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Abstract

Human activity sensing has been widely used in various fields such as security, autonomous

driving, and human-computer interaction and has essential research significance and application

value. Wireless signal-based activity sensing is based on the fact that human activities impact

the wireless signal propagations such as reflection, diffraction and scattering, which provides

human activity sensing opportunities through analyzing and mapping the variations to the

received signals with a specific activity. Compared with other pathways, human sensing with

wireless signals has unique advantages: device-free sensing pattern, robustness to environmental

factors (e.g., weather, light, and temperature); the ability to penetrate obstacles; and protecting

visual privacy.

WiFi and radar are commonly used wireless sensors for human sensing. In this dissertation,

we first propose a channel state information (CSI)-based Doppler speed estimation method,

which can provide accurate Doppler estimations with phase offset removal for further human

activity analysis. However, using the estimated Doppler frequency estimations alone generally

cannot obtain satisfactory performance for human activity recognition. By contrast, radar is

a natural sensing sensor and can be utilized to estimate activity-related parameters (e.g., the

time-varying range and Doppler frequency information) more easily than WiFi signals, we go a

step beyond activity parameter estimation and focus on activity recognition with radar signals.

Specifically, the main research problems and contributions of this thesis can be summarized as

follows.

First, to remove the carrier frequency offset caused by clock asynchronism and attain accurate

Doppler speed estimates, we study Doppler frequency estimation using the cross-antenna signal

ratio (CASR) method for scenarios with general movement. We first develop a CSI-ratio ex-

pression disclosing more insights, and then propose three algorithms for estimating Doppler fre-

quencies: Mobius Transformation-based, signal difference-based, and periodicity-based. These

ii



algorithms exploit different features of the CSI ratio in terms of Doppler frequencies and can be

applied to scenarios involving general and/or irregular movement. Using a publically available

WiFi CSI dataset Widar 2.0, we then validate the efficiency of the proposed Doppler frequency

estimation algorithms.

Second, aiming at enhancing the generalization ability of deep learning (DL) methods to hu-

man individual differences and improving the HAR performance on different persons’ activities,

we present an instance-based transfer learning approach ITL for cross-target HAR with radar

spectrograms. The proposed ITL is composed of three interconnected and necessary parts

(MNet pretraining, CSDS and ACFT) rather than a collection of three distinct pieces. Exper-

iments demonstrate that the proposed approach is more generalized to the data distribution

discrepancy and can scale well to recognize different persons’ activities.

Third, we propose a supervised few-shot adversarial domain adaptation (FS-ADA) method for

radar-based HAR. This method does not require a large number of radar data for training when

applied to a new environment. Specifically, we adopt the domain adaptation method to learn

a common feature space between a pre-existing radar dataset and the newly acquired training

data, and present a multitask generative adversarial training mechanism to optimize FS-ADA.

Experimental results on two few-shot radar-based HAR tasks show that the proposed FS-ADA

method is effective for few-shot HAR, and outperforms state-of-the-art methods.
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Chapter 1

Introduction

In this dissertation, we first overview the research background of contact-free human activity

sensing using wireless signals, and present several main concerns in the wireless signal-based

human sensing field. Based on this, we further introduce our contributions from two perspec-

tives: WiFi-based activity parameter estimation and radar-based human activity recognition

(HAR), aiming to solve the difficulties in the field and promote the development of wireless

human sensing.

1.1 Research Background

Human target sensing has a wide range of applications in many fields, such as security, au-

tonomous driving, human-computer interaction, etc., and therefore has increasingly received

more attention. Most of the current human detection and activity sensing research is based on

optical sensors, whose performance can be significantly affected by lighting and weather con-

ditions. Meanwhile, human sensing based on acoustic sensors mainly uses low-cost ultrasonic

equipment; however, a delay can be incurred when being employed to detect long-distance tar-

gets. In contrast, human target sensing with wireless radio frequency (RF) signals has many

unique strengths: first, RF signal is robust to environmental factors such as weather, light,

temperature, etc., and can be used in a broad range of scenarios for the sensing purpose; sec-

ond, it is able to penetrate obstacles such as walls, and can detect people behind obstacles.

Furthermore, using wireless signals for sensing can protect visual privacy, avoiding privacy

breaches. Specifically, different from the optical sensor that perceives the target by capturing
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the visual shape of the target, the returned RF signal modulated by the human target contains

rich information, such as the human target’s speed, orientation, and distance. Last but not

least, the RF sensing system is contact-free and does not require the human body to carry any

equipment, which introduces no discomfort and thus reduces the human burden.

Human target detection based on wireless signals has tremendous application potential, such

as environment sensing for autopilot, health monitoring, survivors rescue in fire or earthquake,

and terrorist detection. For instance, in autonomous driving, mainstream autonomous vehicle

manufacturers (such as Tesla, Bayerische Motoren Werke, etc.) have begun to widely use

microwave radar as an in-vehicle sensor to identify pedestrians and vehicles. In disaster search

and rescue, RF-based human detection has both research value and crucial social significance.

WiFi and radar are two commonly used mediums for wireless signal-based sensing. Besides the

primary communication purpose, WiFi is widely leveraged for sensing due to its sensitivity to

environmental dynamics. The strengths of WiFi-based sensing are as follows. First, WiFi has

become pervasive in indoor and outdoor settings with the broad utilization and deployment

of wireless communication. Second, WiFi infrastructure is low-cost and easy to be deployed,

which makes ubiquitous sensing with WiFi possible. Furthermore, with the Orthogonal Fre-

quency Division Multiplexing technology (OFDM) technique, Channel State Information (CSI)

and Received Signal Strength Indicator (RSSI) can be adopted to estimate the properties of

the propagation channel and perceive the environment dynamics. The initial purpose of CSI

and RSSI is to improve the communication performance based on the communication channel

estimations, and has been gradually utilized for environment sensing. When a human tar-

get appears in the area illuminated by the transmitted signals, its presence and activity can

affect the signal propagation and change the channel state. And the resultant variations of

the propagation channel are recorded in the receiving end with CSI/RSSI measurements. In

this circumstance, to estimate the human-related parameters such as the human localization,

range, orientation, and moving speed and direction, signal processing algorithms are required

to quantify the variations of CSI/RSSI measurements, and find out the relationship between

the channel state changes and human movements. Based on this insight, a tremendous amount

of WiFi-based human sensing approaches have been developed and made significant progress

[1]–[3].

Meanwhile, different from WiFi systems that transmit OFDM signals and are mainly used
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for communication, radar is a nature sensing tool that mainly uses dedicated signals such as

Frequency Modulated Continuous Waves (FMCW) and pulse signals. With the well-designed

waveforms, the human target’s moving parameters and localization, such as range, angle, radial

velocity, and moving direction, can be attained without complex signal processing operations.

Therefore, target localization, HAR, tracking, and multiple-targets sensing can be performed

with radar, achieving better performance than with the counterpart WiFi. Besides, with the

continuous development of electronics and chip technology, miniaturized and portable radars

have emerged and are more and more applied to sensing tasks in the civilian field.

1.2 Motivations and Objectives

In this dissertation, we propose a CSI-ratio-based Doppler speed estimation method in Chapter

3, which can provide accurate Doppler frequency estimations, and can be used for recognizing

some simple human activities such as walking. However, using the estimated Doppler fre-

quency estimations alone generally cannot obtain satisfactory performance for human activity

recognition. By contrast, radar is a natural sensing sensor and can be utilized to estimate

activity-related parameters (e.g., the time-varying range and Doppler frequency information)

more easily than WiFi signals, we go a step beyond activity parameter estimation and focus

on activity recognition with radar signals. Specifically, we present an instance-based transfer

learning (TL) approach for cross-target HAR in Chapter 4, and propose a supervised domain

adaptation method for few-shot radar-based HAR in Chapter 5, respectively. The motivations

and objectives of this thesis can be summarized as follows.

1.2.1 Doppler Speeds Estimation of Moving Human Target with

CFO Removal

In WiFi-based sensing, a fundamental issue is to deal with clock asynchronism between trans-

mitters (Tx) and (sensing) receivers (Rx) [4], which are generally geometrically separated.

Clock asynchronism causes timing offset (TMO), carrier frequency offset (CFO) and sampling

frequency offset (SFO) in the received signals. For sensing, TMO can result in timing ambigu-

ity and hence ranging ambiguity. CFO causes Doppler estimation ambiguity, further degrading

the accuracy of Doppler frequency estimation. Furthermore, clock asynchronism also causes

time-varying phase shifts across discontinuous CSI measurements, which hinders the coherent
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processing of CSI measurements across different timeslots/packets and makes Doppler frequency

estimation challenging. Therefore, to obtain accurate Doppler speed estimation of human tar-

get using complex signals instead of the power only, removing the phase offsets induced by

clock asynchrony is essential.

1.2.2 Cross-Target HAR with Limited Radar Data

Due to the human individual discrepancies, such as the differences in appearances and behaviors,

the measurements of the same activity of different persons are generally diverse. When using

a trained deep learning (DL) model to recognize the activities from various persons, the HAR

performance of this model can be different. Furthermore, when a DL model trained with the

activity data of a known person is applied to identify a new person’s activity, the performance

of this model generally degrades. In this case, to identify the activity of a new person with good

performance, a straightforward strategy is to train a specialized model from scratch for each

person. However, this solution requires a vast amount of radar data for model optimization,

which is difficult and labor-consuming. TL, which utilizes prior knowledge to make a trained

model generalize well on new tasks, is one of the potential solutions for cross-target HAR [5]–[7].

However, the existing approaches often suffer from the catastrophic forgetting effect [8], i.e.,

the tendency of DL models to abruptly forget previously learned tasks after being trained for

a new task. As a result, when a DL model is transferred to the HAR task for a new person, its

performance in recognizing the previous persons will drop. Therefore, there is an urgent need

to deal with the cross-target HAR problem.

1.2.3 Few-shot Radar-based HAR

Due to its powerful studying ability, DL has been widely applied in radar-based HAR tasks.

Most of the existing DL solutions for radar-based HAR are trained with a large volume of

labeled data in a supervised manner. However, since cleaning and labeling wireless signals are

time-consuming and even infeasible, obtaining a large-scale radar dataset is often tricky. To

this extent, data scarcity becomes a bottleneck for the emerging radar-based HAR applications.

Prompt solutions need to deal with the few-shot learning issue in the radar-based HAR field.

Few-shot learning has been utilized for some applications in radar to deal with the issue of

insufficient training data. For instance, Wang et al. [9] proposed a few-shot method based on

the hybrid inference network for synthetic aperture radar (SAR) automatic target recognition
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(ATR). In [10], a convolutional Bi-LSTM network was proposed for SAR target recognition

with few training SAR images. On the other hand, few few-shot learning algorithm has been

proposed in the radar-based HAR application.

1.3 Approaches and Contributions

This dissertation studies contact-free human activity sensing with WiFi and radar signals. The

research approaches and contributions of this thesis are elaborated as follows:

i) We first present three algorithms for Doppler frequency estimation based on the CSI ra-

tio. These algorithms explore different properties of the CSI ratio, including the circle-

preserving property of the Mobius transform, the periodicity of the CSI ratio, and the

difference (or correlation) between segments of CSI-ratio signals. We describe these algo-

rithms by referring to human tracking applications in this thesis, but they can be easily

adapted to other applications. Using a publically available WiFi CSI dataset Widar 2.0,

we then validate the efficiency of the proposed Doppler frequency estimation algorithms.

Experimental results demonstrate that the proposed algorithms can estimate Doppler fre-

quency accurately, outperforming the commonly used approach based on cross-antenna

cross-correlation.

ii) We then introduce an instance-based TL method (ITL) for cross-target activity recognition.

Unlike the existing instance-based TL approaches, we utilize a different similarity metric

to compare the similarity between the source data and the target data. Then, a series of

source samples are specially selected for every piece of target data. Furthermore, during

the fine-tuning process, the selected source samples are assigned diverse importance by re-

weighting their training losses. In this way, the source samples with less domain discrepancy

can contribute more to HAR in the target domain. Last but not least, we design a deep

CNN model especially for radar-based HAR and use it as the backbone of ITL. Experiments

show that the proposed ITL is more generalized to the data distribution discrepancy and

can scale well to recognize different persons’ activities.

iii) We also propose a supervised few-shot adversarial domain adaptation (FS-ADA) method

for HAR, where only a few radar training data are collected from a new application scenario

and used for model training. We adopt the domain adaptation method to learn a common
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feature space between a pre-existing radar dataset and the newly acquired training data.

We also design a multi-class discriminator network, which integrates the category classifier

and the binary domain discriminator for model training with limited labeled samples.

Then, a multitask generative adversarial training mechanism is proposed to optimize FS-

ADA. Experimental results for two few-shot radar-based HAR tasks show that the proposed

FS-ADA method is effective and outperforms state-of-the-art methods.

1.4 Thesis Organization

This dissertation mainly focuses on the research of wireless signal-based human activity sensing,

from both the theoretical and the technical perspectives. Chapter 2 summarizes current works,

including WiFi-based and radar-based human activity sensing, and DL-based HAR with limited

radar samples. Chapters 3, 4, and 5 introduce three published works about wireless human

sensing. Chapter 6 summarizes the contributions of this dissertation and discusses several

possible research directions for future work. This thesis is organized as follows:

Chapter 2: As a literature review chapter, this chapter first presents a survey about wireless

human sensing, including general WiFi-based and radar-based human activity sensing methods.

Also, works on DL-empowered HAR with limited radar samples are investigated. Finally, we

provide a review of human-related sensing in the context of integrated sensing and communi-

cation (ISAC).

Chapter 3: This chapter proposes three algorithms for Doppler frequency estimation based on

the CSI ratio. These algorithms explore different properties of the CSI ratio, including the

circle-preserving property of the Mobius transform, the periodicity of the CSI ratio, and the

difference (or correlation) between segments of CSI-ratio signals.

Chapter 4: It presents ITL, an instance-based TL algorithm for cross-target activity recognition

with radar data. The proposed ITL is more generalized to the data distribution differences and

can be employed for identifying different persons’ activities. Experiments demonstrate that

ITL has good performance for recognizing the activities of diverse persons even with limited

radar data, outperforming several state-of-the-art HAR methods.

Chapter 5 : This chapter presents FS-ADA for few-shot radar-based HAR. This method does

not require much radar data for training when applied to a new environment. We provide
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extensive experiments to verify the performance of our proposed method. The results show

that FS-ADA outperforms the state-of-the-art benchmarks on two few-shot learning tasks.

Chapter 6 : A summary of this thesis is given in this chapter. Several research directions for

future work on wireless sensing are also discussed.
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Chapter 2

Literature Review

This chapter is devoted to reviewing the related works on contact-free human activity sensing

using wireless signals, including WiFi-based and radar-based activity sensing methods, and

the DL-based HAR approaches with limited radar training samples. Furthermore, we provide

a review of integrating human activity sensing with communications (IHASC). Based on geo-

graphical deployments, we categorize current IHASC into three classical configurations, namely,

monostatic, bistatic and distributed deployments, and discuss their properties, critical research

problems and solutions.

2.1 WiFi-based Human Activity Sensing

The ubiquitous deployment and wide coverage have enabled WiFi to provide both network

communication and the ability of sensing surrounding environments. When transmitted to

the physical space, the WiFi signals will interact with the surrounding objects and experience

reflection, scattering, absorption, polarization and other multi-path effects. Then, a rich set of

information about the environment is contained in the received signals, such as the objects’ lo-

cation and moving status. Furthermore, since the off-the-shelf commodity WiFi is low cost and

can be used for sensing without any additional modification, WiFi-based sensing is promising

to be deployed and applied at scale.

RSSI and CSI are two commonly used measurements for WiFi-based sensing. Compared with

RSSI representing the aggregative power of the entire signal bandwidth, CSI provides the fine-

grained channel responses of different subcarriers, and has been applied more widely due to
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Figure 2.1: A time series of 3D CSI measurements from a MIMO-OFDM WiFi system. Adopted

from [11].

its better sensing performance. In this section, we review the state-of-the-art WiFi CSI-based

HAR approaches and the phase offset removal issue in bi-static WiFi systems.

2.1.1 Human Activity Recognition with WiFi CSI

WiFi CSI is a metric that depicts the channel properties between the transmitter and the

receiver along multiple paths. It was initially introduced to estimate the quality of wire-

less channels for effective and reliable transmission of communication data and recently has

been utilized for wireless sensing. Furthermore, with the OFDM technique, CSI from each

transmitter-to-receiver link at each carrier frequency can be obtained, providing sufficient fre-

quency information for sensing. For each subcarrier, the WiFi channel in the frequency domain

can be modeled by

Y = HX + N, (2.1)

where X is the pre-defined transmitted signal, Y is the received signal, and N is the noise.

With X and Y , the CSI matrix H can be estimated at the receiving end after received signal

processing such as deinterleaving, demapping and demodulation. Then, for a MIMO-OFDM

WiFi system with M transmitting antennas, N receiving antennas, and K subcarriers, the CSI

measurements can be represented as a 3-dimensional (3D) matrix of complex values, as shown

in Figure 2.1.

It can be seen from Figure 2.1, a time series of CSI measurements characterize MIMO channel

variations in time (packet), frequency (subcarrier) and spatial (antenna) domains. Information
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from different domains can be extracted from the time-varying CSI matrix and integrated

for diverse sensing purposes, e.g., human target detection, activity recognition, and human

localization.

There are two categories of CSI-based human sensing approaches, i.e., learning-based and

model-based techniques. The learning-based method tries to learn the mapping between the

input data and the output label by using a tremendous amount of training samples for model

optimization. As a typical and effective learning-based method, DL has been widely used for

RF-based human sensing, and has made significant progress. The phase and amplitude of CSI,

whose variations can convey the changing patterns of human movements, are the commonly

used features in learning-based human sensing. For instance, Chen et al. [1] proposed an

attention-based bi-directional long short-term memory (BLSTM) model with WiFi CSI data

for the HAR purpose. Alazrai et al. [2] transformed raw WiFi CSI data into a series of 3D

”time-frequency- spatial” images and proposed a CNN model to recognize human-to-human in-

teractions. Besides, Shi et al. [12] developed a DL method for HAR with only one-shot training

sample. However, DL method requires a considerable amount of training samples to learn the

data distribution. And the performance of deep learning approaches generally improves with

the labeled training samples increasing, which leads to the burden of data segmentation and an-

notation. Furthermore, it is difficult for DL to characterize the physical characteristics of echo

signals with the data-driven learning pattern. As a result, the reliability and interpretability of

DL models may be poor.

Compared with learning-based approaches, the model-based approaches can mathematically

model the relationship between CSI dynamics and human movements, and can achieve better

performance when used for fine-grained applications [2]. Furthermore, model-based methods

are more interpretable and reliable with solid theoretical derivation. In modeling-based ap-

proaches, human-related parameters, e.g., range, angle and moving speed, are first estimated

with reflected signals and then used for human activity analysis. A series of CSI physical models

have been proposed, such as the angle-of-arrival (AoA) model, the Fresnel model, and the CSI-

ratio model. Specifically, the AoA model [13] inferred human activities by estimating the angle

of incident signals at the receiving node and is generally used for human target localization and

tracking tasks. Meanwhile, the distance of the human target can be estimated with the time-

of-flight (ToF) of transmitted signals. For instance, SpotFi [14] proposed a ToF sanitization

algorithm and used the estimated ToF for likelihood estimates. However, such an estimation
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Figure 2.2: Multi-subcarrier Fresnel zones for respiration detection. Adopted from [15].

can not be used for determining range due to the lack of precise synchronization across nodes or

access points (APs). Besides, Zhang et al. [15] proposed the Fresnel model (as shown in Figure

2.2), which divides the space between and around the transceiver into several concentric prolate

ellipsoidal regions, i.e., Fresnel regions. In this case, the amplitude and phase of CSI data can

be correlated with human movements. Specifically, once a human target moves across different

Fresnel regions, the amplitude and phase of CSI will change. Based on Fresnel regions, the

Fresnel penetration model [16] mathematically correlates the Fresnel phase differences between

two different subcarriers with the target’s location. Meanwhile, the CSI-ratio model [3] was

proposed to quantify the relationship between human movements and the phase variations of

CSI measurements. Specifically, the random carrier frequency offsets in the received CSI mea-

surements can be removed by calculating the CSI ratio of the two receiving antennas. Then,

based on the Mobius transform (i.e., the phase shift of CSI caused by human movement can

be approximately equal to the phase shift of CSI ratio), the moving distance of human targets

can be computed. As illustrated in Figure 2.3, three gestures can be distinguished according

to the radian change of CSI, which is also the radian change of CSI-ratio caused by human

movement.
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Figure 2.3: Radian changes of the arc caused by three different gestures. (a) Radian change

can be estimated as the variation of arc tangent angle. (b)–(d) Radian changes caused by three

different gestures. Adopted from [17].

2.1.2 Phase Offset Removal in Bi-static WiFi Systems

In commodity communication systems, e.g., Wi-Fi systems, unlike in the bistatic radar, the

receivers are not tightly synchronized with the transmitter regarding carrier frequency and

time, resulting in extra phase offsets in received CSI measurements. In this case, the frequency-

domain CSI measurement between the ith transmitting antenna and the jth receiving antenna

at the kth subcarrier is given by [4]

Hi,j,k,t = ejφt
L∑
l=1

ble
−j2π(τl+τo,t)nf0ej2π(fD,l+fo,ttTs)e

jul,p,q
, (2.2)

where f0 is the subcarrier bandwidth, n is the index of the nth subcarrier, ejφt is the random

phase shift changing slowly over time t, including SFO and packet detection delay (PDD), τo,t

is the TMO, fo,t is the CFO, ul,p,q is the angle-related term, Ts is the OFDM block period,

tl, fD,l and bl are the signal propagation delay (i.e., ToF), the Doppler frequency, and the

amplitude of the lth path, respectively, and L is the total number of paths. TMO can cause

timing ambiguity and degrade the performance of range estimation. CFO leads to Doppler

estimation ambiguity and further impacts the radial velocity estimation. SFO between every

WiFi transmitter-receiver pair can result in additive noise for time-of-flight (ToF) estimation

across packets.

