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Abstract

In the textile industry, there are hundreds of millions of ring spindles or equiv-

alent devices in use today around the world converting millions of tonnes of

short staple fibers such as cotton or polyester into clothing and other tex-

tiles. The aim of this thesis is to improve the mathematical model of yarn

spinning devices to potentially lead to an improvement in the efficiency of

the production process. Past research in this area, referred to as the Padfield

model, expressed the yarn balloon equations in cylindrical polar coordinates,

in a reference frame rotating with a constant angular velocity. The air drag

was assumed to be proportional to the velocity normal to the yarn squared,

while the tangential component was neglected, and the drag coefficient CD was

assumed to be equal to 1 for all values of the Reynolds number Re, because

the exact functional relationship between CD and Re is not known. The ulti-

mate objective of this thesis is to improve the accuracy of the mathematical

model of this system by representing the yarn balloon equations in intrinsic

coordinates, and finding a more accurate representation of the air drag term in

these equations along the entire length of the yarn balloon. This is achieved by

finding a new exact similarity solution of the 2-D incompressible steady state

Navier-Stokes equations which will enable significant progress to be made in

finding the functional relationship between CD and Re for 0 < Re < 47. The

process through which this similarity solution is used to find the correspond-

viii



ABSTRACT ix

ing physical solution is described in detail for 0 < Re < 47. The viscous

solution in the boundary layer is matched to the inviscid external solution so

that all boundary conditions are satisfied. This is significant progress towards

improving the mathematical model of yarn spinning devices through finding

the relationship between CD and Re for low Reynolds numbers. The solution

found here also has more applications than just the yarn balloon problem, and

thus a greater importance.



Extended Abstract

In the textile industry, there are hundreds of millions of ring spindles or equiv-

alent devices in use today around the world converting millions of tonnes of

short staple fibers such as cotton or polyester into clothing and other textiles.

Any improvement in the mathematical model of yarn spinning can potentially

lead to an improvement in the efficiency of the production process. In ring

spinning and over-end unwinding, or using the two-for-one twister device, as

the yarn is drawn through the device, it is rotated around a fixed axis creating

what is known as a yarn balloon. The yarn element is a cylinder of length δs

used to represent an infinitesimally small section of the yarn at the point P .

Newton’s laws of motion have been applied to the rotating yarn to describe

this yarn balloon shape. The equations governing the dynamics of the yarn

balloon will be referred to as the Equations of Motion (EoM), and are also

known as the yarn balloon equations. The EoM are a system of three time-

dependent, coupled second order non-linear differential equations. For typical

settings used for the yarn spinning devices mentioned above, the yarn element

moving through still air will experience drag proportional to the velocity (v)

of the yarn element squared, in the opposite direction to the velocity. How-

ever, more generally the exact functional relationship of drag to velocity is not

known. The yarn is modelled as a flexible, inextensible cylinder and the yarn

element is represented as a long smooth circular cylinder in a two-dimensional

x
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(2-D) fluid flow. The formula for drag [60] is

D = ρaCDv
2

where ρ is the density of air, a is the radius of the yarn and CD is the drag

coefficient. The exact functional relationship between the drag coefficient and

the Reynolds number (Re), a dimensionless number used to characterize the

air flow around the yarn element, is not known. The Reynolds number corre-

sponding to air flow around the yarn element is a function of arc length s in

the yarn balloon. Therefore the air drag at each point along the yarn balloon

is a function of CD and thus Re. That is, the air drag depends both on v2 and

Re, and because Re also depends upon v, as Re changes, thus the functional

relationship of air drag to velocity is currently not known. In this thesis,

progress is made in finding the functional relationship between CD

and Re and thus air drag and velocity for fluid flow around a circular

cylinder for 0 < Re < 47.

Past research in this area will be referred to as the Padfield model, as it was

Padfield [55] who first used a dimensionless parameter defined in Chapter 3

as p0 to model air drag. In the Padfield model, the yarn balloon equations

were expressed in cylindrical polar coordinates, in a reference frame rotating

with a constant angular velocity. The air drag was assumed to be proportional

to the velocity normal to the yarn squared, while the tangential component

was neglected, and the drag coefficient was assumed to be equal to 1. The

2-D Navier-Stokes equations govern the behavior of an incompressible viscous

fluid in a two dimensional domain. According to [33], a boundary layer is

a thin layer close to a solid boundary within which the effect of vorticity is

important, however high the Reynolds number of the fluid flow may be. The

point at which boundary layer separation occurs depends upon the Reynolds
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number, and significant progress is made in this thesis towards finding

the exact functional relationship between the separation point and

Re for fluid flow around a circular cylinder for 6.29 < Re < 47.

The ultimate objective of this thesis is to improve the accuracy of the math-

ematical model of this system by representing the yarn balloon equations in

intrinsic coordinates, and finding a more accurate representation of the air

drag term in these equations along the entire length of the yarn balloon. This

is achieved by finding a new exact solution of the 2-D Navier-Stokes equations

which will enable significant progress to be made in finding the functional re-

lationship between CD and Re for 0 < Re < 47. The new method created in

this thesis to find this similarity solution can also be applied to the 2-D time

dependent Navier-Stokes equations in an attempt to find the corresponding

similarity solution for 47 < Re < 190, and subsequently find the functional

relationship between CD and Re over this range. For 190 < Re < 104, the

remaining range of interest for the yarn balloon problem, the solution is three

dimensional, so even if the method created here is not amenable to the 3-D

Navier-Stokes equations, CD could be assumed to be 1 over this region only,

which would still lead to a better model for the system than currently exists.

Our intention is then to use this relationship between CD and Re to express

the air drag in terms of the Reynolds number at each point along the yarn

balloon as accurately as possible, although this has not been achieved yet. In

this thesis we represent the yarn balloon equations in a new frame of refer-

ence in intrinsic coordinates. With this new framework the drag coefficient

for multi-strand yarns, and non-smooth hairy yarns can now be incorporated

more accurately into our model than the Padfield model.
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In Chapter 1, past research in the areas of yarn spinning, differential ge-

ometry and fluid dynamics is referenced, and its relevance to the new results

that I will present in this thesis is discussed. In Chapter 2, the definitions and

equations from the theory that will be used in this thesis are catalogued.

In Chapter 3, we establish a framework to model a yarn balloon in vacuo. We

find matrices to transform the basis vectors from cylindrical polar coordinates

to the Frenet-Serret frame and the Darboux frame. Some exact solutions are

found, and although analytical expressions were obtained for solutions in this

case by [68], [14], [16] and [69], the approach that we have used in Chapter 3

is different.

This framework, established for the case with no air drag, is successfully

utilised in Chapter 4 to model the effect of air drag. In Chapter 4 we add

the Padfield air drag term to the model from Chapter 3 and thus provide a

new model accommodating air drag. In the Padfield model, the system was

modelled in a reference frame S, which rotated at a constant rate (ω) around

a fixed axis (coincident with the spindle of the device), which contained the

origin O. In Chapter 4, we assume that the yarn path (the vectors T and N)

always lies in a vertical plane. This plane is able to rotate around a point O′,

the centre of rotation for a rotating reference frame S ′, moving relative to the

fixed point O in the frame S. The dimensionless EoM are found in this new

reference frame, and the Padfield air drag term expressed in terms of the new

coordinates in frame S ′.

In Chapter 5, a new representation of the Navier-Stokes equations in intrinsic

coordinates is found. Also the approach to air drag with the Navier-Stokes

equations and conformal mapping is outlined.
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In Chapter 6, we develop a new similarity solution to the Navier-Stokes

equations in the boundary layer. A similarity transformation is applied to the

two-dimensional steady state Navier-Stokes equations for an incompressible

fluid, with no body force, in polar coordinates. An extra condition relating the

external speed U(θ), the fluid speed at the edge of the boundary layer, to the

width of the boundary layer g(θ) is required to obtain a fourth order non-linear

ordinary differential equation for f(η) which represents the velocity gradient

normal to the boundary, across the boundary layer. This differential equation

is reduced to quadrature, thus obtaining a new similarity solution to the

two-dimensional Navier-Stokes equations, a self-similar solution of

the second kind. The process through which this similarity solution is used

to find the corresponding physical solution is described in detail for 0 <

Re < 47. From this solution, expressions for the Reynolds number, and the

separation point are found, as well as a new constant of the motion, known as

the turbulent viscosity. Also in Chapter 6, incidentally, as part of the search

for similarity solutions, a new solution to a third order non-linear differential

equation is found.



Chapter 1

Historical Background

The process of making yarn, string or rope has existed for many thousands of

years. During the industrial revolution, this process was mechanised. In 1828

the ring frame or ring spinning machine was invented, and within a couple of

decades was in widespread use due to its simplicity and improved productivity

compared to previous systems. The industrial process of manufacturing yarn

has many stages. Ring spinning involves the twisting of fibers into yarn, and

the winding of this yarn onto a package. As the yarn is drawn through the

device, it passes through a fixed point on the axis about which the yarn rotates,

called the guide eye. It then passes through a small C-shaped ring called the

traveler, which is able to rotate around a horizontal ring. The yarn is then

wound onto a bobbin, mounted on a spindle. The ring is part of a ring-rail,

a horizontal platform around the bobbin which slowly moves up and down,

determining what part of the bobbin the yarn is wound onto. The two-for-one

twister is a machine used to insert twist into multi-folded yarn. The yarn

is unwound from a coaxial package, drawn through the hollow spindle of the

device, and over a circular, coaxial plate called the over-run plate. It then

passes through the guide eye, and is wound onto another package. As the

1



CHAPTER 1. HISTORICAL BACKGROUND 2

name suggests, over-end unwinding is the process by which yarn is unwound

from a large cylindrical package to a guide eye, which is located on the axis

of the package. For ring spinning, we are interested in the path the yarn

takes from the guide eye to the traveler. For the two-for-one twister, we are

concerned with the path the yarn takes from the rim of the over-run plate to

the guide eye. For over-end unwinding, it is the path the yarn takes after it

lifts off from the surface of the package to the guide eye. In all three cases, as

the yarn moves through the air it rotates around the axis of symmetry of the

system.

To give some sense of the number of devices in use at present, according

to Frederick Abernathy in the foreword of Batra & Fraser [2], quoting figures

from the United Nations, the total number of ring spindles in use in the world

in 2012 was 244,863,631. In promotional material for Toyota’s RX-300 Ring

Spinning frame [26][27], they claim to have 22 million of their spindles in use

worldwide (based on sales from 1967 to 2015). Each machine now being sold

has up to 1824 spindles. According to Rieter [28], a supplier of systems for

short-staple fiber spinning, in a document produced for investors, “A total of

more than 250 million spindle equivalents are used worldwide to produce yarn

from the around 50 million tons of staple fibers...every year, between 11 and

13 million spindle equivalents are installed worldwide: spinning mill owners

invest in rationalization, replacement or expansion. In 2019, Rieter delivered

1.32 million spindle equivalents (2018: 2.15 million).”

Attempts to gain a better understanding of this system go back at least

as far as 1881 [29], however as the spindle rotational speeds were increased,

in an effort to increase throughput, yarn breakages became more frequent,

which affected productivity and quality of the finished product (each time the
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yarn breaks, the machine must be stopped, and the two ends of the yarns

tied together). This situation made a deeper understanding of how the sys-

tem worked more and more necessary. Some early attempts provided rules of

thumb that contemporary practitioners in the industry would have found use-

ful. However, now that the system has been mathematically modelled, with

the model showing reasonable agreement with experimental results, the use

of current machines can be optimised, and the prospect of designing better

machines now exists. As stated in [2], the practical reason why these processes

have been mathematically modelled is to “...help practitioners to optimize the

process, so as to obtain the highest productivity without sacrificing quality...”

In the yarn textile industry, a multi-stage process is used to transform nat-

ural fibres such as cotton into various types of yarn [1]. At various stages

in this process the yarn is unwound from a package and is drawn through a

device (a ring spinning frame or a two-for-one twister) before it is wound onto

another package. As it is drawn through this device, it rotates at high speed

around a spindle forming a shape called a yarn balloon (Figure 3.1). It is this

shape that many researchers from a number of disciplines have attempted to

model, most recently Fraser [2] and his collaborators, who modelled this sit-

uation with a set of highly non-linear differential equations, with appropriate

boundary conditions. They were able to solve the differential equations numer-

ically, and demonstrated their model had a reasonably good fit with empirical

observations of the system, but with scope for improvement in some areas. It

is this model that we intend to improve upon; the details of which will form a

significant part of this document.

Newton’s laws of motion have been applied to the rotating yarn to describe

the shape it forms in the processes mentioned above. This shape is referred
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to as the yarn balloon, and the equations governing the dynamics of the yarn

balloon will be referred to as the Equations of Motion (EoM). The EoM are

three time-dependent, coupled second order non-linear differential equations

m
{
D2r + 2ωk ∧Dr + ω2k ∧ (k ∧ r)

}
=

d

ds

(
Te
dr

ds

)
+ F, (1.0.1)

where Te is the tension in the yarn (a scalar) at a point P , whose position

vector is given by r. The linear density of the yarn is m, and the differential

operator D is given by

D =
∂

∂t
− V0(t)

∂

∂s

following the motion of P relative to the frame rotating with constant angular

velocity ωk about the z-axis. V0(t) is the linear speed with which the yarn is

drawn through the guide eye of the device. The force per unit length due to

air drag is given by F.

Various simplifying assumptions have been made in order to make progress

towards a comprehensive set of solutions for the EoM. Neglecting terms that

contain a derivative with respect to time simplifies the EoM and leads to

what is referred to as the quasi-stationary equations. That is, as the yarn is

drawn through the device, the yarn balloon appears unchanging to the naked

eye. When air drag is also neglected, the system of equations is significantly

simplified. Gray [68] presents an exact solution for a “uniform chain revolving

with steady angular speed ... about an axis Oz while under the action of no

forces” including the special case of a “revolving chain in a plane containing

the axis of rotation”. Mack [14] presents an exact formula for the balloon

curve involving elliptic integrals and states that this solution has been given

by previous authors. Crank [15] provides the substitutions used by Baltz [61]

to obtain the solution (although this paper is not readily available). Hanna
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[16] presents exact solutions for the EoM with only air drag neglected, for

general boundary conditions. In fact, he has addressed a broader situation

of an inextensible, flexible, twistable inertial string rotating rigidly about a

fixed axis. Hanna and Pendar [69] extended the work of these authors by

presenting a solution where the yarn is drawn through the yarn balloon with

a constant linear speed. That is, the case above is augmented by the addition

of yarn tangential motion, which introduces a Coriolis force, and hence the

solutions are no longer planar. Hanna [16] also speculates on the effect of the

addition of air drag by referencing Aristoff and Stone [17], who numerically

modelled the aerodynamics of a skipping rope. In their model, both ends of

the rope are on the axis of rotation. With negligible air drag, the rope shape

is always coplanar. When air drag is significant in size in comparison to the

centrifugal force term, the rope is deflected off the plane, and their results show

a discontinuity in the slope at the midpoint of the rope. It is not clear whether

or not this is an unphysical numerical result. Regardless of that, this result

is very relevant to what will be done in this thesis, in particular the rationale

used for the modelling in Chapter 4.

Chakrabarti and Hanna [18] consider strings subjected to a uniform body

force and drag forces proportional to velocity. In finding solutions for this

system, they represent the string as a curve which is a function of arc length

(s) and time (t), with an adapted orthonormal frame (i.e. the Frenet frame).

This assumption differs from the widely used assumption of the drag force

being proportional to the velocity squared, in the direction normal to the

yarn, which has been thought to be more appropriate for yarn rotating at the

high angular velocities typical of the modern yarn spinning devices.
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Fraser and his colleagues were the first to present a comprehensive analysis

of the three processes mentioned above, including realistic formulations of the

boundary conditions applicable in each case. These efforts began with Fraser

[19] for ring spinning, Fraser, Ghosh and Batra [20] for over-end unwinding,

and Fraser [21] for two-for-one twisting. Although the EoM apply to all three

processes, the boundary conditions for each are significantly different. The

time independent differential equations were expressed in dimensionless form,

and were solved using a numerical scheme (Runge Kutta method with shoot-

ing technique). Up to seven dimensionless parameters were required for the

quasi-stationary solutions of the EoM. That is, each yarn balloon shape found

corresponds to a single point on a hyper-surface in seven dimensions. The

relationship between these parameters was explored by solving the EoM for a

range of values for all seven parameters. For the ring spinning case, there are

six parameters for the free balloon, and seven parameters when the traveler is

included [19], while for the two-for-one twister case, there are six parameters

when yarn elasticity is included [7].

Fraser [2] mentions that Mack & Smart [22] conducted experiments measur-

ing air drag force as a function of Reynolds number (Re) for some typical yarns.

Expressing the air drag force in terms of the Reynolds number is one of the

main objectives of this thesis. In the Padfiled model, used by recent authors,

the yarn is assumed to be cylindrical in shape, and the drag coefficient of the

yarn (CD) is assumed to be 1. This assumption is valid when the balloon shape

has a large maximum radius, however for some balloon shapes, the maximum

radius is relatively small, and thus the speed of the yarn is also smaller, and

therefore the Reynolds number will also be smaller. The functional relationship

between CD and Re has been the subject of much intellectual effort, and many
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empirical studies, for example [31], with a plot of this empirical relationship

appearing in many textbooks, [60], [33], [30], [8] for example. So clearly CD

changes with arc length along the yarn balloon, and is not a constant, as has

been the simplifying assumption used in all previous studies. Finding CD as a

function of Re is addressed in Chapter 6. In the studies of fluid flow around

a circular cylinder, the drag coefficient typically refers to a smooth cylinder.

Mack & Smart [22] found that for Reynolds numbers in the range of interest

for industrial yarn spinning, the deduced value of CD for monofilament yarns

were almost identical to the values for a smooth cylinder, however for many

types of yarn, the drag coefficient is higher than this, for example continuous

filament yarns, or spun yarns. Thus another objective of this thesis is to make

it possible to incorporate the effect of yarn hairiness and multi-plied yarns on

CD more accurately into our model.

In the Padfield model, air drag in the direction tangential to the yarn path is

neglected. This assumption, that only the air drag normal to the yarn path is

significant originally comes from the experiments of Mack & Smart [22], where

they measured the tangential and normal component of air drag on yarn at-

tached to a rectangular frame. Kothari & Leaf [50] deduced from data provided

by Popov, Komarov & Sluchanovskaya, in a paper now not readily available

that “the tangential air-drag parameter will generally be less than one-tenth

of the value of the normal air-drag parameter and will often be nearer to one-

twentieth that value”. Kim et al. [51] derive the transient-state equation of

motion that accurately contains all the boundary conditions at the guide eye

and lift-off points, in an attempt to understand the effect of neglecting tan-

gential air drag and gravity in this model. They conclude that the effect of

this assumption on the maximum balloon radius is within 4 %. I will inves-
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tigate if the tangential component of air drag becomes significant for some

yarn balloon shapes, where the curvature of the yarn path increases sharply as

the yarn changes direction. These yarn balloons have already been identified

as exhibiting limit cycle behaviour by Stump & Fraser [23] for ring spinning

and the two-for-one twister. Clark et al. [24] investigated this experimentally,

and did observe this behaviour, however the parameter values corresponding

to these solutions predicted by the theoretical model shows some discrepancy

with the observed values. Also, for yarn balloon shapes with relatively small

maximum radius, as this maximum radius decreases and the tension at the

guide eye increases, the agreement of the model with the observed values de-

teriorates, which is consistent with the point made in the previous paragraph

in regards to the Reynolds number.

The relationship between yarn twist and torsion in single and multi-ply yarn

has been explored by [52], [53] and [54]. The total torsion τ in an initially

straight length of yarn that is twisted and bent into a curved path is the sum

of two terms. The material twist obtained by rotating the yarn around the axis

or centre line of the yarn, and the tortuosity obtained by deforming the axis

of the yarn into a curved path. The second quantity is given by the change in

the binormal vector dB
ds

, which corresponds to the usual definition of torsion

of a curve, in the differential geometry literature (2.2.4). Fraser & Stump [52]

concluded that “in typical textile yarn ring-spinning balloons the yarn path is

independent of the twist in the yarn to first order in small terms”. Twist in

multi-ply yarn has been investigated by [53] and [54]. Multi-ply yarn have a

third contribution to the total torsion of a yarn, caused by the approximately

helical path of each fiber or strand in the yarn.
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The ultimate objective of this thesis is to improve the mathematical model

and gain a better understanding of the problem by expressing the EoM in an

intrinsic coordinate system, using differential geometry, and representing air

drag in a new way, so that either these equations can be solved analytically,

or some progress can be made in this direction. Air drag depends upon the

Reynolds number, while the Reynolds number changes along the length of a

yarn balloon, and in fact even the definition of the Reynolds number changes

depending upon the situation. If we were to consider the Reynolds number to

be a quantity defined locally instead of globally, then we could simply define

Re = α′

κν
, for a curve α with curvature κ, and viscosity of the air ν. In this

thesis, I only consider the steady state case, so the curve α represents the path

of a particular fluid element or streamline. This idea is explored in Chapter 5,

where the concepts of differential geometry are applied to the Navier-Stokes

equations.

If a quasi-stationary yarn is rotated 2π radians about its axis of rotation, we

have a yarn balloon. We now have a curve (i.e. the yarn path) embedded in

surface (the yarn balloon), and this situation is amenable to investigation with

some elementary techniques from differential geometry [3], [5], [6], [4]. Lenz

et. al.[43], which was published during the time this thesis was being written,

represented the yarn balloon equations in terms of the Frenet basis, and used

Padfield’s air drag term.

Fluid dynamics is a very broad field of study with many modern applications

across many discipline areas [13]. There are many different types of fluid, and

many different situations in which fluids flow [33], [8]. The Navier-Stokes equa-

tions are fundamental to this field. These equations have been studied with

two or three spatial dimensions, as time dependent or steady state equations,
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and model the flow of an incompressible Newtonian fluid of constant density

ρ and constant viscosity µ. Many different techniques are currently used to

solve these equations, which are briefly summarized in [42]. Many exact solu-

tions to these equations have been found [35], [25]. Exact solutions have also

been found for the so-called boundary layer equations [35], [32], [59]. These

equations were derived from the 2-D Navier-Stokes equations by Prandtl, and

were applied to the case of a flat plate by Blasius, and an inclined wedge by

Falkner & Skan [8]. Symmetry methods have been widely used to find exact

solutions of ODE’s [9], [37], [38], [39]. Drazin and Riley [25] review the history

of the derivation of the Navier-Stokes equations and survey the full range of

exact solutions. They assert that “...the maturity of both the theory of the

Navier-Stokes equations and the Lie theory of differential equations makes it

unlikely that many more exact solutions of the Navier-Stokes equations remain

to be discovered. For the same reason, those that do remain are probably of

little importance. However, recent developments by Ludlow, Clarkson and

Bassom [58] in which non-classical reduction methods are employed, as op-

posed to the classical Lie group method, may offer an alternative way ahead.”

Ludlow et al. [58] use the Clarkson-Kruskal direct method to find similarity

reductions and exact solutions for the two-dimensional incompressible Navier-

Stokes equations. Although they claimed many novel exact solutions, they did

not claim to have found every possible similarity reduction (due to a number of

simplifications that they introduced to “ease slightly the totally overwhelming

computational task that we would otherwise have faced”), nor did they claim

that any of their new solutions had a physical interpretation although they

did say that “It would be amazing if at least some of our new solutions do not

have physical interpretation”. The solution found in this thesis does appear

to be different from what they found although we cannot be certain because
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their “reductions contain a number of arbitrary functions and/or constants”,

which gives “a large degree of flexibility”. However, even if it could be shown

that the solution found in this thesis was a special case of a more general so-

lution found with the Clarkson-Kruskal direct method used by Ludlow et al.

