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A B S T R A C T

Space frame structures are increasingly adopted in contemporary free-form architectural designs due to their
elegant appearance and excellent structural performance. However, a space frame structure in a doubly-curved
form typically comprises nodes of different shapes. This often requires extensive node customization, hence
incurring high manufacturing costs. In this study, we propose a new clustering–optimization framework to
reduce the number of different nodes in space frame structures. In clustering, nodes are divided into different
groups, with similar shapes grouped together, using an enhanced 𝑘-means clustering technique. In optimization,
nodes within the same group are transformed towards congruence while closely approximating the target
surface. Together, by interleaving clustering and optimization, our method can minimize the node shape
variety under a user-defined error threshold. The effectiveness of the method is validated through a variety
of numerical examples. The potential practical application of our method is demonstrated by re-designing a
complex, free-form architectural project.
to enable mass production of repeated components [15]. The variety
of edges can be reduced using the methods proposed in [16–19]. In
terms of faces, the idea of using only congruent regular triangles to
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. Introduction

Space frames are rigid, lightweight structures composed of a net-
ork of linear struts intersected at three-dimensional nodes. They
re usually arranged in an array of single, double, or multiple lay-
rs of grids. Due to their excellent mechanical performance [1] and
isual beauty, such structural forms are favored for architectural ap-
lications. Specifically, they are increasingly adopted in contemporary
esigns that comprise elegant appearances in free-form configurations.
owever, free-form structures, characterized by their complex doubly-
urved geometries, are often extremely difficult and costly to realize in
eality. Therefore, in the last decade, significant effort has been focused
n rationalizing free-form structures to achieve feasible construction
ith reduced manufacturing costs [2–4].

A free-form structure, which is often represented as a polygonal
esh, can be rationalized in different ways [5,6]. One main strategy

s to planarize the mesh faces to ease panel fabrication. Triangular
eshes [7] contain faces that are naturally planar. However, due to

heir high-valence nodes that are typically difficult to manufacture,
urther studies have investigated meshes with low-valence nodes, such
s quadrilateral meshes [8–10], hexagonal meshes [11–13], and meshes
omposed of different 𝑛-gonal faces [14]. Another strategy is to reduce
he number of different elements, including edges, faces, and nodes,
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reate three-dimensional shapes has been discussed in [20,21], which
onclude that only limited shapes are attainable. Later, several methods
ave further attempted to reduce the variety of faces in complex free-
orm geometries by optimizing all faces into multiple groups of similar
22] or congruent shapes [23–26]. However, regarding nodes, it is
till an ongoing challenge to reduce their shape variety in free-form
tructures, with limited studies available in the literature [18,27,28].

Reducing the shape variety of nodes is a critical consideration for
he construction of complex free-form structures. Compared to beams,
odes often contain more complex shapes, which require specialized
quipment and techniques for manufacturing [29]. Unlike panels that
re typically non-structural components, nodes are crucial in load trans-
ission, thus often subject to stringent fabrication requirements [29].
ass production can significantly simplify manufacturing and improve

uality control for node fabrication [30]. In this regard, minimizing the
hape variety of nodes to enable mass production holds great potential
or lowering construction costs and enhancing building quality.

Several existing studies have attempted to reduce the node types
18,27,28]. The method described in [27] allows using one type of
ode and nine different types of edges to approximate various surfaces
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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through local topological operations. However, the node contains a
high valence, only single layer structures are considered, and generally,
only coarse approximations of the target surface can be obtained. A set
of struts and nodes is designed in [18] which can be used to construct
different structures. To reduce the node variety, several different low-
valence nodes are merged into one high-valence node by optimization.
However, the optimization goal is to avoid the overlapping of holes
through rigid body motions; the shapes of low-valence nodes are not
modified. The method stated in [28] seeks to reduce node variety
by modifying the shapes of nodes through clustering and optimiza-
tion. However, the proposed objective function is too complex to
derive the corresponding gradient, so the optimization is solved using
heuristic methods, which generally converge slowly and only produce
coarse approximations of the global optimum. Although the efficiency
is improved by using several control points to manipulate all the
nodes, thereby reducing the number of design variables, this approach
typically limits the extent that the geometry can be optimized.