Therefore, due to the time-variation characteristic of the unknown variables {φt, τo,t, fo,t}

caused by clock asynchronization, explicitly or implicitly estimating {τl, fD,l} for accurate
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sensing becomes challenging.

Several solutions have been proposed to compensate for the phase offsets at the receiving node.

For a single receiver node with multiple antennas, one technique is to construct a reference

signal from the line-of-sight (LOS) path. Then, the TMO in other reflected echoes can be

eliminated by measuring the time-difference of arrival (TDOA) between the reference signal

and the echoes. However, this technique is sensitive to the quality of the constructed reference

signal. The other commonly used strategy exploits the fact that the clock offsets across multiple

antennas at a receiving node are the same due to the shared oscillator clock. Two classes of

methods have been developed based on this fact: Cross antenna cross-correlation (CACC) and

cross-antenna signal (or CSI) ratio (CASR).

Specifically, the CACC approach [18], [19] removes the random phase offsets by computing

the cross-product between signals from multiple receiving antennas. However, the conjugate

multiplication operation introduces additional terms. To remove the extra terms and estimate

fD,l, it is widely assumed that there exists a dominating line-of-sight (LOS) with a much larger

magnitude than non-line-of-sight (NLOS) paths. In this case, the results of the conjugate

multiplication operation can be divided into three parts: the product of static paths of two

antennas, the product of the dynamic paths, and the product of the static paths of one antenna

and the dynamic paths of another antenna. Since the Doppler shift information is contained in

the third part, the first two parts need to be removed with a bandpass filter (BPF). Furthermore,

image components in the third part could degrade the performance of Doppler shift estimation

and needs to be suppressed. In this case, a power adjustment strategy [18] was proposed to

increase the power of the term containing the correct Doppler velocity information and make

Doppler frequencies identified in the spectrogram. At the same time, other alternative schemes

such as mirrored multiple signal classification (MUSIC) algorithm [19] were also proposed.

In contrast, CASR removes the random offsets of multiple receiving antennas via the ratio

between CSI signals. Compared with the CACC method, CASR produces an expression where

only one term in the denominator contains the parameters to be estimated. Experiments

demonstrated that the CASR method could effectively cancel out the noise and improve the

SINR of received sensing signals, enlarging the sensing ranges [20]. Based on CASR, a human

respiration monitoring method was proposed [3], which quantifies the relationship between the

phase variations of CSI ratio and the chest movement. Furthermore, a respiration monitoring
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method for multiple persons was proposed [21]. In this method, multi-person respiration sensing

was modeled as a blind source separation (BSS) problem when the reflected signals of multiple

persons are linearly mixed. Then, the independent component analysis (ICA) algorithm was

adopted to separate the mixed signals for further single-person respiration monitoring. However,

although the potential of CASR has been well demonstrated in respiration pattern detection

and straight-line movement, it has rarely been studied for more complicated scenarios involving

irregular and fast movement.

2.2 Radar-based Human Activity Sensing

2.2.1 Radar Micro-Doppler Effect

The radar micro-Doppler (MD) effect was first proposed by Victor C. Chen in 2000 [22]. When a

non-rigid target moves, in addition to the main Doppler frequency shift caused by the movement

of the target’s backbone, the small movements (e.g., vibration and rotation) of the target’s other

parts will also affect the frequency of the transmitted signals. The generated frequency side

lobes next to the Doppler frequency are the MD frequencies. MD effect shows the moving

characteristics of the target and is an important basis for target analysis and identification.

The mathematical description of the MD effect is as follows.

Suppose there is a mono-static pulsed radar with a centre frequency f0. When a target is

moving in front of the radar with at speed v. Then, the frequency fr of the received signals is

denoted as

fr = f0(1 + 2vr/c), (2.3)

where c is the speed of the light, vr , v sin(θ) is the radial component of v, and θ is the angle

between the moving direction of the target and the radial direction of the radar.

Then, the MD frequency shift is given by

fD = fr − f0 = f0(2vr/c). (2.4)

It can be seen from Equation2.4 that the (micro) Doppler frequency shift is proportional to
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the radial velocity of the corresponding part of the moving target. When a person is moving,

the torso and limbs of the non-rigid human body generally have different moving speeds, which

will modulate transmitted signals on the frequency domain and produce main Doppler and MD

frequency components.

It is assumed that the human target can be divided into K parts, and each part is regarded as

a point target. Then, the echo signal sh corresponding to the whole human body is the sum of

the echo signals of the K point targets, which can be denoted as

sh(t) =
K∑
i=1

at,irect(
t̂− td,i
τ

ej(−2πf0(t−td,i)+πγ(t̂−td,i)
2)), (2.5)

where at, i is the amplitude of the reflected signal, τ is the pulse width, γ is the slope of frequency

modulation, and t̂ is the fast time. Additionally, the total time for signalling t = T (n− 1) + t̂,

where T is the pulse repetition interval (PRI), and n is the number of the transmitted pulse

signal, i.e., the slow time. td,i is the time delay (i.e., the round-trip time required for the radar

signal to be sent to the target and reflected back to the receiving antenna), which is given by

td,i =
2(Ri − vit)

c
(2.6)

where Ri is the range of the ith part of the human target, vi is the radial velocity of the ith

body component relative to the radar.

Meanwhile, the signal amplitude at,i can be formulated as

at,i =
Gλ
√
Piσi

(4π)3/2R2
i

√
Ls
√
La
, (2.7)

where G is the antenna gain, λ is the wavelength, Pt is the signal transmission power, σi is the

radar cross section (RCS) of the ith body component, and Ls and La are the system loss and

the atmospheric loss, respectively.

From Equation 2.5, it can be seen that radar echo signal is a function of fast time and slow

time, and can be represented as two-dimensional (2D) data form, as illustrated in Figure 2.4.

To extract the time-varying Doppler frequency components in the received radar signals, joint

time-frequency transform (JTFT), e.g., short-time Fourier transform (STFT), is generally em-
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Figure 2.4: 2D radar raw data representation.

ployed to transform the 2D ”slow time - fast time” raw data into a ”slow time-Doppler fre-

quency” radar map. The mathematical description of STFT is as follows.

STFT (i,K) =
N−1∑
n=0

xi(n)e−j2π(nK/N), K = 0, 1, ..., N − 1, (2.8)

where xi(n) is a sliding window of length N . The ith window xi(n) is defined as

xi(n) = ŜR(n+ i(N/2))w(n), (2.9)

where w(n) is the weighting function.

Based on the above analysis, it can be inferred that the Doppler frequency resolution ∆f after

STFT can be approximated as the reciprocal of the window duration Tw, namely,

∆f =
1

Tw
=
fs
N
, (2.10)

where fs is the sampling frequency. From Equation 2.10, we can find that the radar operating at

higher frequencies produces wider MD bandwidths. Thus, the Doppler frequency corresponding

to the smaller movement of the target is more significant and easier to detect in the time-

frequency data. Figure 2.6 shows the radar time-Doppler frequency maps from the radars with

different centre frequencies when the human target is running. It can be seen that the time-

frequency maps all show the prominent periodic characteristics of the ”running” movement.
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Figure 2.5: Human activity recognition with manually extracted features and an SVM model

[23].

Specifically, the corresponding radar echoes are the strongest due to the large RCS of the body

torso. Meanwhile, the MD frequency components corresponding to the movement of the limbs

are located on both sides of the main Doppler frequency and change periodically.

Due to the activity-unique characteristic, the time-varying Doppler and MD frequencies have

been widely utilized for radar-based human activity sensing. In addition to frequency informa-

tion, time delay (i.e., range) is also adopted alone or in combination with Doppler frequency

to perform diverse HAR tasks. Furthermore, with the multiple-input-multiple-output (MIMO)

antenna system, angle information of the human target can also be attained with some angle

estimation approaches, such as the MUSIC algorithm.

There are mainly two categories of radar-based HAR, i.e., traditional machine learning (ML)-

based and DL-based HAR. Traditional ML techniques are based on rigorous theoretical deriva-

tion, so they are highly interpretable. Compared to DL models, the complexity of traditional

ML tends to be lower, resulting in less computation and faster models. Support vector ma-

chine (SVM), Dynamic Time Warping (DTW) and random forest (RF) are commonly used ML

models for radar-based HAR. For instance, as shown in Figure 2.5, Kim et al. [23] manually

extracted activity-related features from radar time-frequency maps, such as activity period,

Doppler frequency bandwidth, and Doppler frequency of the human torso. Then, a decision

tree structure consisting of 6 SVMs was constructed to classify 12 human activities.
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Figure 2.6: The time-Doppler frequency maps from the radars with different center frequencies.

Although traditional ML algorithms have been widely used for radar-based HAR, there are still

some defects in such algorithms, which hinder the further improvement of the robustness and

generalization. First, traditional ML-based classification methods rely on heuristic and manual

feature extraction, which is highly dependent on human experience and domain knowledge;

secondly, manual features usually refer to some low-level statistical information, including mean,

variance, frequency, amplitude, etc., which have weak transferability and generalization. As a

result, when a trained model is applied to a new scene, the performance of ML models usually

degrades. In contrast, DL models can automatically learn human target information from radar

data through a hierarchical structure. Also, the automatic feature extraction process does not

require specialized knowledge and human intervention. In addition, with the emergence of

the Graphic Processing Unit (GPU), deep learning algorithms can fully use massive data and

realize fast data processing and computation based on parallel computing technology.

The following subsection reviews the literature on radar-based HAR with DL methods.

2.2.2 Radar-based HAR with Deep Learning

Radar echo signals contain sufficient information about the targets in the environment, such

as range and Doppler frequencies. How to design DL-based signal processing algorithms to

extract the target-related information from the received echoes is an essential topic in radar-

based human target sensing. In this section, we describe DL approaches for radar-based HAR

according to the dimension of radar returns. Table 2.1 lists all the surveyed work in this section.
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Figure 2.7: Illustration of range-Doppler processing.

Table 2.1: Review on DL-based human activity recognition methods with radar.

Echo Form Literature Radar Type Frequency Deep Model

3D TRD maps [24], [25] FMCW radar 60 GHz CNN + LSTM

2D

TD maps

[26] CW radar 4 GHz CNN

[27] CW radar 24 GHz CNN

[28] CW radar 8 GHz LSTM

[29] CW radar 6 GHz SAE

[30] CW radar 4 GHz CAE

[31] Doppler radar 24 GHz CNN

[32] Doppler radar 25 GHz LSTM

[33] Doppler radar 5.8 GHz CNN

[34] UWB radar 4 GHz CNN

[35] FMCW radar 24 GHz CNN

TR maps
[36] UWB radar 3.9GHz CNN

[37] FMCW radar 24 GHz 3D CNN + LSTM

RD maps [38] FMCW radar 24 GHz 3D CNN

TD,

TR maps
[39] FMCW radar 25 GHz SAE

TD, TR,

RD maps
[40] FMCW radar 24 GHz SAE
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Radar signals are transformed into 3D time-range-Doppler data cube by range-Doppler (RD)

processing [41], which is illustrated in Figure 2.7. In this way, multiple components of a target

are resolved not only in range but also in Doppler frequency. The 3D RD ’video’ describes the

slow-time evolution of the target’s activity, as shown in Figure 2.8a. Radar signals can also be

represented in 2D, namely time-Doppler map (Figure 2.8b), time-range map (Figure 2.8c) and

rang-Doppler map (Figure 2.8d). In order to make full use of the information in echoes, DL

methods should be designed more targeted for different forms of echoes.

Figure 2.8: 1D, 2D and 3D radar echoes: (a) 3D time–range–Doppler data cube, (b) 2D time–

Doppler map, (c) 2D time–range map, (d) 2D range–Doppler map.

• Deep Learning Approaches in 3D Radar Echo

Range-Doppler frames reveal moving properties, as well as Doppler properties of targets [42].

Consisting of N time-sampled 2D range–Doppler frames, the 3D RD video sequence conveys

both spatial and temporal characteristics of human activities. Range and Doppler information

consists in every RD frame while time information exists between frames. Compared with 1D

and 2D echoes, the joint time–range–Doppler echoes contain almost all the activity information

that radar receives. Models that can extract both temporal and spatial information are required.
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Since it is challenging to design features manually from 3D echoes, DL methods are more feasible

and preferable for 3D echo-based HAR, thanks to its capability of automatically extracting deep

features. Furthermore, the advent of GPU makes it possible for DL models to process 3D data

quickly and efficiently. Although few DL algorithms have been proposed for 3D radar echoes

till now, DL approaches on 3D echoes are promising for HAR.

3D CNN is one of the most used models for processing 3D data recently [43]–[45]. It extends

the spatial CNN into a spatio-temporal model, and spatial-temporal features are learned au-

tomatically. Z. Zhang et al. [37] proposed a recurrent 3D CNN model for continuous dynamic

gesture recognition using an FMCW radar. 3D CNN was used for extracting short temporal-

spatial features in continuous time–range maps, and then a long short term memory (LSTM)

was adopted for global temporal feature learning. Experiment showed that when 3D CNN

was substituted with a traditional 2D-CNN, the recognition was reduced by around 5%, which

demonstrated that compared with 2D CNN, 3D CNN was able to learn better representations

of hand gestures. Though the input of 3D CNN is time–range maps, this approach is also

suitable for a 3D data cube because the cube contains almost all the activity information in

continuous time–range maps.

A representative example using 3D radar echoes for HAR is GoogleSoli, as shown in Figure 2.9.

GoogleSoli is the first gesture recognition system capable of recognizing a rich set of dynamic

gestures based on short-range FMCW radar [24], [25]. It is based on an end-to-end trained

combination of deep convolutional and recurrent neural networks, and the dataset is comprised

of 3D radar echoes. Combining CNN and LSTM could enhance the ability to recognize different

activities with varied time spans and spatial distributions. It was shown that the approach with

3D range–Doppler videos was better than the frame-level classification approaches, and the end-

to-end ‘CNN + LSTM’ method could explore the gesture information more thoroughly than

the single CNN or LSTM models. With the advent of GoogleSoli, other DL architectures have

been proposed based on it [37], [45], [46]. Furthermore, Li et al. transformed radar echoes into

3D time-range-velocity point sets and proposed a hierarchical PointNet model to classify these

point sets for HAR. However, when both range and Doppler frequency information is utilized,

the complexity of the HAR method is often higher than that of using only Doppler information.
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Figure 2.9: Deep learning architecture of Google Soli, a hybrid model that consists of CNN

and LSTM. Adopted from [25].

• Deep Learning Approaches in 2D Radar Echo

Containing plentiful information of human activity, 3D human backscattering echoes are still

complicated to process. 2D radar echoes, which are mainly referred to as time-Doppler maps,

time-range maps and range-Doppler maps, also carry sufficient human activity information.

Generally, 2D echoes are treated as images, so with the line of computer vision, CNN has

become the most commonly utilized model for 2D echoes. Thus, 2D echo-based HAR is often

transformed into an image classification task.

(1) Time–Doppler map (also referred to as MD spectrograms) includes sufficient time–

varying Doppler information that is pivotal for radar-based HAR [47]. When a human target

is moving, the main Doppler shift is caused by the torso, while MD is produced by rotating or

vibrating parts, such as legs, feet, and hands. The range and velocities of every body part are

often different, as shown in Figure 2.10. When the target acts differently, the time–Doppler

maps corresponding to these activities are various. Time–Doppler maps are easily obtained by

transforming raw echoes with STFT [48] and other joint time-frequency analysis methods. A

simple CW radar with one transmitter and one receiver could be employed for identifying basic

human activities with time–Doppler maps. In addition, time–Doppler maps are intuitive and

explicable. As a consequence, compared with other 2D radar echoes, the time–Doppler maps
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are most commonly used for radar-based HAR up to now [27]–[29], [32], [33], [49]–[53].

R.P. Trommel et al. [49] applied a 14-layer deep CNN (DCNN) on time–Doppler maps to classify

human gaits. The experimental result showed that the DCNN architecture could extract useful

MD features of human gaits even at lower frequencies or low SNR levels, which exceeded the

performance of SVM and the artificial neural network. M.S. Seyfioglu et al. [30] employed

a CAE architecture to discriminate 12 indoor human activities involving aided and unaided

human motions, which often resulted in highly similar MD spectrograms. The CAE model is

composed of 3 convolutional layers and three deconvolutional layers. It can learn nuances in the

MD spectrograms and attains a good recognition performance of 94.2%. This HAR method

shows the potential of radar-based health monitoring systems for assisted living. In [50], a

DCNN-based hand gesture recognition system using time–Doppler maps was proposed. There

were three convolutional layers and a fully connected layer in the model. In addition, how

the DCNN effectively recognizes hand gestures in uncontrolled environments was investigated.

Ref. [31] proposed a DCNN architecture composed of cascaded convolutional network layers

to classify human activities with time–Doppler maps, as shown in Figure 2.11. The Bayesian

optimization with Gaussian prior process was utilized to optimize the network. Experimental

results showed that the performance of this method was better than three existing feature-

based methods.

Figure 2.10: Moving trajectories of different body parts when a human target is walking: (a)

Range of different parts. (b) Radial velocity of different parts. Adopted from [54].
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Figure 2.11: Cascaded DCNN optimized by Bayesian learning technique. Adopted from [31].

(2) Time–range map is composed of multiple pulses along time (see Figure 2.8c). It contains

time-varying range information between the target and the radar. When a person is moving,

different components of the human body have different relative distances from the radar, as il-

lustrated in Figure 2.10a. As a result, although time–range maps neglect Doppler information,

the time–varying range information of the human body can still be used for recognizing human

activities [37]. In [55], time–range maps were utilized to detect falling in assisted living. By

providing range information, the false alarms caused by fall-like activities such as sitting were

reduced. In [36], Y. Shao et al. employed a three-layer DCNN to classify six human motions

such as walking, running and boxing. It was shown that the time–range maps were more robust

than the time–Doppler maps, especially when the radial velocity was low. Additionally, when

increasing the incident angle, the recognition accuracy was maintained at a stable value because

the range information barely changes with the signal to noise ratio.

(3) Range–Doppler map (see Figure 2.8d) illustrates range and Doppler information of

a moving target at a specific time. It can separate different components of the moving

human body parts and locate the target accurately. In addition, range-Doppler maps can

track multiple targets simultaneously, promising for multiple human activity recognition. P.

Molchanov et al. [56] utilized a short-range monopulse FMCW radar with one Tx and three Rx

to sense dynamic hand gestures. A 4D vector representing the hand’s spatial coordinates and

radial velocity was attained with range-Doppler maps from three antennas. Similarly, in [38],

a 4D vector obtained from three range-Doppler maps was combined with a mask from a depth

image. Then a resulting velocity layer was fed into a 3D CNN to identify dynamic car-driver

hand gestures. The 3D CNN can extract spatial-temporal features, which are indispensable for

recognizing dynamic hand gestures of short durations. In [40], two sparse AEs were stacked
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to learn sparse representation from range-Doppler maps gradually, and a Softmax layer was

employed for classification. In [39], a stack AE was utilized to extract features from range-

Doppler maps, and logistic regression was applied for identifying fall/non-fall. Ref. [39], [40]

gave examples of using DL methods on range-Doppler maps for HAR.

(4) Hybrid 2D maps Up to now, most HAR systems based on 2D radar echoes only utilize

one of the above three maps. However, sometimes it is observed that activities that can be

easily distinguished with one map may not be correctly identified with another map. This

motivates the use of multiple maps aiming at reducing false alarms. Ref. [57] utilized the time-

Doppler map, time-range map and range-Doppler map for falling detection. By extracting

range and Doppler information from the three maps, the false alarm rate of fall detection can

be reduced. In [40], three stack AEs and three Softmax classifiers were employed to classify

four human motions (falling, sitting, bending and walking), as described in Figure 2.12. This

method applied time–Doppler maps, time–range maps and range-Doppler maps to fully exploit

the motion information in radar echoes. Then, three classification results were combined to

deliver the final result by voting strategy. Experiments showed that the performance was better

than the one that only used one kind of map. In [39], fall detection was divided into two stages:

using a stacked AE composed of two sparse AEs to distinguish fall/walk from sitting/bend with

time–range maps, and then using another stacked AE with the same structure to distinguish

fall from walk with time–Doppler maps. Detection accuracy of 97.1% was achieved.

Figure 2.12: The scheme for hybrid 2D maps based recognition. Adopted from [40].
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• Deep Learning Approaches in 1D Radar Echo

Projecting the time-range-Doppler data cube to the range dimension can result in 1D radar

echoes, namely high-resolution range profile (HRRP), as shown in Figure 2.13. Though it

is not as intuitive as 2D and 3D radar echoes, HRRP also carries enough information for

identifying human activities. Ref. [58] applied HRRP to analyze human target gaits with an

ultra-wideband radar. Ref. [59] combined HRRP and MD spectrograms to classify human

gaits. Z. Zhou et al. adopted multi-modal signals, including HRRPs and Doppler signatures

acquired from a terahertz radar system to recognize dynamic gestures and the recognition rate

reached more than 91% [46]. Chen et al. [60] proposed a 1-D CNN network to extract features

for HAR. Instead of using the conventional joint time-frequency transformation method, data

transformation is achieved with the first two layers of CNN. Zhao et al. [61] fed the raw

radar echoes after preprocessing into an attention-based encoder-decoder model to recognize

continuous human activities.

Figure 2.13: High resolution range profiles of a hand at a different time. Adopted from [46].

Each sub-figure illustrates the HRRP at a specific time.
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1D radar echoes are time-series and similar to the data obtained from sensors like accelerometers

and gyroscopes. Thus, many approaches used for time series could be adopted to 1D echo-based

HAR. RNN is often utilized for 1D data due to the advantages of modeling sequential data. For

instance, A. Graves et al. proposed a speech recognition architecture composed of LSTM and

Connectionist Temporal Classification (CTC) algorithm that is suitable to label unsegmented

sequence data [62]. This method provides insights into recognizing continuous activities without

annotating manually in advance. A. Hamid et al. [63] applied 1D CNN to the hybrid NN-HMM

model for speech recognition and proposed partial weight sharing for the first time. Although

there are few DL-related studies for 1D radar echoes, DL approaches have the potential to

extract sequential features and deliver good classification results for 1D radar echoes.

