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Skull and long bones – Forensic DNA techniques for historic 

shipwreck human remains

Human remains in marine environments are subject to unique decomposition 

processes, faunal predation and other impacts on DNA. Over time, the structure 

of bone and its DNA is further impacted in submerged remains. Advances in 

technology and in the field of forensic biology have increased the options for 

genotyping compromised human skeletal samples. Specialist forensic DNA 

techniques, often adapted from ancient and archaeological DNA methods, are 

designed to maximise DNA recovery. A vast array of new genetic markers can 

now be targeted for interrogation to reveal externally visible characteristics, 

biogeographical ancestry or extended genetic relatives of victims. These DNA 

profiling techniques offer new tools in addition to traditional comparison with 

ante mortem samples, or close relatives. This paper reviews the current and 

emerging tools available for recovering and revealing genetic information from 

historic shipwreck remains.

Keywords: Skeletal remains, unidentified human remains, compromised samples, 

emerging DNA technologies, maritime archaeology

Introduction

Historically, shipwreck has occurred as a result of battle or severe storms, often 

resulting in the death of significant numbers of crew. Human remains are often found at 

these shipwreck sites (see Guareschi et al. 1 for a review) and DNA testing has been 

carried out on these remains with infamous examples including Henry VIII’s Tudor 

Warship, Mary Rose 2; the Dutch East India Company’s flagship, the Batavia, 

associated with mutiny and mass murder 3; the Unknown Sailor from HMAS Sydney II 

4; pirate Sam Bellamy’s ship, the Whydah Gally 5; the ancient Greek ship, Antikythera 6 

and the HMS Erebus and HMS Terror, abandoned during the Franklin Northwest 

Passage expedition 7, 8. The challenges associated with the collection, testing and DNA 

analysis of remains recovered from historic shipwrecks include age, environmental 
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insult, immersion and marine animal predation. Additional considerations around access 

to museum specimens also exist. 

The UNESCO Convention on Underwater Cultural Heritage (2001) provides 

rules and governing criteria for the protection of Underwater Cultural Heritage (UCH), 

prioritising in situ preservation. World War (WW) I and WWII wrecks (including 

aircraft) are considered war graves by most participant countries. Where access is 

required, the prior removal and burial of human remains is necessary 9. The first 

legislation in the world to protect UCH was written in 1964 in an amendment to the 

Australian Museum Act 1959 (and then 1969). The Maritime Archaeology Act 1973 

later guaranteed the automatic protection of sites in Western Australia once they 

became 75 years old. The Underwater Cultural Heritage Act 2018 extended protection 

to human remains in Australia.

Archaeological testing methods including radiocarbon dating 10 and organic 

residue analysis 11 have been applied to artefacts recovered from shipwrecks. A number 

of forensic techniques have also been used including craniofacial reconstruction, species 

identity testing and DNA profiling. For example, craniofacial reconstruction has been 

applied to victims of the Vasa 12, and HMS Erebus and HMS Terror 7, 8, and faunal 

remains recovered from Mary Rose were subject to species identity testing 2, 13-15. While 

DNA has been recovered from remains associated with numerous shipwrecks (see Table 

1), successful DNA-based identifications have also been reported in the case of the 

HMAS Sydney II 4 and Franklin Northwest Passage expedition vessels 7. 

The age of historic shipwreck remains has usually meant that comparison to 

distant relatives is the only viable avenue for a DNA-based identification 4, 5. However, 

the advent of massively parallel sequencing (MPS) technology has enabled emerging 

forensic DNA techniques such as biogeographical ancestry (BGA), externally visible 
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Table 1. Forensic DNA techniques applied to various historic shipwreck remains
Forensic DNA analyses

Wreck Date Location Recovery Remains recovered Species STR Y-DNA mtDNA FDP References

Antikythera 2000 BC Antikythera, Greece 2016 Complete skeleton Ongoing Marchant, 20166

Mary Rose 1545
Portsmouth, English 

Channel
1970s

Numerous skeletons (179 below 

deck alone)


Hagelberg et al., 198913; 

Hagelberg & Clegg, 19912; 

Zouganelis et al., 201414; 

Hutchinson et al., 201515

Vasa 1628
Outside Stockholm 

Harbour, Baltic Sea
1961

Skeletons of crew and their wives. 

25 individuals alone were located 

under the seabed mud

 Simonds, 201712

La Belle 1686
Matagorda Bay, Gulf of 

Mexico
1996

Skeletons – buried in the seabed 

beneath sand and mud
    Ambers et al., 202016

HMS Swift 1770 South Atlantic Ocean 1998
One skeleton located in Captain’s 

cabin covered by compact sediment
DNA testing unsuccessful Maier et al., 201017

Whydah 

Gally
1717 Cape Cod, United States 1984, 2021

One complete and five partial 

skeletons found in large concretions
?* ?* ?*

Boston Globe, 20185;    

New York Post, 201818

HMS 

Pandora
1791

Great Barrier Reef, 

Australia

1977, 1986, 

1995-1998

Three sets of remains - >200 human 

bones and bone fragments
 Hughes-Stamm, 201319

Batavia 1629
Abrolhos Islands and 

Beacon Island, Australia

1960-1964, 

1994, 2001

10 skeletons found buried on 

Beacon Island in single and 

multiple burial graves

  Yahya, 20083

HMAS 

Sydney II
1941

Off coast of Carnarvon, 

Western Australia

1942 then 

2006-2008

Unknown Sailor – body recovered 

in raft and buried on Christmas 

Island (later reburied)


Australian Government: 

Defence, 20214

Species = species determination; STR = short tandem repeat; Y-DNA = Y-chromosome DNA; mtDNA = mitochondrial DNA; FDP = forensic DNA phenotyping. 
*DNA recovered from a femur sample was reported to originate from a male individual ‘with general ties to the Eastern Mediterranean’. Comparison with known relatives suggest the individual 
was not Captain Samuel Bellamy 18.
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characteristics (EVC) and whole mitochondrial genome (mtGenome) sequencing to be 

applied to shipwreck remains 16. Such DNA profiling techniques mean that 

identification does not rely strictly on comparison with ante mortem data and 

investigators can be directed towards potential decedents, or relatives for comparison 20. 

This paper reviews the current and emerging tools available for recovering and 

revealing genetic information from historic shipwreck remains.