[58] or in other papers, the solution found here would still have the significant

advantage that the boundary conditions can be satisfied and thus a physical

interpretation be found. It appears likely that there will be many applications

for the exact solution found here, and therefore it is significant.

Euler’s equations of motion model the flow of an ideal fluid, that is, an

incompressible fluid with constant density and no viscosity. The Navier-Stokes

equations can then be viewed as a generalisation of Euler’s equations, in which

the fluid is now viscous. The linear stress/strain relation (2.4.18), leads to the

addition of the extra term in the Navier-Stokes equations. In a similar way,

the addition of the air drag term in the yarn balloon equations, leads from

the solutions found for these equations in vacuo to the solutions with air drag.

Consider the surface mentioned earlier, representing the yarn balloon in vacuo.

The air drag is represented as a differential manifold lifting the yarn off the

surface at each point. Specifying the precise details of how this actually occurs

is explored in Chapters 5 and 6. Kobayashi [48] develops a general formulation

for the flow of a Newtonian fluid over manifolds with curvature, including an

explicit contribution of the Ricci curvature in the diffusion of momentum.

Dimitriou [46], introduces a “Geometric Potential Theory”, a geometrical

interpretation to traditional potential theory, combining the kinematics of a

two-dimensional incompressible steady flow with its topology. In [47], he goes

on to represent the Navier-Stokes equations in the fluid flow’s intrinsic coordi-

nate system in what he calls the “velocity-vorticity” formulation.
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Energy in a fluid is lost, or dissipated, when an element of the fluid is

deformed by the stress tensor acting on it at that point. When a fluid such

as air flows past an obstacle (a cylinder or sphere for example), the fluid must

adjust to satisfy the boundary condition at the surface of this obstacle. The

region in which this adjustment occurs, in the vicinity of the obstacle is called

the boundary layer. Outside of this region, the fluid will behave like an inviscid

fluid (assuming there is no vorticity upstream of the obstacle) and no energy is

lost, while in other circumstances, the fluid can have a shear force acting on it,

such as in a boundary layer. An exact solution to the Navier-Stokes equations

for steady state, incompressible flow in a boundary layer around a circular

cylinder in two dimensions will provide an expression for the Reynolds number

and the shear force at the surface of the cylinder, as well as the separation

point, all of which is required to calculate a theoretical expression for the air

drag. Many experimental studies have been carried out to investigate boundary

layers, to measure skin friction, separation points and thus estimate total drag

[44], [40]. Numerical simulations have also been carried out to find a formula

for the relationship between the separation point and the Reynolds number,

over a range of values for Re [49].

A fluid flowing past an obstacle where the Reynolds number is much less

than one is known as Stokes flow (or creeping flow or slow flow) [33], [8].

The Stokes equations (or slow flow equations) are derived from the Navier-

Stokes equations by taking the limit as the Reynolds number approaches zero,

leading to the inertia term, (u · ∇)u, being neglected entirely. This simplifies

the equations, but leads to a difficulty for 2-D flow past a circular cylinder,

known as Stokes’ Paradox. That is, Stokes’ equations do not admit a steady-

state solution for 2-D flow past a circular cylinder. Any solution to these
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equations that satisfy the boundary condition at the surface of the cylinder is

unbounded at infinity, and thus cannot satisfy the boundary condition there.

Oseen [33] addressed this problem by replacing the inertia term in the Navier-

Stokes equations with the term −U · ∇u, where U is the steady flow velocity

of the object moving through the fluid, which is at rest at infinity. This term

can be considered as a correction term to Stokes’ equations. Proudman and

Pearson [62] obtained higher order approximations to the solutions of Stokes

and Oseen. The essential fact underpinning all of the work referenced in this

paragraph is that a solution (to the Navier-Stokes equations) satisfying the

no-slip condition on the surface of the cylinder must be matched to another

solution (to the Navier-Stokes equations), that satisfies the uniform-stream

condition (i.e. the boundary condition at infinity), for any solution of the 2-D

Navier-Stokes equations for fluid flow past a circular cylinder to be considered

physically realizable.

For a fluid flowing past a circular cylinder with a higher Reynolds number

than that for Stokes flow, the boundary layer will separate from the surface of

the cylinder before the flow reaches the rear separation point. That is there will

be a separation point θsp where the skin friction becomes zero for the first time,

the pressure gradient becomes positive, and after this point, the direction of

flow at the surface is reversed [63]. Ahead of the separation point, the structure

of the flow has three regions. There are two “layers” in the boundary layer, the

inner region near the wall, whose thickness decreases to zero at the separation

point, and the outer “main” part of the boundary layer. The third region

is the inviscid external potential flow, which satisfies Euler’s equations. The

region just after the separation point is called the interaction region and also

has three layers, referred to as a triple-deck structure. The main deck is the
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continuation of the main part of the boundary layer from before the separation

point. The lower deck or viscous sublayer next to the surface of the cylinder

allows the no-slip condition to be satisfied, and according to [63], is “responsible

for the displacement effect of the boundary layer upon the external potential

flow”, the outer deck. “The velocity profile remains unchanged” in the main

deck “throughout the entire region of interaction.” The main deck “is merely

displaced by the lower deck next to the wall,” leaving the interaction of the

sublayer with the external potential flow. The triple deck theory overcomes

the difficulty in classical boundary layer theory that the separation point is

a singularity. The boundary layer equations are parabolic whereas the triple

deck equations are elliptical.

According to Sen et al. [64], for “steady two-dimensional laminar flow

around a stationary circular cylinder” Res is the value of the Reynolds number

that marks “the onset of the flow separation”. “To this day, there is no agree-

ment on the exact value of the laminar separation Reynolds number, Res, for

the steady unbounded flow”. They surveyed a range of studies, experimental,

numerical or semi-analytical in nature, and the 12 studies cited give estimates

for Res in the range 3.2 ≤ Res ≤ 9.6. Their estimate for Res was 6.29, ob-

tained via numerical simulation, and for this value, the flow separates at the

rear of the cylinder, that is θsp = π. Wu et al. [65] showed that the separation

angle decreases from this value with increasing Re, however the discrepancy

between experimental studies increases as Re increases, throughout the lami-

nar flow regime up to around Re ∼ 270, when the transition to turbulence in

the wake occurs. The flow is steady and laminar for Re in the range between

Res and the onset of the unsteady flow regime for Re & 47. The flow is 2-D

up to Re ∼ 190, with onset of 3-D flow at this value. The transition to turbu-
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lence in the separating shear layer occurs at Re ∼ 1200, while the transition to

turbulence in the boundary layer occurs at Re ∼ 2× 105. It is only when the

flow transitions from a steady 2-D flow to an unsteady 2-D flow at Re ∼ 47

that the Strouhal number becomes relevant [66].

The surface roughness of the yarn, and the effect this has on air drag needs

to be considered. The effect that this roughness has on the fluid on the micro

and nano scale is now being considered [45]. Yarn hairiness is the concept of

fibre loops or ends protruding from the main bulk of a yarn or fabric. Mack

& Smart [22] “estimate the air-drag on a yarn by assuming that it is the

same as for a smooth cylinder of the same observed radius” and represent

the effect of yarn hairiness of staple yarns in wind tunnels by the change in

effective diameter of the yarn. They state that “over the practical range of

air-speeds from 40-120 ft/sec (and in fact up to 400 ft/sec), at the balloon’s

maximum radius ...the projecting fibres are bent round by the air-flow and do

not increase the diameter appreciably,... at speeds below 20 ft/sec these fibres

are not bent so much and thus the effective diameter of the yarn is greater than

its optically observed diameter.” They also conclude that “At inclined angles

there are tangential and normal components of air-drag and our results show

that for smooth yarns the tangential component is quite small and, though

greater in the case of hairy yarns, is not big enough to make the resultant of

tangential and normal components combined act in a direction opposite to the

air velocity.” Also that “It is difficult to measure air-drag directly on actual

spinning systems, partly owing to the fluctuation of the balloon and partly

because there is usually no property of the balloon critically dependent on air-

drag.” This suggests that yarn hairiness will increase the effective diameter

(and thus the air drag) at some sections of the yarn balloon, as the yarn is
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drawn through the balloon. Such as near the guide eye where the balloon

radius is smallest, where the normal and tangential components of air drag

are similar in size, and where the normal component of the air drag changes

direction relative to the yarn due to torsion of the yarn path. Yarn hairiness

won’t be explicitly dealt with in this thesis, however the framework developed

in Chapter 4 can potentially be adapted for this purpose.

In Chapter 2, the definitions and equations from the theory that will be

used in this thesis are catalogued. In Chapter 3, the EoM are represented in

intrinsic coordinates for the in vacuo case and some exact solutions are found.

The method used here is different to the methods used in [14], [15] and [16]. In

Chapter 4, the EoM are represented in a new frame of reference, with intrinsic

coordinates and with Padfield’s air drag term. This framework was established

with the intent of using it to represent the EoM with a new more accurate term

for air drag. The final two chapters detail the progress we have made towards

finding this new air drag term. In Chapter 5 the 2-D Navier-Stokes equations

are represented in intrinsic coordinates, and the connection between the fluid

flow around a circular cylinder and the air drag on the yarn element moving

in a yarn balloon is considered. The 2-D Navier-Stokes equations have been

represented in intrinsic coordinates before [46], [47] however the formulation

developed here is in terms of energy, rather than vorticity. In Chapter 6 a

new similarity solution of the 2-D steady state Navier-Stokes equations for

incompressible fluid is found for flow in the boundary layer. It is a self-similar

solution of the second kind. Exact solutions have been found to the boundary

layer equations [32], [59], which are an approximation to the 2-D Navier-Stokes

equations. Exact solutions to the 2-D Navier-Stokes equations have been found

[35], [25] and [58], but not a solution for fluid flow in the boundary layer.



Chapter 2

Mathematical Background

2.1 Introduction

In this chapter we will catalogue and reference the theorems and definitions

that form the foundation from which we will work from in preparation for the

new work presented in subsequent chapters. Section 2.2 covers the Frenet-

Serret-Darboux theory of differential geometry applied to curves and surfaces.

Section 2.3 consists of a brief description of the standard model used for the

yarn balloon equations. Section 2.4 consists of some basic definitions from

fluid dynamics. The final section, Section 2.5 contains some further definitions

necessary for the new work done in Chapter 6.

2.2 Elementary differential geometry

Consider a unit speed curve α(s) : I → R3 where

I = {s ∈ R|0 ≤ s <∞}

17
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and s is the arc length. The speed function of this curve is∥∥∥∥∥dαds
∥∥∥∥∥ = 1

for each s in I. The unit tangent vector field on α(s) is

T =
dα

ds
(2.2.1)

while the principal normal vector field of α(s) is

N =
dT

ds

/
κ =

d2α

ds2

/
κ (2.2.2)

where κ is the curvature function of α(s)

κ(s) =

∥∥∥∥∥dTds
∥∥∥∥∥ =

∥∥∥∥∥d2α

ds2

∥∥∥∥∥.
The binormal vector field of α(s) is

B = T×N (2.2.3)

where the torsion τ(s) is defined by the derivative of B

dB

ds
= −τN. (2.2.4)

The Frenet frame field is defined by (2.2.1), (2.2.2) and (2.2.3) which satisfy

the following equations (O’Neill [3] Chapter 2.3)

T ·T = 1, N ·N = 1, B ·B = 1,

T ·N = 0, N ·B = 0, B ·T = 0, (2.2.5)

and

Theorem 1 (O’Neill [3]) If α is a unit-speed curve with curvature κ > 0

and torsion τ then

T′ = κN,

N′ = −κT + τB,

B′ = −τN. (2.2.6)
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Taking the appropriate dot products with the equations in (2.2.6) gives

T′ ·N = κ, N′ ·T = −κ, N′ ·B = τ, B′ ·N = −τ, (2.2.7)

where the other five possible dot products are zero

T′ ·T = 0, T′ ·B = 0, N′ ·N = 0,

B′ ·T = 0, B′ ·B = 0.

Lemma 1 If v and w are any tangent vectors to R3 at a point p then the

cross product v ×w is orthogonal to both v and w. That is

v · (v ×w) = 0 and w · (v ×w) = 0. (2.2.8)

Definition 1 Let α be a unit speed curve in R3, with κ > 0. Then α is a

plane curve if and only if τ = 0.

The plane in which a plane curve lies is called the osculating plane.

Definition 2 Let W be a vector field on R3, and v be a tangent vector field

to R3 at the point p. The covariant derivative of W with respect to v is the

tangent vector

∇vW = W (p + tv)′(0)

at the point p.

The covariant derivative measures the initial rate of change of W (p) as p

moves in the direction of v.

Definition 3 If p is a point of the surface M , then for each tangent vector v

to M at p, the shape operator of M at p is

Sp(v) = −∇vU

where U is a unit normal vector field on a neighbourhood of p in M .
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Definition 4 Let u be a unit tangent vector to a surface M ⊂ R3 at a point

p. The number k(u) = S(u) · u is the normal curvature of M in the direction

of u.

The subscript p will be neglected when there is no ambiguity as to the point

at which the shape operator is applied.

The Darboux frame field for the unit speed curve α consists of the three unit

vectors T,U and V, where U is the surface normal restricted to α and

V = U×T .

Theorem 2 (O’Neill [3]) If α is a unit-speed curve in a surface M ⊂ R3

then

T′ = gV + kU,

V′ = −gT + tU,

U′ = −kT− tV, (2.2.9)

where k = S(T) · T is the normal curvature of M in the direction of T,

t = S(T) ·V is the normal curvature of M in the direction of V and g is the

geodesic curvature of α.

Definition 5 If P is a square matrix whose columns and rows are orthonor-

mal, then

PP T = P TP = I

where I is the identity matrix. Thus P T = P−1.
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2.3 The Padfield model

The time independent or quasi-stationary equations of motion (EoM) for

the yarn path in ring spinning or two-for-one twisting (in cylindrical polar

coordinates) are

k ∧ (k ∧ r) =
d

ds

(
Te
dr

ds

)
+ F,

where Te is the tension in the yarn (a scalar) at the point P .

The air drag is given by

F = −p0

16
|vn|vn, (2.3.10)

where p0 is the dimensionless air drag parameter, first defined by Padfield [55],

p0 =
16Dna

m
.

Where a is the yarn radius, m is the mass per unit length of the yarn, and

Dn =
1

2
ρdCD ,

where ρ is the density of air, d is the yarn diameter and CD is the drag coeffi-

cient for fluid flow past a smooth circular cylinder [22].

v is the velocity of P relative to the inertial frame of reference

v = ωk ∧ r. (2.3.11)

and

vn =
dr

ds
∧

(
v ∧ dr

ds

)
, (2.3.12)

Details of how the EoM were derived can be found in [2] and [7] for example. In

recent research in this area, such as [19] and [21], and in fact in all research that

we are aware of that have adopted the Padfield model, it has been assumed

that CD = 1. So for the purposes of this thesis, the assumption that CD = 1

along the entire length of the yarn balloon is considered an integral part of the

Padfield model.
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2.4 Elementary fluid dynamics

Definition 6 A fluid is incompressible if

∇ · u = 0,

where u is the velocity following an element of fluid.

Theorem 3 (Acheson [8]) Steady state equations of motion for an ideal fluid

(incompressible, inviscid and with constant density ρ), Euler’s equations are

(u · ∇)u = −1

ρ
∇p+ g, (2.4.13)

where p is pressure and g is the gravitational body force per unit mass, given

by

g = −∇χ.

Definition 7 Using the vector identity

(u · ∇)u = (∇∧ u) ∧ u +∇
(1

2
|u|2
)
,

(2.4.13) can we written as

(∇∧ u) ∧ u = −∇H, (2.4.14)

where

H =
p

ρ
+

1

2
|u|2 + χ. (2.4.15)

Definition 8 Vorticity ω is defined by

ω = ∇∧ u,

and a flow is irrotational when ∇∧ u = 0.
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Definition 9 In steady fluid flow, a streamline is the path that an element of

fluid will take as the fluid flows. u is always tangential to a streamline. Taking

the dot product of u with (2.4.14),

(u · ∇)H = 0

demonstrates that H is constant along a streamline. Also, for an ideal fluid,

the vorticity ω is constant along any streamline.

Definition 10 (Acheson[8]) If an ideal fluid is in steady irrotational flow,

then H is constant throughout the whole flow field. This is because (2.4.14)

reduces to ∇H = 0 because the flow is irrotational.

Definition 11 (Acheson[8]) A 2D irrotational flow, uniform with speed U

at infinity, past a fixed circular cylinder with radius a has velocity potential

and stream function

φ = U

(
r +

a2

r

)
cos θ and ψ = U

(
r − a2

r

)
sin θ . (2.4.16)

and so the components of the fluid velocity in polar coordinates are

ur = U

(
1− a2

r2

)
cos θ and uθ = −U

(
1 +

a2

r2

)
sin θ . (2.4.17)

Definition 12 At any point in a fluid, the stress t on a surface element δS,

with normal n is given by ti = Tijnj. A Newtonian fluid is a viscous fluid such

that the shear stress tensor is given by

Tij = −pδij + µ
(∂uj
∂xi

+
∂ui
∂xj

)
(2.4.18)

in Cartesian coordinates.

Theorem 4 (Batchelor [33]) Two-dimensional steady state equations of mo-

tion for an incompressible fluid, with no body force, in polar coordinates, the
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Navier-Stokes equations are(
ur

∂

∂r
+
uθ
r

∂

∂θ

)
ur −

u2
θ

r
= −1

ρ

∂p

∂r
+ ν

(
∇2ur −

ur
r2
− 2

r2

∂uθ
∂θ

)
,(

ur
∂

∂r
+
uθ
r

∂

∂θ

)
uθ +

uruθ
r

= − 1

ρr

∂p

∂θ
+ ν

(
∇2uθ +

2

r2

∂ur
∂θ
− uθ
r2

)
,

1

r

∂

∂r
(rur) +

1

r

∂uθ
∂θ

= 0 , (2.4.19)

where kinematic viscosity ν = µ
ρ
, and the components of velocity are ur and

uθ.

Definition 13 (Rosenhead [40]) Skin friction is defined as the shear stress

exerted by the fluid on the surface over which it flows

τw = µ
∂u

∂n

∣∣∣
n=0

, (2.4.20)

where u is the speed of the fluid parallel to the surface, and n is the coordinate

measured along a line perpendicular to the surface.

Definition 14 (Waleffe [67]) Eddy or turbulent viscosity is defined as

νT = LTUT (2.4.21)

where LT is the characteristic length or “mixing length” and UT is the charac-

teristic velocity.

Definition 15 (Batchelor [33]) The Reynolds number is a dimensionless

parameter defined as

Re =
UL

ν
,

where U is a representative speed and L is a representative length, both of

which depend upon the particular problem being studied.
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Definition 16 (Batchelor [33]) The Strouhal number is a dimensionless pa-

rameter defined as

St =
nL

U
,

where U is a representative speed, and L is a representative length and n is a

frequency of oscillation associated with the flow.
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2.5 Sundry definitions

Definition 17 The Pochhammer symbol is defined as

(a)0 = 1,

(a)n = a(a+ 1)(a+ 2)(a+ 3) · · · (a+ n− 1), n = 1, 2, 3, . . . .

Definition 18 (Seaborn [11]) The Hypergeometric function is defined by

the series

2F1(a, b; c; z) =
∞∑
n=0

(a)n(b)n
n!(c)n

zn. (2.5.22)

Definition 19 (Euler) The incomplete Beta function is defined by

Bx(p, q) =

∫ x

0

tp−1(1− t)q−1dt =
xp

p
2F1(p, 1− q; p+ 1; x) , (2.5.23)

where <(p) > 0 and <(q) > 0.

Definition 20 (Polyanin & Zaitsev [12]) The Emden-Fowler equation is

d2y

dx2
= Axnym , (2.5.24)

when n = 0, the solution to this equation is

x = ±
∫ ( 2A

m+ 1
ym+1 + C1

)− 1
2
dy .

Concluding Remarks This thesis brings together three distinct branches

of mathematics. With regards to the nomenclature of the many quantities,

variables and constants used, priority is given to the most widely used and

accepted symbol in the context of the original discipline. For any repeated

symbols, I hope that the context makes it clear to the reader what my intention

is. Any constant of the form Ci, where i is an integer, represents a constant

of integration. This is not to be confused with CD, which represents the

drag coefficient. In Chapters 3 and 6, where I integrate differential equations

on many occasions, my intention is for the constants of integration Ci to be

regarded as different for each separate solution that is found.



Chapter 3

The yarn balloon equations in a

vacuum in intrinsic coordinates

3.1 Introduction

The objective of this chapter is to represent the EoM in intrinsic coordinates,

and to investigate the solutions of the EoM for the yarn balloon in vacuo.

In Section 3.2, the 3× 3 matrix that represents the transformation from the

Frenet frame to cylindrical polar coordinates is found. In Section 3.3, the curve

α, representing the yarn path is rotated around the axis of symmetry to create

a surface M . An expression for the angle φ between the principal normal N

to the curve α and the unit normal U to the surface M is found. This angle

determines the relationship between the Darboux frame and the Frenet frame.

Thus in Section 3.4, the matrix that represents the transformation from the

Darboux frame to cylindrical polar coordinates is found. Finally in Section

3.5, the solutions of the EoM for the yarn balloon in vacuo can now be found

using the framework developed in the previous three sections.

27
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3.2 The transformation between cylindrical

polar coordinates and the Frenet frame

Consider a unit speed curve R(s) : I → R3 which will be used to represent

the position of the yarn (with arc length s) in three dimensions, where

I = {s ∈ R|0 ≤ s <∞}.

We assume that the yarn is inextensible and thus

dR

ds
· dR
ds

= 1. (3.2.1)

This is consistent with the speed function of the curve∥∥∥∥∥dRds
∥∥∥∥∥ = 1.

In cylindrical polar coordinates

R(s) = (r(s), 0, z(s)).

The unit tangent vector field on R(s) is

T =
dR

ds
= (r′, rθ′, z′). (3.2.2)

and its derivative is

dT

ds
=
d2R

ds2
= ((r′′ − rθ′2), (2r′θ′ + rθ′′), z′′). (3.2.3)

The principal normal vector field of R(s) is

N =
dT

ds

/
κ =

1

κ

{
((r′′ − rθ′2), (2r′θ′ + rθ′′), z′′)

}
, (3.2.4)

where κ is the curvature function of R(s)

κ(s) =

∥∥∥∥∥d2R

ds2

∥∥∥∥∥ =
√

(r′′ − rθ′2)2 + (2r′θ′ + rθ′′)2 + z′′2, (3.2.5)
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and their derivatives are

dN

ds
=

1

κ2

{(
− κ′(r′′ − rθ′2) + κ(r′′′ − 3r′θ′2 − 3rθ′θ′′)

)
,(

− κ′(2r′θ′ + rθ′′) + κ(3r′′θ′ − rθ′3 + 3r′θ′′ + rθ′′′)
)
,(

− κ′z′′ + κz′′′
)}

and

dκ

ds
=

1

κ

(
r′′r′′′ − rr′′′θ′2 + rr′θ′4 + 2r2θ′3θ′′ + 3r′r′′θ′2

+ 6r′2θ′θ′′ + 2rr′θ′θ′′′ + 3rr′θ′′2 + r2θ′′θ′′′ + z′′z′′′
)
.