2.2.3 HAR with Limited Radar Training Samples

The radar spectrogram is the power distribution of target returns over time and frequency and

is a typical 2D representation for analyzing radar MD spectrograms. These spectrograms are

individual-unique and motion-unique and have been increasingly used for radar-based HAR

[64]–[68].

However, since collecting and annotating radio data manually is time-consuming and expensive,

most labeled radar datasets are pretty small-scale. In this circumstance, training a classification

model from scratch with limited training data, especially a DL model, often leads to overfitting.

Meanwhile, due to the differences in data distribution, directly using a trained model for the

HAR task in a new scenario is generally ineffective. As a result, the performance of HAR

approaches is often hindered by limited radar data, and data scarcity becomes a bottleneck

for the emerging radar-based HAR field. Prompt solutions are required to make DL models

generalize well from insufficient annotated radar data.

Current work about radar-based HAR with limited training data can be roughly divided into

three categories. The first category is to build classifiers robust to limited training data, such

as the models in [69]–[71], and the second category is labeled data augmentation with synthetic

data, e.g., [72]–[74]. TL [75], which can take advantage of prior knowledge from an existing

large-scale dataset (source domain) as a supplement for the tasks on a different but related

small-scale dataset (target domain), is the third category.

Depending on whether the target datasets are labeled or not, two kinds of TL methods, i.e., the
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supervised and unsupervised TL ones, have been proposed for radar-based HAR. The supervised

TL [6], [7], [76], [77] utilizes labeled radar data in the target dataset to transfer the source prior

knowledge. Such an approach can perform well when sufficient labeled data is available for

each class. For instance, Park et al. [78] presented a DCNN model pretrained on ImageNet

and fine-tuned the network with measured radar MD spectrograms for human aquatic activity

classification. Seyfioğlu et al. [6] proposed a residual learning model DivNet trained on the

simulated radar spectrogram dataset and fine-tuned the model with a measured dataset to

classify seven human activities. Additionally, a convolutional autoencoder (CAE) model [5]

was first pretrained in an unsupervised manner, and then fine-tuned with a limited number

of labeled spectrograms. The fine-tuning (FT) strategy adopted in these methods utilizes a

few target data to fine-tune the pretrained DL models, and transfers the source knowledge to

compensate for the insufficiency of target domain data. In this thesis, we refer to such an FT

strategy as the Conventional FT.

However, the performance of Conventional FT approaches often degrades when the amount of

labeled data decreases. Furthermore, the catastrophic forgetting effect [8] (the tendency of DL

models to abruptly forget previously learned tasks after being trained for a new task) usually

occurs in the Conventional FT. In other words, the performance usually decreases when the

model fine-tuned on the target dataset is applied to classify the persons’ motions in the source

dataset. As a result, the Conventional FT method often lacks generalization and cannot scale

well to the persons in different domains simultaneously. To deal with this, researchers have

presented several solutions and applied the proposed algorithms to various fields. For instance,

Jamal et al. [79] demonstrated that the Conventional FT suffered from obvious catastrophic

forgetting for face detection. And Mallya et al. [80] proposed an iterative pruning method to

deal with the catastrophic forgetting effect in the Conventional FT approaches.

On the other hand, the unsupervised TL [81], [82], based on domain adaptation with unlabeled

training data, is employed to learn domain-invariant feature representation. By utilizing the

motion capture database as the source dataset for knowledge transferring, Lang et al. [82]

proposed an unsupervised domain adaptation (UDA) method to learn the domain-invariant

features for classifying the measured radar data. Du et al. [81] utilized an unsupervised

adversarial domain adaption method to reduce the domain discrepancy between the simulated

radar spectrogram dataset and the measured spectrogram dataset. Chen et al. [83] proposed

two adaptation networks that utilized domain adaptation to eliminate the impact of aspect
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angle on HAR with MD spectrograms. However, due to the lack of label information, the

performance of the unsupervised methods is generally not as good as the supervised ones.

2.3 Integrated Human Sensing and Communications

Advance in wireless communication and signal processing facilitates ISAC - a technology

that combines sensing and communication functionalities to efficiently utilize congested wire-

less/hardware resources, and to pursue mutual benefits. Consequently, the future communi-

cations network will be perceptive. Particularly, with the merits of contactless, non-intrusive,

and all-weather day-and-night availability, various standardized wireless signals (WiFi, LoRa,

etc.) have been explored as a new medium to capture ambient human motions, relying on

predefined channel estimation outputs such as the RSSI, and CSI [84]. Recently, such wire-

less sensing functionalities are primarily implemented by exploiting the reference signals of the

standardized fourth-generation (4G) or fifth-generation (5G) waveforms. Hence, the quality of

the above sensory data is fundamentally determined by the prefixed pilot structure, the stan-

dardized waveform, and the spatial relationships of deployed commodity wireless products. The

rationale for the above problem is that existing communication commodities are not primarily

designed for information extraction but for information communication.

In general, human activities impact the wireless signal propagation properties such as reflection,

diffraction and scattering, which provides human activity sensing opportunities through analyz-

ing and mapping the variations of the received signals with a specific activity [11]. However, its

recognition accuracy is subject to the constraints of the communication protocols. On one hand,

by complementing communication commodity with built-in sensing functionality [85], wireless

devices can balance spatial/time/frequency wireless resources between sensing and communi-

cations, and explore untapped signal structures for sensing usage (e.g., data payloads), rather

than the standardized pilot structure only [86]. On the other hand, compared to the contact-

less sensors embedded in the environment, ISAC shows the potential to construct an intelligent

system fast and economically, which is sensitive and responsive to the surrounding variations.

Therefore, it is essential to evaluate both wireless communication and human-related sensing

from a systematic viewpoint, from raw data processing to recognition algorithms to provide a

bird’s eye view for new researchers in this area.

In this section, we provide a review of human-related sensing in the context of ISAC. We first
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Figure 2.14: The general pipeline of IHASC.

elaborate on the overlap and divergence between wireless communication and sensing process-

ing pipelines, by providing a systematic overview of the IHASC signal processing framework.

After that, to explore the impact of wireless devices’ geographical and spatial relationships on

sensing performance, we identify three typical IHASC configurations (e.g., monostatic, bistatic,

and distributed configurations), and discuss their respective key challenges in deployment and

implementation. Furthermore, we analyze the impact of several physical system parameters on

HAR performance and discuss the relevant optimization principle by jointly considering human

sensing and communications. Then, some experimental results are provided to illustrate the

potential and capabilities of different IHASC systems.
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2.3.1 A Systematic View of IHASC Signal Processing

A communication- and sensing-capable radio emission can simultaneously extract the environ-

mental information while conveying communication data from the transmitter to the intended

receiver(s). Even though a number of signaling strategies are able to achieve a unified sensing

and communication waveform, the most straightforward implementation is to reuse the commu-

nication infrastructures for wireless sensing, with a low-cost and fast-deployment footprint. To

provide a systematic view of the evolution from the communication-only devices to the IHASC

infrastructure, in this section, we introduce a general IHASC receiver signal processing frame-

work by examining the similarities and differences of current communication and sensing signal

processing procedures, with reference to the sensing application of HAR. For each procedure,

various state-of-the-art technologies and corresponding challenges are detailed.

• The Shared Procedures

This subsection presents the shared receiving procedures between the communication and sens-

ing signal processing pipelines, as shown in the upper of Fig. 2.14.

i. Time/Frequency Synchronization: Time/frequency synchronization is a fundamental require-

ment for IHASC systems to achieve both high communication data rates and accurate sensing.

Generally, communication demands can be satisfied by compensating the offsets caused by clock

asynchronism using embedded pilots, or by absorbing the offsets into channel estimation. How-

ever, for sensing, the residual offsets can still trigger estimation ambiguity and consequently

produce ghost targets. Assume the carrier frequency of an OFDM system is 3.5GHz, and the

oscillator’s stability is 10 parts per million (ppm). Then, the CFO can be as large as 3.5 GHz ×

10 ppm= 35 kHz. Even when 10 Hz residual CFO is left after a compensation algorithm dedi-

cated to communications, the estimation error of human radial velocity still reaches 0.86 m/s.

Therefore, sophisticated synchronization methods should be devised to ensure high-accuracy

human sensing.

ii. Noise/Interference Reduction: Signal distortions such as interference constitute unintended

but ubiquitous aspects of any radio system. It is well known that a low signal-to-interference-

plus-noise ratio (SINR) severely degrades both communication quality and sensing performance.

However, the communication and sensing functionalities show several divergences when dealing

with interference. For instance, all transmitting paths contain effective signals for communi-
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cation, while some paths (e.g., the paths that are not reflected by targets of interests) are

non-desired for sensing and shall be treated as interference.

iii. Signal Transformation: After preliminary time-domain processing, data transformation of

IHASC signal measurements is employed for space-time-frequency analysis. A typical transfor-

mation is shown in Fig. 2.14, which is a complex-valued 3D data cube and can be shared by

communication and sensing. For instance, for an OFDM system, performing an FFT over time

dimension transforms the time series signals to the frequency domain, and the Doppler infor-

mation is attained. Additionally, an FFT over frequency dimension obtains delay presentation,

which can also reflect the changes in the surrounding environment.

iv. Signal Separation: With the shared processing procedure, sensing and communication

signals may be tightly integrated into a unified IHASC waveform, or be loosely combined in

time, frequency, space, or code domains. Therefore, it is vital to distinguish sensing echoes

from the entangled received signals for the subsequent HAR procedure, which remains an open

issue now.

• Separate Procedures for Sensing

In this subsection, we mainly focus on the signal processing procedure of the sensing pipeline.

Additionally, we summarize the sensing characteristics of several existing wireless networks from

signal structure, network deployment, and data processing perspectives, as shown in Table 2.2.

i. Subcarriers/Antennas Selection: Due to frequency-selective fading and antenna deployments,

the variation patterns of human echoes from different subcarriers/antennas may be diverse, and

are susceptible to external factors such as the moving direction of human targets. The received

sensing signals that show a weak response to the human target moving cannot improve the

HAR performance. In this case, subcarriers/antennas selection is indispensable to retain the

signals that show significant fluctuations with the human movement [87].

ii. Signal Compression The goal of signal compression is to remove the redundancy in the

discrete 3D range-Doppler-angle sensing signals, such as static background clutter and outdoor

environmental noise. There are mainly two signal compression strategies: statistical dimension

reduction approaches and clustering approaches based on the range-Doppler-angle estimates.

However, since each dimension in the 3D data cube has a clear physical meaning, dimension

reduction techniques may destroy the structure and the physical explanatory nature of the data
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Table 2.2: Sensing characteristics of diverse wireless networks

802.11
LTE NR LoRa

ac ad ax

Sensing

Range

Resolution

∼1 m

∼2 m

∼5 m

∼0.05 m

∼1 m

∼2 m

∼5 m

∼10 m

∼50 m

∼100 m

∼0.5 m

∼5 m

∼30 m

∼500 m

∼1000 m

Signal for

Sensings1

STF

LTF

STF

CEF

STF

LTF

DMRS

SRS, CRS

CSI, PRS

DMRS

PTRS

SRS, CSI

Upchirps

Sync Word

Downchirps

Available

Frequency
5 GHz 60 GHz

2.4 GHz

5 GHz

800 MHz

1.8 GHz

2.6 GHz

7.125 GHz

52.6 GHz

169 MHz

433 MHz

868 MHz

915 MHz

Signal

Type2
OFDM OFDMA

SC-FDMA

OFDMA

DFT-S-OFDM

CP-OFDM
Chirps

Coverage ∼5 m ∼5 m ∼8 m ∼15 m / ∼50 m

Cooperative

Sensing

Protocol

supported

Protocol

supported

Protocol

not supported

Data

Fusion

Decentralized fusion

Non-cooperative fusion

Centralized/Decentralized fusion

Cooperative/Non-cooperative fusion

Computing

Hardware

Access point

Phone

BS

Phone

BS

Phone

Edge device

Measurement

for HAR

CSI, RSSI

Round trip time (RTT)

CSI

RSS

RSSI, CSI

Amplitude

Phase

Amplitude

Phase

1 SFD: Start Frame Delimiter; STF: Short Training Field; LTF: Long Training Field; CEF: Channel Estima-

tion Field; DMRS: Demodulation Reference Signal; SRS: Sounding Reference Signal; CRS: Cell Reference

Signal; CSI: Channel State Information; PRS: Positioning Reference Signals; PTRS: Phase Tracking Refer-

ence Signal. 2OFDMA: Orthogonal Frequency Division Multiple Access; SC-FDMA: Single Carrier-FDMA;

DFT-S-OFDM: Discrete Fourier Transform-Spread OFDM; CP-OFDM: Cyclic Prefix-OFDM.
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Figure 2.15: Three deployments of IHASC systems.

cube. In contrast, the clustering-based strategy can retain the 3D data structure [88], and the

sensing data of the human target can be represented as a 3D range-Doppler-angle point cloud

for the subsequent feature extraction.

iii. Feature Extraction: Radio features could be extracted by manual feature engineering, or by

automatic DL algorithms. In manual feature engineering, the amplitude and phase of received

sensing signals are two commonly used features because they can characterize the impact of

human activity on signal propagation. In addition, the time-varying Doppler/micro-Doppler

frequency shifts contained in signal phases, which correspond to radial velocities of different

components of the human body, are also effective for single-person activity recognition. Addi-

tionally, in multi-person scenarios, spatial parameters such as range and angle are indispensable

to separate the signals reflected by different targets. In the case of using cloud points data for

feature extraction, the intensity of the reflected points and the shape of the point cloud can also

be adopted to describe diverse human activities. Meanwhile, DL [89] is an effective tool to au-

tomatically extract HAR-related features. Early researchers have exploited the combination of

CNN with radio-based HAR feature extraction. However, the temporal information of human
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motions gradually vanishes during CNN training, which may seriously degrade the classifica-

tion performance in the next stage. Hence, even with higher computational complexity, the

memory-enabled recurrent NNs are commonly adopted to extract time-varying HAR-related

features, resulting in significantly improved performances.

iv. Activity Recognition: The algorithms for HAR can be divided into two categories: model-

based algorithms and learning-based algorithms [15]. Model-based approaches, e.g., the Fres-

nel Zone model and the Angle of Arrival model, mathematically characterize the underly-

ing relationship between human motion and the resultant signal variations. Hence, human

movement-related parameters can be quantitatively estimated with the signal dynamics. With

clear physical interpretations, model-based algorithms have great potential in achieving fine-

grained activity recognition tasks, and can promote the exploration of sensing limits (e.g., sens-

ing coverage and performance bound) of HAR. On the other hand, learning-based approaches,

including ML-based and DL-based approaches, aim to learn the mapping between sensing mea-

surements and the label of the corresponding human activities by using pre-extracted features.

Generally, both manually extracted and automatically extracted features can be employed in

learning-based methods. However, in most cases, the DL-based feature extractor and classifier

are combined to process input data and then, classify human activity in an end-to-end manner

without any human intervention.

2.3.2 Unique Signal Processing for HAR with Various Deployments

There are mainly three deployments of IHASC systems, i.e., monostatic, bistatic, and dis-

tributed deployments, depending on the locations of transmitters and receivers. In this section,

we discuss the unique properties of these deployments beyond the general signal processing

operations, and present their key problems when used for HAR.

• Monostatic Deployment

A monostatic system transmits wireless signals to sense the environment and captures the

target echoes via the sensing receiver co-located and synchronized with the transmitter. One

example is a 5G New Radio (NR) base station (BS) that senses the environment using the

echoes of its transmitted downlink communication signals. Self-interference (SI) and far-field

HAR are two major concerns in such a deployment.
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i. Self-Interference (SI): In a monostatic system, the leaked transmitted signals generally inter-

fere with the desired echo signals, also known as SI. The strong SI can saturate the receivers

and overwhelm the target echoes. Since most modern communication systems transmit contin-

uous waveform, it is infeasible to use a dumb period for receiving echoes after an ultra-short

transmission period, like in pulse radar, or adopt the transmission signal as the local oscillator

input to remove SI, like in a frequency modulated continuous radar. Full duplex is a long-term

solution to this issue, as described in [90], together with suboptimal near-term solutions, such

as deploying a receiving antenna dedicated to sensing, widely separated from other antennas.

ii. Far-Field HAR: According to the spatial relationship between transmitters and targets, the

sensing area can be divided into two distinct regions: near-field and far-field. In far-field, due to

the low received signal power, low signal-to-noise ratio (SNR) and multipath propagation, the

reflected signals from the human target may be overwhelmed by the background clutter [91].

Specifically, the micro-Doppler frequencies, which are efficient features for HAR, may be too

weak to be captured. Alternatively, other features such as the time-varying range information

of different human body segments can be employed for recognition [39].

Table 2.3: Properties and challenges of the three IHASC deployments.

Deployment Properties Challenges

Monostatic Deployment

Known sensing signals

Synchronized transceiver

Self-interference

Far-field HAR

Bistatic Deployment

Tx/Rx spatially isolated

Compatible with existing networks

Phase offset removal

Unknown data payload

Distributed Deployment

Wide coverage

Multidirectional sensing

Multi-node collaboration

Data fusion

Device deployment

Scheduling issue
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• Bistatic Deployment

Bistatic deployment refers to an IHASC system where transmitters and receivers are spatially

separated. One typical example is Wi-Fi sensing [12]. Compared with monostatic systems,

the bistatic deployment is more compatible with existing communication networks such as

WiFi and cellular networks. Furthermore, the SI issue is naturally avoided with the spatially

bistatic scheme. Nevertheless, phase offset removal and unknown data payload are two pressing

problems in bistatic deployments for performing accurate HAR.

i. Phase Offset Removal: Due to the oscillator instability, phase offset usually exists in the

received signals of bistatic systems, leading to measurement ambiguity and accuracy degrada-

tion. For instance, SFO generally introduces high variations in the phase of sensing signals, and

can even drown out the small phase changes caused by human movement. To compensate for

the phase offsets and recover the information loss, cross-antenna correlation and cross-antenna

ratio techniques are applied [90], based on the fact that the phase offsets between different

receive antennas are the same. An alternative strategy discards the phase information and only

uses the signal magnitude, which results in degraded sensing performance [11].

ii. Exploiting Data Payload for Sensing: Current communication-centric IHASC systems mainly

utilize pilot signals for sensing applications. However, instead of only using a pilot, employing

the entire frame as sensing signals can potentially achieve higher SNRs and a finer Doppler

frequency resolution. In most existing bistatic IHASC systems, the data payload is unknown on

the receiver side. To this end, a possible strategy is to first decode the unknown data payload

according to the channel estimation results, and then employ the entire frame for sensing.

However, the actual benefit of achieving improved SNRs with the sensing-after-decoding scheme

is yet to be verified, and may only be prominent over a limited range of SNRs.

• Distributed Deployment

In a distributed system, all transmitting and receiving devices are distributed in different spatial

locations, which can provide spatial diversity of the illuminated target and obtain human

activity information to deal with target fluctuation [90]. In a distributed system, apart from

the issues in the bistatic system, systematic design and arrangement, such as receiving data

fusion, infrastructure deployment, and scheduling issues, are indispensable.

i. Data Fusion: An efficient data fusion strategy is essential to remove data redundancy from

38



Figure 2.16: Experimental setup (top) and the resulting time-Doppler frequency spectrograms

(bottom) of a human target jumping forward twice, for WiFi (left), radar (middle), and 5G

NR (right) systems, respectively.

different sources and yield global feature representations. Data-level, feature-level, and decision-

level fusion are three typical data fusion techniques [92]. In data-level fusion, raw data from

different nodes are sent to the fusion center (FC) and then aggregated for extracting the HAR-

related information. However, sending a huge amount of sensing data to the FC generally causes

a large communication burden and high hardware costs. In feature-level and decision-level fu-

sion, each node can preprocess its data and send the output features/decisions to the FC, which

require less data exchange between FC and local nodes, greatly saving energy and computing

resources at the FC. Furthermore, such decentralized strategies allow flexible algorithm designs

at different branches and hence can extract unique information from various devices.

ii. Deployment of Host and Slave Devices: In a communication-centric IHASC system, both

the host devices and the slave devices can act as sensing transceivers. However, host device

deployments in a pure communication system and an IHASC system generally follow different
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principles. For instance, in a cellular network, BSs are deployed with little signal overlap to

avoid interference between cells, which is not suitable for IHASC systems, because interference

also contains useful sensing information. Therefore, in IHASC systems, the deployment of host

devices faces a trade-off between communication interference and sensing performance. On the

other hand, though slave device deployment is independent of the communication performance,

the placement of terminals can affect sensing factors such as coverage, orientation, and angles,

and needs to be optimized for better sensing performance.

iii. Scheduling Issue with Target Echoes: In addition to data fusion and device deployment,

sensing human activities also imposes challenges in resource scheduling of distributed IHASC

systems. Since the human echoes could randomly appear in time, frequency, and spatial do-

mains, novel IHASC scheduling algorithms are required to predict the appearance of random

echo signals and schedule the echoes in an orderly manner [86]. Furthermore, intelligent re-

source allocation algorithms can be designed to generate scheduling strategies for all device

nodes, based on context information like quality-of-service (QoS) requirements and battery

consumption.

• Summary and Design Factors

In light of the discussions above, we summarize the properties and challenges of the three types

of deployments in Table 2.3. It can be inferred that the distributed deployment can yield the

best HAR performance due to spatial diversity and wide coverage, and has greater potential for

through-the-wall HAR and compound activity recognition. However, more signal processing

and computational resources are required. In real-world applications, one can select the system

deployment by considering the site and resource constraints.

In addition to the deployment, the system parameters of IHASC systems, as inherited from

communication designs, could also have notable impact on human-related sensing functional-

ity. In Table 2.4, we present the impact of some major system physical parameters on HAR

performance.