Environmental exposure and impact on decomposition

Survivors of the Batavia shipwreck faced mutiny followed by mass killings with 

victims buried in mass graves on a nearby island. Relevant to these remains, in ancient 

bone and teeth specimens, a number of factors including temperature, humidity, pH, 

geochemical properties of the soil, the amount of postmortal organic substances and the 

general degree of microbial infestation in the soil can affect the chances of successfully 

amplifying DNA 21. Bones and teeth reach a chemical equilibrium with the depositional 

environment via mineral leaching and the uptake of different solutes from the soil 22. 

This can lead to bone degradation and chemical changes of the hydroxyapatite which 

can in turn affect the rate and degree of DNA degradation 22. However, human 

decomposition in marine environments has been shown to be distinctively different 

from surface and subsurface decomposition. Environmental exposure is subject to its 

own unique factors such as decomposition processes, faunal predation and impact on 

DNA 23. 

Decomposition in seawater

Due to the cooler temperatures and absence of necrophagous insects, decomposition 

generally progresses slower in water than on land 24-26. Furthermore, decomposition in 

the marine environment proceeds slower than in fresh water as fresh water is absorbed 
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into the circulatory system causing organs to swell and rupture, whereas in salt water 

fluids are drawn out of the blood (by osmotic pressure) while bacterial activity is 

slowed due to the high salinity 27. Likewise, submersion in salt water is thought to slow 

DNA degradation by reducing the levels of microbial activity 22. 

The anaerobic nature of decomposition may result in adipocere which results 

from incomplete transformation of lipids by bacteria 28. Adipocere formation has been 

studied in a variety of submerged remains contexts 28-31 and can persist over a long 

period of time (i.e., hundreds of years), depending on the bacterial activity of the 

surrounding environment 32-34. 

Complete skeletonisation has been shown to occur in marine environments 

within three weeks 35. Disarticulation usually occurs at major joints first, from distal to 

proximal, i.e., from wrist to elbow and then shoulder at the upper limbs, and from ankle 

to the knee in the lower limbs. The mandible disarticulates around the same time as the 

hands while the cranium is lost at a similar time to the forearms 36. This sequence can be 

altered by the presence of clothing which has been reported to preserve soft tissue and 

inhibit disarticulation 26, 37, particularly in tight and heavy clothing such as boots 35, 38. 

Where remains float, current and wave action weaken the soft tissue connection of the 

joints further contributing to disarticulation 36.

Alteration of bone in marine environments

Following skeletonisation, submerged bones are subject to four diagenetic processes: 1) 

bioerosion, the removal of bone by living organisms, 2) abrasion due to water, sand and 

sediment, 3) encrustation by sessile invertebrates and 4) dissolution of calcium 

carbonate 39 (for a detailed review, see Guareschi et al. 1). These four processes can lead 

to fragmentation and the complete consumption of bone by the marine environment 40. 

Microscopically, post mortem (PM) change in bone begins within three months with 
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sites of focal demineralisation on bone fragments 41 while changes such as peripheral 

tunnelling around the neck of a tooth occur after almost 400 years of marine submersion 

42. Fossilisation of bone can also occur 43, transforming bone into a more stable material 

44 over several hundreds of years and lasting for thousands, and even millions, of years 

45. 

Alterations of bones submerged in saltwater can also include secondary 

concretions which can encompass adjacent bones, as well as bleaching and staining 46. 

Whole and fragmented bone have been shown to display soft tissue adherence, exposed 

surfaces with brittle textures, adipocere formation from soft tissue fragments, battering 

and rounding of sharp edges, windowing, bleaching, mineral staining and the presence 

of adherent sediments or animal taxa 40. Remains recovered from HMS Pandora 

displayed macroscopic bone features such as scavenger teeth markings, surface 

scratching, smoothing of sharp edges and exposure of cancellous bone 47. 

Bones are rapidly covered by silt so they can also exhibit black discolorations on 

both the skeletal elements and surrounding silt 48. Furthermore, differential preservation 

has been observed with remains in contact with sediment mostly skeletonised and 

remains suspended in debris virtually still intact 37. The shipwreck itself can contribute 

to the preservation of human remains 47, 49; including the solid structures of the wrecks 

or burial in sand, mud or sediment 1.

Marine predation

In the marine environment, remains are exposed to numerous forms of animal predation 

including scavenging on human corpses 50, both of which may cause external defects 

that mimic injuries 28. Victims found drifting on the surface are reported to display large 

shark bites 51 and shark feeding patterns are well documented 52-59. Shark attacks have 

also been postulated in archaeological remains (3000 years old) as a result of 
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characteristic damage to the bone including punctures, cuts and blunt force fractures 60. 

Arthropods such as crabs, crawfish, sea lice and bivalve molluscs are responsible for 

smaller bites and damage 50 24, 36, 48, 61-64 including profound examples of sea lice 65. 

Remains that sink have been shown to experience more severe scavenging and 

skeletonisation than those floating 66. Remains at depth (i.e., 300 m) are predated upon 

by lysianassid amphipods which consume the internal organs then the skin and have 

been shown to completely skeletonise remains within four days 48. Remains on the sea 

bed can exhibit circular lesions attributed to scavenging by cookiecutter sharks (Isistius) 

50, 51, 67. Amphipods and squat lobsters (Galatheae) gnaw on bone epiphyses and leave 

bone lesions on cancellous bone as well as the external table of the crania 26. Bryozoa 

and Annelida taxa have been reported to encrust bone and rock-boring sponge can 

penetrate the bone matrix, disintegrating bone tissue. Filling of the medullary cavities of 

long bones with sand and reef debris and surface staining by oxidation of metallic alloys 

containing copper, zinc, iron, and lead has also been observed 47.

Bone as a source of DNA 

DNA can be recovered from a range of biological sources, however; some sources are 

more ideal for the purposes of DNA-based identification. Factors such as resistance of 

the source to degradation or damage due to its natural structure can also affect DNA 

recovery 20. These factors make bone a good target for recovering DNA, particularly 

from compromised remains. 

DNA in bone

DNA is well preserved in bone cells and teeth 68, making them reliable sources of DNA, 

particularly in adverse environmental conditions and for long-term sampling 69, 70. 

Current recommendations suggest the collection of bone is most appropriate for 
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compromised remains due to a higher success rate of DNA recovery from femur shafts 

and teeth 68, 69, 71-74. This is due to the DNA being protected by the physical and 

chemical structure of compact bone within the calcium (Ca2+) matrix 72. Different 

skeletal elements have been found to vary in the way they preserve DNA and therefore, 

yield different amounts of DNA 68, 75 (see Watherston et al. 20 for a detailed review). 