The binormal vector field of R(s) is

B = T×N =
1

κ

{
((rθ′z′′ − (2r′θ′ + rθ′′)z′),−(r′z′′ − (r′′ − rθ′2)z′),

(r′(2r′θ′ + rθ′′)− rθ′(r′′ − rθ′2)))

}
(3.2.6)

and

dB

ds
= −τN = −τ

κ

{
((r′′ − rθ′2), (2r′θ′ + rθ′′), z′′)

}
. (3.2.7)

Three equivalent expressions for τ can be obtained by differentiating the right

hand side of equation (3.2.6) and equating each component to the correspond-

ing component of equation (3.2.7),

τ =
1

u

{(
θ′z′u+ z′v′ − rθ′w′

)
+ (−z′v + rθ′w)

(uu′ + vv′ + ww′)

(u2 + v2 + w2)

}
, (3.2.8a)

τ =
1

v

{(
θ′z′v − z′u′ + r′w′

)
+ (z′u− r′w)

(uu′ + vv′ + ww′)

(u2 + v2 + w2)

}
, (3.2.8b)

τ =
1

w

{(
− r′θ′u− r′v′ + rθ′u′ − rθ′2v

)
+ (r′v − rθ′u)

(uu′ + vv′ + ww′)

(u2 + v2 + w2)

}
,

(3.2.8c)

where

u = (r′′ − rθ′2) , v = (2r′θ′ + rθ′′) , w = z′′
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and

u′ = r′′′ − r′θ′2 − 2rθ′θ′′ , v′ = 2r′′θ′ + 3r′θ′′ + rθ′′′ , w′ = z′′′ .

So (3.2.8a) (3.2.8b) and (3.2.8c) are consistent with

Proposition 1

τ =
[N′ ×T]i

[N]i

where [ ]i denotes the ith vector component.

Requiring (3.2.2), (3.2.4) and (3.2.6) to satisfy all the equations in (2.2.5) gives

the following relations:

r′2 + (rθ′)2 + z′2 = 1 (3.2.9)

which is equivalent to (3.2.1). The second equation in (2.2.5) gives (3.2.5).

The third equation leads to

κ2 = (rθ′z′′ − 2r′θ′z′ − rθ′′z′)2 + (r′z′′ − r′′z′ + rθ′2z′)2

+ (2r′2θ′ + rr′θ′′ − rr′′θ′ + r2θ′3)2 . (3.2.10)

The fourth equation leads to

1

κ
(r′r′′ + rr′θ′2 + r2θ′θ′′ + z′z′′) = 0, (3.2.11)

while the last two equations give the scalar triple products in (2.2.8). The

second equation in (2.2.7) yields

κ2 = −r′r′′′ + 3r′2θ′2 − 3rr′′θ′2 + r2θ′4 − r2θ′θ′′′ − z′z′′′,

while the fourth equation gives
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Proposition 2

τ =− 1

κ2

(
rr′′θ′z′′′ − 3r′′2θ′z′ − 3r′r′′θ′′z′ − rr′′θ′′′z′ + 4rr′′θ′3z′ − r2θ′3z′′′

+ r2θ′2θ′′′z′ − r2θ′5z′ − 2r′2θ′z′′′ + 2r′r′′′θ′z′ − 6r′2θ′3z′

− 6rr′θ′2θ′′z′ − rr′θ′′z′′′ + rr′′′θ′′z′ − 3r2θ′θ′′2z′ + 3r′r′′θ′z′′

+ 3r′2θ′′z′′ + rr′θ′′′z′′ − rr′′′θ′z′′ + 2rr′θ′3z′′ + 3r2θ′2θ′′z′′
)
.

Taken together, equations (3.2.2), (3.2.4) and (3.2.6) constitute a transfor-

mation from a reference frame in cylindrical polar coordinates to the Frenet

reference frame, and can be represented in matrix form
T

N

B

 = P


er

eθ

k

 ,

where

P =


r′ rθ′ z′

(r′′−rθ′2)
κ

(2r′θ′+rθ′′)
κ

z′′

κ

(rθ′z′′−(2r′θ′+rθ′′)z′)
κ

−(r′z′′−(r′′−rθ′2)z′)
κ

(r′(2r′θ′+rθ′′)−rθ′(r′′−rθ′2))
κ

 .

To express the transformation from the Frenet frame to a frame in cylindrical

polar coordinates, the inverse of P must be found, and thus
er

eθ

k

 = P−1


T

N

B

 (3.2.12)

where

P−1 =


−(r′′−rθ′2)(2rr′θ′2+r2θ′θ′′+z′z′′)+r′((2r′θ′+rθ′′)2+z′′2)

κ2

−(r′′−rθ′2)(2r′2θ′−rθ′(r′′−rθ′2)+rr′θ′′)−(2r′θ′+rθ′′)z′z′′+rθ′z′′2

κ2
. . .

(4r′2θ′2+(r′′−rθ′2)2+4rr′θ′θ′′+r2θ′′2)z′−(r′(r′′+rθ′2)+r2θ′θ′′)z′′

κ2
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−κ(r′′−rθ′2)(r′2+r2θ′2+z′2)

κ2
κ(−2r′θ′z′−rθ′′z′+rθ′z′′)

κ2

κ(2r′3θ′+rr′2θ′′+r′θ′(−rr′′+r2θ′2+2z′2)+rz′(θ′′z′−θ′z′′))
κ2

κ(r′′z′−rθ′2z′−r′z′′)
κ2

−κ(r′(r′′+rθ′2)z′−r′2z′′+r2θ′(θ′′z′−θ′z′′))
κ2

κ(2r′2θ′+rr′θ′′−rr′′θ′+r2θ′3)
κ2

 .

The entries in the first column can be simplified by using (3.2.11), and then

(3.2.5), while the entries in the second column require the use of (3.2.11) then

(3.2.9). Once this has been done, the transformation matrix P−1 = P T as

expected from Definition (5)

Proposition 3

P−1 =


r′ (r′′−rθ′2)

κ
(rθ′z′′−(2r′θ′+rθ′′)z′)

κ

rθ′ (2r′θ′+rθ′′)
κ

−(r′z′′−(r′′−rθ′2)z′)
κ

z′ z′′

κ
(r′(2r′θ′+rθ′′)−rθ′(r′′−rθ′2))

κ

 . (3.2.13)

3.3 Surface of revolution for a general curve

rotating around a fixed axis

The objective of this section is to consider the path that the yarn takes as

it is drawn through the device and envisage a surface that contains this path

for every point on the path. The yarn path is represented by a curve, and it is

rotated around the axis of symmetry of the device (the spindle about which the

device rotates) to create the surface (essentially the yarn balloon mentioned

in the introduction). The curve is in a frame of reference S which is rotating

at a constant rate around the spindle of the device (which is taken to be the

z-axis). The Frenet and Darboux frames will then be calculated at a general

point P ∗ (Figure 3.1) which both lies on the curve and in the surface.
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Figure 3.1: The surface of revolution for curves α and β with vectors T, N

and U at points P and P ∗.
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Consider a unit speed curve α(s) in R3. A point P on this curve in cylindrical

coordinates (r(s), θ(s), z(s)) is represented in Cartesian coordinates as

(r(s) cos θ(s), r(s) sin θ(s), z(s)).

When the arc length s = 0, let r = 0 and z = 0, and define θ = 0 in

the direction of α′(0). We define the surface of revolution M of the curve α

around the z-axis in Cartesian coordinates. Let D be an open set in R2 such

that 0 ≤ s <∞, 0 ≤ φ ≤ 2π and define

X : D → R3

by

X(s, φ) = (r(s) cos(φ+ θ(s)), r(s) sin(φ+ θ(s)), z(s)).

Thus

Xs =

(
dr

ds
cos(φ+ θ(s))− r(s)dθ

ds
sin(φ+ θ(s)),

dr

ds
sin(φ+ θ(s)) + r(s)

dθ

ds
cos(φ+ θ(s)),

dz

ds

)
,

Xφ = (−r(s) sin(φ+ θ(s)), r(s) cos(φ+ θ(s)), 0),

and

Xs ×Xφ = (−rz′ cos(φ+ θ),−rz′ sin(φ+ θ), rr′).

Thus the unit normal vector to the surface M at X(s, φ) is

Proposition 4

U =
Xs ×Xφ

‖Xs ×Xφ‖

=
1√

r′2 + z′2
(−z′ cos(φ+ θ),−z′ sin(φ+ θ), r′). (3.3.14)
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The second partial derivatives give the following expressions

Xss =
(

(r′′ − rθ′2) cos(φ+ θ)− (2r′θ′ + rθ′′) sin(φ+ θ),

(r′′ − rθ′2) sin(φ+ θ) + (2r′θ′ + rθ′′) cos(φ+ θ), z′′
)
,

Xφφ = (−r cos(φ+ θ),−r sin(φ+ θ), 0),

Xsφ = (−r′ sin(φ+ θ)− rθ′ cos(φ+ θ), r′ cos(φ+ θ)− rθ′ sin(φ+ θ), 0).

We now calculate the Gaussian curvature using the recipe outlined in O’Neill

[3]. First determine the following real valued functions

E = Xs ·Xs = r′2 + r2θ′2 + z′2,

F = Xs ·Xφ = r2θ′,

G = Xφ ·Xφ = r2,

L = S(Xs) ·Xs = U ·Xss =
1√

r′2 + z′2
(r′z′′ − r′′z′ + rθ′2z′),

M = S(Xs) ·Xφ = U ·Xsφ =
rθ′z′√
r′2 + z′2

,

N = S(Xφ) ·Xφ = U ·Xφφ =
rz′√

r′2 + z′2
.

The Gaussian curvature is

K(X) =
LN−M2

EG− F2
=
rz′(r′z′′ − r′′z′)
r2(r′2 + z′2)2

and the mean curvature is

H(X) =
GL + EN− 2FM

2(EG− F2)
=
r2(r′z′′ − r′′z′) + rz′(r′2 + z′2)

2r2(r′2 + z′2)3/2
.

The principal curvature functions are given by

k1, k2 = H ±
√
H2 −K

so

k1 =
(r′z′′ − r′′z′)
(r′2 + z′2)3/2



CHAPTER 3. THE YARN BALLOON EQUATIONS IN A VACUUM 36

and

k2 =
z′

r
√
r′2 + z′2

and hence the shape operator is

Proposition 5

S =
1√

r′2 + z′2

 (r′z′′−r′′z′)
(r′2+z′2)

0

0 z′

r

 .

From earlier calculations ((3.2.2), here in Cartesian coordinates) the unit tan-

gent vector field at the point P , which lies both on the curve α and on the

surface M is

T =
dR

ds
= ((r′ cos θ − rθ′ sin θ), (r′ sin θ + rθ′ cos θ), z′). (3.3.15)

The principal normal vector field of α at P is

N =
dT

ds

/
κ =

1

κ

{
(((r′′ − rθ′2) cos θ − (2r′θ′ + rθ′′) sin θ),

((r′′ − rθ′2) sin θ + (2r′θ′ + rθ′′) cos θ), z′′)

}
,

where κ is the curvature function of α

κ =
√

(r′′ − rθ′2)2 + (2r′θ′ + rθ′′)2 + z′′2 .

Consider the curve α rotated by an angle φ around the z-axis. The point P

mentioned above is rotated to a new point P ∗, and there is a new curve β that

is congruent to α because this rotation is an isometry. Hence the vectors T

and N at P ∗ on β are

T = ((r′ cos(φ+ θ)− rθ′ sin(φ+ θ)), (r′ sin(φ+ θ) + rθ′ cos(φ+ θ)), z′)

and

N =
1

κ

{
(((r′′ − rθ′2) cos(φ+ θ)− (2r′θ′ + rθ′′) sin(φ+ θ)),

((r′′ − rθ′2) sin(φ+ θ) + (2r′θ′ + rθ′′) cos(φ+ θ)), z′′)

}
. (3.3.16)
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Let the angle between N and U at P ∗ be ψ, which can be calculated by taking

the dot product between (3.3.16) and (3.3.14)

Proposition 6

N ·U = cosψ =
1

κ
√
r′2 + z′2

(r′z′′ − r′′z′ + rθ′2z′). (3.3.17)

Note that this expression is independent of φ, so this result applies anywhere

on the surface M .

3.4 The transformation between cylindrical

polar coordinates and the Darboux frame

The Darboux frame field for the unit speed curve α consists of the three unit

vectors T(3.3.15),U(3.3.14) and V, where U is the surface normal, now re-

stricted to the curve α and

V = U×T

=
1√

r′2 + z′2

{
(− sin(φ+ θ)(r′2 + z′2)− rr′θ′ cos(φ+ θ)),

(cos(φ+ θ)(r′2 + z′2)− rr′θ′ sin(φ+ θ)),−rθ′z′)
}
.

The transformation between the Frenet frame and the Darboux frame depends

only upon ψ, the angle between N and U, shown in Figure 3.2,
T

N

B

 = Q


T

U

V

 (3.4.18)

where

Q =


1 0 0

0 cosψ − sinψ

0 − sinψ − cosψ

 (3.4.19)
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Figure 3.2: The Frenet and Darboux frames at a point on the curve α in the

surface M showing the angle ψ between N and U.
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and

sinψ =

√
(r′(r′′ − rθ′2) + z′z′′)2 + (r′2 + z′2)(2r′θ′ + rθ′′)2

κ
√
r′2 + z′2

. (3.4.20)

The transformation from cylindrical polar coordinates to the Darboux frame

can now be calculated from (3.2.12), (3.2.13) and (3.4.18), (3.4.19) by substi-

tuting for cosψ from (3.3.17) and for sinψ from (3.4.20)
er

eθ

k

 = P−1Q


T

U

V

 (3.4.21)

where

Proposition 7

P−1Q =


r′

rθ′ . . .

z′




(r′′−rθ′2)(r′z′′−(r′′−rθ′2)z′)−(rθ′z′′−(2r′θ′+rθ′′)z′)
√

(r′(r′′−rθ′2)+z′z′′)2+(r′2+z′2)(2r′θ′+rθ′′)2

κ2
√
r′2+z′2

(2r′θ′+rθ′′)(r′z′′−(r′′−rθ′2)z′)−(−rz′′+(r′′−rθ′2)z′)
√

(r′(r′′−rθ′2)+z′z′′)2+(r′2+z′2)(2r′θ′+rθ′′)2

κ2
√
r′2+z′2

. . .

z′′(r′z′′−(r′′−rθ′2)z′)−(r′(2r′θ′+rθ′′)−rθ′(r′′−rθ′2))
√

(r′(r′′−rθ′2)+z′z′′)2+(r′2+z′2)(2r′θ′+rθ′′)2

κ2
√
r′2+z′2



− (r′′−rθ′2)

√
(r′(r′′−rθ′2)+z′z′′)2+(r′2+z′2)(2r′θ′+rθ′′)2+(rθ′z′′−(2r′θ′+rθ′′)z′)(r′z′′−(r′′−rθ′2)z′)

κ2
√
r′2+z′2

− (2r′θ′+rθ′′)
√

(r′(r′′−rθ′2)+z′z′′)2+(r′2+z′2)(2r′θ′+rθ′′)2+(−r′z′′+(r′′−rθ′2)z′)(r′z′′−(r′′−rθ′2)z′)

κ2
√
r′2+z′2

− z′′
√

(r′(r′′−rθ′2)+z′z′′)2+(r′2+z′2)(2r′θ′+rθ′′)2+(r′(2r′θ′+rθ′′)−rθ′(r′′−rθ′2))(r′z′′−(r′′−rθ′2)z′)

κ2
√
r′2+z′2

 .

3.5 No air drag case

As a first step towards solving these equations, it is useful to consider the

case where there is no air drag (p0 = 0). The EoM then reduce to

−rer =
dTe
ds

dr

ds
+ Te

d2r

ds2
. (3.5.22)



CHAPTER 3. THE YARN BALLOON EQUATIONS IN A VACUUM 40

Representing this equation in the Frenet frame by substituting for er from

(3.2.12), and using (3.2.2) for dr
ds

and using (3.2.3) and (3.2.4) for d2r
ds2

−rr′T− r(r′′ − rθ′2)

κ
N− r(rθ′z′′ − (2r′θ′ + rθ′′)z′)

κ
B =

dTe
ds

T + TeκN.

Equating the coefficients of T,N and B yields

Proposition 8

dTe
ds

+ rr′ = 0, (3.5.23a)

Teκ+
r(r′′ − rθ′2)

κ
= 0, (3.5.23b)

r(rθ′z′′ − (2r′θ′ + rθ′′)z′)

κ
= 0. (3.5.23c)

Similarly, representing (3.5.22) in the Darboux frame by using (3.4.21) and

(3.4.18) yields

Proposition 9

0 =
dTe
ds

+ rr′, (3.5.24a)

0 =
1

κ2
√
r′2 + z′2

{
− (Teκ

2 + r(r′′ − rθ′2))(r′z′′ − (r′′ − rθ′2)z′)

+ r(rθ′z′′ − (2r′θ′ + rθ′′)z′) (3.5.24b)√
(r′(r′′ − rθ′2) + z′z′′)2 + (r′2 + z′2)(2r′θ′ + rθ′′)2

}
,

0 =
1

κ2
√
r′2 + z′2

{
r(rθ′z′′ − (2r′θ′ + rθ′′)z′)(r′z′′ − (r′′ − rθ′2)z′) (3.5.24c)

+ (Teκ
2 + r(r′′ − rθ′2))

√
(r′(r′′ − rθ′2) + z′z′′)2 + (r′2 + z′2)(2r′θ′ + rθ′′)2

}
.

Equation (3.5.23a) gives

Te = C1 −
r2

2
where Te > 0. (3.5.25)
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3.5.1 An integral form for s

Multiplying the numerator of (3.5.23c) by 1
r4θ′2

yields

z′

r2θ′
= C2 (3.5.26)

assuming r 6= 0 and θ′ 6= 0. Substituting for Te from (3.5.25) and for κ from

(3.2.5) and using (3.5.26) to eliminate z′′ in (3.5.23b) yields

(C1 −
r2

2
)((r′′ − rθ′2)2 + (1 + C2

2r
2)(2r′θ′ + rθ′′)2) + r(r′′ − rθ′2) = 0 .

At this stage there are three cases where progress can be made with elemen-

tary techniques. Further progress requires more advanced techniques.

Firstly, if the tension in the yarn, Te = 0, then r′′ − rθ′2 = 0. This case is

not immediately relevant to this investigation.

Secondly, if r′′ − rθ′2 = 0 and 2r′θ′ + rθ′′ = 0, then multiplying the second

equation by 1

2
√
θ′

gives

r
√
θ′ = C3

and then substituting into the first equation gives

r3r′′ = C4
3 .

after some further work, the solution is

Proposition 10

r =

√
2C4(s+ C5)2 +

C4
3

2C4

,

θ = arctan

(
2C4(s+ C5)

C2
3

)
+ C7,

z = C2C
2
3s+ C6.
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Thirdly, if 2r′θ′ + rθ′′ = 0 (assuming r′′ − rθ′2 6= 0 ) then

(C1 −
r2

2
)(r′′ − C4

3

r3
) + r = 0.

After multiplying both sides by r′ and integrating, this leads to

Proposition 11

s = ±
∫

r dr√
2r2(C4 + ln(C1 − r2

2
))− C4

3

.

3.5.2 Planar solutions

Another solution to equations (3.5.23a), (3.5.23b), (3.5.23c), (3.5.24a), (3.5.24b)

and (3.5.24c) occurs when the yarn path lies on the vertical plane containing

the z-axis, which also rotates around the z-axis. In this case the angle between

U and N is ψ = π, and so cosψ = −1 and sinψ = 0 yield

(r′z′′ − (r′′ − rθ′2)z′) = −κ
√
r′2 + z′2,

(r′(r′′ − rθ′2) + z′z′′)2 + (r′2 + z′2)(2r′θ′ + rθ′′)2 = 0 (3.5.27)

and (3.5.23b) yields

Teκ
2 + r(r′′ − rθ′2) = 0 (3.5.28)

where Te is again given by equation (3.5.25). Equation (3.5.27) implies that

r′(r′′ − rθ′2) + z′z′′ = 0 and (3.5.29)

2r′θ′ + rθ′′ = 0. (3.5.30)

Multiplying (3.5.30) by r leads to

r2θ′ = C2. (3.5.31)

Using this expression to substitute for θ′ in (3.5.29), then integrating gives

1

2

(
r′2 − C2

2

r2
+ z′2

)
= C3 . (3.5.32)
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Similarly substituting (3.5.25) and (3.5.31) into (3.5.28) gives

−r
(
r′′ − C2

2

r3

)
=
(
C1 −

r2

2

)((
r′′ − C2

2

r3

)2

+ z′′2
)
. (3.5.33)

The boundary condition for ring spinning and the two-for-one twister at the

guide eye is that

r = 0 , z = 0 at s = 0

and so

C2 = 0 and θ = C4

that is, the solution lies in the r − z plane as expected, for yarn spinning

applications. For an inextensible yarn, (3.5.32) becomes

r′2 + z′2 = 1

and equation (3.5.33) then becomes

−rr′′ =
(
C1 −

r2

2

)(
r′′2 + z′′2

)
.

Concluding Remarks The results derived in this chapter are in agreement

with previous authors [68], [15], [14], [16], that solutions to the yarn balloon

equations in a vacuum are planar in the reference frame S with constant an-

gular rotation. Some more work is required here to obtain a complete set of

analytical solutions, although it is likely that it will only replicate the results of

[68], [14] and [16]. The solutions found by [69] with the extension of constant

tangential motion V0 are not planar, due to the inclusion of Coriolis forces.

However, if V0 is very small compared to the linear velocity of the yarn ele-

ment, and we only consider quasi-stationary solutions, the Coriolis term can

be neglected and thus the solutions are planar.

In the next chapter we will now consider the case where Padfield’s dimension-

less air drag parameter p0 is non-zero, rewriting the yarn balloon equations,
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including Padfield’s air drag term, in intrinsic coordinates. The fact that the

solutions found in this chapter are planar provides the basis for the new frame

of reference used in the next chapter.



Chapter 4

The yarn balloon equations with

Padfield’s air drag term in

intrinsic coordinates

4.1 Introduction

In this section, the objective is to set up the framework that will be used

to model the yarn balloon with air drag, using the Padfield model. The yarn

balloon equations were recast in an intrinsic coordinate system in the previous

chapter for the yarn balloon in vacuo. The effect of air drag in this system

is significant, in fact it is essential to the proper functioning of devices such

as the two-for-one twister, in that it is through air drag that the boundary

condition at the rim of the over-run plate can be achieved. In Section 4.2,

the justification for the assumption that B remains horizontal is presented. In

Section 4.3 a new reference frame S ′ is defined. It is assumed that B remains

horizontal along the entire yarn balloon, and so the yarn path lies in a vertical

osculating plane. In Section 4.4, the EoM are expressed in the new reference

45
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frame S ′ with the intrinsic coordinates. In Section 4.5, Padfield’s air drag

term is used in the expression of the EoM found in Section 4.4. The task

of determining a new, more accurate air drag term for the EoM in this new

framework is addressed in Chapters 5 and 6.