In this study, we propose a new method to reduce the number of
different nodes in space frame structures. The core of the method is
a clustering–optimization framework. In clustering, nodes are divided
into a specified number of groups, with similar shapes grouped to-
gether. In optimization, nodes within the same group are transformed
towards the corresponding group centroid while closely approximating
the given target surface. By interleaving clustering and optimization,
the proposed method can determine the minimal group number re-
quired to satisfy a user-defined error threshold. The remainder of this
paper is organized as follows: In Section 2, we explain the techni-
cal details of clustering and optimization. Section 3 presents various
numerical tests for method validation, performance comparison, and
parametric investigation. In Section 4, we demonstrate potential prac-
tical applications of our algorithm based on the case study of a real,
complex, free-form architectural project. Section 5 draws conclusions.

The main contributions of this study are summarized as follows:

• We define an evaluation metric to quantify the similarity between
two geometrically different nodes. This metric is based on a
mathematical formulation that ensures the minimization of the
sum of squared distances between corresponding vertex pairs.

• Based on the proposed similarity metric, we adapt the 𝑘-means
clustering method [31] to partition nodes into different groups
of similar shapes. Five different centroid initialization strate-
gies are compared to investigate their suitability for specific
node-clustering problems.

• We develop an effective optimization strategy to transform ge-
ometrically different nodes into congruent shapes by equalizing
corresponding angles, as verified through three benchmark tests.
This strategy leads to a well-formulated objective function with
attainable gradient information, which enables efficient optimiza-
tion using gradient-based methods, making it feasible to solve
large-scale practical problems.

• We propose a computational framework that interleaves cluster-
ing and optimization to reduce the number of different nodes
in space frame structures while satisfying a user-defined error
threshold. The effects of input parameters on the outcome are
investigated, with corresponding suggestions provided for the
parameter selection.

• We demonstrate potential practical applications of the proposed
computational framework by redesigning both single and double
layer space frame structures, based on the complex free-form
geometry of a real architectural project, to achieve cost-effective
solutions.

. Methodology

Clustering and optimization are the key components of our algo-
2

ithm. In clustering, we aim to divide nodes into different groups of f
similar shapes. A novel similarity metric is proposed in Section 2.1.1,
based on which the overall clustering framework is presented in Sec-
tion 2.1.2. In optimization, the main goal is to transform nodes within
the same group toward congruent shapes, as detailed in Section 2.2.1.
An additional goal is considered to preserve the overall shape of the
input geometry, as stated in Section 2.2.2. By combining all sub-goals,
the global objective function is formulated in Section 2.2.3.

2.1. Clustering

2.1.1. Similarity metric
In clustering problems, to divide input data points into different

groups, a metric is typically needed to measure the distance between
points, such as the commonly used Euclidean distance [32]. In this
study, our goal is to divide nodes into different groups of similar shapes;
the distance metric should therefore reflect the geometric similarity
between different nodes. Although a metric exists that quantifies the
difference between nodes by measuring corresponding angles with
respect to their best-fit planes [28], here we propose a new similarity
metric with a more solid mathematical basis that guarantees the mini-
mization of the sum of squared distances between corresponding vertex
pairs.

Given two different nodes, 𝑁𝑝 and 𝑁𝑞 , with valence 𝑣 (the number
of edges intersected at a node), their similarity can be calculated as
follows: First, we move both nodes to the origin with their neighboring
nodes projected onto a unit sphere, so that each node can be normalized
and represented as an ordered set of its neighboring vertices. Then,
we compute their best-fit configuration by fixing 𝑁𝑝 and rotating 𝑁𝑞
o minimize the sum, 𝑠, of squared distances between corresponding
ertex pairs, using the method described in [33]. Because of the dif-
erent choices of the starting vertex and the order of the neighboring
ertices, there are 2𝑣 possible permutations of 𝑁𝑞 . As each permutation
epresents a different vertex correspondence between 𝑁𝑝 and 𝑁𝑞 , 2𝑣
ifferent best-fit configurations need to be considered, each correspond-
ng to a unique 𝑠. Among all the obtained 𝑠, the minimal one is chosen
o determine the similarity metric 𝑆. Finally, 𝑆 can be calculated as
q. (1), where 𝑑𝑖 is the distance between the 𝑖th vertex pairs (see Fig. 1)
nd 𝑗 is the permutation index.