Optimal skeletal elements for DNA

There is no real consensus in the literature as to which bones yield the most DNA 

except perhaps that load bearing bones may be higher yielding because of bone 

remodelling. Weight bearing bones such as femur, tibia, pelvis, metatarsal and talus 

have traditionally been identified as some of the most suitable skeletal elements for 

sample collection 75. While spongy and cancellous bone can be rich in DNA, 

preservation is not reliable and dense cortical bone is collected preferentially 69. There is 

other evidence that optimal DNA recovery is obtained from the petrous portion of the 

temporal bone where the cranium is available 76, 77. There is also research which 

indicates that small cancellous bones yield more DNA and short tandem repeat (STR) 

loci than cortical bones at increasing post mortem intervals 78. On average, the small 

cancellous bones have much higher concentrations of DNA per unit mass than dense 

cortical bones such as femur 78. High load bearing bones, particularly the bones of the 

feet, have been reported to be a preferable source of DNA in submersion cases 79. 

Fredericks et al. 79 analysed remains of individuals submerged in sea water for 2 and 4 

years and reported successful DNA amplification was dependent on the skeletal element 

and duration of submersion. The authors also report higher allelic dropout in low load 

bearing bones, noting the highest success from foot bones.

Teeth with the largest pulp volume provide the best source of DNA 80, 81 

however, pulp may be limited or even absent in aged and/or diseased teeth 82. Tooth 
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type together with health and chronological age of the donor will have an effect on the 

relative proportions of DNA present in the tooth 82. In general, teeth with the largest 

root surface area (i.e. molars) should be targeted 82. The unique composition of teeth 

and their location in the jawbone provide additional protection from environmental and 

physical conditions that accelerate PM decomposition and DNA decay 83, 84. 

Challenges associated with DNA testing of bone

Polymerase chain reaction (PCR) is required to amplify DNA recovered from bones to 

detectable levels. PCR inhibitors in bone have been routinely reported 85, 86 with skeletal 

samples naturally containing calcium which inhibits Taq DNA polymerase (the DNA 

copying enzyme) by preventing its interaction with magnesium ions during the PCR 87, 

88. Some other PCR inhibitors include chondroitin sulphate chains in skeletal material 

89, humic compounds in soil 90 and heavy metals such as iron, copper, cadmium and 

lead found with bone samples from mass graves 91. PCR inhibition from bone exposed 

to water and/or soil is thought to be due to the presence of humic and fulvic acids, 

tannins, iron, cobalt and other materials that can enter the bone after long periods of 

exposure 90, 92-94. PCR inhibition is the most common cause of PCR failure when 

sufficient DNA is recovered 95. Using quantitative PCR to identify the presence of 

inhibitors and to inform the most appropriate method for their removal is important to 

avoid further depleting the amount of DNA 96. Ethylenediaminetetraacetic acid 

(EDTA), used to dissolve the bone mineral matrix for DNA extraction, is also 

problematic as EDTA itself is an inhibitor 97.

Cytosine deamination is another major challenge associated with older bones 

and refers to one of the four DNA base pairs (cytosine) changing to another (thymine) 

via an intermediary (uracil) 98-100. Deamination may not interfere with DNA analyses 

that rely on the length detection of PCR amplicons (as is the case with forensic STR 
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analysis) but high levels of deamination may interfere with sequence-based detection 

and ultimately, with primer binding, potentially leading to allelic dropout 99, 101.

Strand cleavage (DNA degradation) is another type of DNA damage resulting in 

shorter DNA fragments 98, 101, 102 which is problematic when they become smaller than 

the PCR amplicons required for STR profiling. DNA cleavage can be caused by 

endogenous or exogenous nucleases, acid hydrolysis or oxidation reactions.

Excavation and collection

Due to their ultra-structural organisation, sample permeability 103 and porosity 104, bones 

and teeth are easily contaminated prior to DNA testing 104-108 and aged bones are highly 

vulnerable to contamination from modern sources 109. Porosity facilitates deep 

penetration by contaminants which makes bones particularly prone to water-borne 

sources of contaminant DNA 103. Human teeth are less porous, seal their roots with age 

110 and have an upper surface protected by impermeable enamel which makes them 

slightly less susceptible to contamination 103. It has been reported that samples are most 

susceptible to contamination just after excavation when they are still damp from the 

burial environment 103. This means foreign contaminant DNA usually originates from 

individuals who were involved in the initial washing and cleaning of bone rather than 

from those who collected the samples 111. Contamination from comingled remains is 

another consideration 68.

Minimising the risk of contamination prior to DNA testing is crucial and this is 

best achieved by the use of personal protective equipment (PPE), clean sampling areas, 

use of clean instruments and the appropriate storage of collected samples 112.  

Contamination can also be minimised by extracting material from the interior of a 

sample 113. Elimination samples from personnel who handle the remains can assist to 

identify possible contamination events 114.
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Storage

Bone sample is routinely stored at -20 ˚C for long terms 115. Storage at higher 

temperatures has been shown to reduce the amount and reproducibility of DNA 

amplifications in ancient specimens 21 and long-term storage of bone powder has been 

reported to promote DNA degradation due to an increased exposed surface area and 

subsequent oxidative damage of DNA 116. However, other authors have shown this to be 

negligible over a 10-year storage period at -20 °C and highlight the value of retaining 

surplus bone powder after extraction for application to future technologies 117. 

During transport and storage, samples should not be exposed to conditions of 

elevated heat or humidity to the most practical extent possible 75. Samples should also 

be completely dried prior to packaging and breathable packaging such as paper bags 

should be used. Wet samples placed in plastic sample bags encourages mould and 

bacterial growth 75. Dryness, low temperature and the absence of microorganisms 

favours the preservation of DNA 21. 

Sampling and preparation

Advances in biomolecular research means museums are now faced with the curatorial 

dilemma of conserving materials and evaluating them when new analytical methods 

become available 118. Where proposals are received that involve destructive sampling, a 

committee is ultimately required to weigh up a gain in scientific knowledge against the 

loss of priceless and irreplaceable material 118. Because different techniques, including 

those outside of molecular biological testing, yield very different information, it should 

be clear what scientific knowledge is gained from testing and if this adds information 

that can advance the overall knowledge around the artifacts pertaining to an historical 

event. 
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Healthy teeth (preferably molars) are primarily targeted, though in their absence, 

any available bones will suffice; preferably ~10 g of cortical bone with dense tissue is 

recommended 119.  While 5-15 g has been reported to be optimal, smaller samples of 

bone down to 4 g (and exceptionally less than 1 g) can still yield informative DNA 

results 75. Preferred teeth and sample locations across various skeletal elements have 

been reported 75. In general, areas of the bone that display damage or discoloration 

should be avoided as they may have resulted in DNA degradation within the bone 75. 

