7

Lcont 78.4 72.1 62.3 74.8 71.9

Luk 81.7 75.5 61.7 76.3 73.8

Proposed 81.7 76.5 65.6 76.8 75.2

Table 8.14 : Ablation study (HM (%)) on dataset OfficeHome under Set II

Method A,C,P→R A,C,R→P A,P,R→C C,P,R→A Avg

Lst 78.1 71.9 60.9 76.3 71.8

Lcont 72.8 68.6 61.2 75.1 69.4

Luk 78.5 72.6 62.9 76.3 72.6

Proposed 78.8 72.8 62.4 76.8 72.7

8.4.3 Influence of Source Category Discriminator

In this section, we validate the influence of the source pre-trained model with

and without the source category discriminator. The source category discriminator

optimized by loss function Lbce is designed to learn high representative generated

centers when multiple source domains have heterogeneous label spaces. We remove

this module in three settings respectively during the source unified learning model

training and transfer the source model without the source category discriminator to

the target domain to test its performance. The results are shown in Table 8.16, and
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Table 8.15 : Ablation study (HM (%)) on dataset OfficeHome under Set III

Method A,C,P→R A,C,R→P A,P,R→C C,P,R→A Avg

Lst 73.4 70.9 59.2 71.9 68.9

Lcont 68.5 64.4 54.3 69.3 64.1

Luk 72.7 70.7 57.9 71.9 68.3

Proposed 73.1 70.9 59.2 73.2 69.1

the method Lbce indicates the model is trained without source category discrimina-

tor. It can be seen that the source category discriminator has a positive influence

on the proposed method even under the setting where source domains have the

same label spaces. The source category discriminator can learn specific source in-

formation especially that which is contained in source private classes, and it also

has the advantage of combining the knowledge of shared source categories. The

specific information can help us identify source private classes when pseudo-labeling

the target samples, while the common information extracted by unifying knowledge

from shared categories can enrich the transfer information to help predict the target

known classes.

8.4.4 Visualization Analysis

This section provides a visualization analysis of the proposed method under three

settings. Taking task A,C, P → R from the dataset OfficeHome as an example, Figs.

8.4, 8.5 and 8.6 show the T-SNE visualization (Maaten and Hinton, 2008) of the

proposed method and baseline SHOT. “Source only” refers to the model without

domain adaptation based on ResNet50. It can be seen that the proposed method

can divide target samples from known classes with clear decision boundaries. For

unknown classes, compared with the source-only model without transfer in which
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Table 8.16 : HM (%) on dataset OfficeHome with and without source category

discriminator

Method Setting A,C,P→R A,C,R→P A,P,R→C C,P,R→A Avg

Set I Lbce 80.1 73.3 62.4 74.0 72.5

Proposed 81.7 76.5 65.6 76.8 75.2

Set II Lbce 75.9 72.1 62.4 70.9 70.3

Proposed 78.8 72.8 62.4 76.8 72.7

Set III Lbce 74.1 67.6 57.2 70.1 67.3

Proposed 73.1 70.9 59.2 73.2 69.1

the known and unknown classes are mixed up, and the baseline SHOT, where too

many unknown classes are classified as known classes, when applying the proposed

method, the unknown classes are grouped together with a few known samples, which

indicates the superiority of the proposed method.
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(a) Set I: Source only (b) Set I: SHOT

(c) Set I: Proposed

Figure 8.4 : T-SNE visualization on target domain RealWorld from dataset Office-

Home under Set I.
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(a) Set II: Source only (b) Set II: SHOT

(c) Set II: Proposed

Figure 8.5 : T-SNE visualization on target domain RealWorld from dataset Office-

Home under Set II.
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(a) Set III: Source only (b) Set III: SHOT

(c) Set III: Proposed

Figure 8.6 : T-SNE visualization on target domain RealWorld from dataset Office-

Home under Set III.
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8.5 Summary

This chapter proposes a unified learning model for multi-source-free domain

adaptation. The unified learning model has the ability to handle both multi-source

domains with homogeneous and heterogeneous label spaces without introducing an

individual model of each source domain. It pre-trains a unified model to predict

known classes shared by source and target domains by combining knowledge from

multiple source domains, and learns a source category discriminator to assist in gen-

erating high representative source class centers by enhancing the knowledge from

the shared classes and reducing the influence of source private classes. Then, the

pre-trained source model is applied to the target domain to collect pseudo labels,

which are further employed to provide self-supervision of the adapting model and

calculate the target clustering centers and threshold to classify known classes and

detect unknown samples. The experiments on real-world datasets show that the

proposed method outperforms existing universal domain adaptation methods. The

HM on the dataset DomainNet is improved by 0.7%, and by 3.4% on dataset Of-

ficeHome. Accuracy is improved by 0.2% and 0.5% on datasets OfficeHome and

Office31 respectively.

In the future, we will tackle the sample imbalance problem among classes and

source domains. Generally, there are always very large number of unknown samples

compared with known samples, so it is easy for the unknown samples to dominate

the training of the models which results in the failure of transfer. This problem is

worth solving to improve the transfer performance.
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Chapter 9

Conclusion and Future Research

9.1 Conclusion

This thesis addresses four questions in transfer learning with multiple source

domains. To define what to transfer, a sample and source distillation method is de-

veloped to select similar source samples and the dominant source domain. Invariant

information extracted from selected source samples is adopted to fit source models to

the target domain by matching data distributions on multiple levels. The similarity

between source and target domains is defined by constructing a domain discrimina-

tor which estimates the degrees of agreement of a target sample belonging to source

domains. By ranking the similarities returned by the domain discriminator, dom-

inant source domain is selected to take the prominent place when completing the

target task. To compare with the methods without selecting transfer information,

the sample and source distillation method achieves higher performance on real-world

visual datasets, indicating the superiority of defining transfer information.