2.3.3 Over-the-air Experiments and Results

In this section, we show some experimental results of using different communication signals for

HAR.
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Table 2.4: Impact of Physical Parameters on HAR Performance.

Physical Parameters Impact on Sensing

Pipeline

Impact on HAR performance

Total Signal Bandwidth B Larger B leads to finer

range resolution

Better multi-targets separation

ability along range domain with

larger B

Carrier Frequency fc Greater fc leads to finer ve-

locity resolution but smaller

unambiguous velocity2

Different moving components of

the human target can be be

recorded with finer granularity in

velocity domain

Symbol Duration Ts Larger Ts leads to longer un-

ambiguous range but lower

range resolution

Longer detectable range with Ts

increasing, promising for far-field

HAR

Subcarrier Interval T 1 Smaller T leads to larger

unambiguous velocity but

lower velocity resolution

Wider coverage in velocity do-

main to record the activities with

higher velocity components

MIMO Antenna Array Larger antenna aperture

and higher angular resolu-

tion with more antennas

Locating human target more pre-

cisely at the angular direction;

Distinguishing multiple targets at

closer angular directions

Transmission Power Positively correlated with

the coverage of the sensing

system

Wider HAR coverage with higher

transmission power; Stronger

echo signals and more robust to

interference

1 For single-subcarrier signals, T is Ts, and is euqal to 1/B.

For OFDM signals, T includes Ts and cyclic prefix, and is equal to N/B, where N is the number of subcarriers.

2 Maximum unambiguous velocity vmax = c/(2fcT ), and velocity resolution ∆v = vmax/M , where c is the velocity of

light, and M is the number of symbols.
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In the experiments, the reflected sensing signals corresponding to a human jumping forward

in an in-door scenario of 20 m2 are collected with three wireless systems: 1) a ultra-wideband

(UWB) radar with 1.0 GHz bandwidth, 1.0 ms pulse repetition interval (PRI), and 4.0 GHz

central frequency, 2) a WiFi system with 40 MHz bandwidth, 5.0 ms PRI, and 5.8 GHz central

frequency, and 3) a 5G NR BS system with 100 MHz bandwidth, 10.0 ms PRI, and 3.6 GHz

central frequency. Noting that both WiFi and NR systems collect signal reflections from sep-

arately deployed receiving antennas such that they are working in the bi-static sensing mode.

We preprocessed these sensing measurements using some of the methods described in Section

2.3.1 and 2.3.2, and transformed the measurements into time-Doppler frequency spectrograms

by using the STFT with a window of 32 samples.

To compare the sensing performances, we plot their micro-Doppler signatures in Fig. 2.16. It

can be observed that, although the radial velocity components are of similar magnitude, the

Doppler shifts produced by the system with a higher center frequency are more pronounced.

More distinct frequency shift components can enable the activity-related micro-Doppler features

to be extracted from the reflected echoes manually, improving the performance of modeling-

based HAR approaches. Meanwhile, low PRI leads to finer time resolution, enabling the echo

signals to convey the time-varying characteristics of human activities in more detail. Therefore,

the system with low PRI can be used to distinguish some similar human activities. Furthermore,

the intensity of the spectrogram from the NR system is the strongest, indicating the NR system

can be more robust to interference and has a wider coverage for HAR.

2.4 Summary

This chapter reviewed the current work on contact-free human activity sensing with WiFi and

radar signals. Specifically, we first overviewed the state-of-the-art WiFi-based human sensing

methods, which can be divided into modeling-based and learning-based approaches. Then, we

introduced radar-based HAR approaches, emphasizing DL-empowered methods. Since DL is

a data-driven approach whose performance could degrade when training data is insufficient,

we further reviewed the current DL-based human sensing with limited radar training samples.

Furthermore, we illustrated the general pipeline of IHACS signal processing and categorized

IHASC systems into three typical deployments to elaborate on the characteristics and problems

in these three deployments.
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Chapter 3

Doppler Speeds Estimation of Moving

Human Target with Cross-Antenna

Signal Ratio

3.1 Introduction

In a variety of context-aware human sensing tasks, estimating the Doppler frequencies from

the received signals is an essential step [2]. For instance, the estimated Doppler frequency

can be used to determine respiration pattern and human moving velocity [11]. Passive WiFi

radar (PWR) has been designed to estimate Doppler frequency indoors [93], [94]. In PWR,

two clock-synchronized receivers collaboratively work, one receiving direct WiFi signals as ref-

erences and the other receiving echo signals for sensing. Another mainstream of WiFi sensing,

which has more joint communications and sensing flavor, employs the by-product of a WiFi

communication receiver, namely the channel state information (CSI), which does not require

a separate reference receiver [3], [18]. In such WiFi sensing systems, Tx and Rx are generally

geometrically separated, like a bistatic radar system. However, unlike in the bistatic radar,

there is typically no common clock between the spatially-separated Tx and (sensing) Rx, which

leads to the clock asynchronism issue. To estimate CSI, a WiFi receiver would generally use

the training signals to synchronize with the WiFi transmitter. This level of synchronization,

however, is not sufficient for accurate sensing [4]. In particular, the CFO residual in a WiFi

receiver can be tens hertz in general. Even it is 10 Hz, the Doppler estimation error can be as
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large as 1.25(= 10 × 3×108
2.4×109 ) m/s, for a 2.4 GHz WiFi system. Therefore, the communication

synchronization errors must be further addressed for accurate sensing. As a result, when using

complex signals instead of the power only for accurately estimating Doppler frequencies, re-

moving the phase offsets in WiFi CSI induced by clock asynchrony is an essential prerequisite

step.

In this chapter, we study Doppler frequency estimation using the CASR method for scenarios

with general movement. We first develop a CSI-ratio expression disclosing more insights, using

a more general CSI model as a function of delay, Doppler frequency and AoA, instead of the

widely used and simpler one only based on signal propagation distance [3], [20], [21]. We then

propose three algorithms for estimating Doppler frequencies: Mobius Transformation-based,

signal difference-based, and periodicity-based. These algorithms exploit different features of

the CSI ratio in terms of Doppler frequencies and can be applied to scenarios involving general

and/or irregular movement. We describe these algorithms by referring to human tracking

applications in this paper, but they can be easily adapted to other applications. Using a

publically available WiFi CSI dataset Widar 2.0, we then validate the efficiency of the proposed

Doppler frequency estimation algorithms.

The rest of the chapter is organized as follows. Section 3.2 presents and analyzes the CSI ratio

based on a general CSI model. Three CSI-ratio-based Doppler frequency estimation algorithms

are provided in Section 3.3. In Section 3.4, experimental results are presented to validate the

efficiency of the proposed methods. Section V provides a more detailed review of related work

on RF-based human sensing and phase offset removal in bi-static wireless sensing systems.

Finally, the conclusion is provided in Section 3.5.

3.2 Sensing Signal Model

In this section, we first introduce the basic concept of CSI and present the relationship between

the Doppler frequency of a moving human target and the change of CSI measurements. Then,

we adopt the cross-antenna signal radio strategy to solve the clock synchronization problem,

and describe the properties of the produced CSI-ratio measurements when being utilized for

Doppler frequency estimation.
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3.2.1 CSI Model

We consider an MIMO-OFDM system with MT transmit antennas and MR receive antennas.

Let B denote the total signal bandwidth, N be the number of total subcarriers, f0 = B/N be

subcarrier interval, and Ts be the OFDM symbol period.

Consider a planar wave-front signal propagation model. The array steering vector of a uniform

linear antenna array (ULA) at the receiver is given by

a(MR, α) = [1, eju(α), ..., ej(M−1)u(α)]T, (3.1)

where u(α) = 2πd/λ sin(α), λ is the wavelength, d is the antenna spacing, and α is the angle-

of-arrival (AoA) of a signal path. Similarly, we can define a(MT , β) for the transmitter array,

where β is the angle of departure (AoD).

The frequency-domain OFDM channel state matrix H(t) at the n-th subcarrier at time t can

be represented as [95]

Hn(t) = ejφn(t)
L∑
l=1

ble
−j2πn(τl+τo(t))f0ej2π(fD,l+fo(t))t

·a(MR, βl)a
T(MT , βl),

(3.2)

where bl is the amplitude of the l-th multipath; τl is the propagation delay; fD,l is the Doppler

frequency caused by the moving human target; φn(t), τo(t) and fo(t) are the time-varying

phase shift, TMO and CFO induced by clock asynchronism between transmitters and receivers,

respectively.

Since our algorithms to be proposed can be similarly applied to each subcarrier, we drop the

subscript n hereafter. We also consider the CSI with a single transmitting antenna. For multiple

transmitting antennas, the channel matrix can be easily separated for each antenna as the

training sequences across transmitting antennas are generally orthogonal. Assume that there

is only one dynamic path and Ls (Ls ≥ 1) static paths, which corresponds to approximating

the single mobile human target to be sensed as a point source.

Under the above setup, we rewrite the channel CSI at the m-th receive antenna, Hm(t), as the

sum of static paths and dynamic path. Let

Hm
s (t) =

Ls∑
ls=1

blse
−j2πnτlsf0ej(m−1)u(θls ), (3.3)
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and

Hm
d (t) = bde

−j2πnτdf0ej(m−1)u(α) (3.4)

represent parts of the static and dynamic paths, respectively, where τls and θls are the TMO

and AoA of the l-th static path, respectively; τd and α are the TMO and AoA of the dynamic

path, respectively, and u(θls) , 2πd/λ sin(θls). Note that the AoD related phase term has been

absorbed into bls and bd. We can then represent Hm(t) as

Hm(t) =ejφn(t)ej2π(fo(t)t−nτ0(t)f0)·(
Hm
s (t) +Hm

d (t)ej2πfDt
)
. (3.5)

3.2.2 CSI-Ratio Model

The CSI ratio R(t) between the m-th and (m+ 1)-th receiving antennas can be expressed as

R(t) =
Hm(t)

Hm+1(t)
(3.6)

=
Hm
s (t) +Hm

d (t)z(t)

Hm+1
s (t) +Hm+1

d (t)z(t)
,

where

z(t) , e2πfDt. (3.7)

The varying speeds of sensing parameters, Doppler frequency, propagation delay and AoA are

very different due to the movement of a human target. AoA typically changes most slowly, and

then delay and Doppler frequency. When a human target is moving at a speed up to five meters

per second, we can reasonably assume they are all fixed over a period of tens of milliseconds.

Therefore, in such a short time period, Hm
s (t), Hm+1

s (t), Hm
d (t) and Hm+1

d (t) are constant, and

can be denoted as Hm
s , Hm+1

s , Hm
d and Hm+1

d , respectively. In this case, R(t) only varies with

z(t) and can be rewritten as

R(t) =
Hm
s +Hm

d e
j2πfDt

Hm+1
s +Hm+1

d ej2πfDt

=
Hm
s +Hm

d e
j2πfDt

Hm+1
s +Hm

d e
ju(α)ej2πfDt

. (3.8)

Collecting CSI measurements over this period, we can then estimate the Doppler frequency fD

based on Equation (3.8).
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3.3 Proposed Doppler Frequency Estimation Methods

In this section, we propose three Doppler frequency estimation algorithms, by exploiting several

different properties based on the CSI-ratio model developed above. These algorithms estimate

a Doppler frequency for each segment of CSI-ratio samples, over a time window of tens-of-

millisecond.

Firstly, we apply a calibration step to avoid the estimation of a pseudo Doppler frequency when

the target is moving at almost zero velocity or is stationary. In this case, the phase of CSI

data changes slightly due to the environmental noise. If this case is not identified in advance,

our proposed algorithms will estimate a pseudo Doppler frequency. To deal with this issue, we

calculate the square deviation of CSI amplitude in the time window, and compare the deviation

value with a preset threshold. If the deviation is larger than the threshold, we then activate

one of the proposed algorithms. Otherwise, the Doppler frequency in this time window is set

to 0 Hz.

Next, we describe the three algorithms.

3.3.1 Doppler Frequency Estimation based on Mobius Transforma-

tion

In the complex plane, with t increasing, z(t) is a unit circle rotating clockwise or anticlockwise,

depending on the sign of fD. When Hm
s , Hm+1

s , Hm
d and Hm+1

d are invariant and satisfy Hm
s H

m
d

- Hm+1
s Hm+1

d 6= 0, R(t) can be treated as the Mobius transformation of z(t) in the complex

plane, as illustrated in Figure 3.1.

After the translation, complex inversion, and multiplication transform in Figure 3.1, we can

see that the CSI ratio also changes along a circle in the complex plane, although the speed of

variations become non-uniform, due to the inversion transform. When the magnitude of the

static component is larger than that of the dynamic one, the CSI ratio R(t) and z(t) rotate in the

same direction in the complex plane; otherwise, they rotate in opposite directions. For human

sensing applications in real scenarios, the magnitude of the static component Hm
s is generally

larger than that of the dynamic component Hm
d [3]. In this case, the rotation direction of z(t)

can be inferred based on the direction of R(t).

Furthermore, according to the Mobius transformation, z(t) → R(t) is a conformal map, as
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Figure 3.1: Illustration of Mobius Transform. With the translation, complex inversion, multi-

plication operations, z (t) is transformed to R(t), which is the Mobius transform of z (t).

shown in Figure 3.1 [96]. Let θR(t) be the angle of a point at R(t) with respect to its center

C0. That is, θR(t) = ∠(R(t)− C0). Then, at some relatively larger time interval ∆t, the angle

variation ∆(θz) of z(t) and ∆(θR) of R(t) is approximately equal, i.e.,

∆(θR) ≈ ∆(θz). (3.9)

When ∆t is a few milliseconds, the Doppler frequency fD = vD
c
fc of the human target can

be regarded as invariant, where vD is the relative radical speed of the human target, fc is the

carrier frequency, and c is the speed of the light. Therefore,

∆(θR) ≈ ∆(θz) = 2πfD∆t. (3.10)
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To obtain ∆(θR), we need to estimate the center C0 of the CSI-ratio samples R(tk)
n
k=1 = {R(t1),

R(t2), ..., R(tn)} within ∆t, where ∆t = tn− t1. We adopt the least square method to estimate

C0.

Proposition 3.1 : In the complex plane, let the coordinate of C0 be (A, B) and the radius of

the CSI-ratio circle be r, the coordinate of C0 can be obtained by

min
A,B,r

n∑
k=1

δ2k = min
A,B,r

n∑
k=1

(
(xk − A)2 + (yk − B)2 − r2

)2
, (3.11)

where (xk, yk) is the coordinate of R(tk) in the complex plane.

Proof : Please refer to the Appendix.

Note that not a whole circle samples are needed to get the estimate of C0, and quite often a

segment of arc is sufficient. Then, the coordinate of C0 can be estimated as given in Equation

(A.16). With the estimated C0, the coordinate of R(tk)
n
k=1 with respect to C0 can be calculated.

Then, the new CSI-ratio samples Rs(tk)
n
k=1 is given by

Rs(tk)
n
k=1 = R(tk)

n
k=1 − C0, (3.12)

which equivalently shifts the center of R(t) to the origin of the complex plane.

Therefore, the angle θR(tk)
n
k=1 = {θR(t1), θR(t2), ..., θR(tn)} and the magnitude (i.e., absolute

value of the amplitude) aR(tk)
n
k=1 = {aR(t1), aR(t2), ..., aR(tn)} of the new CSI-ratio samples

Rs(tk)
n
k=1 with respect to C0 can be obtained. Then, based on Equation (3.10), when fD is

invariant, (tk, θR(tk))
n
k=1 = {(t1, θR(t1)), (t2, θR(t2)), ..., (tn, θR(tn))} form a linear mapping,

i.e.,

θR(tk) = β1tk + β2, (3.13)

where β1 is equal to 2πfDTs.

To get the estimate for β1, we adopt a weighted linear fitting method

min
β1,β2

Q(β1, β2) = min
β1,β2

n∑
k=1

wk (θR(tk)− (β1tk + β2))
2 , (3.14)

where we use the magnitude aR(tk) as the weight wk. The weights can reduce the impact of

phase errors of small ratio. Then, the estimated fD can be calculated as β1/(2πTs).
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The main steps of estimating fD with the Mobius-Transformation-based algorithm are illus-

trated in Algorithm 1. Note that this method can directly estimate the sign of the Doppler

frequency, and is the only one with this capability in the proposed three algorithms in this

paper.

Algorithm 1 Doppler Frequency fD Estimation based on Mobius Transformation

Input: A sequence of CSI-ratio samples R(tk)
n
k=1 = {R(t1), R(t2), ..., R(tn)} within ∆t, where

∆t = tn - t1

Output: The estimated fD within [t1, tn]

1: The coordinate of the center C0 of R(tk)
n
k=1 is denoted as [A,B]

2: Find the values of A and B that make the sum of deviation δ2k in Equation 3.11 reaches the

minimum value

3: The new CSI-ratio samples Rs(tk)
n
k=1 are calculated as R(tk)

n
k=1 − C0

4: The angle of Rs(tk)
n
k=1 are denoted as θR(t1), θR(t2), ..., and θR(tn), and the magnitude are

aR(t1), aR(t2), ..., and aR(tn)

5: Estimate the value β1 = 2πTsfD with the angle and the magnitude of Rs(tk)
n
k=1, by using

the weighted linear fitting methods in Equation 3.14

6: fD = β1/2πTs

7: return Estimated fD within the time period [t1, tN ]

3.3.2 Doppler Frequency Estimation based on Periodicity of CSI

Ratio

Since z(t) → R(t) is a conformal map, z(t) and R(t) have the same periodicity. Therefore,

when the radian of z(t) changes by 2π, R(t) goes exactly one period. In this case, we can

estimate fD based on the periodicity of R(t). Specifically, for a sequence of CSI-ratio samples

R(t) = {R(t1), R(t2), ..., R(tn)}, denote their angles relative to the point O=(0, 0) on the

complex plane as γ(t) = {γ(t1), γ(t2), ..., γ(tn)}. Then, if there are two angles separated by a

reasonable amount of time are similar, we can infer that R(t) goes through a cycle within this

period ∆t. Then, fD can be estimated as

fD =
2π

2π∆t

=
1

∆t

. (3.15)
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The detailed fD estimation process based on the periodicity of CSI ratio is presented in Algo-

rithm 2.

3.3.3 Doppler Frequency Estimation based on Signal Difference/-

Correlation

Since Hm
s , Hm+1

s , Hm
d and Hm+1

d are time-invariant, two segment of signals of R(t) separated

by n?Ts (fdn
?Ts ≈ 1) will exhibit high correlation. In this subsection, we exploit such signal

difference (or correlation) to estimate fD.

Rewrite Equation (3.8) as

R(t) = a+
b

c+ z(t)
, (3.16)

where b , (Hm
d H

m+1
s −Hm

s H
m+1
d )/Hm+1

s , a , Hm
s /H

m+1
s , and c , Hm+1

d /Hm+1
s . Here a, b,

and c are also time-invariant. With tk = kTs, R(tk) can be simplified as R(k) = a+b/(c+ z(k)).

Then, the square of the difference ∆2
R(n) between two CSI-ratio samples R(k) and R(k + n)

can be represented as

∆2
R(k, n) = |R(k + n)−R(k)|2

= |b|2 · | ej(k+n)v − ejkv

(c+ ejkv)(c+ ej(k+n)v)
|2,

(3.17)

where v , 2πfDTs. From Equation (3.17), we can see that when ejn2πfDTs = 1, i.e., nfDTs = 1,

∆R(k, n) is 0. This is the ideal case when a sequence of signals fully repeat themselves and

noise is absent. In practice, it may not be exactly zero. To exploit the averaging effect,

we instead compute the difference (or correlation) between two segment of signals spaced at

different distances, and then look for the minimum (or maximum correlation) of the output.

Using the difference, this can be presented as

n? = argn min
1

K

k0+K−1∑
k=k0

∆2
R(k, n), n = n0, · · · , N ; (3.18)

fD = 1/(n?Ts), (3.19)

where N does not have to be equal to K. Note that two pieces of R(k) slightly separated may

also exhibit high correlation as the phase differences caused by the Doppler frequency could be

small. Therefore, we shall either start from a relatively large n0 and then look for the first local

minimum, or start from n0 = 1 but look for the first “bottom” of the difference power (where
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Algorithm 2 Doppler Frequency fD Estimation based on Periodicity of CSI Ratio

Input: The angle of a sequence of CSI-ratio samples {γ(t1), γ(t2), ..., γ(tN)} within the time

period [t1, tN ];

The minimum sample size Smin in one cycle;

The maximum sample size Smax in one cycle;

step I;

Output: The estimated fD within [t1, tN ]

1: Initialize k = 1

2: Initialize an empty list F list

3: while dok ≤ N - Smax

4: The angle sample γ(tk) is denoted as γbase

5: j = k +1

6: while doj − k ≤ Smax

7: if ( thenγ(tj)− γ(tk))(γ(tj + 1)− γ(tk)) ≤ 0 and Smin ≤ (j − i)

8: S = j − k

9: break

10: S = Smax

11: end if

12: j = j +1

13: end while

14: fD = 1
STs

15: Add fD to F list

16: k = k + I

17: end while

18: Average the fD values in F list, and fD in [t1, tN ] is estimated to be the averaged value

19: return Estimated fD within the time period [t1, tN ]
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curves go down first and then up). The latter is easier to implement without the trouble of

determining the value of n0 and is generally more reliable.

The detailed implementation of this method is illustrated in Algorithm 3.

Algorithm 3 Doppler Frequency fD Estimation based on Signal Difference

Input: A sequence of CSI-ratio samples {R(n)}Nn=1 within the time period [t1, tN ]; The length

k0 of the reference sample dataset {R(1), R(2), ..., R(k0)}; Pseudo-periodicity n0

Output: The estimated fD within [t1, tN ]

1: Initialize an empty list D list

2: while don0 ≤ n ≤ N

3: Initialize ∆s = 0

4: while dok0 ≤ k ≤ k0 +K − 1 ≤ N

5: ∆2
R(k, n) = |R(k + n)−R(k)|2

6: ∆s = ∆s + ∆2
R(k, n)

7: end while

8: Add ∆s to D list

9: end while

10: Find the value n? from D list that satisfies n? = argn min 1
K

∑k0+K−1
k=k0

∆2
R(k, n)

11: fD = 1
n?Ts

12: return Estimated fD within the time period [t1, tN ]

3.4 Experimental Results and Analysis

To verify the effectiveness of the proposed methods, we conduct experiments by employing the

public WiFi CSI dataset Widar 2.0 [97]. The system uses one single transmitting antenna

and three receiving antennas. The Intel 5300 WiFi card is used for CSI collection. The human

motion channel CSI were collected in three environments: classroom, office and corridor. Several

typical trajectories of human movements are shown in Figure 3.2.