When sampling long, compact bones such as femur, current guidelines suggest the 

collection of a 4-6 cm window section without shaft separation 69.

Determining the appropriate order in which to apply techniques should be 

defined prior to any testing and understanding the implications for the sample of the 

different techniques is crucial in preserving sample integrity. Any non-destructive 

examination by anthropologists, odontologists and/or pathologists should be carried out 

prior to DNA testing 120. Because they are typically less destructive of samples, other 

techniques such as radiocarbon dating, organic residue analysis and any other 

archaeological examinations are also likely to require application prior to DNA testing.

Decontamination

Prior to DNA testing, chemical and physical decontamination procedures can be applied 

to bone to remove exogenous DNA 20. Laboratories use a variety of techniques to clean 

the exterior surface of skeletal remains such as the complete removal of the exterior of 

the bone 121-124, washing using a diluted bleach solution 113, 125, acid washing 126-128 and 

ultra-violet (UV) irradiation 21, 129. While sodium hypochlorite is highly efficient (up to 

99%) at contaminant removal 130, it may damage endogenous DNA as well as 

contaminating DNA such that the latter cannot be distinguished from poor quality 

and/or quantity endogenous DNA130. A combination of cleaning by wiping with 10% 
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bleach, sterile water and 70% ethanol, followed by at least 12 hours of drying in a fume 

hood has also been reported 78. In general, physical and chemical cleaning followed by 

UV irradiation has been recommended as the best way to decontaminate bone prior to 

powdering in a freezer mill, commercial blender or drill 120, 131. 

For archaeological remains, Ambers et al 16 also report the need to utilise 

standard contamination prevention measures for archaeological and ancient DNA 

specimens. These include the use of PPE; bleach and UV-irradiation decontamination; 

physical and/or chemical treatment of bone surfaces; extraction of bone samples in 

designated low yield areas; PCR amplification in a physically separated area; use of 

appropriate negative and positive controls, reagent blanks; and replicate testing 103, 113, 

132-135. 

Minimally-invasive sampling

More recently, skeletal elements such as the petrous portion of the temporal bone 76, 77, 

136  have been shown to provide optimal DNA recovery, but sample collection often 

involves destructive sampling. This is often not appropriate for historical remains and/or 

museum specimens because the petrous bone is also useful for other analyses. Austin et 

al 118 highlight its value in stable isotope analysis as a supplement or proxy for teeth in 

reconstructing diet during early life 137, important morphological signals of population 

histories 138 and morphological information regarding sex and childhood disease 139.

Minimally-invasive, or in-field, approaches to sampling could offer an 

alternative solution for successfully recovering DNA. Successful DNA recovery from 

the small cancellous bones has been demonstrated 78 and other studies have since shown 

their viability for DNA-based identification offering a less invasive alternative to the 

femur and petrous bone 140, 141. While metacarpals and metatarsals (epiphyses) have 

been reported to outperform all other bones in DNA yield from WWII victims 142, 143, 
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the 1st distal phalanx of the hand has been reported to contain the highest DNA across 

70 fresh and 22 casework bones 144. The small cancellous bones of the feet have also 

been shown to outperform other bones in terms of DNA yield and STR profile 

completeness in buried remains 145. Minimally-invasive methods for other PM sample 

types have been described with a method reported for sampling the petrous bones from 

the cranial base 146. The value of small cancellous bones and the generation of bone 

drillings from the femur has also been demonstrated in combination with efficient DNA 

protocols 141, 147. 

DNA profiling

DNA extraction

Demineralisation is a DNA extraction protocol for bones and teeth involving the use of 

an EDTA-based buffer to dissolve the bone mineral matrix and inactivate DNAses by 

chelating bivalent cations such as Mg2+ or Ca2+ 148, 149. The ratio of bone powder to 

EDTA is important for optimum digestion and 1 g of bone powder should be 

demineralised in 15 mL of 0.5M EDTA 150. In most cases 5-6 hours is sufficient to 

completely demineralise 0.5 g of bone powder though an overnight dissolution is 

usually applied for convenience 150, 151. Increasing the EDTA incubation time to >48 

hours can induce DNA damage or degradation 2, 152, 153.

Current recommendations suggest bone and tooth powder should be subject to 

total demineralisation 120, 148. Coupled with proteinase digestion this method 

significantly increases DNA yields and DNA typing results by completely breaking 

down the hard bone material 148, 149, 151, 154, 155. This allows access to larger, high-quality 

fragments of endogenous DNA that are held in dense crystal aggregates of the bone 

matrix 125 which is particularly important for smaller quantities of starting material 148, 
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151. Variability in the quantity and quality of the DNA is to be expected in degraded 

skeletal samples. Such uncertainty highlights the importance of using an extraction 

protocol optimised for smaller starting amounts of bone powder which facilitates re-

extraction in the event of failure to recover a profile 72, 151. The total demineralisation 

method of Loreille et al. 148 and the silica-based clean-up of Yang et al. 156 using 

QIAquick™ spin columns has been combined for more challenging skeletal samples 

and has been reported to recover more DNA, improve STR typing results and yield less 

PCR inhibitors from aged samples 149, 151, 157. 

The ancient DNA method of Dabney 158 (demineralisation followed by 

MinElute™ PCR Purification Kit (QIAGEN) purification) has been shown to have an 

improved efficiency for retrieving shorter DNA fragments that is beneficial when highly 

degraded DNA is present 159, while the Loreille method 148 (demineralisation followed 

by 30 kDa Millipore Sigma Amicon Ultra Centrifugal Filter Unit) yielded higher overall 

DNA amounts facilitated by its tolerance of higher sample input. This makes the 

Dabney method preferrable in cases where there is evidence of significant DNA 

degradation while the Loreille method is sufficient when sample preservation is not an 

issue 159. The results suggest that the choice of extraction method needs to be based on 

available sample, degradation state and targeted genotyping method. A further increase 

in DNA recovery has been documented for a recent ancient DNA extraction method for 

human remains using an organic DNA extraction with phenol/chloroform/isoamyl 

alcohol followed by concentration and buffer exchange using an Amicon Ultra-4 

centrifugal filter unit (Millipore-Sigma) 160.
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Target enrichment

Hybridisation-based DNA capture

MPS hybridisation-based capture is an approach directly applied after DNA extraction 

and library preparation 161. Fragmented shotgun libraries are denatured by heating and 

subject to hybridisation with biotinylated DNA or RNA single-stranded 

oligonucleotides, referred to as ‘probes’ or ‘baits’, specific to regions of interest 162. 

