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Abstract: Automotive applications often experience conicting-objective optimization problems
focusing on performance parameters that are catered through precisely developed cost functions.
Two such conicting objectives which substantially affect the working of traction machine drive are
maximizing its speed performance and minimizing its energy consumption. In case of an electric
vehicle (EV) powertrain, drive energy is bounded by battery dynamics (charging and capacity)
which depend on the consumption of drive voltage and current caused by driving cycle schedules,
trafc state, EV loading, and drive temperature. In other words, battery consumption of an EV
depends upon its drive energy consumption. A conventional control technique improves the speed
performance of EV at the cost of its drive energy consumption. However, the proposed optimized
energy control (OEC) scheme optimizes this energy consumption by using robust linear parameter
varying (LPV) control tuned by genetic algorithms which signicantly improves the EV powertrain
performance. The analysis of OEC scheme is conducted on the developed vehicle simulator through
MATLAB/Simulink based simulations as well as on an induction machine drive platform. The
accuracy of the proposed OEC is quantitatively assessed to be 99.3% regarding speed performance
which is elaborated by the drive speed, voltage, and current results against standard driving cycles.

Keywords: induction machine drive; drive energy consumption; linear parameter varying control;
EV powertrain; genetic algorithms

1. Introduction

Environmental pollution caused by excessive greenhouse gas emissions, global warm-
ing, acid rains and limited reserves have evolved a global energy crisis. One of its signicant
causes is the continuous use of combustion engine-based vehicles that not only pollute
the environment but also result in excessive consumption of oil. An ideal solution in the
transportation sector to tackle these challenges is the production of electric vehicles on a
massive scale [1]. The core component of an electric vehicle (EV) is its electric motor as
it replaces the combustion engine. Induction motors have a sound repute in EV power-
trains because of their fascinating technical specications such as lower requirement for
maintenance, de-excitation for inverter fault, and wide speed operation [2].

Some notable examples of these motors in an automotive context are Toyota RAV4
EV (2012), Tesla Model (2012), Honda EV (2012), BMW/X5 (Germany), Chevrolet (USA),
Durango (USA), and Renault/Kangoo (1998) [3]. During operation, the induction motor
drive in the EV powertrain experiences sheer uncertainities in its parameters particularly
due to temperature variations, EV loading, and trafc situations that cause a signicant
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increase in the demand of voltage and current resulting in excessive battery consumption.
The insulation life of a motor’s stator winding reduces by half, even with a 10 ◦C increase
beyond thermal limit [4]. Performance optimization of a motor can be achieved either by
changing its physical architecture or by developing robust controllers for which different
control schemes have been implemented [5].

Field-oriented control (FOC) is normally preferred for drive control of induction motor
based EV powertrain but since it uses a proportional-integral (PI) controller, it causes more
drive energy consumption because of parameters variation issue [6]. Green energy vehicles
using sliding mode control (SMC) to cater parameters variation are presented in [7] but
this control approach suffers from chattering, which degrades the drive performance by
increasing the energy consumption. A complex solution of this problem is the implementa-
tion of higher order SMC given in [8]. A nonlinear sensorless control for induction motor
is presented in [9,10] though the work is not in the context of electric vehicles. On the
contrary, some notable contributions in the eld of drive control applications address the
inherent dynamics based linear parameter varying (LPV) control theory [11].

LPV technique is implemented to control only the uncertainties in rotor resistance
and load torque of an induction motor in [12]. Only 20% variation in the rotor resistance
of induction motor is permitted through LPV framework in [13]. An LPV control scheme
for induction machine is utilized in [14] but the only varying parameter is its shaft an-
gle. Induction machine’s frequency and rotor resistance variation is addressed in [15]
through LPV methodology. Rotor resistance alone is considered as a frozen parameter of
induction motor for LPV control design in [16]. A quasi-LPV strategy is adopted for in-
duction machine control in [17]. An amalgam of model reference adaptive system (MRAS)
observer with robust LPV scheme is implemented to address only the rotor parameters
uncertainity [18]. The variation in the stator variables of induction motor based LPV system
is catered through an interval state observer in [19].

LPV control design scheme involves an inevitable, challenging task of weighting
functions selection, which is commonly achieved through the method of trial and error [20].
To achieve weighting functions optimization, genetic algorithms are developed. These
algorithms originate from stochastic searching stimulated by a natural variety of species
and manipulate optimal results for discontinuous problems by genetic formation [21].
These algorithms are implemented in control systems to address the conicting controller
objectives [22]. Here, these objectives are maximizing the drive speed performance and
minimizing its energy consumption.