4.2 The justification for modelling B as

remaining horizontal

Consider a yarn element of length δs at point P in the yarn balloon, at an

angle β to the vertical (Figure 4.1), and an angle (φ − Φ) with the ray OP

on the horizontal plane. With air drag proportional to v2, and v2 = r2eθ in

the quasi-stationary case, then air drag is proportional to r2. The change in r

along the yarn element is

δr = cos(φ− Φ) sin β δs . (4.2.1)

If there is a change in magnitude of the air drag force across the yarn element

then a rotation will occur. Consider the two extreme cases for a single loop

balloon. If the yarn element is horizontal, with T pointing radially outwards,

δr = δs in (4.2.1) and the yarn element rotates such that T and B move in the

horizontal plane. If the yarn element is vertical, there is a slight differential

across the width of the yarn which will act to rotate the yarn element around

the yarn axis. In this case, T is unchanged while B moves horizontally.

Now consider the case somewhere in between these two extremes,

0 < (φ− Φ) <
π

2
and 0 < β <

π

2
.

As (φ − Φ) increases, δr gets smaller, and so the amount of rotation caused

by the air drag is reduced. As β increases from zero, the plane in which B
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Figure 4.1: The yarn element in reference frame S ′, with T making an angle

β with the vertical axis.

Figure 4.2: The yarn element at P is planar in reference frame S ′, which moves

relative to the rotating reference frame S.
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is rotated is at an angle β to the horizontal, however the amount of rotation

around the yarn axis gets smaller.

Therefore, as a first attempt to model this situation, I will assume that B

is always horizontal and thus T and N lie in a vertical plane.

4.3 The new non-inertial reference frame S ′

The yarn spinning device rotates at an angular velocity of ω about the spindle,

or axis of rotation, which contains the point O fixed in an inertial reference

frame coincident with the guide eye. With no air drag, the yarn path remains

on a vertical plane through O, rotating with angular velocity ω. Considering a

reference frame, S, rotating with angular velocity ω about the axis of rotation

containing O, to an observer in this frame, the in vacuo quasi-stationary yarn

path appears fixed on a vertical plane. We can imagine that for a yarn element

at a point P on this yarn path that any air drag would lift the yarn element off

this plane. In fact, as s increases along the yarn path, air drag moves the yarn

element further away from the original plane. That is, θ is always an increasing

function of s for yarn balloons in the presence of air drag. Therefore we model

the yarn path being in a vertical plane, containing T and N, rotating around

a point O′, the centre of rotation for a rotating reference frame S ′, as shown in

Figure 4.2. The yarn element is represented as an inclined cylinder. The point

O′ moves relative to the fixed point O, as s increases as we move along the

yarn. The assumption that the plane is vertical means that B is horizontal.

To put this another way, the yarn element at P always lies in a plane contain-

ing T and N (by definition), and our objective is to model the effect air drag

has on the yarn element and thus this plane. We have assumed that this plane

remains vertical, but it is allowed to rotate around a vertical axis containing
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the point O′. As s increases as we move along the yarn, O′ is allowed to move

relative to O.

The position vector of the yarn element in S is r = rer+0eθ+zk, while the co-

ordinates in S are (r(s, t), θ(s, t), z(s, t)), in S ′ they are (r′(s, t), θ′(s, t), z′(s, t))

relative to O′ and the coordinates of O′ are (R(s, t),Θ(s, t), z(s, t)). So

r = R + r′ where R = R eR + 0 eΘ and
dR

ds
=
dR

ds
eR +R

d

ds

(
eR

)
,

(4.3.2)

and

d

ds

(
eR

)
= −RdΘ

ds
eΘ.

The position vector of P relative to O′ is

r′ = r′er′ + 0eθ′ + z′k

where θ′ = 0 and z′ = z.

Using the Cosine rule in 4OO′P (Figure 4.3),

r2 = R2 + r′2 + 2r′R cosφ.

Using the Sine rule in 4OO′P ,

r′

sin Φ
=

r

sinφ
=

R

sin(φ− Φ)
.

The relationship between the unit vectors is given by rotation matrices
er

eθ

k

 =


cos(φ− Φ) sin(φ− Φ) 0

− sin(φ− Φ) cos(φ− Φ) 0

0 0 1




er′

eθ′

k

 (4.3.3)
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Figure 4.3: A horizontal cross-section showing the distances and angles be-

tween the points O, O′ and P .
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and 
eR

eΘ

k

 =


cosφ sinφ 0

− sinφ cosφ 0

0 0 1




er′

eθ′

k



and 
eR

eΘ

k

 =


cos Φ sin Φ 0

− sin Φ cos Φ 0

0 0 1




er

eθ

k

 . (4.3.4)

Using (3.2.12) and (3.2.13) for the primed coordinates, with θ′ = 0,
er′

eθ′

k

 =


dr′

ds

d2r′
ds2

κ′
0

0 0 1

dz′

ds

d2z′
ds2

κ′
0




T

N

B

 . (4.3.5)

From (4.3.3) and (4.3.5)
er

eθ

k

 =


dr′

ds
cos(φ− Φ)

d2r′
ds2

κ′
cos(φ− Φ) sin(φ− Φ)

−dr′

ds
sin(φ− Φ) −

d2r′
ds2

κ′
sin(φ− Φ) cos(φ− Φ)

dz′

ds

d2z′
ds2

κ′
0




T

N

B

 .

(4.3.6)

From (3.2.10), with θ′ = 0,

κ′ =
d2r′

ds2

dz′

ds
− dr′

ds

d2z′

ds2
.
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Next equate the 3 by 3 matrix in (4.3.6) with the corresponding matrix in

(3.2.13). Thus all nine corresponding entries are equal

dr

ds
=
dr′

ds
cos(φ− Φ),

r
dθ

ds
= − dr′

ds
sin(φ− Φ),

dz

ds
=
dz′

ds
,

(d
2r
ds2
− r(dθ

ds
)2)

κ
=

d2r′

ds2
cos(φ− Φ)

κ′
,

(2dr
ds
dθ
ds

+ r d
2θ
ds2

)

κ
= −

d2r′

ds2
sin(φ− Φ)

κ′
,

d2z
ds2

κ
=

d2z′

ds2

κ′
,

(r dθ
ds
d2z
ds2
− (2dr

ds
dθ
ds

+ r d
2θ
ds2

)dz
ds

)

κ
= sin(φ− Φ),

−(dr
ds
d2z
ds2
− (d

2r
ds2
− r(dθ

ds
)2)dz

ds
)

κ
= cos(φ− Φ),

(dr
ds

(2dr
ds
dθ
ds

+ r d
2θ
ds2

)− r dθ
ds

(d
2r
ds2
− r(dθ

ds
)2))

κ
= 0.

Considering the yarn element on the osculating plane, because we assume

that B remains horizontal, the orientation of T and N can be described by

three angles. The angles Θ and φ that determine the orientation of the os-

culating plane, and the angle β that T makes with −k. It is clear from the

diagram using trigonometry that the relationship between the unit vectors is

given by 
er′

eθ′

k

 =


sin β(s) − cos β(s) 0

0 0 1

− cos β(s) − sin β(s) 0




T

N

B

 . (4.3.7)

Comparing this with (4.3.5) we have

dr′

ds
= sin β(s),

dz′

ds
= − cos β(s) and κ′ = −dβ

ds
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and thus

r′(s) =

∫ s

0

sin β(s̃)ds̃.

The objective of this chapter is to express the EoM in the new reference

frame S ′ with intrinsic coordinates. The first step will be to express the EoM

in frame S ′ for an unspecified air drag term F, then the second step is to use

Padfield’s air drag term. So in the next section I will present the results for

this first step.

4.4 EoM expressed in the non-inertial

reference frame S ′

In the reference frame S, which rotates with a constant angular velocity ω,

a general point P in the yarn balloon is represented by the position vector

r defined above. The velocity of the point P in the inertial reference frame,

using the position vector r from the frame S is given by

v = Dr + ωk ∧ r where D =
∂

∂t
− V0(t)

∂

∂s
, (4.4.8)

and V0(t) is the linear speed with which the yarn is drawn through the guide

eye of the device. This velocity v remains unchanged no matter which non-

inertial reference frame we choose. So to represent (4.4.8) in the frame S ′, we

need to substitute (4.3.2) into (4.4.8) and express every term resulting from v

in terms of r′ and the unit vectors er′ and eθ′ . Thus

Dr = Dr′ +
(∂R
∂t
− V0(t)

∂R

∂s

)
eR +R

(∂Θ

∂t
− V0(t)

∂Θ

∂s

)
eΘ

and

ωk ∧ r = ωReΘ + ωr′eθ′ . (4.4.9)
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So

v = Dr′ +R cosφ(ωk ∧ er′) + R sinφ(k ∧ (ωk ∧ er′)) + ωr′eθ′

+

{(∂R
∂t
− V0(t)

∂R

∂s

)
cosφ−R

(∂Θ

∂t
− V0(t)

∂Θ

∂s

)
sinφ

}
er′

+

{(∂R
∂t
− V0(t)

∂R

∂s

)
sinφ+R

(∂Θ

∂t
− V0(t)

∂Θ

∂s

)
cosφ

}
eθ′ .

If we think of this expression for v as an operator acting on a vector in the S ′

frame, we can apply this operator to r twice and express every resultant term

in terms of r′ and the unit vectors er′ and eθ′ to obtain an expression for the

acceleration in the inertial reference frame

a = D2r′ + 2(ωk ∧ (Dr′))

+

{
ωR(sinφDθ′ − cosφD(Θ + φ))− 2ω sinφDR− ω2(r′ +R cosφ)

+ (D2R−R(DΘ)2) cosφ− (RD2Θ + 2DRDΘ) sinφ

}
er′

+

{
− ωR(cosφDθ′ + sinφD(Θ + φ)) + 2ω cosφDR− ω2(R sinφ)

+ (D2R−R(DΘ)2) sinφ+ (RD2Θ + 2DRDΘ) cosφ

}
eθ′ .
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The EoM expressed in reference frame S is given by (1.0.1). Using the calcu-

lations in this section the EoM in S ′ are given by

m

{
D2r′ + 2ωk ∧Dr′+

+
{
ωR(sinφDθ′ − cosφD(Θ + φ))− 2ω sinφDR− ω2(r′ +R cosφ)

+ (D2R−R(DΘ)2) cosφ− (RD2Θ + 2DRDΘ) sinφ
}

er′

+
{
− ωR(cosφDθ′ + sinφD(Θ + φ)) + 2ω cosφDR− ω2(R sinφ)

+ (D2R−R(DΘ)2) sinφ+ (RD2Θ + 2DRDΘ) cosφ
}

eθ′

}

=
∂

∂s

(
Te
∂r′

∂s

)
+

∂

∂s

(
Te
∂R

∂s

)
+ F.

To make the EoM dimensionless, first introduce dimensionless variables,

defined in terms of the dimensional variables, as follows

t = t̄ω, r = r̄/a = r̄er/a+ z̄k/a = rer + zk,

r′ = r̄′/a = r̄′er′/a+ z̄′k/a = r′er′ + z′k,

R = R̄/a = R̄eR/a+ z̄k/a = ReR + zk,

s = s̄/a, v = v̄/ωa, Te = T̄e/mω
2a2, F = F̄/mω2a,

D =
D̄

ω
=

∂

∂t
− Ω−1 ∂

∂s
.

Each symbol with a bar above it, is a variable which has the dimensions of the

physical quantity it represents. All the second derivative terms have the same

form, with regards to Ω−1 and Ω−2. For example,

D2 =
∂2

∂t2
− 2Ω−1 ∂

∂t

∂

∂s
+ Ω−2 ∂

2

∂s2
,

and so only the time derivatives remain when the small terms are neglected in

all the terms involving D and D2.
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Therefore the dimensionless EoM in reference frame S ′ is

∂2r′

∂t2
+ 2(k ∧

(∂r′

∂t

)
)

+

{
R(sinφ

∂θ′

∂t
− cosφ

∂(Θ + φ)

∂t
)− 2 sinφ

∂R

∂t
− (r′ +R cosφ)

+
(∂2R

∂t2
−R

((∂Θ

∂t

)2)
cosφ−

(
R
∂2Θ

∂t2
+ 2

∂R

∂t

∂Θ

∂t

)
sinφ

}
er′

+

{
−R

(
cosφ

∂θ′

∂t
+ sinφ

∂(Θ + φ)

∂t

)
+ 2 cosφ

∂R

∂t
−R sinφ

+
(∂2R

∂t2
−R

((∂Θ

∂t

)2)
sinφ+

(
R
∂2Θ

∂t2
+ 2

∂R

∂t

∂Θ

∂t

)
cosφ

}
eθ′

=
∂

∂s

(
Te
∂r′

∂s

)
+

∂

∂s

(
Te
∂R

∂s

)
+ F, (4.4.10)

where Ω−1 = V0/ωa� 1, and so the terms multiplied by Ω−1 are neglected.

4.5 Quasi-stationary EoM with the Padfield

air drag term

When we assume that the yarn balloon is unchanging in the reference frame

S, we say that the yarn balloon is quasi-stationary. In this section, we will use

Padfield’s air drag term (characterized by the assumption that CD = 1 for any

shape yarn balloon, and at any point on the entire yarn balloon) expressing

it in intrinsic coordinates, in the new formulation of the EoM in the frame of

reference S ′.

Neglecting all the time dependent terms in (4.4.10), gives the quasi-stationary

EoM in frame S ′. To evaluate the air drag term in this case, take the dimension-

less form of (4.4.9), using (4.3.4) then (4.3.7), then deleting the T component

to get

vn = R cos β sinφN + (r′ +R cosφ)B (4.5.11)
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and

|vn| =
√
R2 cos2 β sin2 φ+ (r′ +R cosφ)2 . (4.5.12)

Finally substituting (4.5.11) and (4.5.12) into (2.3.10) we obtain

F =− p0

16

√
R2 cos2 β sin2 φ+ (r′ +R cosφ)2(

−R cos β sinφN + (r′ +R cosφ)B
)
.

Thus the T, N and B components of the quasi-stationary EoM are

dTe
ds

+ sin β

(
cosφ

{ d

ds

(
Te
dR

ds

)
− TeR

(dΘ

ds

)2

+R
}
−

sinφ
{ d

ds

(
TeR

dΘ

ds

)
+ Te

dR

ds

dΘ

ds

}
+ r′

)
= 0,

−Te
dβ

ds
+

cos β

(
cosφ

{
− dTe

ds

dR

ds
+ Te

(d2R

ds2
−R

(dΘ

ds

)2)
−R

}
+

sinφ
{
R
dTe
ds

dΘ

ds
− Te

(
2
dR

ds

dΘ

ds
+R

d2Θ

ds2

)
−

p0R

16

√
R2 cos2 β sin2 φ+ (r′ +R cosφ)2

}
− r′

)
= 0,

cosφ
{
R
dTe
ds

dΘ

ds
+ Te

(
2
dR

ds

dΘ

ds
+R

d2Θ

ds2

)
−

p0R

16

√
R2 cos2 β sin2 φ+ (r′ +R cosφ)2

}
+

sinφ
{
R +

dTe
ds

dR

ds
+ Te

(d2R

ds2
−R

(dΘ

ds

)2)}
−

p0r
′

16

√
R2 cos2 β sin2 φ+ (r′ +R cosφ)2 = 0 .

Future Work The restriction of T and N always being in a vertical plane,

and thus B always being horizontal could be removed, regardless of whether

the current model turns out to be accurate enough when the new air drag term

has been found, and this new model has been compared to experimental data.

However the accuracy will determine how necessary this change would be.
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The framework defined in Chapter 4, of the Frenet frame in a rotating reference

frame potentially could be applied to many other situations, particularly where

more than one rotation is evident.

Concluding Remarks In this chapter, a new reference frame S ′ is derived

and is then utilized in conjunction with the insights from Chapter 3, that

the solutions in vacuo are planar, to model the effect of air drag on the yarn

element at every point along the yarn balloon. Specifically this is achieved

by expressing the EoM in S ′ with intrinsic coordinates. In the final section,

Padfield’s air drag term is expressed in intrinsic coordinates. A secondary

goal in this chapter, to determine if this new formulation would lead to an

analytical expression for the yarn path with the Padfiled air drag term has

not been achieved yet. So exact solutions for the EoM were not found, and

the EoM were not solved numerically for any of the relevant boundary condi-

tions, because this has been done extensively in the past [2]. However with

this new framework the drag coefficient for the yarn represented by a smooth

flexible cylinder, for multi-strand yarns, and non-smooth hairy yarns can now

be incorporated more accurately into our model than the Padfield model.

In the next chapter, we will represent the Navier-Stokes equations in intrinsic

coordinates, and explore how to use these equations to derive a more accurate

air drag term for the yarn balloon equations.



Chapter 5

The Navier-Stokes equations in

intrinsic coordinates

5.1 Introduction

In this Chapter, I will be using the framework established by Dimitriou

[46], [47], to explore boundary layer solutions of the Navier-Stokes equations

in intrinsic coordinates for 2-D fluid flow around a circular cylinder.

Dimitiou’s novel approach leads to a new formulation of the Navier-Stokes

equation.

Theorem 5 (Dimitriou [47]) The velocity-vorticity formulation of the pla-

nar Navier-Stokes equation is

(u · ∇)ω = ν4ω (5.1.1)

and in intrinsic coordinates it is

u
∂ω

∂s
= ν4ω . (5.1.2)

59
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He also defined a new quantity called the Geometric Vorticity Γ, which is the

curl of the global curvature vector κG (5.2.6). He also was able to express the

flow velocity as a function of geometric parameters. This idea complements

the idea expressed in this thesis of a local Reynolds number (5.3.13), which

combines two physical properties of the fluid with a geometric property of the

fluid. Dimitriou also introduced the idea of the geometric-vorticity diagram

in which pairs of values for ∂κs
∂s

and −∂κn
∂n

are computed and plotted along

a streamline, thereby being able to clearly visualize which flow areas have

vorticity, and which do not. This idea could potentially be used in the future

to model what happens to the air flow in the vicinity of the yarn balloon,

given that devices such as the two-for-one twister are always operated in rows,

adjacent to each other, divided by a metal panel or separator, and with a

yarn guide and pot in close proximity to the yarn balloon. Thus turbulent air

created by the yarn balloon, reflecting off these adjacent hard surfaces, and

affecting the drag experienced by the yarn balloon is a distinct possibility.

In Section 5.2, using Dimitriou’s framework, I will represent the 2-D Navier-

Stokes equations in a new way: the change in head (H) in the direction parallel

to the fluid flow, and normal to the fluid flow. In Section 5.3, I will represent

this equation in vector form in 2-D, and attempt to do so in 3-D in Appendix C.

In Section 5.4, I apply the boundary layer assumptions to the equation found

in Section 5.2, and investigate what this says about how H changes along a

streamline, or along a potential line in the boundary layer. In Section 5.5 I will

consider how the connection between the fluid flow around a circular cylinder

and the air drag on the yarn element moving in a yarn balloon can best be

established. In Section 5.6, I make a first attempt to find the complex potential

and stream function for a 2-D flow around a cylinder with a separation point
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by using conformal mapping.

5.2 A representation of the Navier-Stokes equa-

tions in intrinsic coordinates

Consider representing the fluid flow by streamlines, that is the paths along

which individual fluid elements move when the fluid flows. Each streamline is

a curve, and the distance along the curve from some fixed point is s. Potential

lines are lines of constant s, and each potential line is also a curve, with

parameter n.

So for a 2-D flow we have the streamline coordinate system (s, n), with unit

tangent vector T = u
u
, and a unit vector N normal to it. the curvature of

a streamline is κs, while the curvature of the orthogonal potential line is κn.

Therefore the global curvature vector can be defined as

κG = −κnT + κsN where κs = |∇ ×T|k and κn = (∇ ·T)k (5.2.3)

with the initial assumption that the fluid is incompressible and the flow is

irrotational,

∇ · (uT) = u∇ ·T +∇u ·T = 0

and so

uκn = −∂u
∂s

. (5.2.4)

Also

∇× (uT) = u∇×T +∇u×T = 0

and so

uκs =
∂u

∂n
. (5.2.5)
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Combining (5.2.4) and (5.2.5), the modulus of κG from (5.2.3) is

κ2
G = κ2

s + κ2
n =

1

u2

((∂u
∂s

)2

+
(∂u
∂n

)2)
or

κG =
∇u
u
. (5.2.6)

Now allowing vorticity to be non-zero, taking (2.4.14) and adding a term that

represents the effect of viscosity, the Navier-Stokes equation can be written as

∇H = u× ω + ν∇2u (5.2.7)

where ω = ∇× u = ωk for a 2-D flow.

Equation (5.2.4) is unchanged, but (5.2.5) now becomes

−∂u
∂n

+ uκs = ω (5.2.8)

and so

κs =
1

u

∂u

∂n
+
ω

u

and hence (5.2.6) becomes

κG =
∇u
u

+
ω

u
N .

In intrinsic coordinates,

∇ ≡ T
∂

∂s
+ N

∂

∂n

and so the Laplacian becomes

∆ ≡ ∇ · ∇ = T ·
(∂T

∂s

) ∂
∂s

+ T ·
(∂N

∂s

) ∂
∂n

+ N ·
(∂T

∂n

) ∂
∂s

+ N ·
(∂N

∂n

) ∂
∂n

+
∂2

∂s2
+

∂2

∂n2
. (5.2.9)
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The Frenet-Serret equations can be expressed in terms of the streamline cur-

vature κs, and the streamline torsion τs as follows

∂T

∂s
= κsN ,

∂N

∂s
= −κsT + τsB ,

∂B

∂s
= −τsN .

For a planar flow, τs = 0 and B ≡ k and so

∂T

∂s
= κsN ,

∂N

∂s
= −κsT,

∂T

∂n
= κnN ,

∂N

∂n
= −κnT,

∂2T

∂s2
= −κ2

sT +
∂κs
∂s

N ,
∂2N

∂s2
= −∂κs

∂s
T− κ2

sN,

∂2T

∂n2
= −κ2

nT +
∂κn
∂n

N ,
∂2N

∂n2
= −∂κn

∂n
T− κ2

nN .

Substituting into (5.2.9),

∆ = −κs
∂

∂n
+ κn

∂

∂s
+

∂2

∂s2
+

∂2

∂n2
.

Evaluating the two terms on the right hand side of (5.2.7),

u× (∇× u) =
(
− κsu2 + u

∂u

∂n

)
N,

∇2u = T(∆u) + 2(∇u · ∇)T + u∆T .

Now substituting these two terms into (5.2.7)

∇H = ν
{
κn
∂u

∂s
− κs

∂u

∂n
+
∂2u

∂s2
+
∂2u

∂n2
− uκ2

s − uκ2
n

}
T (5.2.10)

+
{(
− κsu2 + u

∂u

∂n

)
+ ν
(

2κs
∂u

∂s
+ 2κn

∂u

∂n
+ u

∂κs
∂s

+ u
∂κn
∂n

)}
N .