Non-specific unbound molecules are then washed away, leaving enriched DNA 

available for elution and then MPS 162. The ultimate aim of MPS hybridisation-based 

capture is the sequencing of enriched nucleic acids and bioinformatic analyses of the 

reads 161. DNA capture approaches have been shown to selectively enrich short 

endogenous DNA templates over longer exogenous contaminant DNA 163; helpful for 

compromised samples contaminated with large amounts of exogenous DNA 164.The 

approach has been successfully applied to ancient DNA human remains samples which 

are highly fragmented and dominated by contamination of environmental and bacterial 

DNA 165 with often less than 1% of sequenced DNA being endogenous 166. Library 

construction can also include cytosine deamination removal via a treatment step with 

uracil DNA glycosylase and/or endonuclease VIII 167.

For application to mitochondrial DNA (mtDNA), probe hybridisation assays use 

biotinylated DNA or RNA probes targeting hypervariable regions I and II (HVI/HVII) 

164, 167-173. Multiple rounds of in-solution hybridisation-based DNA capture can retrieve 

whole mtGenome sequences from highly degraded samples 164, 174, by capturing DNA 

templates that are damaged and fragmented (<100 bp in length) 175. This DNA capture 

strategy, originating from ancient DNA studies, is based on the hybridisation of target 

DNA sequences to probes that are immobilised in solution or on a surface 176, 177 to 

generate complete mtGenomes 169, 178-180. Primer extension capture methods also target 
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smaller mtDNA fragment sizes and have been found to produce reliable and plausible 

mtDNA haplotypes not possible with Sanger-type sequencing or MPS 172. For Y-

chromosome DNA, hybridisation capture enriches specific genomic regions of the Y-

chromosome both on solid support 181 and in solution 182. 

Targeting only mtDNA or Y-chromosome DNA, however, involves discarding a 

large proportion of informative sequences present in autosomal DNA. Carpenter et al. 

166 report a whole-genome in-solution capture (WISC) method, using fragments of a 

modern DNA reference individual as baits covering the entire human genome. This 

method was applied to ancient human DNA libraries and when compared to shotgun 

sequencing, showed an enrichment of 6- to 159- fold for total sequences mapping to the 

human genome and 2- to 13- fold for unique (non-duplicated) fragments 166. 

Hybridisation capture and low-coverage single nucleotide polymorphism (SNP) 

profiling for extended kinship analysis and forensic identification of historical remains 

has also been recently reported 183.

Targeted amplicon sequencing

Targeted amplicon sequencing refers to the PCR amplification of target regions of DNA 

that are flanked by PCR primers.  It allows the isolation of specific and informative 

DNA sequences on the genome, ignoring the remainder.  An MPS tiling approach for 

simultaneous mtGenome sequencing using 161 short overlapping PCR amplicons 

(average 200 bp) is available for degraded samples where PCR amplification of large 

fragments (several kb) may fail due to mtDNA fragmentation 184. Commercial kits are 

now also available using this approach, namely the Precision ID mtDNA Whole 

Genome Panel (Thermo Fisher Scientific: TFS) and the ForenSeq™ mtDNA Whole 

Genome Kit (Verogen) 185.
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DNA quantification and quality assessment

Following DNA extraction, extracts are quantified to determine the quantity and quality 

of sample DNA. Such information can inform decisions regarding the DNA profiling 

approach and aid in the conservation of sample. Amplifying samples with suboptimal 

input amounts of DNA can result in inefficient amplification of target loci 186. The use 

of multiple target Taqman assays in real-time quantitative polymerase chain reactions 

(qPCRs), such as the Quantifiler™ Trio DNA Quantification kit (TFS), provides the 

concentration of total DNA and male DNA. An internal PCR control (IPC) helps to 

identify the presence of inhibitors and a ‘Degradation Index’, consisting of the 

concentration ratio of a smaller amplified target relative to a larger amplified target, 

indicates the extent of DNA degradation in a sample 187. This information can also be 

informative for interpreting profiling results.

Most quantification kits recommend use of the smallest autosomal target 

concentration value to accurately estimate autosomal DNA concentration in a sample. 

However, the largest autosomal target concentration value could be considered when 

estimating the DNA concentration of compromised skeletal samples 188-190 because the 

size of the larger target more accurately reflects the average, or upper, size range of 

amplicons in current STR multiplexes or routine HVI/HVII sequencing 191. Where 

samples produce a low quantification result, stochastic sampling, amplification effects 

and the presence of environmental inhibitors mean that DNA profiling could still be 

considered 191. 

Recent STR testing kits include quality markers that can differentiate between 

degraded and/or inhibited DNA, assisting in DNA profiling decision making (see 

Watherston & Ward 192 for a detailed review). The quality markers differentiate 

between failed PCR amplification due to a lack of DNA and failed PCR amplification 
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due to the presence of inhibitors 193. Sample information is enhanced by using an STR 

kit with quality markers in conjunction with a quantification kit, providing an objective 

measure of PCR inhibition and DNA degradation 192. 

Detection methods

Capillary electrophoresis (CE)

Current DNA profiling is most commonly achieved by capillary electrophoresis (CE) 

where DNA fragments are separated based on a charge-to-size ratio. One significant 

advantage applicable to compromised human remains is that only a relatively small 

amount of sample is required for injection with separation in the capillaries achieved in 

minutes 194. CE platforms can be used for both fragment length analysis, such as STR 

genotyping, and sequencing applications, such as Sanger sequencing of mtDNA HVI 

and HVII.  In addition, SNaPshot® (TFS) is a single-base extension assay 

minisequencing method for SNPs commonly applied for its sensitivity and high 

multiplexing ability 195, 196. SNaPshot® offers a low-cost and time-efficient alternative 

to MPS for smaller scale SNP genotyping requirements 196. 

Massively parallel sequencing

MPS (or next generation sequencing: NGS) refers to the next generation of post-Sanger 

sequencing technologies. MPS is increasingly being applied within a forensic context 

due to its ability to type large batteries of markers in multiple samples simultaneously 

197-205. Recently, a number of contemporary and historic shipwreck remains have 

successfully yielded genetic identifications using MPS 16, 206.

Page 19 of 52

URL: http://mc.manuscriptcentral.com/tajf

Australian Journal of Forensic Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

Genetic markers

A variety of different genetic markers exist for interrogating different genetic 

information. For a detailed review of current genetic markers used in forensic DNA 

analysis, see Watherston et al. 20.