We estimate the Doppler frequency of a human target moving in the three environments, using

the three proposed algorithms, and compare the results with those obtained by the CACC

method in IndoTrack [18]. The estimation results are illustrated in Figure 3.3 - Figure 3.5 for

classroom, office and corridor, respectively. Specifically, for the CACC method, we perform
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Figure 3.2: Three trajectories of human movements in three scenarios.

STFT on the CSI data after the antenna selection and the conjugate multiplication operations,

and transform the data into a 2-dimensional time-Doppler frequency map, as shown in Figure

3.3(a) - Figure 3.5(a). Furthermore, at every time point, we select the frequency component

that has the maximum power value, and treat these frequency components as the estimated

Doppler frequencies, as shown in the black marks in Figure 3.3(b) - Figure 3.5(b). The sign of

the Doppler frequency estimate in the Mobius-based algorithm is used as the sign in the other

two algorithms.

From the estimated Doppler frequency results, we can see that the proposed three algorithms

generally perform well, demonstrating much smaller fluctuations, compared to the CACC

method in [18]. The image components are not effectively removed in [18], and cause large

deviations in the estimates. Additionally, among the three methods, the signal difference-based

algorithm achieves the best performance in the three scenarios, although it is incapable of es-

timating the sign of target Doppler frequency. The calibrated results of the difference-based

method is also shown in Figure 3.6. Comparing with the results in Figure 3.3(b) and 3.4(b),

we can see that with calibration, the performance is notably improved when the target moves

at a low speed.

Overall, the performance of the Mobius-based algorithm is inferior to that of the difference-

based one. Despite of this, the Mobius-based method is capable of estimating both the value and

sign of a Doppler frequency. This is a very important feature. Furthermore, compared with the

other two proposed algorithms, the periodicity-based method appears to achieve less accurate

estimates. This is probably because unlike the other two algorithms, it does not explore the

diversity effect of exploring multiple samples in the estimation and hence is susceptive to the

noise. The advantage of this approach is that it is easy and simple to implement, and can be
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(a) The estimation results with the IndoTrack method [18].

(b) The estimation results with the three proposed methods.

Figure 3.3: Doppler frequency estimation results in the classroom scenarios
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(a) The estimation results with the IndoTrack method [18].

(b) The estimation results with the three proposed methods.

Figure 3.4: Doppler frequency estimation results in the office scenarios
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(a) The estimation results with the IndoTrack method [18].

(b) The estimation results with the three proposed methods.

Figure 3.5: Doppler frequency estimation results in the corridor scenarios
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Figure 3.6: The estimated Doppler frequency in the office scenario with the calibrated difference-

based approach.

used for a rough or initial estimation of target Doppler frequency.

3.5 Summary

In this chapter, we have proposed three Doppler frequency estimation algorithms based on the

CSI ratio across antennas for applications involving sensing of moving targets, such as human

activity recognition and mobile tracking. Among them, the signal difference-based algorithm

has the best and the most robust performance for Doppler frequency estimation, while the

periodicity-based algorithm is the easiest one to implement. However, these two algorithms

cannot estimate the sign of Doppler frequency. In contrast, the Mobius-based method can

evaluate both the sign and value of Doppler frequencies. As a result, the best solution may be

to combine the strengths of the three algorithms. The current work may also be the cornerstone

for estimating other moving parameters based on the CSI-ratio model, e.g., time delay and AoA

of human targets.
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Chapter 4

Cross-target HAR with Limited Radar

Micro-Doppler Signatures

4.1 Introduction

Due to the human individual discrepancies, such as the differences in appearances and behaviors,

the measurements of the same activity from different persons are generally diverse. When using

a trained deep learning (DL) model to recognize the activities from various persons, the HAR

performance of this model can be different. Furthermore, when a DL model trained with the

activity data of a known person is applied to identify a new person’s activity, the performance

of this model generally degrades. TL, which utilizes prior knowledge to make a trained model

generalize well on new tasks, is one of the potential solutions for cross-target HAR [5]–[7]. For

instance, Park et al. [78] presented a deep convolutional neural network (CNN) pretrained

on ImageNet, and fine-tuned the network with measured radar MD spectrograms for human

aquatic activity classification. Seyfioğlu et al. [6] proposed a residual learning model DivNet

trained on the simulated radar MD spectrogram dataset, and fine-tuned the model with a

measured dataset to classify seven human activities. The fine-tuning (FT) strategy used in

these methods utilizes the target data to fine-tune the pretrained DL models, and transfers

the source knowledge to compensate for the insufficiency of target domain data. We refer this

strategy to the Conventional FT.

However, the performance of Conventional FT approaches often degrades when the amount

of labelled data drops. Furthermore, the catastrophic forgetting effect [8] (the tendency of
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DL models to abruptly forget previously learned tasks after being trained for a new task)

usually occurs in the Conventional FT. In other words, when the model fine-tuned on the

target dataset is applied to classify the persons’ motions in the source dataset, the performance

usually decreases. As a result, the Conventional FT method often lacks generalization, and

cannot scale well to the persons in different domains simultaneously.

In this chapter, aiming at enhancing the generalization ability of DL-based HAR on human

individual differences and improving the HAR performance in different persons’ activities, we

propose a novel instance-based TL approach ITL for cross-target activity recognition.

The overall flow of the proposed ITL is shown in Figure 4.1. Firstly, we design a deep CNN

MNet for radar-based HAR as the backbone of ITL, and pretrain it with all available source

data (see Figure 4.1(a)). At the same time, a correlated source data selection (CSDS) algorithm

is designed to pick up partial instances from the source domain as supplements for the target

data (see Figure 4.1(b)). Then, an adaptive collaborative fine-tuning (ACFT) algorithm (see

Figure 4.1(c)) is presented to fine-tune the pretrained MNet with the whole target dataset and

the selected source data. With ACFT, ITL can perform the target task while retaining partial

source knowledge. This property allows the fine-tuned MNet to be used for classifying the

target activity data and accurately identifying the activities in the source dataset. In other

words, ITL is more generalized to cope with the data distribution discrepancy between the two

domains, which is often caused by human activity differences.

The major contributions of this chapter can be summarized as follows.

1) We propose an instance-based TL approach ’ITL’ for radar-based cross-target activity recog-

nition with limited training data. The proposed approach can generalize well to human activity

differences, and achieve good performance when used to recognize the activities of diverse per-

sons.

2) ITL is a unique algorithm that consists of three interconnected parts, including DL model

pretraining, correlated source data selection and adaptive collaborative fine-tuning. Any of the

three components cannot be excluded; otherwise, the performance of the entire algorithm for

HAR decreases.

3) The experimental results demonstrate that ITL has good performance for recognizing the

activities of six persons with limited radar data, outperforming several state-of-the-art HAR
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Figure 4.1: The pipeline of the proposed ITL method for cross-target HAR.

methods. Furthermore, though trained for the classification task in the target dataset, ITL can

still recognize different persons’ activities in both the source and target domains.

The rest of this chapter is organized as follows. Section 4.2 describes the measured data

collection and preprocessing process and presents some data analysis. Section 4.3 introduces

the structure of ITL. Section 4.4 presents the analysis and discussion of the experimental results.

Furthermore, some ablation studies on ITL are performed in Section 4.5. Finally, Section 4.6

concludes this paper.

4.2 Data Collection, Preprocessing and Analysis

4.2.1 Data Collection

We utilize a UWB radar PulsON 440 for the experiments. PulsON 440 is composed of two an-

tennas for transmitting and receiving C-band radio signals. The waveform generator generates

chirp signals with a bandwidth of 1.8 GHz and a centre frequency of 4.0 GHz. The UWB radar

can distinguish the main scattering points of the human target due to its high range resolution.

The SNR of the received signals can be improved by accumulating the echo signals of multiple

61



Figure 4.2: The pipeline of radar raw signal preprocessing. (a) MTI for background clutter

suppression. (b) Data segmentation. (c) STFT. (d) Data normalization. (e) Resizing spectro-

grams.

strong scattering points. Thereby, the target recognition ability of the UWB radar is enhanced.

The experiments are conducted in an indoor environment. The radar is set at the height of 1

m, and six activities (M1: running forward, M2: running in a circle, M3: jumping ahead, M4:

sitting on a chair, M5: walking along, M6: boxing in place) are performed by six persons in

the line-of-sight of the radar with an aspect angle of 0 degrees. All the subjects are limited

to moving within the range from 1.5 m to 7.5 m. Each of the six activities is continuously

performed by an individual for approximately 1.5 minutes. And in each scenario, the process

is repeated one to three times. The basic physical information of the six subjects is listed in

Table 4.1.

Table 4.1: Basic physical information of the six subjects

Sub ]1 Sub ]2 Sub ]3 Sub ]4 Sub ]5 Sub ]6

Age 23 25 23 23 23 24

Height (cm) 173 178 172 166 188 169

Weight (kg) 73 71 75 66 92 52

4.2.2 Data Preprocessing

In this study, we employ MD spectrograms as input to the network, treating HAR as a spec-

trogram classification problem. Figure 4.2 illustrates the radar data preprocessing process.
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Figure 4.3: Several typical MD spectrograms of human activities.

Firstly, the moving target indicator (MTI) is adopted on the raw radar echo signals to remove

the static background clutter. Next, the processed radar data is divided into several segments

of 1 s so that there is an approximately complete cycle of each of the six activities. The overlap

between adjacent segments is 0.36 s.

Based on this, a 1024-point STFT is used to process these data segments. Since the human

bodies are distributed targets, the scattered data from the bodies are spread over a few range

cells. Thus, the STFT is performed on the radar data that are summed over several resolution

cells. The obtained 2-dimensional radar data after the STFT is still complex-valued, and the

modules of the 2D complex data are utilized to form the 2D spectrograms.

Then, we normalize all the spectrograms to make the values in the spectrograms fall into [0,1].

Data normalization can prevent the value of a particular dimension from being too large. In this

way, the convergence of DL models can be facilitated [98]. Finally, the spectrograms are resized

into 150 × 150 pixels for further processing. The radar MD dataset has 300 spectrograms per
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Figure 4.4: Visualization results of the whole spectrogram dataset with t-SNE. (a) The distri-

bution of all activity data of the six persons. (b) The distributions of the six persons’ activity

data, separated for each individual.

person per activity. Several typical preprocessed spectrograms are shown in Figure 4.3.

4.2.3 Data Analysis

Due to the human individual activity differences, different persons’ activity data often have

some discrepancies and are varied in distribution. In this circumstance, when a DL model

trained with several persons’ activity data is directly applied to recognize the activities of new

persons, the model’s performance often decreases.

To show the differences in the distributions of the six persons’ activity data, we reduce these

activity data to a series of two-dimensional vectors and visualize the dimensionality-reduced

data with t-Distributed Stochastic Neighbor Embedding (t-SNE) [99]. The visualization results

are shown in Figure 4.4. It can be seen that, though related, the distributions of the six

persons’ activity data are different, indicating individual activity differences between them.

Furthermore, a quantitative similarity comparison between the six persons’ activity data is also

performed. In detail, we assume the six persons’ activity data follow independent multivariate

Gaussian distributions. Then, the KL divergence from the activity data distribution of one

person to the others can be calculated. The KL divergence KL(p||q) is shown in Figure 4.5,

where p and q are the probability distributions of the activity data of any two of the six people.

It can be seen that when the KL divergence between the two distributions is slight, the similarity

between the data is relatively high.

64



Figure 4.5: KL divergence KL(p||q) between the activity data of one person to the others. p

and q are the probability distributions of the activity data of any two of the six people.

4.3 Description of ITL

In this section, we introduce the algorithmic components of our proposed HAR approach, ITL,

in detail.

4.3.1 Problem Formalization

Mathematically, the problem is described as follows. Let the source domain training dataset Ds

= {x(s)i , y
(s)
i }

Ns
i=1, where there are Ns data in the source domain. x(s) ∈ Rm×n denotes an m × n

matrix corresponding to the radar MD signature of the human activities in the source domain.

y(s) denotes the corresponding label of Cs categories. A source classification network fs(·) is

trained with Ds from scratch. Let the target dataset Dt = {x(t)i , y
(t)
i }

Nt
i=1, where x(t) ∈ Rm×n

denotes an m × n matrix corresponding to the radar MD signature in the target domain.

The data in the target domain belong to the same Ct categories as those in the source domain.

However, there is a distribution discrepancy between Ds and Dt, which makes fs(·) not suitable

to classify the target data. Furthermore, there are only a limited number of instances in Dt,

which are insufficient to train a sufficiently generalized classification model.
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Figure 4.6: The architecture of the proposed backbone (MNet) for HAR. The proposed MNet

is composed of six convolutional layers, two dilated convolutional layers, two channel-wise

attention layers and two fully connected layers.

Our goal is to train a target classification network ft(·) to recognize the activities accurately in

Dt when there is limited target training data. To this end, an instance-based deep TL approach

ITL is presented. The proposed ITL transfers the relevant knowledge from the sufficient activity

data (source domain) as a supplement to classify the activity data in a new dataset (target

domain). The details of our proposed algorithm are summarized in Algorithm 4.

4.3.2 Structure of the pretrained Deep Model

In this paper, we design a deep neural network MNet for radar-based HAR and use it as the

backbone of ITL. In radar spectrograms, each pixel of the spectrogram has both an intensity

and a sample of time and frequency values, distinguishing it from optical images. Due to the

unique properties of MD signatures, the proposed DL approach is designed to be more tailored

to the radar data. The architecture of MNet is illustrated in Figure 4.6.

As shown in this figure, convolutional layers, together with max-pooling, are the basic com-

ponents of the network. Furthermore, to extract more discriminative features from the MD

signatures, we apply the dilated convolution mechanism and the channel-wise attention mecha-

nism within MNet. Then, two fully-connected layers are connected with the last convolutional
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Figure 4.7: Illustration of the channel-wise attention mechanism. M1 represents the input

feature maps of L × W from H channels. So M2, M3, M4. Conv represents the convolution

with H kernels of L × W.

layer sequentially. The softmax function is employed at the end of MNet to predict the labels

of the input spectrograms.

• Channel-wise Attention

The channel-wise attention mechanism enhances the network performance by accounting for

the different importance that each feature channel has in the classification process. The more

helpful feature channels are weighted accordingly to emphasize their contribution, and the

other way round for less important feature channels [100]. By explicitly modeling the channel

interdependencies and recalibrating the features, the proposed network is more focused and

oriented to the more informative data.

The channel-wise attention mechanism is illustrated in Figure 4.7. Firstly, the feature maps M1

from H channels are fed into a convolutional layer. To obtain the importance of every channel,

the convolutional layer is designed with H kernels with the size of L × W, which has the same

size as the input feature maps. Hence, the output feature maps M2 are H real numbers and

have a global receptive field. Next, the 1 × 1 feature maps are excited with an activation

function, and the output values (feature maps M4) are treated as the weights of importance

corresponding to these channels. Finally, the channel recalibration is completed by multiplying

the weights with the original feature maps M1 channel-by-channel. In this way, the initial M1

is transformed into the weighted feature maps. And the channels with larger weights are paid

more attention.

67



Figure 4.8: Dilated Convolution with different dilation rates. The blue area is the input feature

map, and the yellow area is the convolution kernel. The pale yellow area is the receptive field.

The yellow dots are the pixels that are convolved with the convolution kernel.

• Dilated Convolution

In CNNs, pooling is utilized to decrease the redundancy of the feature maps and enlarge the

receptive fields. The receptive field is the size of the activation area on the feature map during

a convolution operation. However, pooling has many drawbacks, such as missing spatial and

small-object information. For example, when there are three pooling layers with a kernel of 2

× 2, the knowledge of the objects smaller than 8 × 8 is lost.

To tackle this problem, a dilated convolution [101] is adopted in this paper. Instead of down-

sampling, dilated convolution is achieved by zero paddings on the convolution kernels, as shown

in Figure 4.8. This mechanism allows the dilated convolution to increase the receptive fields

without losing the structured data information. The size of the receptive field is proportional

to a parameter called dilation rate due to the number of zero padding increasing as the dilation

rate increases. When the dilation rate is set to 1, dilated convolution is equivalent to the con-

ventional convolution. The dilated convolution operation can retain more valuable information

of the input without increasing the parameters of the network and helps obtain more globally

representative details on the original data.

4.3.3 Correlated Source Data Selection

In this section, we propose a novel correlated source data selection (CSDS) algorithm to select

the most appropriate data for the collaborative fine-tuning. Instead of only using the target
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data to fine-tune the pretrained network, we make a partial selection of source data with high

similarity to the target data, and utilize them to fine-tune MNet, along with all target data.

Algorithm 4 ITL: An Instance-based TL Method for HAR with Limited Radar Data

Input: motion network MNet, a source dataset Ds = {x(s)i , y
(s)
i }

Ns
i=1, a small-scale labeled

target dataset Dt = {x(t)i , y
(t)
i }

Nt
i=1, and number of epochs It

Output: the fine-tuned MNet for classifying unlabeled target data

1: Pretraining MNet with Ds

2: For the kth sample, refining {hk}M1 , and obtaining Hk = {h′

0,h
′

1,...,h
′

255}

3: Calculate EMD(P,Q) = min
F={fij}

∑
i,j fijdij∑
i,j fij

4: i ⇐ 0

5: For each spectrogram x(t) in Dt, selecting source spectrograms based on Equation (4.1)

6: while not converged or i < It do

7: Calculating wj in Equation (4.3)

8: if i ≤ 5 then

9: E = −
∑Ct

c=1 pclog(pc)

10: Adjusting N i+1 in Equation (4.6)

11: Update wj

12: i = i +1

13: end if

14: end while

15: return The fine-tuned parameters w(m), b(m) of MNet (m=1,2,...,M and M is the number

of layers to be optimized in MNet)

• MD Signature Descriptor

As efficient feature extractors, deep convolutional neural networks can learn the high-level se-

mantic representation of the input data. And the representation can be used for describing

input data. In this paper, we utilize AlexNet [102], a typical convolutional neural network

for image classification, to attain the descriptors of the input MD signatures. It is noted that

instead of AlexNet, many other CNNs such as VGG-Net, ResNet, Inception-Net can also imple-

ment this function. We select AlexNet because it can extract semantic information effectively,

and its structure is relatively simple. In detail, we treat the convolution kernels of the last

convolutional layer in AlexNet as filters {F0,F1,F2,...,F255}. All data in Ds and Dt are input
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to a pretrained AlexNet. Then, the feature maps output from the last convolutional layer are

represented in histograms corresponding to the input MD signature. Let Mi(x, y) denotes the

output feature map of the ith filter Fi, and hi its histogram, where i={0,1,2,...,255}. In the

beginning, the pixel value range of all histograms is set from 0 to 255, and the width of every

histogram bin is set to 0.5.

To obtain more discriminative descriptors, we refine the histograms and avoid a large percentage

of pixels falling into the same bin. Specifically, we first obtain the maximum pixel value pumax

and the minimum pixel value pmini of Mi(x, y) by scanning the whole ith feature maps in the

source dataset Ds. Then the pixel value range of hi is set from pmini to pumax. Furthermore, we

iterate through the original his of Ds and Dt, and adaptively set the width of the histogram bins

so that there is a roughly equal percentage of pixels in each bin. The percentage is set to 2%

so that there are no more than 50 bins in every type of histograms {hi}255i=0. This setting makes

a compromise between computing complexity and representation efficiency, which allows the

further designed descriptor to have a proper dimension and be discriminative simultaneously.

In this way, the inhomogeneous intervals are acquired, and the new ith histogram h
′

i of a

spectrogram is obtained. Figure 4.9 illustrates the refined histograms of a radar spectrogram

corresponding to a filter Fi. Finally, for the spectrogram xk, the corresponding histograms

{h′

i}255i=0 are concatenated to form an MD signature descriptor, namely, Hk = {h′

0,h
′

1,...,h
′

255}.

• Similarity Metrics of MD Signatures

The Earth Mover’s Distance (EMD) [103] is the minimal cost that must be paid to transform

one distribution into another distribution. It is proposed based on the solution to a typical

transportation problem, but can be used to measure the distance between two generalized dis-

tributions irrespective of the underlying application. As a similarity metric of two histograms,

EMD is more efficient than other possible histogram matching techniques due to its feasibility

of operating on variable-length representations of the distributions.

A histogram can be formulated as a set S = {sj = (wj,mj)}Nj=1, where the histogram values are

denoted as the weights wj, and the indices of bins are denoted as positions mj. N denotes the

number of bins in the histogram. Given two histograms P = {(pi, ui)}mi=1 and Q = {(qi, vi)}ni=1,

with size m, n respectively, the EMD of P and Q is defined as the minimum work required to

resolve the supply-demand transports, namely
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Figure 4.9: A typical spectrogram and its histogram. (a) A radar spectrogram. (b) The

histogram corresponding a specific convolution kernel in the last convolutional layer of AlexNet.

EMD(P,Q) = min
F={fij}

∑
i,j fijdij∑
i,j fij

(4.1)

with the constrains:

∑
j

fij ≤ pi,
∑
i

fij ≤ qj,

∑
i,j

fij = min{
∑
i

pi,
∑
j

qj}, fij ≥ 0,

(4.2)

where pi represents the histogram values of P, and qi represents the histogram values of Q. ui

and vi represent the indices of bins of P and Q, respectively. Furthermore, F = {fij} denotes

a flow set. Each flow fij represents the amount transported from the ith supply to the j th

demand. dij denotes the distance between the position ui and vj.