Authors have recently addressed several induction machine drive issues [23,24] with a
focus on EV powertrain in LPV frame work [25–27]. The LPV-based scientic contributions
discussed earlier are not in the framework of EV applications. As per the author’s knowl-
edge, the genetic algorithm-optimized LPV-based control scheme has not been applied
in the literature to address the conicting objectives of reduced drive energy consump-
tion and improved vehicle speed performance for an EV powertrain. Hence, there is a
necessity for designing and implementing such an optimized energy control scheme that
excellently addresses these signicant machine drive objectives against standard driving
cycles with a wide range of parameter uncertainties to improve the performance capability
of EV powertrain.

The rest of this paper is classied as follows. Section 2 provides the induction machine
and LPV system dynamics. Section 3 elaborates the design steps involved in the optimized
energy control scheme for induction motor drive of an EV powertrain. Section 4 provides
the performance analysis of the proposed energy control scheme through aMATLAB-based
vehicle simulator. Section 5 presents the experimental verication on an NI my RIO 1900
control based electric drive platform and overall discussion about the simulation as well as
experimental analysis. Section 6 provides the conclusion and highlights the future work.
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2. Electric Machine and Control Dynamics
2.1. Induction Motor Dynamics

The dynamics of induction motor in (− ) frame are given as [12]:

ω̇R = nP35(RiS − RiS)− 5BωR − 5τL (1)

i̇S = −1iS + 2R + nP36RωR + 6VS (2)

i̇S = −1iS + 2R − nP36RωR + 6VS (3)

̇R = −4R − nPRωR + 3rRiS (4)

̇R = −4R − nPRωR + 3rRiS (5)

where σ = 1− L2M
LSLR

, 1 =
(L2MrR+L2RrS)

σLSL2R
, 2 = LMrR

σLSL2R
, 3 = LM

LR
, 4 = rR

LR
, 5 = 1

J , 6 = 1
σLS

,

τL represents the load torque, R and R represent the rotor uxes, iS and iS are the
stator currents, VS and VS are the stator voltages. The details of motor parameters used
in Equations (1)–(5) are provided in Table 1.

Table 1. Motor parameters.

Symbol Parameter

nP number of pole-pairs
B damping coefcient
LM magnetizing inductance
LS stator self-inductance
LR rotor self-inductance
J moment of inertia
rR rotor resistance
rS stator resistance

2.2. LPV System Dynamics

The induction motor dynamics are transformed into LPV system dynamics by consid-
ering rR and rS as the time varying parameters. The new system in its state space form is
given as follows:

G(χ(t)) : ẋ = A(χ(t))x+ B(χ(t))u

y = C(χ(t))x+D(χ(t))u (6)

where x(t)=[iS iS R R]
T , χ(t)=[1 2]

T=[ rR(t) rS(t)]T is the time varying parameter,
y(t)= [iS iS]T and u(t)= [VS VS]

T . The LPV model-based system matrix of induction
motor is as follows:

A(χ(t)) =




−( 2κ +
1L2M
κL2R

) 0

0 −( 2κ +
1L2M
κL2R

)
1LM
LR

0
0 1LM

LR
1LM
κL2R

nPωRLM
κLR

− nPωRLM
κLR

1LM
κL2R

− 1
LR

−nPωR

nPωR − 1
LR






Energies 2021, 14, 3529 4 of 16

B =




1
κ 0
0 1

κ
0 0
0 0


,C =

[
1 0 0 0
0 1 0 0

]
,D =

[
0 0
0 0

]
(7)

where κ = σLS.

3. Optimized Energy Control Scheme

The LPV-based optimized energy control scheme tuned through the genetic algorithms
is presented in Figure 1 and explained in detail by the following stepwise procedure:

Figure 1. Optimized energy control scheme.

3.1. Cost Function Synthesis

In order to deal with the conicting but signicant objectives of various engineering
applications, appropriate formulation of cost functions is necessary. Here, these objec-
tives are:

1. Maximizing the speed performance of electric drive of EV powertrain;
2. Minimizing the energy consumption of electric drive of EV powertrain.