Using

u2κ2
G =

(∂u
∂s

)2

+
(∂u
∂n

+ ω
)2
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and

1

u

∂

∂s
(uω) =

2ω

u

∂u

∂s
+ u

∂

∂s

(ω
u

)
in (5.2.10), we have

∇H = ν
(
− 2uκ2

G + ωκs +
∂2u

∂s2
+
∂2u

∂n2

)
T

+
(
− uω +

ν

u

∂

∂s
(uω)

)
N . (5.2.11)

5.3 An alternative representation of (5.2.7)

Considering (5.2.7), we can represent the intrinsic coordinates in vector form

T =
u

u
, N =

ω × u

uω
, B =

∇× u

ω

and take the dot product of (5.2.7) with each of these vectors. For a 2-D planar

flow,

(u× ω) · (∇× ω) = −u · ∇
(1

2
ω2
)
,

this expression is evaluated in 3-D Cartesian coordinates in appendix (C).

Therefore (5.2.7) can be written as

∇H = (ν
u

u
· ∇2u)

u

u
−
(
uω − νu

uω
· ∇
(1

2
ω2
))ω × u

uω

or equivalently,

∇H = (νT · ∇2u)T−
(
uω − ν

ω
T · ∇

(1

2
ω2
))

N . (5.3.12)

The equation (5.3.12) is an alternative representation of (5.2.7), and in fact

there are many equivalent representations of the Navier-Stokes equations, such

as (5.1.1) and (5.1.2), and many examples in [8]. The objective of this exer-

cise apart from a purely academic interest is to find a representation that is
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amenable to the problem that you wish to solve, or on the other hand, if a new

formulation is found, find a problem that it can be useful in solving. Unfortu-

nately, at this stage we have been unable to achieve either of these objectives

with the representation found here. Similarly, we can define the local Reynolds

number as

Re =
u

νκG
=

u2

ν
√

∂u
∂s

2
+ (∂u

∂n
+ ω)2

. (5.3.13)

It is not clear to me at this stage how this can be used to recast the Navier-

Stokes equations in general, as I have attempted to do in this thesis. However,

it may be possible in specific circumstances, that is, depending upon the do-

main and the boundary conditions. There are many situations where the

Reynolds number is determined by the geometry of the domain, and so Re

will be fixed over some local neighbourhood, however in general Re will vary

over an entire domain.

5.4 Boundary layer equations in intrinsic

coordinates

In this section, the standard boundary layer assumptions [8], [33] are applied

to the Navier-Stokes equations in intrinsic coordinates. The boundary layer

of a fluid flow is the region in which the velocity of the fluid adjusts from the

external inviscid flow to zero velocity on the solid boundary. The hypothesis

is that the viscous term is of the same order of magnitude as the inertia term

in the Navier-Stokes equations in a thin layer close to the boundary.

Assume that the boundary layer has thickness δ, and streamline curvature

κs ∼ O( 1
a
), for a 2-D laminar flow around a circular cylinder of radius a. The
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key assumption is that ∣∣∣∂u
∂n

∣∣∣� ∣∣∣∂u
∂s

∣∣∣
in the boundary layer. That is

U0

δ
� U0

a
because δ � a ,

where U0 denotes some typical value of u. Next

uκs ∼ O
(U0

a

)
and

∂u

∂n
∼ O

(U0

δ

)
and so from (5.2.8)

ω ∼ O
(U0

δ

)
. (5.4.14)

We require the largest term with viscosity on the right hand side of (5.2.11) to

be of the same order of magnitude as the corresponding term on the left hand

side. That is

∂H

∂s
= ν

∂2u

∂n2

or in terms of magnitudes,

U2
0

δa
∼ νU0

δ3
.

The order of magnitude of each term in (5.2.11) from largest to smallest is

then

∂H

∂n
∼ uω ∼ O

(U2
0

δ

)
,

∂H

∂s
∼ ν

∂2u

∂n2
∼ O

(U2
0

a

)
,

ν

u

∂

∂s
(uω) ∼ νωκs ∼ O

(U2
0 δ

a2

)
,

νuκ2
G ∼ ν

∂2u

∂s2
∼ O

(U2
0 δ

2

a3

)
.

Dimitriou [47] expressed the Navier-Stokes equations in intrinsic coordinates

in what he calls the velocity-vorticity formulation

u
∂ω

∂s
= ν

(
κn
∂ω

∂s
− κs

∂ω

∂n
+
∂2ω

∂s2
+
∂2ω

∂n2

)
.
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With the boundary layer assumptions, this equation becomes

u
∂ω

∂s
= ν

∂2ω

∂n2
.

Alternatively, using the same assumptions, (5.2.11) yields two equations. In

the T direction,

∂H

∂s
= ν

∂2u

∂n2
,

while in the N direction,

∂H

∂n
= −uω . (5.4.15)

From (5.4.14), ω = −∂u
∂n

and so (5.4.15) becomes

∂H

∂n
=

∂

∂n

(1

2
u2
)
. (5.4.16)

Integrating along a potential line, across the entire width of the boundary

layer, [
H
]n=g(s)

n=0
=

1

2
U(s)2

where the width of the boundary layer is g(s), at the boundary u = 0, and at

the edge of the boundary layer, the external speed is U(s). At the boundary,

H =
p(s)

ρ
+ χ

while at the edge of the boundary layer

H =
p(s)

ρ
+

1

2
U2 + χ .

This implies that the pressure in the boundary layer is equal to the pressure in

the external inviscid mainstream flow, for any given value of s, and is consistent

with Prandtl’s remark in his famous 1905 paper that “the pressure distribution

of the free fluid will be impressed on the transition layer”. Acheson [8] states

on page 268 that the boundary layer equations are also valid for a curved

boundary (as well as a straight boundary), because although ∂p
∂y

is comparable
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in magnitude with ∂p
∂x

for a curved boundary, due to the substantial pressure

gradient in the y-direction that is required to balance the centrifugal effect

of the flow around the curved surface, although the two pressure gradients

are comparable in magnitude, changes in p across the boundary layer are still

much smaller than changes in p along the boundary. Equation (5.4.16) is

consistent with this analysis, because it is saying that the change in H across

the boundary layer is predominantly due to the change in the magnitude of

u, and any change in p across the boundary layer is an order of magnitude

smaller.

In the T direction, (5.2.11) yields the equation

∂H

∂s
= ν

∂2u

∂n2
, (5.4.17)

where these terms are much smaller than those in (5.4.15). Hence the change

in H along a potential line is much greater that the change in H along a

streamline. It is well known [33] that pressure p is maximum at the front

stagnation point, and decreases as s increases, moving away from this point. So

dp
ds
< 0 implies that ∂2u

∂n2 < 0 and thus ∂H
∂s
< 0, and it is reasonable to infer that

H is decreasing due to the viscous dissipation of energy. An estimate for this

dissipation of energy over the entire boundary layer is calculated by integrating

along each streamline in the boundary layer from the front stagnation point

to the separation point, and then integrating that across the width of the

boundary layer. Thus for flow around a circular cylinder, by symmetry, it is

2

∫ ssp

0

∫ g(s)

0

ν
∂2u

∂n2
dnds = −2

∫ ssp

0

ν
∂u

∂n

∣∣∣
n=0

ds

where ssp is the distance along the streamline of the separation point from the

stagnation point. Noting that ∂u
∂n

∣∣∣
n=g(s)

= 0 at the edge of the boundary layer,

and so even though the width of the boundary layer depends on s, this term
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is always zero. I am unsure as to the accuracy of my calculation here for a

couple of reasons. First is the approximations made to obtain the boundary

layer equations. Second, is that around both stagnation points, as n increases,

moving away from the boundary, the boundary layer assumptions break down.

The assumptions that are necessary in the derivation of the boundary layer

equations stem from the hypothesis that the boundary layer is attached to

the wall. Thus the boundary layer equations are not suitable to model what

occurs when the boudary layer separates from the wall.

Even with these caveats, it is clear that an exact expression for ∂u
∂n

∣∣∣
n=0

must be

found in order to estimate air drag as accurately as possible. This expression

is proportional skin friction (2.4.20).

Equation (5.4.17) also describes what is happening between the separation

point and the rear stagnation point. There will be another boundary layer,

and as s decreases from the rear stagnation point, dp
ds
> 0, and so the pressure

is decreasing as we move towards the separation point. Also, ∂2u
∂n2 > 0 and thus

∂H
∂s
> 0, and hence H decreases as we move towards the stagnation point.

5.5 The approach to air drag with conformal

mapping

The model developed in Chapter 4 uses the intrinsic coordinates T, N and

B. In the Padfield model, it is assumed that the air drag force lies in the N−B

plane. A fluid flow with only the N and B components relative to the yarn

element corresponds to fluid flow around a circular cylinder, with radius equal

to the radius of the yarn (because the initial assumption was to model the yarn

as a circular cylinder). This leaves the remaining air flow in the T direction,

tangential to the yarn element, moving along the surface of the yarn element,
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parallel to the axis of the yarn. In most situations, the curvature of this path

will be small, and thus the drag generated would be more like that from flow

across a smooth flat plate, which is typically much smaller than for flow around

a circular cylinder, and thus air drag in the tangential direction is neglected.

It is known [33], [30], [8] that CD versus Re is not a linear relationship, so even

considering the component of air drag in the N−B plane separately from the

component of air drag in the T direction introduces an error.

A better way of modelling this situation is to consider the orientation of the

yarn element in relation to the direction of air flow. The shape of the yarn

balloon determines this orientation and thus the shape of the horizontal cross-

section in relation to the direction of air flow (see Figure 5.1). The entire yarn

balloon can then be considered as many horizontal cross-sections, with a yarn

element embedded in each one, and the air drag on each element is obtained

by considering the 2-D fluid flow around the cross-section of the yarn element.

If the direction of air flow lies in the N−B plane, then we have 2-D flow past

a circular cylinder as described above. If the N−B plane relative to the yarn

element is not horizontal, that is, T is not vertical, then the cross-section of

the yarn element will be an ellipse instead of a circle. Conformal maps are a

useful technique because they preserve streamlines, and so the streamlines for

the flow past the circular cylinder will be mapped to streamlines for flow past

an elliptical cylinder. If the drag coefficient CD for fluid flow past a circular

cylinder as a function of Reynolds number (Re) can be found, then a conformal

mapping from a circle to an ellipse can be used to find the drag coefficient CD

for flow around an ellipse. For each horizontal cross-section, the velocity of the

yarn element determines the corresponding Re and thus the CD of the yarn

element.

This model will work best when T changes slowly. For sections of the yarn
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Figure 5.1: The orientation of the yarn element in a typical yarn balloon (left),

leading to three horizontal cross-sections (middle) and the corresponding drag

coefficient CD as a function of Reynolds number Re for each one (right).
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balloon where T changes more quickly, that is the curvature of the yarn is

larger, it is plausible that this model may not capture the full dynamics of

what is happening with the fluid flow around the yarn in this region. That is,

the air flow is three-dimensional (3-D), and the 3-D Navier-Stokes equations are

required to more accurately model what is happening. For example, moving

down from the guide eye of the yarn balloon, the Reynolds number increases as

the radius of the yarn balloon increases. Attached vortices will form, and may

detach from the yarn if Re reaches a critical value. However, as we move along

the yarn in the yarn balloon, the yarn will rotate and change its orientation,

so that the part of the yarn element that could be described as the front of the

cylinder, pushing into the air will change, thus changing the position of the

attached vortices, which may then be detached from the yarn balloon even if

the critical Reynolds number has not been reached.

An alternative approach is to consider the yarn element as a small cylinder

moving along the real axis, and using a Schwarz-Christoffel transformation,

map the upper half plane to the exterior of a larger circle on the complex

plane. In this way, the force acting on the yarn element as it moves along

the real axis, determined from the fluid flow around a circular cylinder can be

transformed to a force acting on the yarn element moving in a circle in the

yarn balloon as it rotates around the spindle.

The Cayley transform

w = f(z) =
z + i

z − i

maps the upper half plane to the exterior of the unit disk. So in Cartesian

coordinates, this is a conformal mapping

(x, y) 7→

(
x2 + y2 − 1

x2 + y2 + 1− 2y
,

2x

x2 + y2 + 1− 2y

)
.
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5.6 Conformal mapping of a laminar flow in

the upper half plane to a flow around a

semicircle with a separation point

Consider the well known [8] example of a uniform irrotational flow past a

circular cylinder of radius a, with speed U at infinity. The complex potential

is

w(z) = U
(
z +

a2

z

)
and letting z = reiθ the velocity potential is

φ = U
(
r +

a2

r

)
cos θ

and the stream function is

ψ = U
(
r − a2

r

)
sin θ .

It has been observed experimentally that for the flow of a uniform incom-

pressible viscous fluid past a circular cylinder [33], the flow will detach from

the surface of the cylinder at some point, as the flow moves around the surface

of the cylinder from the front stagnation point. The point where this occurs

is called the separation point, and it depends upon the Reynolds number. For

the irrotational flow described above, it could be said that there is no separa-

tion point in this case, however another way to think about this is to say that

the separation point is at angle ±π radians from the front stagnation point,

at the rear stagnation point. Thus we can compose a conformal mapping of a

uniform flow in the upper half plane to a flow around a circle of radius a, with

a separation point at an angle π
m

from the front stagnation point. This is done

by mapping the upper half plane to the upper half plane with a semi-circle of

radius a removed. Then this domain is mapped to an infinite sector of angle
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Figure 5.2: A conformal mapping from the upper half plane to an infinite

sector of angle π
m

from the front stagnation point, of the upper half plane with

a circle of radius a removed.

π
m

, and finally a rotation by an angle (π − π
m

), as shown in Figure 5.2. So an

irrotational flow in this domain has complex potential

Ω(z) = U

((
e
i(m−1)π

m z
)m

+
a2(

e
i(m−1)π

m z
)m
)
,

or

Ω(z) = U

((
ei(m−1)πzm

)
+

a2(
ei(m−1)πzm

)) .
Let z = reiθ then

Ω(r, θ) = U

((
rmei(mθ+(m−1)π)

)
+

a2(
rmei(mθ+(m−1)π)

)) ,
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and so the velocity potential is

φ = U

(
rm +

a2

rm

)
cos(mθ + (m− 1)π)

and the stream function is

ψ = U

(
rm − a2

rm

)
sin(mθ + (m− 1)π) . (5.6.18)

The stream function (5.6.18) is neither a solution to Euler’s equation, nor is

it a solution to the Navier-Stokes equations, however its form, being a product

of velocity U , a function of rm, and a sinusoidal function of θ suggests a way

forward that is explored further in the next chapter.

Discussion Drag tangential to the yarn has always been neglected in the

Padfield model, due to empirical results which showed that it is much smaller

than the normal component of drag when the radius of the yarn balloon is

large.

Skin friction occurs in a laminar flow due to the velocity gradient across the

boundary layer, which causes shear stresses between the fluid flowing in adja-

cent streamlines. Therefore skin friction will always be present for flow around

a circular cylinder, for example, because for all Reynolds numbers there will

be a boundary layer in which the speed of the fluid adjusts from zero at the

surface to the external speed at the edge of the boundary layer. Pressure drag

occurs when the boundary layer separates, and a turbulent wake is created,

and occurs in addition to skin friction.

For regions of the yarn balloon where the radius of the yarn balloon is large, the

Reynolds number of the fluid surrounding the yarn (i.e. the air) will be larger,

and pressure drag will dominate. Conversely, when the radius is small, the

Reynolds number is smaller and thus skin friction must be taken into account.
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Concluding Remarks In Chapter 5, a new representation of the Navier-

Stokes equations in intrinsic coordinates is found. This result was used to find

a rough estimate for the dissipation of energy over the boundary layer for fluid

flow around a circular cylinder.

The objective of section 5.5 is to link drag from fluid flow around a circular

cylinder to the drag acting on the yarn element moving in the yarn balloon.

This has not been completed yet, however the results obtained in Chapter 6

are significant progress towards this goal.

The expression for the stream function in the last section (5.6.18) suggests a

possible form for the stream function, and this is taken up in the next chapter,

where a new similarity solution of the 2-D Navier-Stokes equations is found.

This is the crucial result to link Re and CD for air flow around the yarn

element.



Chapter 6

A new approach to air drag

through a similarity solution of

the Navier-Stokes equation

6.1 Introduction

In this chapter, the two-dimensional steady state Navier-Stokes equations

for an incompressible fluid with no body force (2.4.19) will be investigated in

the boundary layer that exists as fluid flows around a circular cylinder. A well

known method of modelling fluid flow around an object is to neglect terms

in (2.4.19) that are small, leading to what is known as the boundary layer

equations. Similarity solutions to these equations have been found [32], [59].

For example, in Chapter 8 of [8] where the author uses a similarity method to

reduce the boundary layer equations to an ODE for the situation of fluid flow

past a flat plate. In this example, the width of the boundary layer was given

by a function g(x), which depends only on x, the coordinate tangential to the

plate, and U(x) was the speed of the fluid at the edge of the boundary layer.

77
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The velocity profile was then given by a certain function f(y/g(x)), where y

was the coordinate normal to the plate. This function f depends only upon

η = (y/g(x)) such that as the width of the boundary layer changes with x, f(η)

remains qualitatively the same. The key insight was that terms involving g(x)

and U(x) and their derivatives in the boundary layer equations are constant,

thus leaving a differential equation in f(η) that was solved numerically. The

constant terms also led to expressions for g(x) and U(x).

The objective of this chapter is to extend this idea to find an exact solution

to the Navier-Stokes equations in a boundary layer. Drazin & Riley [25] state

that “... the phrase ‘exact solution’...often denotes a solution which has a sim-

ple explicit form, usually an expression in finite terms of elementary or other

well known special functions. Sometimes an exact solution is taken to be one

which can be reduced to the solution of an ordinary differential equation or a

system of a few ordinary differential equations.” In this thesis, we will use the

first statement here as our definition of an exact solution.

Ma & Hui [32] state that “Most existing exact solutions in fluid mechanics are

similarity solutions in the sense that the number of independent variables is re-

duced by one or more. They may be derived by dimensional arguments, by the

group-theoretic method, or by the ad hoc method of free parameters. Among

them the group-theoretic method, which includes the dimensional analysis as

a special case, is the most systematic in generating similarity solutions.”

Solutions of a PDE system that map into themselves under the action of a

local symmetry of the PDE system are invariant. Bluman, Cheviakov & Anco

state that “Such solutions are called invariant solutions (similarity solutions)

and include the well-known self-similar solutions (automodel solutions) that

result from scaling symmetries. ... Self-similar solutions...that also arise from
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reduction through a dimensional analysis argument are called a self-similar

solution of the first kind whereas one arising strictly as an invariant solution

is called a self-similar solution of the second kind.”

Barenblatt & Zel’dovich [57] state that “Much later it was realized that self-

similar solutions do not represent merely specific examples. In actual fact they

describe the ‘intermediate-asymptotic’ behavior of solutions of wider classes of

initial, boundary, and mixed problems, i.e., they describe the behavior of these

solutions away from the boundaries of the region of independent variables or,

alternatively, in the region where in a sense the solution is no longer dependent

on the details of the initial and/or boundary conditions but the system is still

far from being in a state of equilibrium.”

In this chapter we apply a transformation to (2.4.19) such that we can

represent a boundary layer in the boundary conditions (6.2.5). We define the

stream function (6.2.1) as a product of three variables, g(θ), U(θ) and f(η). We

then look for solutions for g, U and f that satisfy the equations (6.2.6a) and

(6.2.6b). We look for solutions such that terms in these equations comprising

g, U and their derivatives are independent of θ. A number of solutions for g

and U are found, in each case leading to an ODE for f . When the ODE is

solved for f , the corresponding expressions for the stream function ψ(θ, η) and

the pressure p(θ, η) are then found.

The purpose of finding this exact solution to the Navier-Stokes equations

in the boundary layer is to find the functional relationship between the drag

coefficient and the Reynolds number in the boundary layer of the air flow

around the yarn element. This relationship encapsulates the transition from

laminar to turbulent flow, the separation of the boundary layer, the onset of

the drag crisis, etc that is, how all the observed phenomena that depend upon



CHAPTER 6. NAVIER-STOKES APPROACH TO AIR DRAG 80

the Reynolds number affect air drag as the Reynolds number changes. The

shape, orientation and smoothness of the yarn element will then determine the

relationship between the drag coefficient (for a smooth circular cylinder) and

the air drag term corresponding to the yarn element. The circular symmetry

of the yarn balloon may enable the 2-D solutions found here to be suitable for

this task, however it may be that 3-D solutions to the Navier-Stokes equations

are required. This question has not yet been answered.

In Section 6.2, a similarity transformation is applied to the 2-D Navier-

Stokes equations in polar coordinates. In Section 6.3, the condition that all

coefficients in (6.2.6a) and (6.2.6b) are independent of θ is explored. In Section

6.4, the condition that all coefficients of each term involving f and η and the

derivatives of f in (6.2.6a) and (6.2.6b) are independent of θ is explored. This

leads to thirteen constants, of two different types, denoted Group A and Group

B. Solutions for U and g are found for each group, and solutions for U and g

that make both Group A and Group B terms constant are sought. In Section

6.5, some solutions to the Navier-Stokes equations are found, in which pressure

is constant. In Section 6.6, more constant pressure solutions are found in the

first two sub-sections, while in the third sub-section, with a specific relationship

between U and g, and an assumption for the relationship between constants,

a fourth order non-linear ordinary differential equation is found, which is then

reduced to quadrature, yielding a non-trivial boundary layer solution to the

2-D Navier-Stokes equations. From this solution, expressions for the Reynolds

number, as well as the Strouhal number in terms of the Reynolds number, and

the separation point are found.



CHAPTER 6. NAVIER-STOKES APPROACH TO AIR DRAG 81

6.2 A similarity transformation applied

to (2.4.19)

Consider fluid flow around a fixed point, governed by (2.4.19). This could

be flow around an object such as a circular cylinder, or flow in a vortex. Let

the stream function be

ψ = U(θ)g(θ)f(η), where η = r/g(θ) (6.2.1)

where

u = ∇× (ψk),

and thus

ur =
1

r

∂ψ

∂θ
, and uθ = −∂ψ

∂r
. (6.2.2)

g(θ) represents the width of the boundary layer, and f(η) is the velocity pro-

file of the fluid speed ur, that is, how the fluid speed tangential to the circular

boundary changes as the point of interest moves radially outwards from the

boundary. U(θ) is the corresponding speed of the fluid at the edge of the

boundary layer (parallel to the boundary).

Clearly (6.2.2) satisfies the 2-D incompressibility condition in plane polar co-

ordinates, the third equation in (2.4.19). Evaluating (6.2.2) with (6.2.1) yields

ur =
f

r
(U ′g + Ug′)− Uf ′g′

g
and uθ = −Uf ′ (6.2.3)

and

∂

∂r
(f(η)) =

f ′

g
and

∂

∂θ
(f(η)) =

−rf ′g′

g2
, (6.2.4)

where the prime indicates differentiation with respect to the relevant indepen-

dent variable. That is, U and g are differentiated with respect to θ, while f is

differentiated with respect to η.
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The boundary conditions are

f(0) = f ′(0) = 0 , f ′(∞) = 1 . (6.2.5)

The third condition here reflects the fact that uθ tends to U(θ), the external

speed as we leave the boundary layer.