In this paper, EMD is employed to measure the similarity of the histogram descriptors Hs

corresponding to the MD signatures in Dt and Ds. Given the histogram descriptors Hs of a

specific target spectrogram x(t) and all source spectrograms {x(s)i }
Ns
i=1, the EMDs {EMDi}Ns

i=1 of

x(t) and {x(s)i }
Ns
i=1 are calculated with H(t) and {H(s)

i }
Ns
i=1 according to Equation 4.1 and 4.2. A

small EMD value between x(t) and x(i) means that these two spectrograms are highly correlated.
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Furthermore, the source radar spectrograms with smaller EMD values are preferred as the cor-

related instance of x(t). In detail, the source spectrograms are ranked in ascending order based

on their EMD values. For each target spectrogram, K source spectrograms (corresponding to

the top 2.0% of the whole set of source spectrograms) are chosen as the most correlated set at

the outset, based on the EMD metric. This ensures that the initially selected spectrograms are

the most similar to the target spectrogram. Then, these instances are utilized to fine-tune the

pretrained MNet along with all the target data.

4.3.4 Adaptive Collaborative Fine-tuning

• Source Instances Re-weighting

During fine-tuning the pretrained MNet, a series of source spectrograms are selected as the

correlated instances by more than one target spectrogram. Compared with treating them

equally, attaching more importance to the selected source instances more than once can make

the fine-tuning process more efficient. Thus, the importance of the selected source instances

differs. Specifically, we emphasized the loss function and re-weight the fine-tuning loss of the

selected source instances. Suppose that in an epoch, the ith source instance x
(s)
i is selected

as the correlated instance by w target spectrograms. Then we design the loss function L of

fine-tuning as follows,

L =
∑
i

Lcls(y
(t)
i , ŷ

(t)
i ) +

∑
j

sin(
π

2
∗ wj
wmax

) ∗ Lcls(y(s)j , ŷ
(s)
j ) (4.3)

where wj denotes the number of target instances that select x
(s)
j as its correlated source instance.

wmax denotes the maximum among ws corresponding to all the selected source instances in an

epoch. y
(t)
i and ŷ

(t)
i are the true label and the predicted label of the ith target instance x

(t)
i ,

respectively. Similarly, y
(s)
j and ŷ

(s)
j are the true label and the predicted label of the j th source

instance x
(s)
j . The classification loss Lcls adopts the cross-entropy loss, whose definition is as

follows:

Lcls = −[plog(p̂) + (1− p)log(1− p̂)] (4.4)

where p and p̂ are the ground-truth one-hot label and the predicted probability, respectively.
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• Adaptive Source Data Search

Subsequently, we present the adaptive searching scheme to employ more nearest source spec-

trograms in the following fine-tuning epochs, which is able to facilitate the target spectrograms

classification. We calculate the information entropy Em
i to measure the classification uncer-

tainty of the target training sample x
(t)
i after the mth epoch.

Em
i = −

Ct∑
c=1

pmi,clog(pmi,c), (4.5)

where Ct is the number of activity categories in Dt, p
m
i,c is the probability that x

(t)
i is classified

as the cth class by the softmax layer of MNet in the mth epoch. The larger Em
i , the higher

classification uncertainty of x
(t)
i . We set the threshold θ for the classification uncertainty E.

When Em
i is larger than θ, we increase the number of correlated source samples for x

(t)
i in the

next epoch.

Furthermore, we stop the adaptive searching scheme after five fine-tuning epochs because too

many epochs can lead to more source instances that are not highly correlated with the target

data employed in the fine-tuning process. The overall adaptive source data search then is given

as:

Nm+1
i =



Nm
i + α, m ≤ 5 and ŷ

(t)
i 6= y

(t)
i

Nm
i + β, m ≤ 5 and ŷ

(t)
i = y

(t)
i

and Em
i ≥ θ

Nm
i , others

(4.6)

where Nm
i and Nm+1

i are the number of the selected nearest source samples for x
(t)
i in the m-th

and m+1-th epochs, respectively. N1
i = K. ŷ

(t)
i and y

(t)
i are the predicted label and the true

label of x
(t)
i , respectively. α and β are set to K/2 and K /4. θ is set to 0.25 empirically so that

every target spectrogram tends to be classified into a particular category with high probability.

4.4 Experimental Implementation and Results

4.4.1 Evaluation Methodology

In the experiments, a leave-two-individual-out cross-validation method is adopted to split the

dataset into the source and target datasets. Specifically, we randomly select the activity data
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of (n-2) persons as the source dataset Ds, where n equals 6 in the experiments. And the data

of the other two persons are utilized as the target dataset Dt. Hence, the process is repeated(
n

2

)
= 15 times to obtain the average performance. Since it is infeasible to perform thousands

of trials to get a statistical characterization of the experimental results, we assume the leave-

two-individual-out cross-validation can approximate the statistical results. Furthermore, with

the leave-two-individual-out cross-validation, the generalization to human activity differences

of ITL can be demonstrated well.

To evaluate the efficiency of ITL, the activity data per person per class in the source domain

is divided for training and validation according to the ratio of 8:2. The target dataset is also

divided according to the ratio of 2:1 as the same way. Furthermore, we randomly select N

instances per person per class from the target training set for fine-tuning, and evaluate the

classification performance of ITL on the target validation dataset.

4.4.2 Implementation Details

We employ Tensorflow [104], a widely used deep-learning framework developed by Google Brain,

to train our model. The proposed MNet is pretrained from scratch with Ds. The batch size is

set to 32, and the learning rate λ1 is set to 10−3. The model is pretrained for 400 epochs, and

L2 normalization is employed during the training process. For each human individual, 70%

of the activity spectrograms in Dt are selected for fine-tuning, and the others for validation.

During fine-tuning, the basic learning rate λ2 is set to 10−5, and an exponentially learning rate

decay γ is set to 0.9. The model is fine-tuned for 50 epochs. The batch size is also set to 32.

All experiments are performed on a CPU and Ti 1080 GPUs with CUDA for acceleration.

4.4.3 Comparison Methods

To further investigate the performance of ITL, we compare the model with several state-of-the-

art TL methods, including two radar-based TL approaches and three typical instance-based

approaches designed for optical image classification. These comparison approaches are also

implemented with the dataset that is described in 4.2.2.

DivNet [6] is specially designed for radar-based HAR with radar MD spectrograms. The

network is pretrained with diverse Kinect-based simulated activity data and fine-tuned with a

limited number of measured radar data.
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DuNet [34] is presented for radar-based HAR. The residual network (ResNet) is adopted as

the backbone of the method. And the prior knowledge from simulated MOCAP radar data is

transferred by fine-tuning the pretrained backbone with the limited target samples.

NgiamNet [105] is an instance-based TL approach. In this method, the source data are firstly

re-weighted based on their similarity to the target data. A DL backbone is firstly pretrained

with the re-weighted source data.

GeNet [106] is an instance-based TL approach. The source data are re-weighted based on a

similarity metric between the source and target data. Then, a pretrained backbone model is

fine-tuned with the re-weighted source data and all target data.

AsgarianNet [107] is another instance-based TL approach that re-weights the source data and

uses them for fine-tuning. Distinctively, this approach proposes the hybrid weight for source

data, which measures the similarity of a source sample to the target domain and the importance

of the sample in the target task.

4.4.4 Experimental Results

• Performance with Limited Numbers of Target Samples

To evaluate the performance of the proposed ITL for HAR with limited training data, different

amounts of target samples per class per person are provided for training ITL. The experimental

results are shown in Figure 4.10. Furthermore, we select two baseline methods for comparison

to demonstrate the efficiency of ITL. In detail, we train the proposed backbone model MNet

from scratch with the limited target samples, and the test F1 scores are shown with gray marks

in Figure 4.10. Then, a Conventional FT method that utilizes target samples to fine-tune a

pretrained model is adopted for comparison. Specifically, the MNet is pretrained on the source

training dataset and fine-tuned with the available target samples. The results are shown with

orange marks in Figure 4.10.

From Figure 4.10, we can see that the proposed ITL yields the best performance among the three

methods. Especially when there are 100 target samples per class available, ITL outperforms the

Conventional FT by the largest margin of 4.4% F1 score. In detail, since there are insufficient

samples for training MNet from scratch, the Target Model is susceptible to overfitting, and

the performance is the worst. Furthermore, the performance of the Conventional FT and ITL
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Figure 4.10: The F1 score performance of ITL, the Conventional FT, and the Target Model

for classifying the target validation data when diverse amounts of target samples are used for

training.

improves as the number of the target samples increases. ITL outperforms the Conventional

FT all the time, demonstrating its better performance for the classification task with limited

training data. Since ITL has an obvious advantage over the Conventional FT in F1 score when

there are 100 target samples per person per class, we select 100 target training samples as the

typical setting in the following experiments.
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Figure 4.11: The results of the leave two-individual-out cross-validation when there are 100

samples per class per person.

Cross-validation Performance with 100 Target Samples per Person per Class

The results of the leave-two-individual-out cross-validation when there are 100 target samples

per class per person are further shown in Figure 4.11.

It can be seen that the performance of ITL during the two-individual-out cross-validation is

steady. Regardless of the difference between the source and target domain data, the method

can achieve an F1 score of about 96.7%. The standard deviation of the 15 folds in the F1 score

is merely 4.88e-3. In detail, the average F1 scores of 96.7%, 92.3% and 75.6% are achieved by

ITL, the Conventional FT and the Target Model, respectively.

Besides, to demonstrate the infeasibility of directly using the pretrained MNet to classify the

target samples, we introduce another baseline model Source Model. The Source Model is ob-

tained by training the backbone MNet with the whole source dataset, and no fine-tuning is

involved. It can be found that Source Model achieves an average F1 score of 82.5% for classi-

fying the target samples, indicating some differences between the source data and the target

data.

Furthermore, we select 4 folds (Fold 2, Fold 5, Fold 6, and Fold 10 ) from the 15-fold two-
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Figure 4.12: The loss curves and F1 Score curves of Fold 2, Fold 5, Fold 6, and Fold 10.

individual-out validation experiments without any adjective, and their convergence properties

are shown in Fig 4.12 in detail. From the loss and F1 score curves, we can see that ITL often

begins to converge after 10 epochs and yields a stable performance after 30 epochs.

4.4.5 Analysis on Generalization of ITL

Generally speaking, the Conventional FT method often forgets how to perform the source task

as training the new target task progresses. As a result, the DL model fine-tuned with unknown

persons’ activity data often cannot achieve good performance to recognize the persons’ activities

in the previous (source) domain. In contrast, the proposed ITL is more generalized to the human

activity differences, and the fine-tuned model can also scale well to the persons’ activities in

the source domain.

• Generalization of ITL with Diverse Numbers of Target Samples

Firstly, as shown in the leave two-individual-out cross-validation results of Figure 4.11, ITL has

good performance in recognizing these persons’ activities in the target domain.

Specifically, ITL is firstly pretrained with the source data and fine-tuned with varying numbers

of target samples for the task on the target domain. Then, the source validation samples are

employed for classification to test the generalization ability of ITL. The experimental results

are shown in Figure 4.13. For comparison, the Conventional FT model that is fine-tuned with
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different amounts of target data is also employed to classify the source samples. The Source

Model is trained with the source training samples, and no fine-tuning is involved.

As shown in Figure 4.13, since the Source Model is trained with the source data, the performance

of classifying the source validation samples is the best. In contrast, the performance of the

Conventional FT is poor. Additionally, the performance of the Conventional FT decreases

with the increase in the number of target samples. It is because with the amount of the target

samples increasing, the distribution of the available target samples tends to be closer and closer

to the actual distribution of the target domain data, which is different from that of the source

data. In this circumstance, when the fine-tuned model performs well on the target domain, its

performance for the source domain usually drops.

In contrast, no matter how many target samples are available for fine-tuning, the performance

of ITL is better than that of the Conventional FT. Especially when there are more than 100

samples per person per class, the performance of classifying the source samples is about 90.0%

F1 score, exceeding that of the Conventional FT by over 11.0%. Furthermore, when there

are more than 160 target samples per class for fine-tuning, the F1 score of ITL is only about

7.0% lower than that of the Source Model. Good performance is achieved because in ITL some

source samples highly correlated with the target samples are selected for collaborative FT. As

a result, ITL can be adapted to the new target task while retaining partial source knowledge.

This property makes ITL generalized to the activity differences between different domains and

scales well to the persons’ activities in both the source and the target domains.

• Impact of the Value of K on the Performance of ITL

According to Equation 4.6, a certain amount of source samples is selected for every target

training sample to perform the collaborative FT. Based on this setting, we change the number

of the selected source data by adjusting the value of hyperparameter K, and explore the impact

of K on the generalization ability of ITL. The experimental results are shown in Figure 4.14.

The blue marks represent the results of using ITL to classify the target data. The orange marks

represent the results of using ITL to classify the source data.

From this figure, we can find that with the value of K increasing, the performance of ITL

for classifying the source validation samples improves. It is because with more source training

samples similar to the target data selected and involved in the fine-tuning process, ITL can
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Figure 4.13: The performance of Source Model, Conventional FT and the proposed ITL for

classifying the validation source samples.

Figure 4.14: The performance variation of ITL to diverse values of K when there are 100 target

samples available for fine-tuning.

preserve more knowledge of the source domain while performing well on the target domain. At

the same time, the performance for classifying the target samples improves with K increasing

when K is less than 2.0%. However, a decreasing trend is shown when K is more than 2.0%. It

is because with the value of K increasing, more source samples that are not highly correlated

80



Table 4.2: Comparison with the state-of-the-art methods in F1 Score

]Target Training Instances

20 40 60 80 100 120 140 160 180 200

[34] 0.866 0.876 0.881 0.894 0.903 0.908 0.914 0.919 0.926 0.931

[6] 0.863 0.867 0.882 0.898 0.909 0.911 0.915 0.924 0.930 0.941

[105] 0.858 0.864 0.883 0.911 0.922 0.934 0.941 0.940 0.946 0.952

[106] 0.865 0.881 0.904 0.926 0.937 0.940 0.945 0.952 0.954 0.959

[107] 0.854 0.873 0.905 0.919 0.926 0.938 0.941 0.947 0.950 0.953

Ours 0.861 0.882 0.921 0.951 0.967 0.972 0.974 0.980 0.984 0.988

1 ’]Target Training Instances’ denotes the number of target instances per activity that are

used for fine-tuning.

are selected, which is of little help to the task of the target domain.

Furthermore, when K is between 2.0% and 2.5%, the F1 score of ITL for classifying the target

data is over 94.0%, and the performance of classifying the source samples is over 90.0%. Thus,

we can conclude that when K is set between 2.0% and 2.5%, ITL is generalized to the differences

between the source and the target domains and can scale well to recognize the activities of

diverse persons. In further experiments, we set K to 2.0%.

4.4.6 Comparison with the state-of-the-art

To verify the efficacy of ITL, we compare it with several state-of-the-art TL approaches. Specif-

ically, we vary the number of the target training samples and perform the leave-two-individual

cross-validation on these methods. Then, the average F1 scores are obtained for comparison.

The results are depicted in Table 4.2.

Comparison in F1 score: from Table 4.2, we can find that the proposed ITL obtains the best

performance when there are more than 20 target samples per class for fine-tuning, indicating
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Table 4.3: Comparison of the number of model parameters

[34] [6] [105] [106] [107] Ours

33.16M 54.52M 24.73M 119.69M 22.55M 22.88M

Figure 4.15: Comparison in terms of computational time and F1 score for different methods.

In detail, (a) depicts the training time and the F1 scores of the six approaches, and (b) depicts

the testing time per sample and the F1 scores of the six approaches.

the feasibility of ITL for radar-based HAR with limited data. Though the performance of ITL

is not the best when there are 20 target samples, the F1 score of ITL is merely 0.4% lower than

that of GeNet, which yields the best performance.

Comparison in the number of parameters : the number of parameters in these DL models is

listed in Table 4.3, reflecting the spatial complexity of these methods. It can be seen that

GeNet has the most parameters due to the complicated backbone. As for our method, with

the effective but relatively simple structure of MNet, there are only 22.88M parameters in ITL.

Comparison in training/testing time: Figure 4.15 illustrates the training time and the testing

time of the six methods when there are 100 target training samples per person per class. In

detail, in Figure 4.15(a), the model training time and the F1 scores of the six approaches are

shown. It can be seen that the training time of DuNet and DivNet is much shorter than the

other methods. The reason is that the two methods only use the target samples to fine-tune

their backbone models. As a result, the similarity between the source and target domains is
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Table 4.4: Performance comparison with other deep models as backbone

Conventional FT ITL Difference

MNet-v1 0.914 ±0.03 0.949 ± 0.03 +0.035

MNet-v2 0.913 ± 0.01 0.950 ± 0.01 +0.037

MNet 0.923 ± 0.01 0.967 ± 0.02 +0.038

VGG16 0.918 ± 0.02 0.962 ± 0.01 +0.044

ResNet10 0.921 ± 0.03 0.959 ± 0.02 +0.036

Inception-v3 0.905 ± 0.02 0.944 ± 0.01 +0.039

not required to be calculated. In this way, their training time is significantly shortened.

As for the other four instance-based methods NgiamNet, AsgarianNet, GeNet and our approach,

the training time includes two parts: the time of calculating the similarity of the source data

and the target data and the time of fine-tuning the DL backbone model. Due to the operation

of the similarity calculation, the training time of the four methods is much longer than that

of DuNet and DivNet. Among the four methods, the training time of ITL is the longest since

this method requires selecting the correlated source samples for every target sample. However,

though it takes more training time, ITL has gained a performance boost and yields the highest

F1 score.

Furthermore, Figure 4.15(b) shows the comparison results regarding testing time per sample

and F1 score for the six methods. In general, the training process of a model is often performed

offline. Compared with the training time, the testing time per sample significantly impacts

whether the model can be applied in practice. The similarity calculation operation is not

required during testing, and the running time is considerably shortened. As shown in this

subfigure, though the training time is long, the proposed ITL takes a short time to classify a

sample.

4.5 Ablation Study on ITL

To verify the effectiveness of different components in ITL, some ablation studies on ITL are

performed. During the ablation study, we performed the experiments in a typical setting where
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100 target samples per person per class are available. The 15-fold cross-validation is employed

to obtain the average F1 score.

4.5.1 Ablation Study on MNet

To demonstrate the good performance of MNet for recognizing human activities with radar MD

spectrograms, we slightly change the structure of MNet. Three variants of MNet are designed,

which are referred to as MNet-v1 and MNet-v2, respectively. Specifically, to obtain MNet-v1,

the two channel-wise attention modules in MNet are removed. In MNet-v2, the dilation rate

in the two dilated convolutional layers is set to 1, and the dilated convolution operations are

converted into the general convolutions.

Then, we compare the performance of the two TL methods( the Conventional FT and ITL)

when using MNet, MNet-v1 and MNet-v2 as the backbone, respectively. The comparison re-

sults in F1 score are listed in Table 4.4. As shown in this table, when the channel-wise attention

modules are removed, the performance of both the Conventional FT and ITL decreases, in-

dicating that the two channel-wise attention modules are vital to the performance of MNet.

At the same time, the performance of MNet-v2 is not as good as that of MNet regardless of

whether the source data is fine-tuned or not, demonstrating the efficiency of dilated convolution

operations.

Furthermore, to demonstrate the superiority of MNet for radar-based HAR, we replace MNet

with several typical CNN models, including VGG16, ResNet10 and Inception-v3. We compare

these three DL models among the existing state-of-the-art models because they have a similar

number of convolution layers to MNet. Then, their performance as the backbone of Conven-

tional FT method and ITL is compared. The comparison results are listed in Table 4.4. We

can see that regardless of whether the source data is used for fine-tuning, our model achieves

the best results and is more suitable for the HAR tasks with radar MD spectrograms than the

other DL models. Furthermore, when using VGG16 as the backbone, ITL outperforms the

Conventional FT the most, with a difference of 0.44% F1 score. Additionally, VGG16 yields

similar performance to MNet when used as the backbone of ITL, with an F1 score of 96.2%.

It is indicated that compared with ResNet10 and Inception-v3, VGG16 is more suitable to

transfer the activity characteristic in radar spectrograms.
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Figure 4.16: The performance of ITL in average F1 score when using different deep models

that are pretrained on ImageNet and a simulated radar dataset, respectively.

4.5.2 Ablation Study on Correlated Source Data Selection

• Analysis on the MD Signature Descriptor

Firstly, we replace AlexNet with three typical CNNs VGG16, ResNet18 and Inception-v3 as the

feature extractor and utilize the last convolutional layers of these models as filters to obtain the

MD signature descriptors. Furthermore, the optical image dataset ImageNet, instead of a radar

image dataset, is utilized for training the feature extractor. Though radar spectrograms have

different characteristics from optical images, several radar-based HAR literature demonstrated

the feasibility of extracting features from radar spectrograms with a model trained on a large-

scale optical image dataset [34], [78], [108], [109]. Furthermore, to make our work more complete

and comprehensive, we utilize a simulated MOCAP radar dataset [110] instead of ImageNet to

train the feature extractor. The results are illustrated in Figure 4.16.

As shown in Figure 4.16, the performance of using the four deep models to obtain the MD signa-

ture descriptors is similar, demonstrating the feasibility of applying these typical deep models

as the feature extractor of ITL. However, despite the excellent performance, the complexity

of these models in obtaining MD signature descriptors is diverse due to different numbers of

kernels in the last convolutional layers. In this circumstance, by balancing complexity and
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Table 4.5: The classification results on the target validation dataset with different fine-tuning

algorithms.

Method Transfer Performance

S1: Fine-tuning with Dt only 92.3%

S2: Fine-tuning with Dt and the whole Ds 91.8%

S3: Fine-tuning with Dt and the randomly

selected source data 91.5%

S4: Fine-tuning with Dt and the source data

selected with EMD-based algorithm (Ours) 96.7%

F1 score, we can conclude that AlexNet is a better choice. Additionally, the performance of

using simulated radar spectrograms and ImageNet is broadly similar. Though the simulated

radar data is more similar to our measured data, there is no noticeable performance advantage.