A cost function addressing these objectives with in the overall control design is
formulated as follows:

J = max

(
1

d(iS, iS,VS,VS)

)
+max

(
1

eωR(iS, iS,VS,VS)

)
(8)

where d and eωR represent the drive energy consumption and speed performance error,
respectively.

3.2. Observer Synthesis

A robust observer is formulated for the accurate ux estimation. The mathematical
ow of this observer is presented as [12]:

Ĝχ(t) :
d
dt

x̂ = Aχ(t)x̂+ Bu+ L(χ)
{
isS −C

[
isS
s
R

]}
(9)
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˙̂iS
˙̂iS
˙̂R
˙̂R


 =

[
A11(χ) A12(χ)
A21(χ) A22(χ)

]



îS
îS
̂R
̂R


+

[
U1
U2

][
VS
VS

]
+ L(χ)





[
iS
iS

]
−C




îS
îS
̂R
̂R








(10)

where

A11 =

[−1 0
0 −1

]
,A12 =

[
2 nP2ωR

−nP2ωR 2

]

A21 =

[
13 0
0 13

]
,A22 =

[ −4 −nPωR
nPωR −4

]

U1 =

[
6 0
0 6

]
,U2 =

[
0 0
0 0

]

L(χ) is the observer’s gain matrix. Its error equation is formed by rotor uxes and
stator currents as shown below:

e =




iS
iS
R
R


−




îS
îS
̂R
̂R


 (11)

The above equation can be represented in state space form as:

ė =

[
A11(χ) A12(χ)
A21(χ) A22(χ)

]
− L(χ)C


e (12)

3.3. Weighting Gains

The afne matrices, i.e., A(χ) (system matrix) and L(χ) (observer gain matrix) ob-
tained from Sections 2.2 and 3.2 in the proposed control scheme fulll the design objectives
of tracking, robustness and stability by using H∞ norm that involves loop shaping. Genetic
algorithms have been used to tune these H∞ sensitivity and weighting gains given in
Table 2.

Table 2. Weighting gains.

Gain Value

Complementary sensitivity (Wt)
(0)s+wT
(0)s+1

Control sensitivity (Wks)
c(s+wks)

Mk(s+cwks)

c = 104

Sensitivity (Ws)
(1/Ms)s+wB

s+wBA
wB = bandwidth = 550

A = factor of attenuation = 0.002
where Mk , wT and Ms are the genetic algorithm-tuned design parameters.
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3.4. Optimized Control Unit

To meet the desired conicting objectives, the closed-loop control develops the re-
quired current vector by using the voltage vector in LPV framework. Such a plant (general-
ized) in its polytopic state space form is given by:



ẋ
z
y


 =



A(, ζ) Bw(, ζ) Bu(ζ)
Cz(, ζ) Dzw(, ζ) Dzu(ζ)

Cy Dyw 0





x
w
u


 (13)

where z = [zs zt zk]T is a vector for control outputs and w = [iSre f iSre f ]T is a vector for
external inputs. The values of z originate from the weighting gains mentioned in Table 2.
The complete structure of this plant is explained in [23]. A, Bw, Bu, Cz, Dzw, Dzu, Cy, Dyw
denote the closed-loop control systemmatrices, whereas the vector for optimized weighting
functions through genetic algorithms is denoted by ζ. χ gives the varying parameter which
can also be represented as:

χ(t) = (1,2, ...,N)
T (14)

The range for i is pre-dened as:

i(t) e [min max] (15)

The extension of A((t)) is given by:

A(χ(t)) = A(rR, rS) = A0 + 1A1 + 2A2

A(χ(t)) = A0 + rRA1 + rSA2 (16)

χ(t) after convex decomposition becomes:

χ(t) = 111 + 212 + 321 + 422 (17)

with
4

∑
i=1

i = 1 and i ≥ 0

where i denes the corner of polytopic parameter array whose values are given by:

11 = (0, rRmin),12 = (0, rRmax)

21 = (0, rSmin),22 = (0, rSmax) (18)

The motor plant in its polytopic form with vertex value χ is formulated as follows:

G(χ) = 1G(11) + 2G(12) + 3G(21) + 4G(22) (19)

1 =
rR(t)− rR min
rR max − rR min

, 2 =
rR(t)− rR max
rR max − rR min

, 3 =
rS(t)− rS min
rS max − rS min

, 4 =
rS(t)− rS max
rS max − rS min

(20)

The dynamics of optimized controller are given by:
[
˙xK
u

]
=

[
AK(χ) BK(χ)
CK(χ) DK(χ)