Theorem 6 If we substitute the expressions for ur and uθ (6.2.3), into (2.4.19)

with (6.2.4) and r = ηg, then we obtain:

1

ρg

∂p

∂η
=− f ′′′

(
νUg′

g3
+
νUg′3

g5

)
− f ′2

η

(
UU ′g′

g2
− U2g′2

g3
+
U2g′′

g2
− U2

g

)

− f ′′

η

(
− νU ′

g2
− 3νU ′g′2

g4
+

2νUg′

g3
+

3νUg′3

g5
− 3νUg′g′′

g4

)

+
ff ′′

η

(
UU ′g′

g2
+
U2g′2

g3

)
− f ′

η2

(
νUg′′′

g3
+

3νU ′g′′

g3
+

3νU ′′g′

g3
− νU ′

g2

)

− ff ′

η2

(
U ′2

g
+
UU ′g′

g2
+

2U2g′2

g3
− U2g′′

g2
− UU ′′

g

)

+
f

η3

(
νU ′′′

g2
+
νUg′′′

g3
+

3νU ′g′′

g3
+

3νU ′′g′

g3

)

+
f 2

η3

(
U ′2

g
+

2UU ′g′

g2
+
U2g′2

g3

)
, (6.2.6a)

1

ρgη

∂p

∂θ
=− f ′′′

(
νU

g2
+
νUg′2

g4

)
− f ′2

η

(
UU ′

g
+
U2g′

g2

)

− f ′′

η

(
νU

g2
− νUg′′

g3
− 2νU ′g′

g3

)
+
ff ′′

η

(
UU ′

g
+
U2g′

g2

)

− f ′

η2

(
− νU

g2
+

2νUg′′

g3
+

4νU ′g′

g3
+
νU ′′

g2

)

+
ff ′

η2

(
UU ′

g
+
U2g′

g2

)
+
f

η3

(
2νUg′′

g3
+

4νU ′g′

g3
+

2νU ′′

g2

)
. (6.2.6b)
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6.3 A condition on U and g

In this section, we consider the requirement that all terms involving U and

g and their derivatives in (6.2.6a) and (6.2.6b) are independent of θ, that is,

U2

g
,

UU ′′

g
,

U ′2

g
,

UU ′g′

g2
,

U2g′′

g2
,

U2g′2

g3
(6.3.7)

from (6.2.6a) and

UU ′

g
,

U2g′

g2
(6.3.8)

from (6.2.6b) are all constant, while

νU ′

g2
,

νU ′′′

g2
,

νUg′

g3
,

νUg′′′

g3
,

νU ′g′′

g3
,

νU ′′g′

g3
,

νU ′g′2

g4
,

νUg′g′′

g4
,

νUg′3

g5
(6.3.9)

from (6.2.6a) and

νU

g2
,

νU ′′

g2
,

νUg′′

g3
,

νU ′g′

g3
,

νUg′2

g4
(6.3.10)

from (6.2.6b) are all constant.

Theorem 7 Every term from (6.3.7) and (6.3.8) is independent of θ if and

only if

g(θ) = Aeαθ and U(θ) =
√
Ake

αθ
2 (6.3.11)

where A is a real constant, and α and k are complex constants.

If

g(θ) = Aeαθ and U(θ) =
√
Ake

αθ
2

then the terms in (6.3.7) are

k2,
α2k2

4
,

α2k2

4
,

α2k2

2
, α2k2 and α2k2

and the terms in (6.3.8) are

αk2

2
and αk2
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and all these terms are independent of θ.

If all the terms from (6.3.7) and (6.3.8) are independent of θ, then consider

the first term in (6.3.7), U2

g
, and the second term in (6.3.8), U2g′

g2
, and together

this implies that g′

g
is constant. If we let

g′

g
= α then g(θ) = Aeαθ ,

then combining this with U2

g
= k2 yields the required expression for U . �

Theorem 8 Every term from (6.3.9) and (6.3.10) is independent of θ if and

only if

g(θ) = Aeαθ and U(θ) =
k

ν
A2e2αθ (6.3.12)

where A and ν are real constants, and α and k are complex constants.

This proof follows a similar path to that for Theorem 7. If

g(θ) = Aeαθ and U(θ) =
k

ν
A2e2αθ

then the terms in (6.3.9) are

2αk, 8α3k, αk, α3k, 2α3k, 4α3k, 2α3k, α3k and α3k

and the terms in (6.3.10) are

k, 4α2k, α2k, 2α2k and α2k

and all these terms are independent of θ.

If all the terms from (6.3.9) and (6.3.10) are independent of θ, then consider

the first term in (6.3.10), νU
g2

, and the third term in (6.3.9), νUg′

g3
, and together

this implies that g′

g
is constant. If we let

g′

g
= α then g(θ) = Aeαθ ,

then combining this with νU
g2

= k yields the required expression for U . �
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For a similarity solution, there would need to exist an expression for g(θ) and

U(θ) such that all terms in (6.3.7), (6.3.8), (6.3.9) and (6.3.10) are constant.

Expressing the first equation of (6.3.7) as U = kg1/2 and taking the appropriate

derivatives for U

U ′ =
kg′

2g1/2
, U ′′ =

kg′′

2g1/2
− kg′2

4g3/2
and U ′′′ =

kg′′′

2g1/2
− 3kg′g′′

4g3/2
+

3kg′2

8g5/2
,

(6.3.13)

and then substituting these expressions into the terms from (6.3.9) and (6.3.10),

we obtain the following differential equations for g(θ)

g′ = kg5/2, g′′ = kg5/2 and g′′′ = kg5/2, (6.3.14a)

g′ = kg3/2, g′ = kg7/4, g′g′′ = kg7/2 and g = k, (6.3.14b)

g′′

g5/2
− g′2

2g7/2
= k and

g′g′′

g7/2
− g′3

2g9/2
= k, (6.3.14c)

g′′′

g5/2
− 3g′g′′

2g7/2
+

3g′3

4g9/2
= k . (6.3.14d)

The general solution to the first equation in (6.3.14a) is

g =

(
−2

3(kθ + C1)

)2/3

,

while for the second equation in (6.3.14a) it is

g2
2F1

(
2

7
,
1

2
;
9

7
;−4kg7/2

7C1

)2

= C1(θ + C2)2, C1 6= −
8

7
g7/2

where 2F1(a, b; c; z) is the hypergeometric function (2.5.22). Using (2.5.23),

this expression can be written as

1

7

(
4

7C1

)3/7(
−1

k

)4/7

Bx

(
2

7
,
1

2

)2

= (θ + C2)2, x = −4kg7/2

7C1

.

The general solution for the third equation in (6.3.14a) is

1

3
kθ3g5/2 − 2g = −C1θ

2 + 2C2θ − C3
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using the method of integrating factors from Chapter 7 of [9].

Substituting U = kg1/2 and (6.3.13) into (6.2.6a) and (6.2.6b)

1

ρg

∂p

∂η
=− kf ′′′

(
νg′

g5/2
+
νg′3

g9/2

)
− k2f ′2

η

(
− 1− g′2

2g2
+
g′′

g

)

− kf ′′

η

(
3νg′

2g5/2
+

3νg′3

g9/2
− 3νg′g′′

g7/2

)

+
k2ff ′′

η

(
3g′2

2g2

)
− kf ′

η2

(
νg′′′

g5/2
+

3νg′g′′

g7/2
− 3νg′3

4g9/2
− νg′

2g5/2

)

− k2ff ′

η2

(
3g′2

g2
− 3g′′

2g

)

+
kf

η3

(
3νg′2

8g9/2
+
ν3g′′′

2g5/2
+

9νg′g′′

4g7/2
− 3νg′3

4g9/2

)

+
k2f 2

η3

(
9g′2

4g2

)
, (6.3.15a)

1

ρgη

∂p

∂θ
=− kf ′′′

(
ν

g3/2
+
νg′2

g7/2

)
− k2f ′2

η

(
3g′

2g

)

− kf ′′

η

(
ν

g3/2
− νg′′

g5/2
− νg′2

g7/2

)
+
k2ff ′′

η

(
3g′

2g

)

− kf ′

η2

(
− ν

g3/2
+

5νg′′

2g5/2
+

7νg′2

g7/2

)

+
k2ff ′

η2

(
3g′

2g

)
+
kf

η3

(
3νg′′

g5/2
+

3νg′2

g7/2

)
. (6.3.15b)

Now we look for a similarity solution by investigating the solution (6.3.12), by

taking U = kg2 and the appropriate derivatives for U

U ′ = 2kgg′, U ′′ = 2k(g′2 + gg′′) and U ′′′ = 2k(3g′g′′ + gg′′′) . (6.3.16)

Substituting these expressions into the terms from (6.3.7) and (6.3.8), the

following differential equations for g(θ) were obtained

g′g2 = k, g′′g2 = k and gg′2 = k, (6.3.17)

g′′g2 + gg′2 = k and g = k. (6.3.18)
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The general solution to the first equation in (6.3.17) is

g =
(

3(kθ + C1)
)1/3

,

while for the third equation it is

g =

(
3

2
(±
√
kθ + C1)

)2/3

.

Substituting U = kg2 and (6.3.16) into (6.2.6a) and (6.2.6b)

1

ρg

∂p

∂η
=− kνf ′′′

(
g′

g
+
g′3

g3

)
− k2f ′2

η

(
− g3 + gg′2 + g2g′′

)
+

3kνf ′′

η

(
g′3

g3
+
g′g′′

g2

)
+

3k2ff ′′

η

(
gg′2

)
− kνf ′

η2

(
− 2g′

g
+

6g′3

g3
+

12g′g′′

g2
+
g′′′

g

)

− 3k2ff ′

η2

(
2gg′2 − g2g′′

)
+

3kνf

η3

(
2g′3

g3
+

6g′g′′

g2
+
g′′′

g

)

+
9k2f 2

η3

(
gg′2

)
, (6.3.19a)

1

ρgη

∂p

∂θ
=− kνf ′′′

(
1 +

g′2

g2

)
− 3k2f ′2

η

(
g2g′

)
− kνf ′′

η

(
1− g′′

g
− 4g′2

g2

)
+

3k2ff ′′

η

(
g2g′

)
− kνf ′

η2

(
− 1 +

4g′′

g
+

10g′2

g2

)

+
3k2ff ′

η2

(
g2g′

)
+

6kνf

η3

(
g′′

g
+

2g′2

g2

)
. (6.3.19b)

Combining a condition derived from the first term in (6.3.7) with all the

terms in (6.3.9) and (6.3.10) gives the differential equations (6.3.14a), (6.3.14b)

(6.3.14c) and (6.3.14d) for g. While combining a condition derived from the

first term in (6.3.10) with all the terms in (6.3.7) and (6.3.8) gave a differ-

ent set of differential equations (6.3.17) and (6.3.18). These two conditions
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represent two possible relationships between U and g. These relationships are

substituted into the differential equation (6.2.6a) and (6.2.6b), giving (6.3.15a)

and (6.3.15b) for the first condition, and (6.3.19a) and (6.3.19b) for the second

condition. In both cases, it is not clear how any more progress can be made.

Lemma 2 No solutions for g(θ) and U(θ) exist such that all terms from

(6.3.7), (6.3.8), (6.3.9) and (6.3.10) are independent of θ.

Clearly the solutions (6.3.11) and (6.3.12) are different. If we choose (6.3.11)

for U and g, then by Theorem 8, the terms (6.3.9) and (6.3.10) depend on θ.

If we choose (6.3.12) for U and g, then by Theorem 7, the terms (6.3.7) and

(6.3.8) depend on θ. If we choose other non-trivial functions for U and g, then

by both theorems, all terms will depend upon θ. �

This suggests that a different relationship between U and g is required, in

fact one that reconciles the two groups (6.3.7) and (6.3.8) with (6.3.9) and

(6.3.10).

6.4 A condition on the coefficients of

equations (6.2.6a) and (6.2.6b)

The right hand sides of equations (6.2.6a) and (6.2.6b) are comprised entirely

of terms that are the product of a function of η, f and its derivatives, multiplied

by a function of g, U and their derivatives with respect to θ. In this section,

consider the requirement that every one of these functions of g, U and their

derivatives are constant, that is they are in fact independent of θ. If this

requirement is met, then the equations (6.2.6a) and (6.2.6b) are functions of

terms in f and η with constant coefficients.
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This requirement leads to thirteen different conditions upon g, U and their

derivatives. Here they are separated into two groups. Group A is

νU

g2
+
νUg′2

g4
= k1, (6.4.20a)

νUg′

g3
+
νUg′3

g5
= k2, (6.4.20b)

νU

g2
− νUg′′

g3
− 2νU ′g′

g3
= k3, (6.4.20c)

−νU
′

g2
− 3νU ′g′2

g4
+

2νUg′

g3
+

3νUg′3

g5
− 3νUg′g′′

g4
= k4, (6.4.20d)

−νU
g2

+
2νUg′′

g3
+

4νU ′g′

g3
+
νU ′′

g2
= k5, (6.4.20e)

νUg′′′

g3
+

3νU ′g′′

g3
+

3νU ′′g′

g3
− νU ′

g2
= k6, (6.4.20f)

2νUg′′

g3
+

4νU ′g′

g3
+

2νU ′′

g2
= k7, (6.4.20g)

νU ′′′

g2
+
νUg′′′

g3
+

3νU ′g′′

g3
+

3νU ′′g′

g3
= k8 . (6.4.20h)

Group B is

UU ′

g
+
U2g′

g2
= k9, (6.4.21a)

UU ′g′

g2
+
U2g′2

g3
= k10, (6.4.21b)

UU ′g′

g2
− U2g′2

g3
+
U2g′′

g2
− U2

g
= k11, (6.4.21c)

U ′2

g
+
UU ′g′

g2
+

2U2g′2

g3
− U2g′′

g2
− UU ′′

g
= k12, (6.4.21d)

U ′2

g
+

2UU ′g′

g2
+
U2g′2

g3
= k13 . (6.4.21e)

It is worth noting here that the expressions in Group A are coefficients of terms

f , f ′, f ′′ and f ′′′, while the expressions in Group B are coefficients of terms

f 2, ff ′, ff ′′ and f ′2.

The objective is to find a solution for U and g that satisfied all thirteen equa-

tions. Failing that, the objective is to find a solution for U and g that satisfies
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some of the thirteen equations, and then eliminate the equations not satis-

fied as coefficients in (6.2.6a) and (6.2.6b) by requiring that the corresponding

terms in f or its derivatives be zero.

The first step is to try to find any solution for U and g that satisfy some

of these thirteen conditions. A helpful observation here is that

d2

dθ2

(
Ug
)

= U ′′g + 2U ′g′ + Ug′′, (6.4.22a)

d3

dθ3

(
Ug
)

= U ′′′g + 3U ′′g′ + 3U ′g′′ + Ug′′′, (6.4.22b)

d

dθ

(
U2g2

)
= 2(UU ′g2 + U2gg′), (6.4.22c)

d2

dθ2

(
U2g2

)
= 2(U ′2g2 + UU ′′g2 + 4UU ′gg′ + U2g′2 + U2gg′′) .(6.4.22d)

The first two equations (6.4.22a) and (6.4.22b) are relevant to the equations

in Group A, as they are derivatives of the product Ug, while the last two

equations (6.4.22c) and (6.4.22d) are relevant to the equations in Group B, as

they are derivatives of the product U2g2.

At this stage there are many combinations that can be tried, such as the

following example, using equations from both Group A and Group B. First

combine equations (6.4.21a) and (6.4.21b), which gives the expressions

g′

g
=
k10

k9

and
d

dθ

(
U2g2

)
= 2k9g

3 ,

using (6.4.20h) then (6.4.20g), the solution obtained is

g = C1e
k10
k9

θ
and U = ±

√
k7k9C1

k8

e
k10
k9

θ − 2k9C2

C2
1

e
−2
(
k10
k9

θ
)
.

The way forward however, is to find solutions using equations from Group A

only and from Group B only.

Using equations from Group A only, combining equations (6.4.20g) and (6.4.20h),
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with (6.4.22a) and (6.4.22b) gives the solution

g =

(
2νC3

k7

)1/3

e
2k8
3k7

θ
and

U =

(
C2

3k
7
7

27νk6
8

)1/3

e
4k8
3k7

θ
+ (C4θ + C5)

(
k7

2νC3

)1/3

e
− 2k8

3k7
θ
. (6.4.23)

Using equations from Group B only, combining equations (6.4.21a), (6.4.21b),

(6.4.21d) and (6.4.21e), with (6.4.22c) and (6.4.22d) gives the solution

g =

(
C6

2k9

)1/3

e

(
2k13+k10−k12

3k9

)
θ

and

U =±

√√√√ (
4C6k5

9

)1/3

2k13 + k10 − k12

e

(
2k13+k10−k12

3k9

)
θ

+ C7

(
2k9

C6

)2/3

e
−2
(

2k13+k10−k12
3k9

)
θ
.

(6.4.24)

This is achieved by solving (6.4.21d) for UU ′′g2 and substituting into (6.4.22d),

then further substituting 2g3 times (6.4.21e) and g3 times (6.4.21b) into (6.4.22d),

1

2

d2

dθ2

(
U2g2

)
+ k12g

3 = 2U ′2g2 + 5UU ′gg′ + 3U2g′2 = g3(2k13 + k10)

then substituting for g3 from (6.4.21a) to give

1

2

d2

dθ2

(
U2g2

)
=

(2k13 + k10 − k12)

2k9

d

dθ

(
U2g2

)
.

Integrating once gives

g3 =

(
C6

2k9

)
e

(
2k13+k10−k12

3k9

)
θ

then integrating again and rearranging gives the result for U .
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Looking past the plethora of constants in these expressions, the important

point to note is the relationship between the exponent in g and the exponent

in U in each case, and the relationship between the exponents in the two terms

in U in each case.

Given the form of the solutions expressed here for g, that is, g will be sinusoidal

if the coefficient of the exponent is complex, the sign of the real part will

determine whether the amplitude of g increases or decreases as θ increases.

Considering equations (6.4.20a) and (6.4.20b), if the expression 1 + g′2

g2
= 0

and thus k1 = k2 = 0 then we have the special case of

g = A1e
iθ + A2e

−iθ = B1 cos θ +B2 sin θ

The five terms on the right hand side of (6.4.22d) appear in various com-

binations in equations (6.4.21b) to (6.4.21e) after they are multiplied by g3.

However, it is not possible to express (6.4.22d) in terms of all five equations in

Group B, because the UU ′′g2 term only appears in (6.4.21d) and thus (6.4.21d)

and (6.4.21c) cannot both be used. However, if (6.4.24) and the subsequent

derivatives of U and g are substituted into (6.4.21c) then

g =

(
C6

2k9

)1/3

e±iθ and U = ±

√√√√∓(4C6k2
9

)1/3

3
e±iθ + C7

(
2k9

C6

)1/3

e∓2iθ .

The solution mentioned above, (6.4.23), is obtained by using only two of the

equations from Group A. All eight equations in Group A can be combined to

obtain a solution for U and g, along with constraints on the corresponding

constants ki, as follows. Firstly combining (6.4.20f) and (6.4.20h) gives

U ′′′ + U ′ =
(k8 − k6)

ν
g2 . (6.4.25)
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Secondly combining the equations (6.4.20c), (6.4.20e) and (6.4.20g) with the

use of (6.4.22a) gives the constraint

k3 + k5 =
k7

2
.

Thirdly, using equations (6.4.20a), (6.4.20b) and (6.4.20d), we obtain the dif-

ferential equation

d

dθ

(
Ug
)

=
k2

1(3k2 − k4)

ν(k2
1 + 3k2

2)
g3 . (6.4.26)

This is achieved by first substituting from (6.4.20a) into (6.4.20b) and (6.4.20d),

and then substituting for g′ into the other equation.

Fourthly, combining the equations (6.4.26) and (6.4.20g) gives

g =

(
νC8(k2

1 + 3k2
2)

k2
1(3k2 − k4)

)1/3

e
k7(k

2
1+3k22)

6k21(3k2−k4)
θ

and

U =
2

k7

(
C2

8

ν

)1/3(
k2

1(3k2 − k4)

(k2
1 + 3k2

2)

)4/3

e
k7(k

2
1+3k22)

3k21(3k2−k4)
θ

+ C9

(
k2

1(3k2 − k4)

νC8(k2
1 + 3k2

2)

)1/3

e
− k7(k

2
1+3k22)

6k21(3k2−k4)
θ
. (6.4.27)

The solutions for U and g given by (6.4.23) and (6.4.27) are identical if

C4 = 0 and C5 = C9 and C3 =
2k8C8

k7

and
k2

7

4k8

=
k2

1(3k2 − k4)

(k2
1 + 3k2

2)

and finally substituting this solution into (6.4.25) gives

(k8 = 0 or C5 = 0 or
2k8

3k7

= ±i) and (k8−k6) =
k2

7

2k8

(
1+

(
4k8

3k7

)2)
.

(6.4.28)

Each of the first two conditions in (6.4.28) yield an infinite value for U . Con-

sidering the last two conditions in (6.4.28), the unique solution of U and g

which satisfies all the equations in Group A is

g = g0e
±iθ and U = − C3

9g0

e±2iθ +
C5

g0

e∓iθ . (6.4.29)
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where

g0 =

(
2νC3

k7

)1/3

and (k8 − k6) = ±k7i and k3 + k5 =
k7

2
.

To find the unique solution for U and g that satisfies all equations in Group

B, (6.4.24) and the subsequent derivatives are substituted into (6.4.21c). Thus

the unique solution of U and g which satisfies all the equations in Group B is

g = g1e
±iθ and U = ±

√
∓ C6

3g2
1

e±iθ +
C7

g1

e∓2iθ (6.4.30)

where

g1 =

(
C6

2k9

)1/3

.

To find the unique solution for U and g that satisfies all equations in Group

A and Group B, equate the corresponding expressions in (6.4.29) and (6.4.30).

Equating the two expression for g gives

C6 =
4νk9C3

k7

.

Squaring both expressions for U and then equating the corresponding terms

gives

C2
3

81g2
0

= 0, C5 = ±6νk9

k7

and C7 =
C2

5

g0

. (6.4.31)

The first equation in (6.4.31) arises due to the fact that the e4iθ term appears

only when U in (6.4.29) is squared, and not when U in (6.4.30) is squared.

This equation can be expressed in terms of C3, k7 and ν, and can be satisfied

by taking the limit when C3 or k7 go to zero, or ν goes to infinity. That is

lim

(
k7C

2
3

1458ν

)2/3

→ 0 . (6.4.32)

So the solution for U , subject to this limit is

U = −1

9

(C2
3k7

2ν

)1/3

e±2iθ ± k9

3

( 4ν2

C3k2
7

)1/3

e∓iθ,
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or factorizing the term 1
U0

U =

(
2ν

C2
3k7

)1/3(
− 1

9

((
C2

3k7

2ν

)1/3

e±iθ

)2

± C3k9

3

((
C2

3k7

2ν

)1/3

e±iθ

)−1)
.

(6.4.33)

Considering the dimensions of all the terms in (6.4.33), the characteristic ve-

locity can be taken as U0 =
(
C2

3k7
2ν

)1/3

. With g = g0e
±iθ, the characteristic

length can be taken as L = g0 =
(

2νC3

k7

)1/3

. Therefore the Reynolds number is

Re =
C3

ν
(6.4.34)

and the dimensionless solution can be represented as

ḡ =
g

g0

= e±iθ and Ū =
U

U0

= −1

9
e±2iθ ± 2νk9

3C3k7

e∓iθ . (6.4.35)

The ratio k9
k7

has dimensions U0L
ν

and thus νk9
C3k7

does not depend upon Re. What

happens to g and U when the limit (6.4.32) is evaluated in various possible

ways is explored in Table 6.1 below.

Theorem 9 A physically realizable viscous fluid flow has a finite viscosity and

a finite Reynolds number. No such solution to the Navier-Stokes equations, that

satisfies (6.4.32) and (6.4.33), exists.