To define source contributions, this thesis proposes two methods, including multi-

source contribution learning and dynamic classifier alignment. Multi-source contri-

bution learning method is developed to measure the importance of a source domain

in completing the target task. Multi-view features are extracted to describe both

common and diverse characteristics for source and target domains. Multi-level dis-

tribution matching is designed to fill data gap by minimizing the sample distance

among the same classes and enlarging that between each pair of different classes.

A weight adjustment strategy is built based on pseudo labels predicted by multiple
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source classifiers to give larger weights to more similar source domains. In addi-

tion, a fuzzy rule-based combination is designed to deal with the uncertainty during

transfer. Both strategies are expected to reduce negative transfer. Experiments

on real-world image classification tasks validate the superiority of measuring source

contributions.

Dynamic classifier alignment is developed to learn both importance of multi-view

features and contribution of multi-source domains. Auxiliary classifier is generated

to learn the importance of multi-view features, which turns the combination of multi-

view features with different dimensions to the combination in label space, where

the heterogeneity problem can be avoided. Domain discriminator is constructed to

measure the contribution of source domains, which uses a pair-wise approach to

weigh source combination parameters automatically. Experiments on real-word vi-

sual tasks show the superiority of the proposed dynamic classifier alignment method.

To tackle source-free transfer learning, a generally auxiliary model training method

is developed to take the advantages of learning from multiple source domains with-

out sharing source data. Source parameters of the local private models are jointly

trained by generating a general model to handle richer information. Generation pa-

rameters is learned automatically during training by minimizing the cross-entropy

loss between the predictions of the generally auxiliary classifier and the ground-truth

labels. Class balanced coefficient is adopted to eliminate the influence of minor

classes, where the classifier may fail to predict samples occupying a small portion

since a large number of samples from other classes dominate the training. Com-

pared with other source-free transfer learning methods, generally auxiliary model

outperforms the baselines on real-world visual tasks.

To handle soft information caused by data uncertainty and limited target in-

formation, a fuzzy rule-based deep neural network is constructed to adapt source
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fuzzy rules to the target domain without the access to source data. Source private

models under fuzzy rules of each domain are learned by jointly training other source

models using an auxiliary learning strategy, where source parameters are shared

while source data is preserved. Furthermore, anchor-based alignment is designed to

match target samples to the source anchors according to the agreements of clustering

a target sample to a source category. Since source data is unavailable, to fit source

models better, self-supervised learning based on pseudo labels is employed to train

the target feature extractor which transforms target data into a latent feature space

close to the source space. To reduce the influence of noisy target labels, a sample

selection strategy is designed by combining the predictions of the source model and

deep clustering to identify strong target samples, which are then used to update

clustering centers that renew pseudo labels with a high level of certainty.

To address transfer learning with heterogeneous label spaces, this thesis explores

three scenarios, including partial, open-set and universal transfer learning. In partial

transfer learning, shared class samples and private source class samples are divided

by ranking entropy assumptions of target samples returned by source classifiers.

In open-set transfer learning, known class samples and unknown class samples are

identified by defining a threshold in view of the predicted probability values of a

target sample belonging to the source classes. In universal transfer learning, both

source private and target unknown categories are detected during training to reduce

the pseudo label noise to self-supervise the model adaptation without accessing to

the source data. The proposed unified learning model is flexible to multi-source

domains with homogeneous and heterogeneous label spaces. Experiments on real-

world datasets show the superiority of the proposed methods.
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9.2 Future Research

There are still some questions in multi-source transfer learning to be solved.

First, existing methods we proposed focus on transferring knowledge across domains

containing the same type of data. In real-world applications, source and target do-

mains containing different data types are more regular, especially when the granular

information is required to detect items in detail. For instance, there are images of

animals to be labeled from target domain(s), taking class bird as example, it includes

parrot and owl. However, from source domain, only the label bird can be learned,

the granular information recognizing parrot and owl which can be referred is textual

description from books. What we need to learn is how to transfer textual knowledge

to image classification. Zero-shot learning is worthy of exploring in transfer learn-

ing to tackle tasks with different data types, which predicts non-observed tasks via

auxiliary information from associating sources.

Furthermore, in some situations, a domain can have multiple data types. For

example, video data contains image and sound. How to transfer knowledge across

multiple data types is worth exploring. Existing machine learning methods employ

different modules to handle different data types, which leads a combination of mul-

tiple nets to tackle multiple tasks at once. This can be time and space consuming,

and it requires high capacity of intelligence equipment. Therefore, new theory and

models are expected to solve transfer learning with different types efficiently.

Third, existing methods assume source and target data follow stable distribu-

tions, but lack examination on stream data where source and target data may change

over time in an unforeseen way. Data drift in real-world is normal, transfer learning

dealing with steam data needs to be developed to keep pace with the requirements

of applications in reality.

Fourth, transfer learning with scarce data needs further exploration, especially
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in transfer learning with heterogeneous label spaces. Existing open-set and univer-

sal transfer learning methods mainly rely on cross-entropy assumption to measure

similarity between the source and target categories. However, if the source data is

partial labeled, this approach can be failed due to inadequate observed information

from source domain(s). In this situation, complementary learning is a possible tool

to deal with unlabeled data in the source domain(s) and unknown classes in the

target domain(s).

Finally, graph based transfer learning remains unsolved. Although graph convo-

lutional networks are generally employed in existing transfer learning tasks, these

methods rarely deal with real graph-structured data such as protein data. A very

recent work (Levie et al., 2021) provided theory support for the transferability of

graph convolutional networks, this encourages us to make further exploration in

this field to achieve transfer across graph data. This can benefit the real-world

applications such as those in medical field.
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