However, as the error lines in the figure show, the maximum F1 score when using simulated

data to train the feature extractor is often more significant than the top F1 score when using

ImageNet. Furthermore, the performance of ResNet18 trained with simulated radar data is the

best, with an average F1 score of 97.1%. Based on these results, we have reasons to believe

that using simulated radar data to train the feature extractor has more potential to achieve

good performance for HAR [6], [111].

• Analysis on Source Instance Selection

To demonstrate the efficiency of the EMD-based source instance selection algorithm, we com-

pare this solution with the other three source instance selection solutions:

S1: Fine-tuning the pretrained MNet with only target dataset Dt (Conventional FT ).

S2: Fine-tuning the pretrained MNet with the whole source dataset Ds and the target dataset

Dt.

S3: Fine-tuning the pretrained MNet with randomly selected source data and the whole Dt.

The comparison results are listed in Table 4.5. The table shows that the proposed EMD-based

source instance selection algorithm yields the best performance. Specifically, the F1 score of the
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Conventional FT (S1) is 92.3%. The F1 score of fine-tuning with both Ds and Dt (S2) is 91.8%.

The F1 score of fine-tuning with the randomly selected source data and Dt (S3) is 91.5%. It

can be seen that the performance of S2 and S3 is not improved and is even worse than S1. It

is because using the whole source dataset or randomly selected source data for fine-tuning can

bring some negative knowledge transfer to the network. In contrast, the EMD-based source

instance selection algorithm achieves the best performance, outperforming the solution S1 by

4.4% F1 score.

4.5.3 Ablation Study on Adaptive Collaborative Fine-tuning

Analysis on the comparison experiments

To investigate the effect of the two elements (adaptive source data search and source instance

re-weighting) in ACFT on the performance of ITL, we perform the three following comparison

experiments:

C1: Assigning equal importance to the selected source instances, and setting the same loss

weight to all of the instances in Equation 4.3.

C2: In each of the first five epochs, if ŷ
(t)
i = y

(t)
i , β correlated source instances are selected for

each target instance, without the limitation of information entropy E.

C3: Replace the loss weights sin(π
2
∗ wi

wmax
) of source samples in Equation 4.3 with π

2
∗ wi

wmax
.

Table 4.6: Comparison study for the proposed ACFT algorithm.

Method Transfer Performance

C1: Assigning equal instance importance 93.8%

C2: Neglecting the limitation of E 95.7%

C3: Reconstruction loss function 96.0%

C4: The proposed ACFT algorithm (Ours) 96.7%

Table 4.6 shows the comparison results. It can be seen that our method yields the best perfor-

mance. When assigning equal importance to the selected source instances (C1), an F1 score

of 93.8% is yielded, which is 2.9% lower than that of the proposed ACFT algorithm. When

selecting the same number β of correlated source instances for each target instance if ŷ
(t)
i = y

(t)
i
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Figure 4.17: Visualization of the loss weights w assigned to the source instances.

(C2), the performance drops to 95.7%. Furthermore, when replacing sin(π
2
∗ wi

wmax
) with π

2
∗ wi

wmax

in the loss function L (C3), the performance of ITL decreases to 96.0%. Though using sine

function is the result of heuristic attempts, the comparison results demonstrate the efficiency

of using sine instead of linear loss weights.

• Visualization of Diverse Importance of the Source Samples

To reveal the diverse importance of the selected source instances, we visualize the loss weights

assigned to the source data with t-SNE. In particular, the loss weights of the selected source

samples in the fifth fine-tuning epoch are recorded when there are 100 target samples per person

per class available for training. For those source training samples that are not used for fine-

tuning, the loss weights are 0. Then, all source training samples are input to the Source Model,

and the feature vectors output by the last convolutional layer are visualized with t-SNE. The

visualization results are shown in Figure 4.17. A more significant loss weight means that the

source instance is attached more importance to the HAR task. In contrast, a smaller weight

implies the sample is less correlated to the target data and is less critical to the collaborative

fine-tuning process. From Fig, 4.17, we can see that ITL, only partial source domain data is

helpful for the classification task of the target domain and selected for the ACFT process.
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4.6 Summary

This chapter proposed an instance-based TL approach ITL for radar-based cross-target activity

recognition. The approach comprises three interconnected and necessary parts (MNet pretrain-

ing, CSDS and ACFT) rather than a collection of three distinct pieces. This study collected

six types of measured activity data from six human subjects using a pulsed UWB radar for

experiments.

Experimental results showed that the proposed ITL was able to accurately recognize the activ-

ities of six different persons with limited radar data, with an F1 score of 96.7% when there were

only 100 samples per person per class. Furthermore, when the model was trained to recognize a

new person’s activities, it could still perform well on the previous HAR task, effectively allevi-

ating the catastrophic forgetting problem. Additionally, some ablation studies were conducted

to demonstrate the uniqueness of the components in ITL. Any exclusion of these components

resulted in performance degradation. Finally, despite the effectiveness of ITL, how to reduce

the computational cost of the model needs to be further researched.
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Chapter 5

Supervised Domain Adaptation for

Few-shot Radar-based HAR

5.1 Introduction

Most of the existing DL solutions for radar-based HAR are trained with a large volume of

labeled data in a supervised manner. However, obtaining a large-scale radar dataset is often

difficult because annotating radar signals is complex and time-consuming. To this extent, data

scarcity becomes a bottleneck for the emerging radar-based HAR application. Prompt solutions

need to apply DL techniques to insufficient annotated radar data.

Few-shot learning (FSL) utilizes prior knowledge to make a trained model generalize on new

tasks of limited supervised experience [112]. This method can relieve the workload of collecting

a large number of supervised samples and save great manpower and time. It is also suitable for

the applications where supervised information is hard or impossible to acquire. In radar-based

HAR applications, since annotating radar signals is difficult and time-consuming, most labelled

radar datasets are too small-scale to train a DL model from scratch. Under this circumstance,

FSL is an important mechanism to enable a trained model applicable to an new task with

limited labelled samples.

There are several FSL methods that can potentially be used for radar-based HAR. Motiian et al.

[113] adopted adversarial domain adaptation mechanism to FSL. To extract semantic-alignment

features with this mechanism, complicated sampling and preprocessing on the training data are
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required. Furthermore, Jones et al. [114] proposed a siamese network and employed different

distance metrics to minimize inter-class differences and maximize intra-class differences. Nev-

ertheless, the performance of this method is dependent on the distance metric, which difficult

to determine. Feng et al. [115] proposed a model parameter transfer method for few-shot

HAR with wearable sensor data. Rostami et al. [116] proposed a cross-domain few-shot learn-

ing method by transferring the knowledge from a known domain to the target domain, which

alleviated the need for large-scale labeled data.

In this chapter, we propose a supervised few-shot adversarial domain adaptation (FS-ADA)

method for radar-based HAR. This method does not require much radar data for training

when applied to a new environment. Instead, HAR can be accomplished using the proposed

method when only a few samples per class are used. Our main contributions are summarized

as follows.

• We propose a multi-class discriminator network, which integrates the category classi-

fier and the domain discriminator. The network can be used for both the domain-

discrimination and activity-classification tasks. By sharing part of the discriminator

network between the two tasks, the model complexity of FS-ADA is reduced.

• We propose a multitask generative adversarial training scheme. The proposed method

optimizes the feature extractor and the discriminator in FS-ADA alternatively. The

extracted features can be domain-invariant and category-discriminative by optimizing

the discriminator with the combination of the domain discrimination loss and the activity

classification loss.

• We provide extensive experimental results to verify the performance of our proposed

method. The results show that the proposed FS-ADA method outperforms the state-of-

the-art benchmarks on two few-shot learning tasks. We also demonstrate the effectiveness

of FS-ADA with only limited training data.

The rest of this chapter is organized as follows. Section II introduces the related work about

radar-based HAR and few-shot learning. The pipeline of the proposed FS-ADA method is

briefly described in Section 5.2. Section 5.3 presents the key techniques of the FS-ADA method.

Section 5.4 presents the experimental details and the experimental results. Finally, we conclude

the paper in Section 5.5 and point out the direction for further work.
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Figure 5.1: The preprocessing pipeline of radar echoes. (a) Filter out the echoes out of range.

(b) Remove the static background clutter. (c) Short-time Fourier transform and normalization.

To extract features and classify the activities automatically, DL has been increasingly adopted

for radar-based HAR [60], [75], [117], [118]. However, most of the existing DL-based methods,

require a large volume of labelled radar data for training. When the training data is limited,

the trained model tends to be overfitting, and cannot be adapted to a new environment.

5.2 Few-shot Adversarial Domain Adaptation

In this section, we introduce the problem setup of few-shot HAR, and describe the pipeline of

the proposed FS-ADA briefly.

5.2.1 Problem Setup

We assume that there is a small-scale radar spectrogram dataset Dt = {(xit, yit)}Mi=1, where only

a few labeled samples per class are available. Here, xit ∈ Xt denotes the ith spectrogram in Dt
with a label yit ∈ Yt. There is another labeled radar spectrogram dataset Ds = {(xis, yis)}Ni=1,

where xis ∈ Xs denotes the ith spectrogram in Ds with a label yis ∈ Ys. The labeled samples

in Ds are sufficient to learn a prediction function fs: Xs → Ys. Dt and Ds share the same

categories. Let Ds denote the source domain and Dt the target domain. We assume that there

is a “domain shift” between the two domains, i.e., the different distributions between the source

data Ds and the target data Dt. Our goal under is to learn a target prediction function f t:

Xt → Yt to classify data in Xt. To achieve this goal, a supervised few-shot adversarial domain

adaptation method is proposed.
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Figure 5.2: Main steps of the proposed FS-ADA. Note that the red rectangles denote “Max-

pooling” operation, and the parameters of the gray parts in every substeps are fixed during

training.
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5.2.2 HAR Pipeline with FS-ADA

Here, we briefly describe the main steps in the HAR pipeline of FS-ADA. In the next section,

we will elaborate on key techniques used in this method.

• Radar Data Preprocessing

The preprocessing pipeline of radar echoes is illustrated in Figure 5.1. Firstly, since persons

are moving within the specified range ahead of the radar, we filter out the echoes reflected

from objects outside the target range based on the time-range maps. Then, an MTI is adopted

on the filtered echoes to remove the static background clutter. Next, the STFT is employed

to transform the denoised radar signals into 2-D time-Doppler spectrograms. Finally, these

spectrograms are normalized and input to the proposed classification model.

• Activity Recognition with FS-ADA

The main steps of the proposed FS-ADA are shown in Figure 5.2. As shown in Figure 5.2(a), in

the first step, a source classification network Ns, which is composed of a source feature extractor

Es and a source classifier Cs, is constructed. Then, a pre-existing source dataset is employed

to train Ns with the supervised cross-entropy loss function.

Next step is to train the target classification network Nt, as shown in Figure 5.2(b).Note that

Nt shares the same architecture of Ns, and its parameters are initialized with the parameters

of the trained Ns. Then, the proposed FS-ADA method is used to train the target classifi-

cation model. Specifically, the adversarial domain adaptation (ADA) scheme is employed to

map the input data into a common feature space. In this ADA scheme, symmetric transfor-

mation [119] is applied to make Et fit into a similar output distribution to that of Es with

limited labeled samples, i.e., Es=Et=E. Different from unsupervised ADA utilizing a binary

domain discriminator [119], we propose a multi-class discriminator D to take advantage of the

limited supervised label information. The discriminator D integrates the category classifier

and the domain discriminator into a network, and performs the HAR task and the domain

discrimination task. As a result, the proposed FS-ADA can extract both domain-invariant and

category-discriminative features from the input source/target data. Furthermore, a multitask

generative adversarial loss, which is a combination of the activity classification loss and the

domain discrimination loss, is presented to train Et and D alternatively. In contrast with the
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FSL method [120], which employed two independent networks for HAR and domain discrimi-

nation, we make the two tasks share part of the network D. Thus, the model complexity can

be reduced.

The third step is to test the trained target classification network Nt, as shown in Figure 5.2(c).

Nt is composed of the feature extractor Et and the discriminator D. The function of D is

classifying the input data and recognizing the corresponding activity. Therefore, when a piece

of radar spectrogram is input into Nt, the domain discrimination result can be ignored.

5.3 Key Techniques of FS-ADA

As shown in Figure 5.2, the main steps of the proposed FS-ADA are composed of three mod-

ules: the source feature extractor (Es), the target feature extractor (Et), and the multi-class

discriminator D. Details of the network architecture and training strategies are described as

follows.

5.3.1 Feature Extractors with Shared Weights

Since there are sufficient source samples in Ds, the classification network Ns can be trained

from scratch for the source classification task. The supervised loss function Lc is formulated as

Lc = E(
N∑
i=1

`(Cs(Es(x
i
s)), y

i
s)), (5.1)

where E[·] denotes statistical expectation; `(·) is the cross-entropy loss function; Es denotes the

source feature extractor; and Cs denotes the source classifier. Es and Cs make up the source

classification network, i.e., Ns = Es ◦ Cs, where ◦ denotes the model concatenation.

After obtaining the trained Es, we proceed to find a suitable Et that can embed the target

data to the same feature space as the source data. Typical DA methods fix the parameters of

Es and make Et mimic the invariant distribution output by Es. However, since there are few

samples available in Dt, Et cannot fit into a similar output distribution to that for Es. Under

this circumstance, we adopt the symmetric transformation [119], which enables Et to share the

same structure and parameters as Es, i.e., Et = Es = E.
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Figure 5.3: The structure of the proposed multi-class discriminator D, which is composed of

two FC layers followed by a softmax layer and a sigmoid layer.

5.3.2 Multi-class Discriminator

To exploit the label information, we propose a multi-class discriminator D that combines the

classifier and the discriminator to perform the supervised ADA. The structure of the proposed

multi-class discriminator D is illustrated in Figure 5.3. The logit V
′

output by the second FC

layer is first divided into two parts: classification nodes and domain node. Then, the two parts

are fed into the softmax layer and the sigmoid layer for category classification and domain

discrimination, respectively.

Generally, a standard classifier outputs a K-dimensional vector v to classify an input x into

one of K possible classes, where v = [v1, v2, ..., vK ]T . Then, a softmax is applied to the output

v, and transforms v into the class probabilities p = [p1, p2, ..., pK ]T . The probability pj of

predicting x as being in the jth class is written as

pj(y = j) =
exp(vj)∑K

k=1(exp(vk))
. (5.2)

In particular, the domain discriminator of the general ADA is a binary classifier with only one

node in the last layer.

In this paper, we combine the activity classifier and the discriminator by designing a novel

discriminator where there are K + 1 nodes in the last fully connected (FC) layer. The former

K nodes referred to as ”classification nodes”, are used to classify the input into one of the K

activity classes. The last node, called ”domain node”, is used for domain discrimination. When
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a feature representation r is input to the multi-class discriminator, the output logit is changed

from v into v
′
, where v

′
= [v1, v2, ..., vK , vK+1]

T .

Then, a softmax function is employed on the classification nodes. The probability that x belongs

to the jth class is calculated as

pj(y = j) =
exp(v

′
j)∑K

k=1(exp(v
′
k))

. (5.3)

The cross-entropy function is applied to the optimization process of the HAR task. The loss of

activity classification Lcls is formulated as

Lcls = −
∑
d∈{s,t}

Exd∼Xd
[p

′
log(p)], (5.4)

where p
′

is the one-hot label of x.

Meanwhile, to perform the domain discrimination task, a sigmoid function is applied to the

domain node to predict the domain of x. The domain probability is calculated as

q =
1

1 + exp(−v′
K+1)

. (5.5)

A binary cross-entropy loss Ldis is employed for the domain discrimination loss. Ldis is formu-

lated as

Ldis = −Exs∼Xs [log(qs)]− Ext∼Xt [log(1− qt)], (5.6)

where qs and qt are the output domain probabilities of the source sample xs and the target

sample xt, respectively.

5.3.3 Training Process of FS-ADA

Generative adversarial learning [119] is adopted to train the proposed FS-ADA method. Two

training losses are also designed specifically to train E and D.

• Loss function of E: Generally, ADA methods utilize

the generative adversarial network (GAN) loss LEadv to train E, which is depicted as
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min
E
LEadv(Xs,Xt, D)

=− Exs∼Xs [log(1− qs)]− Ext∼Xt [log(qt)].

(5.7)

This loss is typically used in the setting where the generator attempts to mimic another un-

changing distribution. However, we note that with the weight sharing mechanism between

Es and Et, applying this GAN loss will result in unstable training process, which makes the

model hard to converge. This is because under this setting, the extracted rs and rt change

simultaneously when the parameters of E are updated. To resolve this problem and improve

stability, the domain confusion loss [119] is adopted. We extend it to our scenario, and the

domain confusion loss LEadv for optimizing E can be formulated as

min
E
LEadv(Xs,Xt, D)

=−
∑
d∈{s,t}

Exd∼Xd
[
1

2
logD

′
(E(xd)) +

1

2
log(1−D′

(E(xd)))]

=−
∑
d∈{s,t}

Exd∼Xd
[
1

2
log(qd) +

1

2
log(1− qd)],

s.t. {El
s = El

t = El}l∈{1,2,...,n}

(5.8)

where E[·] denotes the statistical expectation; D
′

represents the output by the domain node of

D; and El represents the lth layer of E.

• Loss function of D: LDadv is the sum of Lcls in Equation (5.4) and Ldis in Equation (5.6),

which can be formulated as

min
E
LDadv(Xs,Xt,Ys,Yt, E)

=Ldis(Xs,Xt, E) + λLcls(Xs,Xt,Ys,Yt, E).

(5.9)

where λ is a hyper-parameter that adjusts the weights of the two loss functions Ldis and Lcls,

and is set to 1.0.

It is noted that when the trained model is used for testing, E is employed to extract feature

representation from the input data. The classification nodes of D can be used as a classifier,

while the domain node of D is abandoned.
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5.3.4 Complexity Analysis of FS-ADA

The complexity of the proposed FS-ADA method is analyzed as follows. The time complexity

of DL models can be measured by floating point of operations (FLOPs). The space complexity

can be measured by the volume of model. Since the activity classification network is composed

of the CNN-based feature extractor and the fully-connected classifier, its complexity is the sum

of the complexities of the feature extractor and the classifier.

In detail, the time complexity ComCNN
t and space complexity ComCNN

s of the CNNs are derived

as

ComCNN
t = O(

n∑
l=1

NCNN
l−1 · S2

l ·NCNN
l ·M2

l ), (5.10)

ComCNN
s = O(

n∑
l=1

NCNN
l−1 · S2

l ·NCNN
l +

n∑
l=1

NCNN
l ·M2

l ), (5.11)

where l is the index of a convolutional layer; n is the number of convolutional layers; NCNN
l−1 is

the number of output channels of the (l-1)-th layer, and is also the number of input channels

of the l-th layer; NCNN
l is the number of filters in the l-th layer; sl is the spatial size of the

filter in the l-th layer; and Ml is the spatial size of the feature map output from the l-th layer,

which is calculated as

Ml = (X − Sl + 2 · Padding)/Stride+ 1, (5.12)

where X is the input data; and Padding and Stride are the parameters set in the covolution

operation.

The time complexity ComFC
t and space complexity ComFC

s of the fully-connected classifiers

are calculated as

ComFC
t = O(

m∑
l=1

NFC
l−1 ·NFC

l ), (5.13)

ComFC
s = O(

m∑
l=1

(NFC
l−1 ·NFC

l +NFC
l )), (5.14)
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where m is the index of a FC layer; NFC
l−1 is the number of input nodes of the l-th layer; and

NFC
l is the number of output nodes in the l-th layer.

5.4 Experimental Results

In this section, we perform experiments on the two HAR tasks to validate the performance of

the proposed FS-ADA method.

5.4.1 Dataset Description

We evaluate the proposed FS-ADA method on two few-shot HAR tasks. The utilized datasets

are described briefly as follow. Several typical spectrograms are shown in Figure 5.4.

• Measured BUPT-5 & Simulated Mocap-5

BUPT-5 is a measured radar MD dataset with five human activities, i.e., walking forward,

running forward, jumping forward, boxing in place, and running in a circle. This dataset is

composed of the measured data in Chapter 4, but the data of “sitting on a chair” is not adopted

due to the lack of simulated radar data for this activity. A UWB radar PulsON 440 with a

centre frequency of 4.0 GHz and a bandwidth of 1.7 GHz is employed to collect radar data. Six

human individuals perform the five activities along the line of sight (LOS) of the radar with an

aspect angle of 0 degree.

Mocap-5 is a simulated radar MD dataset with the same five activities as the BUPT-5. Mocap-

5 is simulated with the Motion Capture Database from Carnegie Mellon University. The

simulated radar parameters are the same as those of PulsON 440. An ellipsoid-based human

motion model [121] is constructed for the simulation.

There is a domain shift between BUPT-5 and Mocap-5. The first few-shot HAR task (M →

B) is to train a DL model with a few measured radar data in BUPT-5 (Dt). Mocap-5 is used

as the source dataset Ds.

• Measured Glasgow-Young-5 & Glasgow-Old-5

Glasgow-6 [122] is a public radar dataset of five indoor human activities, i.e., walking back and

forth, sitting down on a chair, standing up, bending to pick up an object, and drinking from
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Figure 5.4: Several typical radar spectrograms used in the two few-shot HAR tasks. (a)-(c) are

the spectrograms in Mocap-5 ; (d)-(f) are the spectrograms in BUPT-5 ; (g)-(i) are in Glasgow-

Young-5 ; and (j)-(f) are in Glasgow-old-5. (a) and (d) represent ‘running’; (b) and (e) represent

‘boxing’; (c) and (f) represent ‘jumping’; (g) and (j) represent ‘walking’; (h) and (k) represent

‘sitting down’; and (i) and (l) represent ‘standing up’.
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a cup. Volunteers ranging in age from 20 to 100 perform the five activities. We select two

subsets, i.e., Glasgow-Young-5 and Glasgow-Old-5, from Glasgow-6 to evaluate the proposed

method. Glasgow-Young-5 consists of the data of five activities performed by the volunteers

aging from 20 to 40, while Glasgow-Old-5 consists of the data of five activities performed by

the volunteers aging from 80 to 100 in Glasgow-Old-5.