=
2𝑣
min
𝑗=1

⎛

⎜

⎜

⎝

min
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⎞

⎟

⎟

⎠𝑗

(1)

2.1.2. Clustering method
Based on the defined similarity metric, we adapt the widely-used 𝑘-

eans clustering technique [31] to partition nodes into a user-specified
umber of groups, as shown in Algorithm 1. 𝑘-means clustering is
imple, fast, and effective, yet it suffers from the major issue that
ts results are sensitive to the selection of initial centroids [34]. In
his regard, further elaboration on centroid initialization is necessary.
wo commonly used initialization strategies are 𝑘-means++ [34] and
arthest point sampling [35]. Both strategies aim to distribute the initial
entroids sparsely by gradually increasing the number of centroids by
ne at each iteration. However, their ideas for selecting the new cen-
roid (Line 5) are different. Specifically, 𝑘-means++ chooses the new
entroid based on probability through roulette wheel selection [36]; the
arther a node is from its current centroid, the more likely it will be cho-
en as the new centroid. On the contrary, the farthest point sampling
trategy directly selects the farthest point from its current centroid as
he new centroid. To evaluate their performance for the node-clustering
roblem defined in this study, these two strategies are compared later
n Section 3.3. The results suggest that both initialization strategies can
nhance the clustering outcome compared to randomly selecting the
nitial centroids. However, using farthest point sampling tends to yield
etter results than using 𝑘-means++. Additionally, for both strategies,
he choice of the starting centroid (Line 1) has a minor impact on the
inal outcome.
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Fig. 1. Given two different nodes (red and blue) with valence three, they are first
moved to the origin with their neighboring nodes projected onto a unit sphere. Then,
by fixing either one and rotating the other to minimize the sum of squared distances
between corresponding vertices (𝑑1, 𝑑2, and 𝑑3), their best-fit configuration can be
determined, based on which one can derive the similarity metric between these two
nodes. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Note that, to account for practical construction, certain rules are
specified in the node clustering procedure. In real applications, a low-
valence node 𝑁𝑙 can share the same joint with a high-valence node 𝑁ℎ,
as long as the holes of 𝑁𝑙 can match part of the holes of 𝑁ℎ. This helps
to reduce the number of different node molds. Our algorithm considers
this by allowing low-valence nodes to be allocated into the groups of
high-valence centroids (Lines 4 and 10). However, a high-valence node
cannot be divided into the group of a centroid that contains a lower
valence number. Therefore, in the clustering framework, the starting
centroid (Line 1) is selected from the nodes of the highest valence.
Besides, when calculating the distance between 𝑁𝑙 and 𝑁ℎ (Eq. (1)),
the irreverent vertices of 𝑁ℎ are not involved, and 𝑣 adopts the valence
number of 𝑁𝑙.

2.2. Optimization

2.2.1. Achieving congruent nodes
The main goal of optimization is to transform nodes within the

same group into congruent shapes. Specifically, the shape of a node
is characterized by the angles between its connected edges, regard-
less of the edge lengths. One way to achieve congruent nodes is by
minimizing the maximum similarity metric between nodes and their
respective centroids [28]. However, this optimization problem is inher-
ently discrete due to the consideration of multiple permutations and the
selection of the maximum value, making it unsolvable using gradient-
based methods. Although heuristic methods can provide solutions, such
approaches are typically inefficient and only produce approximate
solutions, making them inadequate for large-scale problems with many
design variables [37]. Space frames, however, often contain thousands
3

Algorithm 1 Node clustering procedure

1: choose one node at random as the starting centroid (𝑘 = 1)

2: while 𝑘 < 𝐾 do

3: calculate the distance from each node to each centroid

4: assign each node to its closest centroid

5: select one node as the new centroid (𝑘 = 𝑘 + 1)

6: end while

7: define the initial error 𝛿 = 1

8: while 𝛿 > 1E-3 do

9: calculate the distance from each node to each centroid

10: assign each node to its closest centroid

11: for each group, best-fit align all nodes with the centroid to

create a group of superimposed nodes

12: in each group, shift each vertex of the centroid to the mean

position of the corresponding vertices of the superimposed nodes,

and update 𝛿 to the maximum displacement

13: end while

of nodes, each with three design variables. Gradient-based methods
are thus much preferred in this study due to their superior efficiency
and accuracy [38]. Therefore, our main task is to define an objective
function, for which the gradient is available, in order to enable efficient
optimization using gradient-based methods.