So for a physically realizable viscous fluid flow, ν ∈ (0,∞) and Re ∈ (0,∞).

A fluid flow is a similarity solution if (6.4.35) is satisfied, subject to the limit

(6.4.32). This limit exists if either ν →∞ or C3 → 0 or k7 → 0. Considering

these three possibilities in turn. The first possibility can be ruled out immedi-

ately because if the viscosity is infinite, then by definition the solution is not

physically realizable. The second possibility can also be ruled out because of

(6.4.34), the definition of Re, because if C3 → 0, then Re → 0. For the re-

maining possibilities, when the viscosity is finite, C3 is non-zero and k7 → 0 so

that (6.4.32) is satisfied, if k9 is non-zero, U is not physically realizable, which
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leaves the only remaining possibility, when k9 → 0 also. To investigate this

final case, consider the ratio k9
k7

from the definition of these constants, (6.4.20g)

and (6.4.21a), that is

k9

k7

=
(Ug) d

dθ
(Ug)

2ν d2

dθ2
(Ug)

.

The most general solution to this equation in this case is that Ug is constant.

However, from (6.4.33),

Ug = −1

9
C3e

±3iθ ± 2νk9

3k7

,

and given that in this case, C3 is non-zero, there is a contradiction. Thus in

none of these possibilities, is the solution physically realizable. �

When the amplitude g0 or U0 or both approach infinity, for example U →

−∞eiθ, the functions g and/or U are not finite for all real values, except

for a finite, periodic set of real values where they are indeterminate, that is

(θ = (2n+1)
2

π), where n ∈ Z. The ninth row of Table 6.1, the case where k7 → 0

and k9 → 0 while C3 ∈ (0,∞) and ν ∈ (0,∞), given the analysis in the proof

above suggests that Ug equal to a constant is worth further investigation.

The solution for the dimensionless speed Ū , subject to the limit (6.4.32),

and ḡ can be written as

ḡ = e±iθ and Ū = F(e±iθ)

where

F(X) = −1

9
X2 ± 2

3

νk9

C3k7

1

X
. (6.4.36)

Comparing this equation to (6.4.23), it is clear that expressions derived from

Group A terms have exponential terms of the form e2αθ and e−αθ, which is
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C3 k7 ν k9 U g0 U0 Re

0 6= 0 (0,∞) 6= 0 ±∞e∓iθ 0 0 0

(0,∞) 0 (0,∞) 6= 0 ±∞e∓iθ ∞ 0 (0,∞)

6= 0 6= 0 ∞ 6= 0 ±∞e∓iθ ∞ 0 0

0 0 (0,∞) 6= 0 ±∞e∓iθ Indeterminate 0 0

0 6= 0 ∞ 6= 0 ±∞e∓iθ Indeterminate 0 0

6= 0 0 ∞ 6= 0 ±∞e∓iθ ∞ 0 0

0 0 ∞ 6= 0 ±∞e∓iθ Indeterminate 0 0

0 6= 0 (0,∞) 0 Indeterminate ×e∓iθ 0 0 0

(0,∞) 0 (0,∞) 0 Indeterminate ×e∓iθ ∞ 0 (0,∞)

6= 0 6= 0 ∞ 0 Indeterminate ×e∓iθ ∞ 0 0

0 0 (0,∞) 0 Indeterminate ×e∓iθ Indeterminate 0 0

0 6= 0 ∞ 0 Indeterminate ×e∓iθ Indeterminate 0 0

6= 0 0 ∞ 0 Indeterminate ×e∓iθ ∞ 0 0

0 0 ∞ 0 Indeterminate ×e∓iθ Indeterminate 0 0

Table 6.1: Values for Re, g0 and U0 with limit (6.4.32).
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consistent with this function F, in a way that expressions derived from Group

B terms are not. This observation naturally leads to the focus of the remainder

of this chapter: an attempt to find solutions of equations (6.2.6a) and (6.2.6b).

6.5 A condition on the coefficients of e3αθ in

equations (6.2.6a) and (6.2.6b)

Consider equation (6.4.20h) from Group A, with a guess for g consistent

with the results found so far. A solution can then be found

g = Aeαθ and U =
C3

27Aα3
e2αθ +

1

A
(C1θ

2 + C4θ + C5)e−αθ . (6.5.37)

To begin with, for the sake of simplicity, and for U to be consistent with

(6.4.36), let C1 = C4 = 0. When (6.5.37) is substituted into (6.2.6a) and

(6.2.6b), the terms involving U , g and their derivatives produce constant terms,

e3αθ terms and e−3αθ terms. Setting the coefficients of e3αθ to zero in both

equations gives

−ff
′′

η
+
f ′2

η
− ff ′

η2
= 0, (6.5.38a)

−3α2ff
′′

η
+ (2α2 − 1)

f ′2

η
+ 3α2ff

′

η2
− 9α2f

2

η3
= 0 . (6.5.38b)

Solving for f ′2

η
in (6.5.38a) and substituting into (6.5.38b), gives an Euler

equation. Making the substitution η = ez gives

−(1 + α2)
d2f

dz2
+ 6α2 df

dz
− 9α2f = 0 . (6.5.39)

Firstly, α = ±i makes (6.5.39) into a first order differential equation with

solution f = C6η
3/2. Secondly, f = C6η

k1 with k1 = 3α
α±i is the solution to

the second order differential equation. Both these cases lead to a solution of

(6.2.6a) and (6.2.6b) as follows

g = Ae±iθ , U =
±C3i

27A
e±2iθ , f = C6η

3/2 and p = C8
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and

g = Aeαθ , U =
C3

27Aα3
e2αθ , f = C6η

3α
α±i and p = C8

where α ∈ C such that α(α∓i)(α∓2i)(2α∓i)
α±i 6= 0 and α2 + 1 6= 0. However f =

C6η
3/2 does not satisfy the third boundary condition in (6.2.5).

6.6 Reduction to quadrature of equations (6.2.6a)

and (6.2.6b)

The form of the various expressions found for g, U and f so far leads to the

following hypothesis.

Hypothesis 1 More solutions to the Navier-Stokes equations, (6.2.6a) and

(6.2.6b) exist of the form

g = Aeαθ , U =
C3

27Aα3
e2αθ+

1

A
(C1θ

2+C4θ+C5)e−αθ and f = C6η
k1+C7η

k2 .

To prove this hypothesis, in this section, I will reduce (6.2.6a) and (6.2.6b)

to quadrature by first choosing an ansatz for g, U and f , and subsequently

finding solutions of the resulting algebraic equations for α, k1 and k2.

Substitute g = Aeαθ and f = C6η
k1 + C7η

k2 into (6.2.6a) and (6.2.6b) and

then integrate with respect to η and θ respectively to obtain two expressions

for the pressure p, which of course must be equal. Equation (6.2.6a) then yields

terms with ηk1−2, ηk2−2, ηk1+k2−2, η2k1−2 and η2k2−2, while equation (6.2.6b) only

yields terms with the first three expressions. Equating the coefficients of the

corresponding terms in η produces the following five equations.
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The coefficient of ηk1−2 gives

(k1 − 2)

(
(α2(k1 − 1)2 + k2

1)

∫
e−αθUdθ

− 2α(k1 − 1)

∫
e−αθU ′dθ +

∫
e−αθU ′′dθ

)
=

1

k1 − 2
e−αθ

(
α(k1 − 1)(α2(k1 − 1)2 + k2

1)U

− (3α2(k1 − 1)2 + k2
1)U ′ + 3α(k1 − 1)U ′′ − U ′′′

)
.

The coefficient of ηk2−2 gives

(k2 − 2)

(
(α2(k2 − 1)2 + k2

2)

∫
e−αθUdθ

− 2α(k2 − 1)

∫
e−αθU ′dθ +

∫
e−αθU ′′dθ

)
=

1

k2 − 2
e−αθ

(
α(k2 − 1)(α2(k2 − 1)2 + k2

2)U

− (3α2(k2 − 1)2 + k2
2)U ′ + 3α(k2 − 1)U ′′ − U ′′′

)
.

The coefficient of ηk1+k2−2 gives

(k1 − k2)2

∫
αU2 + UU ′dθ =

1

k1 + k2 − 2

(
(2k1k2

+ α2(2 + k1(k1 − 2) + k2(k2 − 2)))U2 − (k1 + k2 − 2)U ′2

+ α(4 + k2
1 + k2(k2 − 2)− 2k1(k2 + 1))UU ′ + (k1 + k2)UU ′′

)
.(6.6.40)

The coefficient of η2k1−2 gives

C2
6

k1 − 1

(
(α2(k1 − 1)2 + k2

1)U2 − (k1 − 1)U ′2 − 2α(k1 − 1)UU ′ + k1UU
′′
)

= 0 .

(6.6.41)

The coefficient of η2k2−2 gives

C2
7

k2 − 1

(
(α2(k2 − 1)2 + k2

2)U2 − (k2 − 1)U ′2 − 2α(k2 − 1)UU ′ + k2UU
′′
)

= 0 .

(6.6.42)
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By considering the first and second derivatives of U2, equations (6.6.40),

(6.6.41), (6.6.42) can be represented as a single differential equation for U2, as

follows∫
U2dθ =

1

2α(k1 − k2)2(k1 + k2 − 2)(
− (k1 + k2)(k2

1 + k2(−2α2 + k2 − 2) + 2k1(k2 − 1 + α2(2k2 − 1)))U2

+ α(k1(k1 + 2)− 2(k1 − 1)k2 + k2
2)
d

dθ

(
U2
)

+ (k1 + k2)
d2

dθ2

(
U2
))

.

Clearly this yields a cubic polynomial equation for λ when the solution for

U is of the form U2 = eλθ

(k1 + k2)λ3 + (2αk1 + αk2
1 + 2αk2 − 2αk1k2 + αk2

2)λ2+

(2k2
1 + 2α2k2

1 − k3
1 + 4k1k2 + 4α2k1k2 − 3k2

1k2 − 4α2k2
1k2 + 2k2

2 + 2α2k2
2

− 3k1k
2
2 − 4α2k1k

2
2 − k3

2)λ

+ 4αk2
1 − 2αk3

1 − 8αk1k2 + 2αk2
1k2 + 4αk2

2 + 2αk1k
2
2 − 2αk3

2 = 0 .

The next sub-sections depend upon the form chosen for U .

6.6.1 A single exponential term for U

Assuming a single exponential term for U , leads to four sets of solutions for

(6.2.6a) and (6.2.6b), firstly

g = Aeαθ , U = C5e
−αθ , f = C6 and p = C8

where α(α2 + 1) 6= 0.

Secondly,

g = Ae±iθ , U = C5e
∓iθ , f = C6η

k1 + C7η
k2 and p = C8 (6.6.43)
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where (k1 − 1)(k1 − 2)(k2 − 1)(k2 − 2)(k1 + k2 − 2) 6= 0. Thirdly

g = Ae±iθ , U = C5e
±niθ , f = C6η

(n+1)
2 and p = C8

where n+ 1 6= 0 and n(n− 1)(n− 3) 6= 0. Fourthly,

g = Aeαθ , U = C5e
nαθ , f = C6η

(n+1)α
α±i and p = C8

where (α2 + 1) 6= 0, α(n+ 1) 6= 0 and −n(n−1)(α∓i)(nα∓i)((n−1)α∓2i)
α±i 6= 0 .

6.6.2 Two exponential terms for U

The next step is to try an ansatz for U with two exponential terms.

Firstly assume derivatives of Ug are proportional to g3, which leads to an

ansatz for U of the form U = C3e
2αθ + C5e

−αθ.

This yields a solution

g = Ae±iθ , U = C5e
∓iθ , f = C6

(
ηk +

1

ηk

)
and p = C8 . (6.6.44)

However this solution does not satisfy the first boundary condition in (6.2.5)

for all non-zero real k. The trivial case of k = 0 does not satisfy the third

boundary condition in (6.2.5).

Secondly assume derivatives of Ug are proportional to g
3

1+3δ , taking (6.4.23)

with C4 = 0 leads to an ansatz for U of the form U = C3e
( 2
3
−δ)αθ +C5e

−( 1
3

+δ)αθ

and yields a solution

g = 2
±i k7

k8

(
νC3

k7

)±i k7
2k8

e±iθ , U = 2
−2∓i k7

2k8

(
k7

k8

)2

C3

(
νC3

k7

)∓i k7
2k8

e
(∓i+ 2k8

k7
)θ
,

f = C6η
∓i k8

k7 and p = C8 .
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Thirdly, trying an ansatz of

g = Aeαθ , U =
C3

27Aα3
e2αθ +

1

A
(C4θ + C5)e−αθ and f = C6η

k

does not yield any new solutions with all the constants non-zero.

6.6.3 Two conditions on f for a specific relationship

between g and U .

It is clear from solutions (6.6.43) and (6.6.44) that with

g = Ae±iθ and U = C5e
∓iθ

f is not restricted to a single term in η. This arises due to the fact that the

exponent in U is the negative of the exponent in g.

So if

g = Aeαθ and U = C5e
−αθ (6.6.45)

is substituted into (6.2.6a) and (6.2.6b) and integrated, the two expressions

for p are

p1 =
(1 + α2)C5ρe

−2αθ

A

(
AC5

∫
f ′2

η
dη − αν

(∫
f ′

η2
dη + 3

∫
f ′′

η
dη + f ′′

))
,

(6.6.46a)

p2 =
(1 + α2)C5νρe

−2αθ

2Aα

(
− f ′

η
+ f ′′ + ηf ′′′

)
. (6.6.46b)

Comparing (6.6.46a) to (6.6.46b), the first term inside the brackets for p1 is

conspicuously the only term not explicitly multiplied by ν. Thus if I assume

that the coefficient of this term is proportional to ν, that is

C5A = βν, (6.6.47)
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the two terms inside the brackets can then be equated. Differentiating with

respect to η, then either α2 + 1 = 0 or

1

α

(
η2d

4f

dη4
+ 2(α2 + 1)η

d3f

dη3
+ (6α2−1)

d2f

dη2
−2αβ

(df
dη

)2

+ (2α2 + 1)
1

η

df

dη

)
= 0.

(6.6.48)

Assuming that α 6= 0, multiplying (6.6.48) by αη2 gives

η4d
4f

dη4
+ 2(α2 + 1)η3d

3f

dη3
+ (6α2 − 1)η2d

2f

dη2
− 2αβ

(
η
df

dη

)2

+ (2α2 + 1)η
df

dη
= 0.

(6.6.49)

With the substitution η = ez, (6.6.49) becomes

d4f

dz4
+ 2(α2 − 2)

d3f

dz3
+ 4

d2f

dz2
− 2αβ

(df
dz

)2

= 0,

and with the substitution Y = df
dz

,

d3Y

dz3
+ 2(α2 − 2)

d2Y

dz2
+ 4

dY

dz
− 2αβY 2 = 0. (6.6.50)

If I let α = γ+iδ, (6.6.50) is split into two differential equations, corresponding

to the real part

d3Y

dz3
+
(

2(γ2 − δ2)− 4
)d2Y

dz2
+ 4

dY

dz
− 2γβY 2 = 0 (6.6.51)

and the imaginary part

d2Y

dz2
− β

γ
Y 2 = 0, (6.6.52)

if we assume that β is a non-zero real variable. This is a reasonable assumption,

because once α is complex, A becomes the amplitude of the sinusoidal term for

the boundary layer width g, and similarly C5 is the amplitude for the sinusoidal

term for the speed external to the boundary layer, U . With the viscosity being

a measurable real quantity, thus every term in (6.6.47) is real.

Equation (6.6.52) is the Emden-Fowler equation (2.5.24) with n = 0, has two

symmetries and can be reduced to quadrature thus

z =

∫
dY√

2β
3γ
Y 3 − 2C1

. (6.6.53)
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Substituting (6.6.53) into (6.6.51) will give the relationship between δ and β
γ

.

Also, obtaining an expression for Y in terms of z and thus f(η) from (6.6.53)

would then allow the corresponding expression for p(θ, η) from (6.6.46a) and

(6.6.46b) to be found.

So the choice of (6.6.45) for U and g ensures that the PDE becomes an

ODE for f(η) and so we have a similarity solution of the equations (6.2.6a)

and (6.2.6b). A dimensional analysis argument was not used, so this solution

is a self-similar solution of the second kind.

6.7 The relationship between the similarity

solutions and the corresponding physical

solutions

The similarity solutions found in the previous section can be used to con-

struct physical solutions. The complexity of this process will depend upon the

Reynolds number of the flow in question. The general idea here is that the

similarity solution found is a solution to the 2-D Navier-Stokes equations in

the boundary layer. The term boundary layer has a physical meaning in that

it can be actually observed as the region in a flow close to a boundary. How-

ever, in what follows a definition more relevant to the governing differential

equations is required. The boundary layer is the region in which the external

inviscid fluid flow adjusts to the presence of the boundary in order that the

zero velocity (or no-slip) boundary condition be satisfied. I extend this idea to

a zero velocity streamline, in that a boundary layer will exist in the vicinity of

such a streamline, and the external inviscid flow will adjust across this bound-

ary layer to meet this zero velocity condition. I therefore assert that a solid
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object in a 2-D flow with attached vortices can be treated as a solid object

whose shape is described by the surfaces of the original object and the zero

velocity streamlines that are adjacent to the external fluid flow, provided that

these surfaces and streamlines together form a closed loop. Further I assert

that this curve will be continuous, but not necessarily smooth.

In the following sub-sections I will consider 2-D flow past a circular cylin-

der, beginning with low Reynolds number flow. For flow past a 2-D circular

cylinder, the width of the boundary layer is now given by

g = Aeγθeiδθ (6.7.54)

and so if the term A is thought of as the amplitude, then the term Aeγθ can

be described as the envelope for the sinusoidal function eiδθ.

The separation point θsp , if it occurs, is determined by the condition

sin δθ = 0 and thus θsp =
π

δ
.

The range of values of δ for which this expression is meaningful will be explored

in the following sub-sections. The magnitude of δ will have a significant effect

on the nature of the flow in the wake of the cylinder.

From this point until the end of the chapter, I will use a nomenclature in-

spired by the system used by [63] to explain the boundary layer flow before the

separation point, because it can logically be extended to describe the flow after

the separation point. We can assume that the fluid is inviscid and irrotational

before it encounters the cylinder, and I will name this region 1. The curve

g(θ) given by (6.7.54), for 0 ≤ θ ≤ θsp defines a region of viscous rotational

fluid flow, and corresponds to the viscous sublayer of the triple deck theory

described in Chapter 1. When the fluid that flows through the viscous sublayer

(region 2) leaves the region it will enter an inviscid region, just before, to just
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after the separation point, however the fluid will retain the vorticity it acquired

in the previous region. This is region 3, which corresponds to the main deck

in the triple deck theory. Fluid moving past the cylinder that does not travel

through region 2 will remain inviscid and irrotational, and thus remains in

region 1. This region corresponds to the upper deck in the triple deck theory.

6.7.1 Stokes Flow

Stokes flow, creeping flow of low Reynolds number hydrodynamics refers to the

situation where fluid flowing past the 2-D circular cylinder does not separate

from the wall until it reaches the rear stagnation point. The boundary layer

g(θ) will not separate iff δ < 1. The triple deck theory referenced in Chapter 1

was devised as a way of matching the external (region 1) flow, which satisfies

the boundary condition at infinity with the boundary layer flow, which satisfies

the boundary condition at the wall. In this chapter, I have found a solution to

the Navier-Stokes equations in the boundary layer which satisfies the boundary

conditions at the wall and at the edge of the boundary layer. In this section, I

will outline how this solution can be matched to the solution in region 1, and

in so doing create a procedure in which physically realizable exact solutions

can be constructed. Stokes flow is the simplest situation in which this can be

done, and so is a logical place to begin. Fluid flows with a higher Reynolds

number, where the flow separates from the cylinder, is a more complicated

situation, and I will address these situations in subsequent sections.

The streamlines in region 1 are given by the stream function (2.4.16). The

components of the fluid velocity are given by (2.4.17), while the pressure at

any point can be determined by (2.4.15). Let Ai = g0 and C5i = U0 and
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α = γ + iδ. Then (6.6.45) becomes

g = g0e
γθ sin δθ − ig0e

γθ cos δθ and U2 = −U0e
−γθ sin δθ − iU0e

−γθ cos δθ,

where the subscript for U2 denotes the function U from (6.6.45) in region 2.

The boundary between region 1 and region 2 is given by g(θ) for 0 ≤ θ ≤ π
2δ

.

Let the two endpoints of this boundary be denoted O at the forward stagnation

point (θ = 0) and P , given by

θ =
π

2δ
and r = a+ g0e

γπ
2δ and U2 = −U0e

− γπ
2δ , (6.7.55)

where r is given by the radius of the cylinder plus the width of the boundary

layer g, and U2 is the fluid speed on the boundary of the viscous sublayer at

P . The next step is to find the fluid speed U1 at P according to the solution to

Euler’s equations, for region 1. The subscript for U1 denotes that this function

represents the fluid speed in region 1. Using (2.4.17),

U2
1 = U2

(
1− 2a2

r2
cos 2θ +

a4

r4

)
,

and evaluating U2
1 at P ,

U2
1 = U2

(
(a+ g0e

γπ
2δ )4 − 2a2 cos

(
π
δ

)
(a+ g0e

γπ
2δ )2 + a4

(a+ g0e
γπ
2δ )4

)
,

while U2
2 at P is

U2
2 = U2

0 e
− γπ

δ .

Equating U2
1 and U2

2 at P , and letting

g0 = LTae
− γπ

2δ and U0 = UTUe
γπ
2δ (6.7.56)

yields,

U2
TU

2a4(1 + LT )4 = U2

(
2a4(1− cos

(π
δ

)
) + 4a4LT (1− cos

(π
δ

)
)

+ 6a4L2
T (1− 1

3
cos
(π
δ

)
) + 4a4L3

T + a4L4
T

)
.

Canceling the common factor U2a4 gives
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Proposition 12

1− 2 cos
(π
δ

)
(1 + LT )2 + (1− U2

T )(1 + LT )4 = 0 , (6.7.57)

the relationship between δ (which will be a function of Re) and LT and UT

(defined by (2.4.21)).

So for Stokes flow past a circular cylinder,

1

2
< δ < 1 which leads to − 1 < cos

(π
δ

)
< 1 ,

because the point P occurs in the range π
2
< θ < π. For δ < 1

2
, the point P

occurs at θ > π, which is outside of the domain of the physical flow. This then

gives rise to a complication in the matching process described above. If we

choose a point P ′ with θ = π and δ < 1
2
, then the expressions for g and U2 at

this point are now complex. The real value for U2
1 is equated to the real part

of U2
2 . When the point P occurs at θ > π, then a value for θ < π

2δ
must be

selected, such as π
3δ
, π

4δ
or π

6δ
, which give slightly less cumbersome expressions

to work with than other values, in the algebra that follows.

Proposition 13 When 1
2
< δ < 1, a choice of two expressions for θ in terms

of δ will yield an expression for γ
δ

in terms of the constants UT and LT .