STRs

Autosomal STRs

Autosomal STRs are the most frequently employed markers for genetic identification 

and have a high power of discrimination 207. Modern STR multiplexes such as the 

GlobalFiler™ (TFS) and PowerPlex® Fusion 6C (Promega) assays consist of upwards 

of 20 STR loci. Multiplexes can be applied to automated platforms and can be modified 

to alter the number of cycles, reaction volumes and input amount of DNA, depending 

on the equipment used and types of samples encountered in the laboratory 208-211. 

The use of six-dye technology for labelling STR fragments enables the 

shortening of the overall amplicon lengths and minimises marker overlap 212. For 

profiling highly degraded DNA, 7-12 mini-STRs are also included in the kits. Mini-

STRs are very short fragments where only very little of the flanking regions on either 

side of the STR are included in the PCR amplicon. Chemistry improvements have seen 

amplification time reduced to 60-80 minutes whilst enhancing profiling success from 

low template and inhibited samples. Full STR profiles have been generated from as 

little as 100-250 pg of template DNA 213, 214. Some kits have the ability to add up to 15 

µL of DNA template to the PCR which can also improve DNA recovery. 

Mendelian inheritance of STRs is exploited in kinship analysis. As first-order 

relatives are expected to share more genetic data than unrelated individuals, STR 

profiling has made it possible to identify potential familial relationships between an 
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individual in a DNA database and an unidentified human remains profile 215, known as 

familial searching. While the incorporation of additional loci in STR multiplexes can 

improve the distinction between related and unrelated individuals 216, STRs only enable 

short-range familial searching to first-degree relatives, i.e., to parents, children and 

siblings 217. To confirm or refute biological relatedness, familial searching using STRs 

can be combined with lineage marker testing using Y-STRs and mtDNA 217. Besides 

offering a complementary approach, lineage marker testing can confirm or refute 

maternal and/or paternal relatedness between individuals and allows reference samples 

to be collected from more distant relatives 68.  

X-STRs

X-STRs can be useful as they are highly polymorphic, meeting Hardy-Weinberg and 

linkage expectations if not within the same linkage group 218-220. When using siblings as 

reference samples for DNA identification, extra discrimination can be achieved by 

supplementing the analysis of autosomal STRs with X-STRs 220. The Investigator® 

Argus X-12 QS Kit (QIAGEN) co-amplifies 12 X-STRs, D21S11, amelogenin and a 

Quality Sensor for predicting sample inhibition and degradation while the ForenSeq™ 

DNA Signature Prep Kit (Illumina) types seven X-STR markers 221. 

Y-chromosome STRs (Y-STRs)

Y-STRs are useful when establishing paternal lineages because Y-STR profiles are 

expected to remain the same along a patrilineage, barring mutations 222. Like X-STRs, it 

is sometimes necessary to supplement the analysis of autosomal STRs with Y-STRs to 

achieve extra discrimination 220. 
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mtDNA

mtDNA is of great advantage due to its high copy number per cell 223, making 

sequencing of mtDNA HVI and HVII particularly useful in unidentified remains cases 

224. Compared to two copies per diploid cell in nuclear DNA (nDNA), a mature oocyte 

is estimated to have thousands of mitochondria and greater than 100,000 copies of 

mtDNA 225, 226. The circular nature of the mtDNA molecule makes mtDNA more 

resistant to degradation 227. In highly degraded specimens, the use of mini-primer sets 

can improve the chances of typing success 228.

mtDNA molecules are inherited maternally 223, 229 so testing can confirm or 

refute maternal relatedness between individuals. Because mtDNA should remain largely 

the same, barring mutations and especially heteroplasmy, reference samples can be 

collected from distant maternal relatives. While not associated with a power of 

discrimination comparable to nDNA, >70% of the total variation within the whole 

mtGenome has been reported to exist outside of HVI and HVII 179, meaning sequencing 

the whole mtGenome can provide far greater resolving power for human identification 

198, 230. 

MPS allows the routine processing of mtGenomes, providing the highest level of 

maternal lineage discrimination. For high quality mtDNA, this is achieved using long-

range PCR to generate two amplicons of approximately 8 kilobases (kb) in length 198, 

231. The general workflow for library preparation includes tagmentation (enzymatic 

fragmentation) of long-range PCR products, PCR amplification, clean up, 

quantification, pooling and sequencing 198, 232. For low quality DNA, short, overlapping, 

segments of mtDNA are subject to PCR which produces amplified and tagged DNA 

fragments that span the complete mtDNA genome.  mtGenome sequencing using MPS 

offers an increased ability to detect point heteroplasmy 233, to resolve point 234, 235 and 
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length heteroplasmy 236-238, to detect the presence of damage-induced lesions 235 and 

resolve mixtures 236, 239, 240. 

The 16S and 12S ribosomal RNA (rRNA) genes have also been used in 

forensics for the identification of various species 241, 242 offering a genetic means of 

distinguishing between human and non-human remains recovered from a shipwreck. 

They are relatively conserved genes, evolving slower than the mtGenome as a whole 243 

244. Highly conserved regions nearby can be used as primer-binding sites, whilst 

mutations existing in variable regions are reported, making both genes suitable for 

species discrimination 245, 246. 

While the European DNA Profiling Group (EDNAP) Mitochondrial DNA 

Population Database (EMPOP) can provide a statistical weighting for matches to 

mitochondrial DNA profiles, it is also used for the phylogenetic evaluation of sequences 

which can assist in determining haplogroups, providing inferences of ancestry and 

assisting with quality control assessment. Mitochondrial haplogroups are collections of 

similar haplotypes defined by combinations of SNPs in mtDNA inherited from a 

common ancestor 247. These haplogroups are formed due to sequential accumulation of 

mutations through maternal lineages 248.

A phylogenetic approach to mtDNA sequence alignment has been formulated 

and forms the basis for haplotype annotation in the EMPOP database. Alignment and 

nomenclature is based on the phylogeny of mtDNA, where mutational events are 

inferred through comparison to closely related sequences 249. Improved haplogrouping 

is achieved by using a maximum likelihood approach 250. Phylogenetic evaluation of 

sequences can help to uncover human error (e.g. cross-contamination, misinterpretation 

of sequence raw data, phantom mutations, clerical errors) 251-254.
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SNPs

SNPs are single base sequence variations at a particular point in the genome. Because 

SNP-targeted amplicons are usually short, they are particularly useful for degraded 

samples 68, 255. SNPs are classified according to their forensic application: identity-

informative SNPs (IISNPs) for human identification, lineage-informative SNPs 

(LISNPs) for inferring male (Y chromosome) and female (mtDNA) lineages, phenotype 

informative SNPs (PISNPs) for inferring EVCs (i.e., physical traits) and ancestry 

informative SNPs (AISNPs) for inferring BGA 196. 