][
xK
y

]
(21)

such that it satises the inherent stability of the designed feedback control system
Equations (13) and (21) and gurantees its induced L2 norm bounded by  > 0. If there exist
Y(χ) and Z(χ) which are symmetric as well as parameter-dependent matrices, whereas
ÃK(χ), B̃K(χ), C̃K(χ) and D̃K(χ) are gain matrices, the below mentioned linear matrix
inequalities are satised [20]:
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H11(, ζ) H12(, ζ) H13(, ζ) H14(, ζ)
∗ H22(, ζ) H23(, ζ) H24(, ζ)
∗ ∗ H33(, ζ) H34(, ζ)
∗ ∗ ∗ H44(, ζ)


 < 0

[
Z I
I Y

]
> 0

where

H11(, ζ) = A(, ζ)Z+ ZA(, ζ)T + BuC̃K()

+ (BuC̃K())
T

H12(, ζ) = ÃK() +A(, ζ) + BuD̃K()Cv

H13(, ζ) = Bw(, ζ) + BuD̃K()Dvw

H14(, ζ) = (Cz(, ζ)Z+DzuC̃K())
T

H22(, ζ) = A(, ζ)TY+ YA(, ζ) + B̃K()Cv

+ (B̃K()Cv)
T

H23(, ζ) = YBw(, ζ) + B̃K()Dvw

H24(, ζ) = (Cz(, ζ) +DzuD̃K()Cv)
T

H33(, ζ) = −I

H34(, ζ) = (Dzw(, ζ) +DzuD̃K()Dvw)
T

H44(, ζ) = −I (22)

(∗) denotes symmetry. The objectives of the former and later inequalities are to achieve the
optimized attenuation factor () and to satisfy the positive denite condition, respectively.
That optimized value comes out to be 0.802. The solution of LMIs generates the gain
matrices ÃK(χ), B̃K(χ), C̃K(χ), D̃K(χ) and symmetric parameter-dependent matrices
Y(χ) and Z(χ). The gains of designed controller AK, BK, CK and DK can be calculated by:

DK = D̃K (23)

CK = (C̃K −DKCvY)(VT)−1 (24)

BK = W−1(B̃K − ZBuDK) (25)

AK = W−1(ÃK −WBKCvY− ZBuCKVT−
Z(A+ BuDKCv)Y)(WT)−1 (26)

where V andW are matrices such that

I− ZY = WVT (27)

Further simplication gives the following form of the proposed gain scheduling
optimized LPV control:

[
AK(χ) BK(χ)
CK(χ) DK(χ)

]
=

4

∑
i=1

i

[
AK(χi) BK(χi)
CK(χi) DK(χi)

]
(28)

3.5. Optimization of Weighting Functions

An important real positive scalar that affects the performance objectives in this energy
control scheme is . That is why it is included in the weighting fuction’s decision vector ζ.
A ow chart elaborating the steps involved in the controller synthesis through weighting
functions optimization is shown in Figure 2.



Energies 2021, 14, 3529 8 of 16

Figure 2. Controller synthesis through genetic algorithms.

3.6. Optimized Flux and Speed Control Unit

For the perfect tracking of drive ux and speed, an input–output feedback linearization
(I/OFL) control technique is applied which takes iS = [iS iS]T as input and y = [ωR R]T

as output. The reference currents for the stator are generated by taking derivates of the
ux and speed relations accompanied with control regulation through appropriate gains.
These currents are:

iSre f =
̂R
3rR

(
˙̂R

̂R
+ 4) +

̂R

n2P3
2
5 ̂

2
R
(−ω̇R − 5τL − 5BωR) (29)

iSre f =
̂R

3rR
(
˙̂R

̂R
+ 4) +

̂R

n2P3
2
5 ̂

2
R
(ω̇R + 5τL + 5BωR) (30)

where ˙̂R can be obtained by:

− 4̂R + 3rR

(
̂RiS + ̂RiS

̂R

)
(31)

The above-mentioned Equations (29) and (30) formulate the tracking errors eR =
R−re f − ̂R and eωR = ωR−re f −ωR for the drive ux and speed, respectively.

4. Performance Analysis of Optimized Energy Control

The effectiveness of the proposed energy control scheme is validated through non-
linear MATLAB-based simulations on a developed vehicle simulator against the New
European Driving Cycle (NEDC).