Since the young and the old move differently, there are some differences between the motion

data of young persons and the data of old persons. The second few-shot task (Gy → Go) is

used to train a DL model to recognize old persons’ activities. In this task, Glasgow-Young-5 is

employed as Ds, while Glasgow-Old-5 is Dt.

5.4.2 Classification Results of FS-ADA

To evaluate the performance of the proposed FS-ADA method on the few-shot HAR tasks, we

select different numbers n (n=1, 5, 10, 15, 20) of labeled samples per class from Dt as the

target training data, and use them to train the FS-ADA model. The accuracies of FS-ADA

with various numbers of labeled target samples are shown in Figure 5.5. A baseline method is

used for comparison. In the baseline, the classification model is trained with Ds, and directly

used to classify target data in Dt. No labeled target sample is utilized. The classification

accuracies of the baseline on the two tasks are presented in the table of Figure 5.5(a).

Specifically, for the M → B task, as shown in Figure 5.5(b), the performance of FS-ADA

is better than that of the baseline, and continuously improves with increasing the number

of target samples. When there are 20 samples per class, the proposed FS-ADA achieves an

accuracy of 84.5%, outperforming the baseline by 14.2%. Especially, when there is only one

labeled training sample per class, the proposed method can still yield a classification accuracy

of 73.3%, outperforming the baseline by 3.0%. For the G → G task, as illustrated in Figure

5.5(c), the accuracy of FS-ADA also exhibits an upward trend as the number of labeled target

samples increases. In particular, when there is one sample per class, FS-ADA achieves an

average accuracy of 84.3%, outperforming the baseline with a margin of 3.8%.

5.4.3 Comparison with State-of-the-art few-shot Methods

We also compare our proposed FS-ADA method with the following state-of-the-art supervised

FSL methods.
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(a) The classification accuracies of the baseline model on the two

HAR tasks (left), and the description of box plot (right).

(b) Classification results of FS-ADA on the M → B task with

varying numbers n of target samples per class.

(c) Classification results of FS-ADA on the G† → Go task with

varying numbers n of target samples per class.

Figure 5.5: Performance of the proposed FS-ADA on the two HAR tasks.
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Table 5.1: Performance Comparison of FS-ADA with Several Few-Shot Methods

Number of labeled samples n 1 5 10 15 20

M→ B

FT [34] 0.718 0.741 0.769 0.797 0.830

DTDA [120] 0.731 0.747 0.765 0.789 0.838

FADA [113] 0.724 0.750 0.784 0.820 0.841

CCSA [114] 0.727 0.756 0.782 0.828 0.849

Ours 0.733 0.764 0.797 0.821 0.845

G† → Go

FT [34] 0.810 0.826 0.842 0.882 0.918

DTDA [120] 0.834 0.821 0.854 0.875 0.902

FADA [113] 0.829 0.844 0.868 0.885 0.906

CCSA [114] 0.836 0.857 0.874 0.889 0.914

Ours 0.843 0.861 0.871 0.892 0.916

• FT [34] is a typical transfer learning methods where a DL model is first trained with the

source data, and then fine-tuned with a small number of labeled target samples.

• DTDA [120] is a supervised domain adaptation method that uses a domain invariance

optimization algorithm and a distribution matching loss for inter-domain transfer.

• FADA [113] is a supervised ADA method that augments the typical binary adversarial

discriminator to distinguish four different classes.

• CCSA [114] integrates the classification loss and the contrastive semantic-alignment loss

into a DL method for supervised domain adaptation.

The classification accuracies of these methods on the two tasks are shown in Table 5.1. It can be

seen that, for both of the two HAR tasks, our proposed FS-ADA can achieve the best or nearly

best performance. In particular, it shows excellent performance in term of the classification

accuracy where there are only a small number of labeled training data, e.g., n=1, 5, and

10. When the number of labeled samples increases, the performance of all the five methods

improves. However, for theM→ B task, CCSA achieves the best performance when n is larger

than 10. It is indicated that compared with the adopted training scheme in FS-ADA, combining
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Table 5.2: Complexity Comparison of FS-ADA with Several Few-Shot Methods

Method FLOPs Params

FT [34] 8.3G 20M

DTDA [120] 2.41G 270M

FADA [113] 10.26M 2.13M

CCSA [114] 9.24M 1.11M

Ours 9.21M 1.08M

the classification loss and the contrastive semantic-alignment loss in CCSA can extract more

discriminative features for HAR when there are more training samples. For the G → G task, FT

and the proposed FS-ADA achieve almost the same classification performance when n = 20,

showing that fine-tuning a trained model with enough labeled samples can also achieve good

HAR performance.

Furthermore, to compare the time complexity and the space complexity of these methods, we

calculate the FLOPs and the number of parameters of the models, as listed in Table 5.2. It

can be seen that compared with the other methods, the proposed FS-ADA has lower FLOPs,

indicating FS-ADA has a lower time complexity. Besides, FS-ADA has the lowest number of

parameters, which can significantly save storage space.

5.4.4 Sensitivity of Hyper-parameter

To show the impact of the hyper-parameter λ on the HAR performance of FS-ADA, we perform

the sensitivity analysis experiment on λ. The experimental results are shown in Figure 5.6. It

can be seen that when the value of λ increases from 0.4 to 1.6, the classification accuracy of

FS-ADA first goes up and then goes down on both of the two tasks. A better HAR performance

is achieved when λ is set to 0.8 to 1.2, compared to the other λ values. Furthermore, on the

two tasks, the classification accuracy of FS-ADA fluctuates more as the value of λ changes

when n is smaller. It is indicated that the smaller the value of n is, the more sensitive the

performance of FS-ADA is to the variation of λ. Besides, when λ is set to a value between 1.4

and 1.6, FS-ADA cannot achieve satisfactory performance. This is because when λ is large,

the HAR task dominates the training process and impacts model parameters more than the
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(a) Classification results of FS-ADA on theM→ B task with different values

of λ.

(b) Classification results of FS-ADA on the G† → Go task with different values

of λ.

Figure 5.6: Performance variation of the proposed FS-ADA on the two HAR tasks with different

values of λ. n refers to as the number of samples per class.
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Figure 5.7: Performance variation of the proposed FS-ADA on the two tasks with different

levels of SNR.

domain discrimination task. However, when there are fewer target samples for training, fewer

features could be extracted from the HAR task than from the domain discrimination task.

5.4.5 Impact of SNR

To investigate the impact of noise on the performance of FS-ADA, we add different intensities of

additive white Gaussian noise (AWGN) to the target training data and use the noisy target data

to perform experiments. Figure 5.7 shows the performance variation of the proposed FS-ADA

for the two tasks when different levels of AWGN are added. In Figure 5.7, the accuracies for

the two tasks increase with the improvement of SNR of the noisy target data. When the SNR

is 0 dB, the model fails to classify the radar spectrograms due to the strong noise interference.

When the SNR rises to 10 dB, an obvious improvement of performance is shown, with an

accuracy of approximately 82.5% for G → G and 71.2% for M → B, respectively. When the

SNR reaches 20 dB, the spectrograms are so clear that the model can classify the spectrograms

in the two tasks with high accuracies.
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5.5 Summary

In this chapter, a supervised domain adaptation method for few-shot radar-based human ac-

tivity recognition has been proposed. The technique consists of two feature extractors that

share weights and a multi-class discriminator. The multi-class discriminator network com-

bines the activity classifier and the domain discriminator for extracting domain-invariant and

category-discriminative features. A multitask generative adversarial loss has also been proposed

to optimize the extractors together with the discriminator.

We conducted experiments on two radar-based HAR tasks. Experimental results demonstrated

the superiority of the proposed method for few-shot HAR. We also compared the proposed

method with several state-of-the-art FSL methods. Comparison results showed the proposed

FS-ADA could achieve better HAR performance than the state-of-the-art. Finally, the analysis

of hyper-parameter sensitivity and the impact of SNR on FS-ADA was performed. In the

future, we will focus on the few-shot HAR problem in more complicated environments, such as

multiple-person and through-wall scenarios.
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Chapter 6

Conclusions and Future Work

6.1 Summary

This dissertation studied contact-free human activity sensing with wireless signals, including

Doppler speeds estimation of moving human target with WiFi CSI, cross-target HAR with

limited radar MD spectrograms, and supervised domain adaptation for few-shot radar-based

HAR. The relevant literature review can be found in Chapter 2, and the innovative research

results achieved in this thesis are summarised as follows.

In Chapter 3, we mainly proposed three Doppler frequency estimation algorithms based on

the CSI ratio across antennas for applications involving sensing of moving targets, such as

human activity recognition and mobile tracking. Among them, the signal difference-based

algorithm has the best and the most robust performance for Doppler frequency estimation,

while the periodicity-based algorithm is the easiest to implement. Furthermore, the Mobius-

based method can estimate both the sign and value of Doppler frequencies. Experiments

demonstrated that the best solution might be combining the strengths of the three algorithms.

In Chapter 4, we introduced an instance-based TL approach ITL for radar-based cross-target

activity recognition. ITL is composed of three interconnected and necessary parts (MNet pre-

training, CSDS and ACFT) rather than a collection of three distinct pieces. Experimental

results showed that the proposed ITL could scale well to recognize different persons’ activities.

When it is trained to recognize a new person’s activities, it can still achieve good performance

on the previous HAR task, effectively alleviating the catastrophic forgetting problem.
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Chapter 5 proposed a supervised domain adaptation method for few-shot radar-based human

activity recognition. The technique consists of two feature extractors that share weights and a

multi-class discriminator. A multitask generative adversarial loss was also proposed for optimiz-

ing the extractors and the discriminator. Experimental results demonstrated the superiority of

the proposed method for few-shot HAR. We also compared the proposed method with several

state-of-the-art FSL methods. Comparison results showed the proposed FS-ADA could achieve

better HAR performance than the state-of-the-art.

6.2 Future Work

The work on human sensing with wireless signals can be potentially enriched in, but not limited

to, the following various aspects.

1) Multi-person sensing: When multiple moving persons are in the sensing area, identifying

the target of interest or recognizing the activities of multiple persons with wireless signals is a

challenging problem. The general idea is to extract the reflected signals of each person and then

identify the corresponding human activity with the separated signals. This can be typically

realized in two strategies: separation via physical location and moving speed [88], or separation

via signal statistics [21]. In the first strategy, the signals for different targets may be separated

from the spatial dimension by using the range, angle, and/or moving speed information, which

requires high resolutions in these domains. In the second strategy, signals from multiple humans

may be modeled as a linear sum of statistically-independent signals, and the separation can be

cast as a blind source separation problem.

2) Through-the-wall HAR: Sensing through walls is also a challenging but essential task in HAR.

RF signals generally experience unpredictable reflection and absorption as they pass through

walls, significantly weakening the receiving signals and hence reducing the HAR information.

Furthermore, the characteristics of human activities in the received signals can be overwhelmed

by environmental noise, affecting the subsequent feature extraction, especially for similar ac-

tivities with nuanced differences. In this case, approaches that can classify human activities

behind the walls with less signal processing and human intervention are required [123]. On

the other hand, model-based algorithms can be explored to characterize the mathematical rela-

tionship between the received sensing signals and the human activities in the non-line-of-sight

through-the-wall environment.
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3) HAR robustness and generalization: HAR with wireless signals is sensitive to many fac-

tors such as the sensing environment, network settings, relative location of the human target,

geometry, and mobility situations. For instance, since different moving directions and orien-

tations of the person concerning the transceivers can result in various Doppler/micro-Doppler

frequencies, improving the system generalization on recognizing human activities from diverse

directions is challenging. Additionally, due to the unique behavior of each individual, it is

essential to generalize the trained HAR algorithms when new persons or new environments

emerge.

4) Distributed sensing: With the potentially significant improvement in coverage and HAR

accuracy, sensing based on a distributed topology is the general trend. However, research on

sensing with off-the-shelf wireless devices under a distributed topology is still minimal. The

challenges for distributed HAR mainly lie in deployment and cooperation between transceivers,

fusion strategies on data from diverse receivers, and scheduling issues with target return. In

addition, there is almost no discussion on the HAR performance bound for distributed sensing

networks yet, which is also a promising research direction.
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for radar-based classification of similar aided and unaided human activities,” IEEE

Transactions on Aerospace and Electronic Systems, vol. 54, no. 4, pp. 1709–1723, Aug.

2018.

[6] M. S. Seyfioglu, B. Erol, S. Z. Gurbuz, and M. G. Amin, “Dnn transfer learning from

diversified micro-doppler for motion classification,” IEEE Transactions on Aerospace

and Electronic Systems, vol. 55, no. 5, pp. 2164–2180, 2019.

[7] A. Shrestha, C. Murphy, I. Johnson, A. Anbulselvam, F. Fioranelli, J. Le Kernec, and

S. Z. Gurbuz, “Cross-frequency classification of indoor activities with dnn transfer learn-

ing,” in 2019 IEEE Radar Conference (RadarConf), Boston, MA, USA, Apr. 2019, pp. 1–

6.

112



[8] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE transactions on pattern anal-

ysis and machine intelligence, vol. 40, no. 12, pp. 2935–2947, 2017.

[9] L. Wang, X. Bai, C. Gong, and F. Zhou, “Hybrid inference network for few-shot SAR

automatic target recognition,” IEEE Transactions on Geoscience and Remote Sensing,

vol. 59, no. 11, pp. 9257–9269, 2021.

[10] L. Wang, X. Bai, R. Xue, and F. Zhou, “Few-shot SAR automatic target recognition

based on Conv-BiLSTM prototypical network,” Neurocomputing, vol. 443, pp. 235–246,

2021.

[11] Y. Ma, G. Zhou, and S. Wang, “Wifi sensing with channel state information: A survey,”

ACM Computing Surveys (CSUR), vol. 52, no. 3, pp. 1–36, 2019.

[12] Z. Shi, J. A. Zhang, R. Y. Xu, and Q. Cheng, “Environment-robust device-free human

activity recognition with channel-state-information enhancement and one-shot learning,”

IEEE Transactions on Mobile Computing, vol. 21, no. 2, pp. 540–554, Feb. 2022. doi:

10.1109/TMC.2020.3012433.

[13] L. Chen, I. Ahriz, and D. Le Ruyet, “Aoa-aware probabilistic indoor location fingerprint-

ing using channel state information,” IEEE Internet of Things Journal, vol. 7, no. 11,

pp. 10 868–10 883, 2020.

[14] M. Kotaru, K. Joshi, D. Bharadia, and S. Katti, “Spotfi: Decimeter level localization

using wifi,” 2015.

[15] D. Wu, D. Zhang, C. Xu, H. Wang, and X. Li, “Device-free wifi human sensing: From

pattern-based to model-based approaches,” IEEE Communications Magazine, vol. 55,

no. 10, pp. 91–97, 2017. doi: 10.1109/MCOM.2017.1700143.

[16] H. Wang, D. Zhang, K. Niu, Q. Lv, Y. Liu, D. Wu, R. Gao, and B. Xie, “Mfdl: A

multicarrier fresnel penetration model based device-free localization system leveraging

commodity wi-fi cards,” arXiv preprint arXiv:1707.07514, 2017.

[17] Y. Zeng, D. Wu, J. Xiong, and D. Zhang, “Boosting wifi sensing performance via csi

ratio,” IEEE Pervasive Computing, vol. 20, no. 1, pp. 62–70, 2021. doi: 10.1109/MPRV.

2020.3041024.

[18] X. Li, D. Zhang, Q. Lv, J. Xiong, S. Li, Y. Zhang, and H. Mei, “Indotrack: Device-free

indoor human tracking with commodity wi-fi,” Proceedings of the ACM on Interactive,

Mobile, Wearable and Ubiquitous Technologies, vol. 1, no. 3, pp. 1–22, 2017.

113



[19] Z. Ni, J. A. Zhang, X. Huang, K. Yang, and J. Yuan, “Uplink sensing in perceptive mobile

networks with asynchronous transceivers,” IEEE Transactions on Signal Processing,

vol. 69, pp. 1287–1300, 2021.

[20] F. Zhang, Z. Chang, K. Niu, J. Xiong, B. Jin, Q. Lv, and D. Zhang, “Exploring LoRa

for long-range through-wall sensing,” Proceedings of the ACM on Interactive, Mobile,

Wearable and Ubiquitous Technologies, vol. 4, no. 2, pp. 1–27, Jun. 2020.

[21] Y. Zeng, D. Wu, J. Xiong, J. Liu, Z. Liu, and D. Zhang, “Multisense: Enabling multi-

person respiration sensing with commodity wifi,” Proceedings of the ACM on Interactive,

Mobile, Wearable and Ubiquitous Technologies, vol. 4, no. 3, pp. 1–29, Sep. 2020.

[22] V. C. Chen, D. Tahmoush, and W. J. Miceli, Radar micro-Doppler signatures. Institution

of Engineering and Technology, 2014.

[23] Y. Kim and H. Ling, “Human activity classification based on micro-doppler signatures

using a support vector machine,” IEEE Transactions on Geoscience and Remote Sensing,

vol. 47, no. 5, pp. 1328–1337, 2009.

[24] J. Lien, N. Gillian, M. E. Karagozler, P. Amihood, C. Schwesig, E. Olson, H. Raja,

and I. Poupyrev, “Soli: Ubiquitous gesture sensing with millimeter wave radar,” ACM

Transactions on Graphics (TOG), vol. 35, no. 4, pp. 1–19, 2016.

[25] S. Wang, J. Song, J. Lien, I. Poupyrev, and O. Hilliges, “Interacting with soli: Exploring

fine-grained dynamic gesture recognition in the radio-frequency spectrum,” in ACM

Symposium on User Interface Software and Technology, Tokyo, Japan, 2016, pp. 851–

860.
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Appendix A

Appendix

Based on the Mobius transform, when there is no noise, the CSI-ratio samples R(tk)
n
k=1 =

{R(t1), R(t2), ..., R(tn)} are on a circle of the complex plane. Let the coordinates of the center

be (A, B) and the radius be r.

Then, the distance dk between the kth CSI-ratio sample R(tk) = (xk, yk) (k = 1, 2,..., n) and

the center C0 can be denoted as

d2k = (xk − A)2 + (yk − B)2. (A.1)

The square deviation δk between dk and r can be calculated as

δk = d2k − r2 = (xk − A)2 + (yk − B)2 − r2, (A.2)

which should be zero for all samples on the circle.

To accurately estimate C0, we seek the value of A, B, and r that can minimize the sum of

deviation Q(A, B, r). The derivatives can be computed as

Q(A,B, r) =
n∑
k=1

δ2k

=
n∑
k=1

(
(xk − A)2 + (yk − B)2 − r2

)2
=

n∑
k=1

(x2k − 2Axk + A2 + y2k − 2Byk +B2 − r2)2.

(A.3)
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Let a, b and c equal to -2A, -2B, and A2 +B2 − r2, respectively, then

Q(A,B, r) = Q(a, b, c) =
n∑
k=1

(x2k + y2k + axk + byk + c)2. (A.4)

It can be seen from Eq. (A.4), Q(a, b, c) reaches its minimum when the partial derivatives of

this function with respect to a, b and c are all equal to 0, which are given by

∂Q(a, b, c)

∂A
=

n∑
k=1

2(x2k + y2k + axk + byk + c)xk = 0, (A.5)

∂Q(a, b, c)

∂B
=

n∑
k=1

2(x2k + y2k + axk + byk + c)yk = 0, (A.6)

and
∂Q(a, b, c)

∂r
=

n∑
k=1

2(x2k + y2k + axk + byk + c) = 0 (A.7)

We construct n× Eq. (A.5) -
∑n

k=1 xk× Eq. (A.7) to cancel out c, and obtain

(n
n∑
k=1

x2k −
n∑
k=1

xk

n∑
k=1

xk)a+ (n
n∑
k=1

xkyk −
n∑
k=1

xk

n∑
k=1

yk)b

+ n
n∑
k=1

x3k + n
n∑
k=1

xky
2
k −

n∑
k=1

(x2k + y2k)
n∑
k=1

xk = 0.

(A.8)

Similarly, computing n× Eq. (A.6) -
∑n

k=1 yk× Eq. (A.7) leads to

(n
n∑
k=1

xkyk −
n∑
k=1

xk

N∑
k=1

yk)a+ (n
n∑
k=1

y2k −
n∑
k=1

yk

n∑
k=1

yk)b

+ n

n∑
k=1

x2kyk + n

n∑
k=1

y3k −
n∑
k=1

(x2k + y2k)
n∑
k=1

yk = 0.

(A.9)

Rewrite Eq. (A.8) and (A.9) as

ζ1a+ ζ2b+ ζ3 = 0, (A.10)

and

ζ2a+ ζ4b+ ζ5 = 0, (A.11)
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where

ζ1 , n
n∑
k=1

x2k −
n∑
k=1

xk

n∑
k=1

yk;

ζ2 , n
n∑
k=1

xkyk −
n∑
k=1

xk

n∑
k=1

yk;

ζ3 , n
n∑
k=1

x3k + n

n∑
k=1

xky
2
k −

n∑
k=1

(x2k + y2k)
n∑
k=1

xk;

ζ4 , n

n∑
k=1

y2k −
n∑
k=1

ykyk;

ζ5 , n
n∑
k=1

x2kyk + n

n∑
k=1

y3k −
n∑
k=1

(x2k + y2k)
n∑
k=1

yk. (A.12)

Based on (A.10) and (A.11), a and b can be computed as

a =
ζ5ζ2 − ζ3ζ4
ζ1ζ4 − ζ22

, (A.13)

b =
ζ5ζ1 − ζ3ζ2
ζ22 − ζ4ζ1

. (A.14)

Then,

c = −
∑n

k=1(x
2
k + y2k) + a

∑n
k=1 xk + b

∑n
k=1 yk

n
(A.15)

Finally, the coordinate [A, B] of C0 and the radius r can be estimated as

A = −a/2,

B = −b/2,

r =
1

2

√
a2 + b2 − 4c. (A.16)
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