Assays for predicting EVCs such as eye, hair and skin colour have been 

developed as a result of well-established knowledge of the melanin synthesis pathway 

256-260.  The first such assay for prediction of eye colour was the IrisPlex system (six 

SNPs) which includes a prediction model based on reference samples in multiple 

European populations 261. The IrisPlex system has been vigorously assessed 

demonstrating its reproducibility, robustness and the accuracy of the IrisPlex model (for 

blue and brown eye colours, at least), with simple implementation 262. The newer 

HIrisPlex system (24 SNPs, including all six IrisPlex SNPs) has since been introduced 

for predicting both hair and eye colour 258, 259 with its application demonstrated on 

WWII skeletal remains, 263. The newest HIrisPlex-S system (36 SNPs, including 13 

HIrisPlex and 6 IrisPlex SNPs) combines hair, eye and skin colour 260. 

AISNPs capture the genetic differences among major global populations due to 

allele frequency divergences 264-266. Custom assays for predicting BGA include the 

SNPforID 34plex 264, 267, Eurasiaplex 268, Pacifiplex 269 and MAPlex 270, 271. Two 

proprietary MPS panels also exist, namely the ForenSeq™ Signature Prep Kit 

(Illumina) 221 which utilises the Kidd panel 272 and also includes PISNPs; and the 

Precision ID Ancestry Panel (TFS) 273-275 made up of both the Kidd 272 and Seldin 276 
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panels. While both panels have been found to perform well, the appropriate reference 

population data are essential when inferring ancestry 272, 277-279.

Y-SNPs can also play a useful role as lineage markers 280, even assisting in 

estimations of ancestral origin 281, 282. Because the Y chromosome is inherited paternally 

in a conserved manner 222 and Y-SNPs are slowly mutating bi-allelic markers with a 

single base variation they are useful for predicting human ancestry and origins (as well 

as evolutionary migration patterns) 283-286. This facilitates the reconstruction of male 

phylogenetic trees divided into 20 main haplogroups, from ‘A’ to ‘T’, and >9,000 

subhaplogroups 287. Certain Y-SNPs have since been identified that can be attributed to 

specific populations 288. 

Microhaplotypes

Microhaplotypes are clusters of at least two tightly linked SNPs 255, 289 within a range of 

about 200 bp 255, 289. Microhaplotype loci can be used for inferring ancestry, individual 

identification, kinship and the identification and deconvolution of mixtures 255, 289-291 

due to their polymorphic nature. MPS makes it possible to genotype microhaplotypes by 

sequencing a cluster of SNPs in phase 255, 289-291.  Microhaplotypes are seen as a useful 

alternative to STRs because they are also polymorphic, they are often on smaller 

amplicons (useful for degraded DNA) and they are not subject to the formation of so-

called “stutter” artefacts from PCR which can hinder the interpretation of STRs.

Autosomal identity and kinship informative SNPs

SNPs possess a lower mutation rate than STRs, and have been reported to be more 

stable in terms of inheritance and therefore, more suited for kinship analysis such as is 

performed in missing persons cases 292. While their statistical discrimination has 

historically been a limiting factor 293, a number of very large SNP panels now exist for 
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genotyping on MPS platforms. Panels include the (now discontinued) International 

Commission on Missing Persons (ICMP) panel (QIAGEN) consisting of >1,200 tri-

allelic SNPs 294 and the ForenSeq™ Kintelligence Kit (Verogen) 295 consisting of 

10,230 SNPs to facilitate long-range kinship analysis and forensic genetic genealogy 

(FGG). High density SNP genotypes can be exploited to infer distant relationships, 

exceeding the range of first cousins 296. Outside of the forensic domain, this has been 

achieved by direct-to-consumer (DTC) companies like Ancestry and 23andMe using 

microarrays to produce in excess of 500,000 SNPs dispersed throughout the genome. It 

has recently been demonstrated that this technology could have forensic applications 297 

after initial attempts 298 were compromised by the high DNA template requirements of 

microarrays. Large databases of publicly-available SNP genotypes facilitate searching. 

GEDmatch is a DTC database consisting of ~1.2 million SNP profiles (as of 

2021) though dominated by users of European ancestry 296. Founded in 2010, 

GEDmatch was created to supplement information from DTC companies and 

specifically, to assist with unknown parentage searches. The GEDmatch portal allows 

users to search for links with people who have profiles on different platforms from 

different DTC companies, and now offers a dedicated law enforcement portal called 

GEDmatch PRO™ 296. During searching, uploaded SNP data are first assessed for 

viability after which they are “tokenised”, creating a compressed site-specific binary 

format which is supposedly impossible to de-code in a security breach. As part of this 

process, health-related SNPs are removed. All comparisons in the database are made 

with the token files, available as de-identified kit numbers (not raw SNP data). The kit 

numbers are used to find familial/kinship links with other kit numbers on the 

GEDmatch PRO™ database using the One-to-Many tool. Linked individuals in 
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GEDmatch PRO™ are identified in the match list by their kit number, name and email 

address 296. 

It has been reported that as few as 10,000 SNPs are sufficient for long-range 

familial searching 299. While sequencing the whole genome of an individual is now a 

viable option, whole genome sequencing (WGS) methods cannot yet offer solutions for 

typing the range of biological samples seen in forensic casework 296. However, WGS of 

human remains has been shown to be possible by using carefully constructed validation 

measures to ensure sufficient sequence coverage for robust SNP genotype calling 300. 

This technology offers a promising tool for historic shipwreck remains cases.

Insertion-deletion markers 

Insertion-deletion length polymorphisms (InDels) are a type of biallelic short DNA 

length variation 301-305. InDels are well suited for analysing degraded DNA due to their 

short amplicon ranges, high multiplexing capability and low mutation rates 205, 306. 

Proximal SNPs in InDel flanking regions can increase the power of discrimination of 

currently defined InDels and provide potential as markers for ancestry inference 307-309.

Insertion and null alleles (INNULs)

Short interspersed nuclear elements (SINEs), are non-coding genomic DNA repeat 

sequences, or mobile insertion elements, comprising approximately 40% of the human 

genome 310. A novel primer design has overcome the inherent size differences 

associated with insertion and null alleles (INNULs) 311. Markers in the InnoTyper® 21 

Kit (InnoGenomics®) are bi-allelic, having two possible allelic states (insertion or null). 