4.1. Vehicle Dynamics

An EV simulator is developed as shown in Figure 3 with specications mentioned
in Table 3 [26]. It takes NEDC and Highway Fuel Economy Test (HWFET) driving cycles
as desired speed which is then given to the driver section comprising a PI controller. The
driver generates the driving command for the electric machine drive which is further
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embedded in vehicular dynamics through transmission. The drive energy as well as speed
performance of the EV powertrain suffers due to the uncertainity in motor drive parameters
caused by driving cycle schedules, trafc state, EV loading, and drive temperature. These
factors are taken into account during simulation analysis by considering standard driving
cycles at higher temperatures. The temperature values are accomodated by their relation
with the resistance values as given by [28]:

R = R0[1+ ∆T] (32)

where ∆T,  and R0 represents temperature difference, temperature coefcient and ma-
terial’s resistance, respectively. Mathematical model-based rotor and stator resistance
estimation is used to generate a temperature prole throughout the standard driving cycles
which contains constant speed, acceleration and deceleration. These resistances are as
follows [29,30]:

rR =

√ω2
sl LR


 ωeL2M

Q
I2S
+ωeLS

− LR


 (33)

rS = krR (34)

where ωe and ωsl are the electrical frequency and slip, respectively. The vehicle dynamics
in mathematical form including speed of EV (nR), load torque of EV (τL(EV)) and traction
force of EV (Ft) are given as follows:

nR =
rW
gR

ωR (35)

τL(EV) =
FtrW
gR

(36)

Ft = Fg + Fi + Fr + Fa (37)

where:
Fi: inertial resistance
Fa: aerodynamic drag
Fg: grade resistance
Fr: rolling resistance
rW : radius of EV wheel
gR: gear ratio

Figure 3. Electric vehicle control simulator.
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Table 3. Specications of EV.

Symbol Parameter Value

m Mass 1000 kg
Cr Coefcient of rolling resistance 0.014
AF Frontal area 2.1 m2

Cd Coefcient of aerodynamic drag 0.4
Rwheel Wheel radius 0.2 m

4.2. Higher Order SMC-Based NEDC Comparison

The efcacy and robustness of the proposed OEC scheme is validated by comparing
it with a Higher Order SMC technique given in [31]. To make a precise comparison, the
motor parameters are taken from [31], i.e., J = 0.01 kg.m2, LM = 377 mH, rS = 14.1 Ω,
LS = 400 mH, rR = 10.1 Ω and LR = 412.8 mH. NEDC is used as speed prole for the
electric vehicle control simulator considering an elevated temperature. The comparison of
the conicting objectives of the EV powertrain, i.e., speed tracking performance and drive
energy consumption in the form of voltages and currents is shown in Figures 4–7, respec-
tively. Furthermore, the NEDC-based tracking of the motor ux through the designed ux
observer of OEC scheme is also shown in Figure 8. As mentioned in [31], a 20–60% change
in the rated values of motor resistances is considered. It can be analyzed from the obtained
results that OEC scheme provides better speed tracking with less drive energy consumption
for EV powertrain than its control counterpart under varying machine parameters.

Figure 4. NEDC based analysis at 60 ◦C.

(a) (b)

Figure 5. EV Speed tracking performance comparison (a) for stator resistance variation (b) for rotor
resistance variation.
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(a) (b)

Figure 6. SMC-based EV powertrain (a) Voltages (b) Currents.

(a) (b)

Figure 7. OEC-based EV powertrain (a) Voltages (b) Currents.

Figure 8. OEC-based ux tracking at 60 ◦C.

4.3. Higher Order SMC-Based Dynamic Behavior Comparison

The analysis of the proposed control scheme is extended to include the dynamic
behavior of the induction motor drive under various circumstances. For that purpose, the
above mentioned Higher Order SMC along with the same parameters is compared with the
proposed OEC at elevated tenperature with respect to the dynamic characteristics (torque
and speed) of drive. The comparison is shown in Figure 9. It can be clearly observed from
the gure that even at a higher temperature, the dynamic characteristics of the drive in case
of OEC scheme in comparison with Higher Order SMC are quite close to the characteristics
at room temperature at which the resistances are at their nominal values. The analysis
considers a unipolar load torque which means it has two steady state points (one is for
rising edge and other for falling edge). They are also reecting in the circular portion of the
obtained dynamic characteristics.
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Figure 9. Comparison of motor dynamic behavior.