Consider the point P , with θ = π
2δ

defined above, and another point Q on the

boundary between regions 1 and 2, with θ = π
4δ

. U2 is complex at Q, and so

we require that U2
1 is equal to the real part of U2

2 at this point. This yields

1−2 cos(2θ)(1+V sin(δθ))2 +(1−W 2 cos(2δθ))(1+V sin(δθ))4 = 0 , (6.7.58)

where

V = LT e
− γ

2δ
(π−2δθ) and W = UT e

γ
2δ

(π−2δθ) ,

for a general value of θ. Evaluating (6.7.58) at Q gives

cos
( π

2δ

)
=
(

1 +

√
2

2
V0

)2

+
(

1 +

√
2

2
V0

)−2

where V0 = LT e
− γπ

4δ .
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Using the double angle formula and substituting for cos( π
2δ

) in (6.7.57) and

then solving for γ
δ

yields

γ

δ
= − 4

π
ln
( V1

LT

)
(6.7.59)

where

V1 =
√

2

(
± 4

√√√√(Y − 1

4

)
±

√(
Y − 1

4

)2

− 1− 1

)
where V1 > 0 and the coefficient of the fourth root can also be ±i, and

Y =
1 + (1− U2

T )(1 + LT )4

2(1 + LT )2

with UT > 0 and LT > 0.

Theorem 10 The Reynolds number in the boundary layer, from (6.6.47), is

Re = −β
γ

= − β

νT
.

Substituting (6.7.56) into (6.7.55), then at P ,

U2 = UTU and r = a(1 + LT ) .

Also

g0U0 = LTUTaU with Re =
aU

ν

and

g0U0 = (Ai)(C5i) = −AC5 = −βν

from (6.6.47). Equating these two expressions for g0U0, and using (2.4.21)

gives the required expression for Re. �
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Equation (6.6.52) now is

d2Y

dz2
+ReY 2 = 0 ,

equation (6.6.51) becomes

d3Y

dz3
+
(

2(γ2 − δ2)− 4
)d2Y

dz2
+ 4

dY

dz
+ 2γ2ReY 2 = 0

and γ = LTUT . Substituting this expression for γ into (6.7.59), we can solve

for δ. Alternatively we can solve for δ from (6.7.57).

In addition to equating the speed at P , the pressure at P , which I will name

pP must also be matched in the following manner. Once f has been calculated,

pP2 can be calculated from (6.6.46a) and (6.6.46b). The pressure from region

1, pP1 is calculated from (2.4.15), by considering the streamline that passes

through P , from infinity in front of the cylinder. Hence

pP1 = p∞ +
1

2
ρU2(1− U2

T ) . (6.7.60)

A plot of the viscous sublayer for an example of a Stokes flow is in Figure

6.1. The flow is symmetrical about the horizontal axis, and separates from the

cylinder at the rear stagnation point. The streamline pattern is also symmet-

rical about the vertical axis.

The appearance of a in the expression for g0 and U in the expression for

U0 confirms that a is the best choice for the characteristic length and U is the

best choice for the characteristic speed for the 2-D Stokes flow past a circular

cylinder. Hence these equations can now be made dimensionless with these

variables.

Conjecture 1 The four dimensionless parameters Re, δ and LT and UT in

conjunction with the solution (6.6.53), (6.6.45) and (6.6.46a) or (6.6.46b) de-

termine all possible behaviour for this system. Any observed behaviour will

correspond to a value for each of these four variables.
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Figure 6.1: A sketch of the 2-D viscous fluid flow past a circular cylinder for

a Reynolds number such that there is no separation point, with the direction

of fluid flow horizontal from left to right, and the external edge of region 2 in

orange.
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For each Reynolds number there is a solution from (6.6.53) for the velocity

profile f(η) in the boundary layer. Substituting this into (6.6.51) gives γ

and δ, while substituting into (6.6.46a) and (6.6.46b) will determine UT from

(6.7.60), and thus LT .

The magnitude of γ determines how large the envelope of the viscous sub-

layer (region 2) has grown to (for positive values) at the back of the cylinder.

The width of the boundary layer is determined by LT , because LT is the max-

imum width of the viscous sublayer, which is carried through to region 3 by

the fluid flow, and so LT is also the width of the main deck. This width will

increase as the fluid moves downstream from the cylinder due to diffusion of

the vorticity in the boundary layer.

Conjecture 2 The quantity U(θ)g(θ) is a conserved quantity along the entire

outer edge of each viscous sublayer and therefore the eddy or turbulent viscosity

νT = LTUT is a conserved quantity for the solution found in this chapter, and

in addition to this I think that it is a conserved quantity for turbulent flows

more generally, and so this concept will have a wide range of applications.

The solution (6.6.45) in this chapter significantly was found when

U(θ)g(θ) = C5A = νTUa or Ū(θ)ḡ(θ) = LTUT

An extension of this idea will be applied to the other versions of the Navier-

Stokes equations mentioned in the next sections, that is the 2-D time dependent

equations, and the 3-D equations. This system as a whole clearly is not con-

servative, however, outside of the viscous sub-layers (region 2, and potentially

other regions when the flow separates from the cylinder), in some sense the

system is conservative. The value of this conserved quantity will in fact be dif-

ferent for each viscous sublayer. The characteristic length LT will presumably
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decrease from one region to the next, due to the viscous dissipation of energy

that occurs in the viscous sublayer.

The stream function (6.2.1) now becomes

ψ = AC5f(η), where η =
re−αθ

A
.

The velocity potential φ only exists if ∇ × u = 0. The vorticity in region 2

has a greater effect on fluid closer to the boundary, and it would be useful to

quantify the reduction in displacement on each streamline relative to what is

expected for the corresponding irrotational flow.

The solution found here may be able to be used to model steady-state low

Re vortices more generally. The core of the vortex being a boundary layer,

as the speed of the fluid changes from zero at the centre of the vortex to the

external speed outside of the vortex.

6.7.2 Steady 2-D Laminar flow

For δ > 1, the flow separates from the cylinder, and as δ increases, θsp decreases

monotonically. This continues until δ reaches a value where the flow becomes

unsteady, at Re ∼ 47 according to [49]. There are two aspects of the flow that

need to be determined; the streamlines and the fluid speed at each point on

each streamline.

For Stokes flow, the pattern of streamlines is the same as the 2-D irrotational

flow (2.4.16), while the fluid speed in region 2 will be determined for a given

value of θ by using the solution for the velocity profile f , with the speed at

the edge of the boundary layer given by the square root of the real part of

U2
2 (θ) . The fluid that flows through region 2 flows into region 3 with the same
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speed as the corresponding irrotational flow, but with some vorticity. That is,

a small blob of fluid that has moved through region 2 remains on the same

streamline as the corresponding irrotational flow, but is not as far along the

streamline.

For a steady 2-D laminar flow, the flow separates from the cylinder at θsp,

and thus the pattern of streamlines changes accordingly. As described above,

two attached vortices will form at the rear of the cylinder, above and below

the axis of symmetry parallel to the direction of fluid flow at infinity. Each

vortex is enclosed by a zero velocity streamline, given by the surface of the

cylinder, the axis of symmetry joining the rear stagnation point and another

point known as the wake stagnation point, and a curve joining this point and

the separation point determined by g(θ). In this manner, the cylinder and

the two attached vortices form a closed loop. To find the streamline pattern

around this loop, a conformal mapping of a circle of radius a to this closed

loop can be calculated, which maps the streamline pattern for the irrotational

flow to the required pattern for the 2-D steady laminar flow. The function

g(θ) describes the extent of the viscous sublayer, in that for

0 < θ < θsp , g(θ) > 0,

and this represents the boundary of region 2 adjacent to regions 1 and 3. If we

consider r = a+g(θ) for 0 < θ < θsp then r = a represents the boundary of

the cylinder with region 2. For θsp < θ < π, the curve enclosing the attached

vortex is given by

r = a+ |g(θ)|, or r = a− g(θ)

because g is negative for these values of θ. One way to visualize this is to

consider the curve y = g(θ) (Figure 6.2) where the curve y = 0 represents
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Figure 6.2: The viscous sublayer g(θ) with separation point θsp = 2π
3

shown in

Cartesian coordinates. The edge of the viscous sublayer is shown in orange,

while the zero velocity streamlines are in blue.

a zero velocity streamline on the surface of the cylinder which separates at

θ = θsp and encloses the vortex for θsp < θ < π. Then g(θ) will be on the

surface of the cylinder for θsp < θ < π. I will name the enclosed vortex region 4.

The streamline pattern and fluid speed need to be determined in this region.

It is not clear yet what method is the most suitable to solve this problem,

whether the transformation (6.2.1) can be used, or if another transformation

is more appropriate.

Once the streamline pattern has been determined outside of the closed loop,

the speed on each streamline within region 2 is determined using the same

method as described above for the Stokes flow. That is, the inviscid flow

around the closed loop determines U1(θ), which is matched to U2(θ), from the
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viscous sublayer. Next, a second boundary layer is created for the vicinity of

the zero velocity streamline enclosing region 4. A similar method will be used

to determine the region adjacent to this new boundary where the fluid speed

is adjusted to meet the zero velocity boundary condition. That is, there will

be a second viscous sublayer, which I will name region 5. It is not clear at

this stage for which values of δ that this second boundary layer will remain

attached to the zero velocity streamline all the way to the axis of symmetry,

and for which values of δ it will separate, creating a third (and perhaps more)

viscous sublayer.

Figure 6.3 shows a plot of an example of a steady 2-D laminar flow, showing

the viscous sublayer and attached vortices at the rear of the cylinder. The

flow is divided into three distinct domains: the two attached vortices, and the

third domain bounded by the surface of the cylinder, and the sinusoidal shapes

with the increasing amplitude envelope which defines the extent of the two

vortices. This plot and Figures 6.1 and 6.2 are only qualitative visualizations

of the solution, presented here for the reader’s benefit. The actual values of

Re, δ and LT and UT are needed for a more precise representation of what a

particular flow will look like.

The boundary of the viscous sublayer (region 1) is given by g(θ). For Stokes

flow, CD can be determined by integrating over this region. When the flow

separates, another one or more viscous sublayers are created. If the function

corresponding to g(θ) can be found for each viscous sublayer, then integration

over each region to determine CD may be possible. Subsequently a determi-

nation of how these structures change as Re changes is required to determine

the relationship between CD and Re over a range of values for Re.
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Figure 6.3: A sketch of the 2-D laminar fluid flow past a circular cylinder

with the separation point at 2π
3

from the forward stagnation point, with the

direction of fluid flow horizontal from left to right, the external edge of region

2 in orange; top left, zero velocity streamlines in green (and from 1 to 2 on the

horizontal axis) marking the edge of region 4, the edge of region 5 in orange;

top right and the cylinder in blue.
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6.7.3 Fluid flows for higher Reynolds numbers

As discussed in Chapter 1, the nature of the flow changes at Re ∼ 47 to an

unsteady 2-D flow, and the solution found in this thesis can no longer be used.

However, the method used to find the 2-D steady state similarity solution is

likely to be useful in finding the 2-D time dependent similarity solution. The

process described in the previous section will need to be adapted to the time

dependent situation to find the physically realizable solutions. The Strouhal

number now becomes relevant, and it is likely that it will appear as a parameter

in the relevant differential equation. CD will be time dependent, and thus the

size, shape and location of the viscous sublayers may all be time dependent.

Similarly, this method with appropriate adaptation will be applied to the 3-D

case.

The method described in this chapter has been successfully used to find a

new similarity solution to the 2-D incompressible steady-state Navier-Stokes

equations.

Conjecture 3 The similarity solutions to the 2-D incompressible steady-state

Navier-Stokes equations found in this chapter are the only physically realizable

solutions obtainable with the transformation (6.2.1).

What remains to be done here to prove this conjecture is an investigation of

possible solutions with two or more terms for g(θ). This method (of searching

for solutions) could be applied to the Navier-Stokes equations in both 2-D and

3-D, for all the known transformations that admit a similarity solution, to

prove that no more solutions exist for each transformation. Also, this method

may be able to find new solutions in the 3-D case.
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Discussion The shape of the yarn balloon, and thus the orientation of the

yarn element to the oncoming air flow presents horizontal cross-sections which

are ellipses in a range of orientations. The relationship between CD and Re

will be determined by integrating over each of the viscous sub-layers. If this

can be done, then what remains to be done is to determine how CD changes

when mapping from the fluid flow past a circular cylinder to fluid flow past an

elliptical cylinder for the range of orientations of the cylinder to the direction

of the fluid flow.

Future Work The method created in this chapter has significant potential

to find more new similarity solutions to the 2-D or 3-D Navier-Stokes equa-

tions, as well as other partial differential equations. The method is not fully

algorithmic, but is systematic, and may require some intuition as demonstrated

in this chapter. For the 2-D and 3-D boundary layer flows discussed above, the

starting point will be to consider the conserved quantity Ug, and generalizing

the concept as required.

The relationship between δ and the Reynolds number remains to be found, al-

though it is likely to come from (6.6.51), once the solutions for f(η) are found

from (6.6.52). This would then lead to an exact expression for the separation

point in terms of the Reynolds number for the 2-D steady state range.

Concluding Remarks The solution to the Navier-Stokes equations found

in Chapter 6 appears to be a self-similar solution of the second kind. Different

versions of the Navier-Stokes equations govern different ranges of values for Re,

based upon experimental observations, confirmed by numerical simulations of

the appropriate version of the Navier-Stokes equations. These simulations have

led to numerical formulae for the relationship between θsp and Re, valid for

a specific range of values for Re [49]. It seems reasonable to expect that for
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the same range of values, there will be a relationship between CD and Re and

the exact solution to the relevant version of the Navier-Stokes equations will

be pivotal if the exact relationship is to be found. If the relationship between

CD and Re is to be found for any range of values for Re, it will enable a more

accurate air drag term for the yarn balloon equations to be found. In addition

it will likely lead to new models for air drag in many other applications.



Chapter 7

Conclusion

This thesis brings together three distinct areas of study in mathematics. The

first being the mathematical modelling of yarn spinning devices used in the

textile manufacturing industry, while the second is the modelling of fluid flow

past a circular cylinder, a classical problem in fluid dynamics. The pertinent

connection between these two areas is that the drag force created by the fluid

flow past the cylinder is a crucial part in the dynamical model of how yarn

behaves in these devices. The third area is differential geometry, which is used

to express the yarn balloon model in intrinsic coordinates, which is a more

suitable coordinate system than has ever been used for this model before.

In all recent modelling of these devices, the coefficient of the drag force

term, CD was assumed to be equal to 1, along the entire length of the yarn

balloon, based on experimental data reproduced in [2], [33], [60], [30] etc,

which demonstrates that CD is in fact a function of the Reynolds number, Re,

so the assumption that CD is constant is only valid for large values of Re in

typical yarn balloons. According to Batra & Fraser [2], in the yarn spinning

processes modelled in this thesis, the highest values of Re typically reached

are O(103−104). Given the typical shape of a yarn balloon, found numerically
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in [2], [7] etc, it is clear that Re will be small where the yarn passes through

the guide-eye, and will increase to its maximum value when the radius of the

yarn balloon is maximum. Thus CD will be larger near the guide-eye than

the Padfield model has accounted for. This is one factor that motivates the

current efforts described in this thesis to improve the mathematical model for

these devices.

Another factor is what effect the shape and smoothness of the yarn itself

has on the shape of the yarn balloon. The analysis carried out in Chapter 4, in

which the yarn balloon equations are cast in a new frame of reference S ′, using

the method established in Chapter 3, lays the foundation for multi-ply and

hairy yarns to be modelled more accurately when a more accurate expression

for the air drag term is found.

In Chapter 6, a new similarity solution of the 2-D incompressible steady state

Navier-Stokes equations is found for fluid flow past a circular cylinder. This

solution is shown to be physically realizable for laminar flows corresponds to

Reynolds number in the range 0 < Re ≤ 6.29. For the range 6.29 ≤ Re ≤ 47

I have outlined a process in which I believe this similarity solution can be

used to find a physically realizable solution. These solutions can then be used

to find the relationship between CD and Re in this range. For 47 < Re <

190, the flow becomes unsteady, and I expect that the method used in this

thesis to find the similarity solution for the 2-D steady state case will also be

applicable in finding a similarity solution in the 2-D unsteady state case, with

the goal of constructing physically realizable solutions, and then attempting

to use this solution to find the corresponding relationship between CD and

Re. The method will also be applied to the 3-D case, for Re > 190. If this

method is successful in finding a physically realizable solution in the 3-D case,
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notwithstanding the many other applications this result could be applied to, I

would then be able to find expressions for CD in terms of Re across the entire

range for Re relevant to the yarn balloon problem. On the other hand, if this

is not possible with this method, and I am only able to find the relationship

between CD and Re for the 2-D flow ranges, then I could still use the original

assumption, CD = 1 for Re > 190, and this would be reasonable, and certainly

an improvement on the current model because at Re = 190, 1 < CD < 2. With

these expressions for CD, the drag on each infinitesimal section of the yarn

balloon can be found by dividing the balloon up into thin horizontal slices,

and considering the relevant 2-D flow and corresponding value for CD on each

one. The process described in section 5.5 will translate the expressions found

for CD for flow past a circular cylinder into expressions for the drag force

on the infinitesimal yarn element, which is used with the framework found in

Chapter 4 to establish new differential equations for the yarn balloon model.

These equations will then be solved for the parameter spaces described in [2],

with the objective of further optimization of the system.

The fact that the 3-D solution transitions to turbulence in the wake of the

cylinder at Re ∼ 1200, and thus some yarn balloon configurations will generate

a turbulent wake will also need to be considered. The yarn spinning devices

being modelled in this thesis are operated in large arrays of identical devices,

in close proximity to one another, often separated by a vertical panel or guard.

How the turbulent air generated by these devices interact with these panels

or guards may in fact determine whether the yarn balloon is moving through

still or turbulent air, and thus what the drag coefficient CD is. The first step

would be to determine the magnitude of the effect of this phenomenon on the

shape of the yarn balloon. Further work in this direction may be from the
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perspective of productivity of the overall system. Are there optimal values of

the rotational speed of the device, coupled with the design of the device and

the region around the device, considering the behaviour of the air around the

device, that optimizes the throughput and the quality of the yarn produced.

All the relevant calculations arising from the similarity solution found in this

thesis have not yet been done, due to the necessity of the timely submission

of this thesis, thus I cannot be categorically certain yet that the solution is

a physically realizable solution. However, I am confident that it is, for the

following reasons. Firstly, for Stokes flow, I match a solution that satisfies the

required boundary conditions on the boundary of the cylinder and at the edge

of the boundary layer with a solution that satisfies the boundary conditions at

infinity, meaning that I have found a flow that satisfies the relevant differen-

tial equation over the whole domain, and satisfies all the boundary conditions

of this domain. Secondly, the solution is qualitatively in agreement with the

triple deck theory described in [63] for the flow in the vicinity of the separation

point. Thirdly, the plots of the solution for a Stokes flow in Figure 6.1 and

for a 2-D steady laminar flow in Figure 6.3 are qualitatively similar to the

photographs reproduced in Plate 1 of [33], and flow visualization pictures in

[65] for 2-D steady flow past a circular cylinder. The procedure devised in

section 6.7.1 leading to (6.7.57) provides a relationship between the charac-

teristic length and the characteristic velocity which may be able to be tested

experimentally. When all relevant calculations have been carried out, I expect

to have exact values for Res, the value of the Reynolds number for the onset

of flow separation, and the Reynolds number for which the 2-D laminar flow

becomes unsteady.
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Darboux frame field and

connection forms

From the definition (2.2.9) of the Darboux frame, with the expressions for T,

U and V,

T = ((r′ cos θ − rθ′ sin θ), (r′ sin θ + rθ′ cos θ), z′),

U =
1√

r′2 + z′2
(−z′ cos θ,−z′ sin θ, r′),

V =
1√

r′2 + z′2

{
(− sin θ(r′2 + z′2)− rr′θ′ cos θ),

(cos θ(r′2 + z′2)− rr′θ′ sin θ),−rθ′z′)
}
,

k, t and g are

k =
(−z′(r′′ − rθ′2) + r′z′′)√

r′2 + z′2
,

t = θ′z′ − rθ′(r′z′′ − r′′z′)
(r′2 + z′2)

,

g =
(−rr′θ′(r′′ − rθ′2) + (r′2 + z′2)(2r′θ′ + rθ′′)− rθ′z′z′′)√

r′2 + z′2
.

For the frame field E1 = T, E2 = V and E3 = U, the connection forms ωij
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are

ω11 = (r′2r′′ + rθ′2)dr + r2θ′2θ′′dθ + z′2z′′dz,

ω22 = ω11,

ω33 = 0,

ω12 =

(
θ′
√
r′2 + z′2 − rr′2r′′θ′√

r′2 + z′2

)
dr

+

(
(r′ + rθ′θ′′)

√
r′2 + z′2 +

r2r′θ′2√
r′2 + z′2

)
dθ −

(
rθ′z′2z′′√
r′2 + z′2

)
dz,

ω21 = −ω12,

ω13 =

(
− r′r′′z′√

r′2 + z′2

)
dr +

(
rθ′z′√
r′2 + z′2

)
dθ +

(
r′z′z′′√
r′2 + z′2

)
dz,

ω31 = −ω13,

ω23 =

(
rr′r′′θ′z′

(r′2 + z′2)

)
dr + z′dθ −

(
rr′θ′z′z′′

(r′2 + z′2)

)
dz,

ω32 = −ω23.

The dual 1-forms are

θ1 = r′dr + r2θ′dθ + z′dz,

θ2 = −

(
rr′θ′√
r′2 + z′2

)
dr + r

√
r′2 + z′2dθ −

(
rθ′z′√
r′2 + z′2

)
dz,

θ3 = −

(
z′√

r′2 + z′2

)
dr +

(
r′√

r′2 + z′2

)
dz.
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Padfield’s air drag term in

intrinsic coordinates

In this section we represent the air drag term used in the Padfield model

(2.3.10) in terms of the Frenet-Serret coordinates.

In dimensionless form, (2.3.11) becomes

v = k ∧ r = reθ ,

and (2.3.12) becomes

vn = T×
(
reθ ×T

)
,

which is

vn =
r

κ
(2r′θ′ + rθ′′)N +

r

κ
(−r′z′′ + r′′z′ − rθ′2z′)B ,

and so

|vn| =
r

κ

√
(2r′θ′ + rθ′′)2 + (−r′z′′ + r′′z′ − rθ′2z′)2 .

Therefore the air drag term is given by

F =− p0r
2

16

√
(2r′θ′ + rθ′′)2 + (−r′z′′ + r′′z′ − rθ′2z′)2

((r′′ − rθ′2)2 + (2r′θ′ + rθ′′)2 + z′′2)(
(2r′θ′ + rθ′′)N + (−r′z′′ + r′′z′ − rθ′2z′)B

)
.

128



Appendix C

(u× ω) · (∇× ω) in 3-D Cartesian

coordinates

In 3-D Cartesian coordinates,

(u× ω) · (∇× ω) = −u · ∇
(1

2
ω2
)

+ (∇ · u)(ω2)

+ ωx

(∂ux
∂x

∂uz
∂y
− ∂ux

∂y

∂uz
∂x

+
∂ux
∂z

∂uy
∂x
− ∂ux

∂x

∂uy
∂z

)
+ ωy

(∂ux
∂z

∂uy
∂y
− ∂uy

∂z

∂ux
∂y

+
∂uz
∂y

∂uy
∂x
− ∂uy

∂y

∂uz
∂x

)
+ ωz

(∂uy
∂x

∂uz
∂z
− ∂uy

∂z

∂uz
∂x

+
∂uz
∂y

∂ux
∂z
− ∂ux

∂y

∂uz
∂z

)
,

where

ω = ωxi + ωyj + ωzk

and

u = uxi + uyj + uzk .
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