Alu elements are primate specific SINEs that have reached a copy number in excess of 

one million in the human genome, making them particularly valuable for extremely 

degraded DNA samples and because they are identical by descent only with no 
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mechanism for parallel independent insertions to occur, they are ideal for kinship 

analysis of degraded human remains 310.

Typing strategies involving changes to standard protocols

Genotyping success for skeletal remains recovered from marine environments can be 

improved by employing enhancements to standard protocols. These can include the 

combination of two or more protocols or changes to DNA input amounts, reaction 

volumes, PCR cycles or reagent concentrations.

Replicate and complementary amplification

For challenging samples, current guidelines recommend using repeat amplifications to 

improve and confirm DNA profiling results 69, 312. This is a strategy first applied to the 

amplification of so-called low copy number (LCN) DNA 313, 314. Alternatively, 

amplifying the sample using at least two complementary kits offers another strategy 69 

overcoming larger amplicon drop-out and primer binding variations 315, 316. For a 

detailed review and application to aged skeletal remains, see Watherston & Ward 192.

A number of dual amplification strategies with the MiniFiler™ PCR 

Amplification Kit (TFS) and different STR multiplex assays have been reported for old 

skeletal remains 317, 318. Combining Y-STRs with other genetic markers allows the 

complementary addition of a lineage marker. Marjanović et al 319 report using a 

combination of STRs, mini-STRs and Y-STRs to provide genetic identification for old 

skeletal remains. Current guidelines for missing person investigations recommend 

genotyping autosomal STRs (including mini-STR loci), Y-STRs and mitochondrial 

DNA (mtDNA) with available options to apply SNP and InDel markers 120. The 

combination of STRs, mini-STRs, SNPs and InDels has been applied to degraded PM 
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samples 320, 321. However, most new commercial multiplexes include up to 10 mini-

STRs which may negate the need to implement a separate mini-STR multiplex.

Optimising amplification parameters

Assuming an input amount of ~1 ng of DNA, STR multiplex systems normally use 28-

30 amplification cycles. However, compromised or aged bone may not yield 1 ng of 

template DNA 192. Because the number of attempts to genotype degraded samples is 

limited by the volume of DNA extract 322, optimised amplification parameters are 

crucial. For a detailed review and application to aged skeletal remains, see Watherston 

& Ward 192.

Increased DNA input amount

An increased input amount of DNA can improve the chances of successful DNA 

recovery assuming samples do not contain a large amount of PCR inhibitors. Different 

STR multiplex kits offer different sample volumes of 10 or 15 µL, the latter facilitating 

an increased input of DNA 192. 

Reduced reaction volume

Half reactions of commercial STR multiplex kits are commonly used by many forensic 

laboratories with user manuals often describing their application. As such, half-

reactions have been validated extensively on a range of multiplex kits, reporting 

comparable or increased quality profiles, with a significant saving on the cost of 

genotyping 323-325. Another advantage is less sample is consumed per reaction 192. This 

approach has been applied to aged skeletal remains combined with a total 

demineralisation extraction protocol and increased number of PCR cycles 326.  Reduced 

Page 29 of 52

URL: http://mc.manuscriptcentral.com/tajf

Australian Journal of Forensic Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

reaction volume with increased Taq polymerase also yielded more full and concordant 

STR profiles and less off-ladder alleles than other methods (including standard PCR) 

from a broad range of input DNA from hairs 210.

Increased number of PCR amplification cycles

Increasing the number of cycles is the simplest way to increase the number of 

amplicons and therefore sensitivity of testing 313, but it comes with the risk of increased 

numbers of artefacts interfering with the interpretation of STR profiles. Some 

manufacturers describe standard and increased sensitivity options in their user manuals 

for amplifying routine and compromised samples. For example, the GlobalFiler™ PCR 

Amplification Kit User Guide offers two PCR options with alternative DNA input 

amount and PCR cycle numbers 327. Alternatively, laboratories have used increased 

cycle numbers for the processing of old and degraded skeletal samples; from 31-60 

cycles  21, 326, 328-330, also in conjunction with an increase in Taq DNA polymerase 

concentration 331, 332. A nested primer PCR protocol using an initial 40-cycle 

amplification with a subsequent 20-30 cycles has also been described 333.

Increased concentration of Taq DNA polymerase/bovine serum albumin (BSA) 

While modern STR multiplexes continue to increase their tolerance to PCR inhibitors, 

inhibition can also be minimised by increasing the Taq DNA polymerase concentration 

334. BSA prevents inhibitors from interacting with Taq DNA polymerase 335 and the 

addition of BSA has been reported to overcome PCR inhibition 13 (see Farrell & 

Alexandre 336 for a detailed review of the effects of BSA on PCR). The benefits of both 

increasing the concentration of Taq DNA polymerase and adding BSA to PCR has also 

been reported for high humic acid-content samples 337. 
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Post-PCR purification

Post-PCR purification methods purify PCR products using a range of filtration and 

silica spin column methods to remove salts, ions, unused deoxynucleotide triphosphates 

(dNTPs) and primers from the PCR. A reduction in PCR product volume (e.g., 25 µL) 

to 10 µL also concentrates the DNA 338. Several post-PCR clean up kits are available 

commercially with selection usually based on PCR product size range and elution 

volume. 

Conclusions

Skeletal remains present some of the most challenging samples due to the presence of a 

large number and variety of PCR inhibitors and the often severely degraded nature of 

these samples when recovered. Historic shipwreck remains are further challenged by 

time and submersion in a marine environment. Approaches available to combat these 

challenges have included the application of multiplex STR profiling following an 

efficient DNA extraction 148, the use of mini-STRs for highly degraded DNA 320 and 

optimised amplification parameters such as increased Taq DNA polymerase 334, 

increased PCR cycle number 313, 328 and decreased PCR reaction volume 323-325, 339, with 

a combination of these approaches also applied 210, 326, 331, 332, 340. More recently, ancient 

DNA methods like hybridisation capture using biotinylated oligonucleotide “baits” and 

MPS have also been applied 341.

A number of genetic markers and approaches for recovering available DNA are 

now available for application to historic shipwreck remains. Minimally-invasive 

sampling will be particularly important for testing such irreplaceable remains. DNA 

profiling techniques offer alternative means by which to interrogate and apply genetic 

information. These new forensic DNA techniques were applied to remains from the 
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1685 shipwreck, La Belle, and were able to reveal the decedent’s hair and eye colour, 

and ancestry 16. This application demonstrates the sensitivity of current forensic 

techniques for recovering DNA from archaeological human remains, specifically those 

from historical shipwrecks. FGG offers another promising tool for long-range familial 

searching via DTC databases.
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