5. Experimental Analysis

The proposed OEC scheme is also tested on an induction machine drive testing
platform as given in Figure 10. It is a 2.2 kW induction motor based setup comprising
an inverter, an autotransformer and a controller kit based on NI myRIO 1900 which is
further interfaced with a computer. The proposed control algorithm is implemented in
it and the microprocessor performs the functions of data logging, downloading and data
communication. A DL 1019P and DL 2006E (range of 150N) are used together as magnetic
powder brake and load cell, respectively.

Figure 10. Induction machine drive testing platform.

5.1. HWFET Based Perfomance Analysis

The proposed control scheme is tested against the HWFET driving cycle at an elevated
temperature with varying machine parameters (rotor and stator resistance) to ensure
that it excellently addresses the conicting objectives of EV powertrain. To validate its
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superiority, its performance is compared with the rst-order SMC based FOC technique
developed for induction motor control in [32]. The HWFET driving cycle is used as speed
prole for testing. The machine parameters are also taken from [32], i.e., LM = 41.2 mH,
rS = 0.6 Ω, LS = 1.9 mH, rR = 0.41 Ω and LR = 1.9 mH. The obtained results are shown
in Figures 11–13.

Figure 11. Experimental analysis: HWFET-based analysis at 60 ◦C.

The accuracy of the proposed OEC is quantitatively assessed to be 99.3%, whereas
SMC has 98%, obtained from the speed performance test given in Figure 11. The amplitude
of machine drive voltages is of prime importance since it depicts the control effort of the
adopted control methodology. Similarly, the amplitude of machine drive currents play a
signicant role throughout the EV powertrain operation. The greater the amplitudes of
these two prime parameters, the greater the drive energy consumption will be that will
eventually increase the battery consumption of EV and degrade its performance capability.
It can be observed from Figures 12 and 13 that the voltage and current of machine drive
in case of OEC scheme are signicantly less as compared to that for SMC methodology
which validates the reduced drive energy consumption as well as improved working of
EV powertrain.

Figure 12. Experimental analysis: EV powertrain voltages.
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Figure 13. Experimental analysis: EV powertrain currents.

5.2. Discussion

As it is a common norm in automotive research, the robustness of a proposed control
technique is validated by testing it against various standard driving cycles [5,33]. This test
is conducted at an elevated temperature to incorporate the thermal degradation effects
on drive performance. The superiority of OEC in comparison with SMC and Higher
Order SMC is proved with nonlinear MATLAB-based simulations as well as experimental
results. For the simulation section, it can be observed from Figures 6 and 7 that the drive
voltages (analogous to the control effort) and the drive currents in case of OEC have a
relatively lower amplitude of about 150 volts and 5 amperes, respectively, which shows that
relatively lower drive energy is consumed in this case, as compared to its counter control
scheme. Furthermore, the better speed tracking performance of OEC is represented by the
comparison shown in bar charts of Figure 5 along with percentage variations in stator and
rotor resistances. It can be observed that the speed tracking error is signicantly low in
case of OEC as compared to that in the Higher Order SMC technique. For the experimental
section, the same conicting objectives of maximizing the speed tracking performance and
minimizing the drive energy consumption are elaborated for another standard driving
cycle. Here, the maximization of speed tracking performance in case of OEC is ensured by
its quatitative analysis which comes out to be 99.3% and is higher than that in case of SMC,
which is 98%. On the other hand, the drive energy consumption for both types of control
techniques is compared by comparing the amplitudes of drive voltage and current. This
comparison is shown in Figures 12 and 13, and proves the superioirity of the OEC scheme
in efciently achieving the conicting objectives.

6. Conclusions

This paper presents an efcient optimized energy control scheme (OEC) for addresing
two conicting objectives of the EV powertrain, which are maximizing its speed perfor-
mance and minimizing its drive energy consumption. The proposed methodology utilizes
an LPV control technique tuned by genetic algorithms to achieve the desired control objec-
tives. To ensure the efcacy of this control scheme, it is compared with other renowned
techniques, i.e., SMC and higher order SMC against standard driving cycles (NEDC and
HWFET) at elevated temperatures considering the varying machine parameters. The ef-
fectiveness of the proposed energy control scheme is validated through simulations as
well as experiments. In future, the conicting objectives of permanent magnet machine
drive-based EV powertrain will be addressed by OEC.
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