Here we propose a novel strategy to convert different nodes into
congruent shapes by equalizing the corresponding angles between each
node and its group centroid. Given a node 𝑁 with its 𝑣 neighboring
vertices (𝑃1, 𝑃2, . . . , 𝑃𝑣), 2𝑣 angles can be defined as (𝜃1, 𝜃2, . . . , 𝜃𝑣,
𝜃𝑣+1, 𝜃𝑣+2, . . . , 𝜃2𝑣), where 𝜃𝑖 denotes angle ∠𝑃𝑖𝑁𝑃𝑖+1 and 𝜃𝑣+𝑖 denotes
angle ∠𝑃𝑖𝑁𝑃𝑖+2, as shown in Fig. 2. Constraining the values of these 2𝑣
angles of a node ensures the node shape is fixed, which can be verified
through kinematic analysis [39]. For the system composed of the node
and its 𝑣 neighboring vertices, the total number of degrees of freedom
equals 3𝑣 + 3. Specifying the angles brings 2𝑣 constraints. The rigid
body motions of the system account for another 6 degrees of freedom.
The neighboring vertices being limited to a unit sphere consumes 𝑣
additional degrees of freedom. Eventually, the remaining number of
degrees of freedom equals 3𝑣 + 3 − 2𝑣 − 6 − 𝑣 = −3. The negative result
suggests that the system is statically indeterminate. Thus, no relative
movement is allowed for the neighboring vertices, meaning that the
node shape is already fixed.

Formally, the corresponding term 𝐹𝑐 for equalizing the angles is
formulated as Eq. (2), where 𝑉 is the vertex number of the input mesh,
𝑣𝑖 is the valence number of the 𝑖th node 𝑁𝑖, 𝜃𝑖𝑗 is the 𝑗th angle of 𝑁𝑖,
𝒏𝒊 is the coordinate vector of 𝑁𝑖, and �̄�𝑖𝑗 is the corresponding angle of
the centroid of 𝑁𝑖. The gradient of 𝐹𝑐 can be calculated by Eqs. (3)–
(5). Eq. (3) gives the overall derivative formula, where �̄�𝑖𝑗 is treated
as a constant number, updated at each iteration. The unknown term
𝜕𝜃𝑖𝑗∕𝜕𝒏𝒊 can be calculated within the triangle that contains both 𝜃𝑖𝑗
and 𝑁𝑖. Here, the general problem is to derive the partial derivative of
each angle with respect to each vertex in an arbitrary triangle. Given
a random triangle ▵ 𝐴𝐵𝐶 (see Fig. 3), with 𝒂, 𝒃, and 𝒄 being the
corresponding coordinate vectors of vertices 𝐴, 𝐵, and 𝐶, respectively,
𝜕𝜃𝐴∕𝜕𝒂 can be obtained using Eq. (4). The unknown term 𝜕 cos 𝜃𝐴∕𝜕𝒂
can be derived from Eq. (5), where all the variables are available from
the corresponding geometry at each step. Other cases, such as 𝜕𝜃 ∕𝜕𝒃
𝐴
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Fig. 2. For a node with eight connected edges, there are sixteen different angles (𝜃1,
𝜃2, . . . , 𝜃16) that need to be considered during the optimization process.

Fig. 3. Triangle ▵ 𝐴𝐵𝐶 with the labels of its edges and angles.

and 𝜕𝜃𝐴∕𝜕𝒄, can be calculated in the same manner. Combining all these
equations, the gradient of 𝐹𝑐 can be obtained, based on which the
movement for each vertex to reduce the value of 𝐹𝑐 at each iteration
can be determined. When 𝐹𝑐 is reduced to zero, the corresponding
angles are identical for the nodes within the same cluster, which
generally ensures their shapes are congruent.

𝐹𝑐 =
𝑉
∑

𝑖=1

2𝑣𝑖
∑

𝑗=1
(𝜃𝑖𝑗 − �̄�𝑖𝑗 )2 (2)

𝜕𝐹𝑐
𝜕𝒏𝒊

=
𝑉
∑

𝑖=1

2𝑣𝑖
∑

𝑗=1
2(𝜃𝑖𝑗 − �̄�𝑖𝑗 )(

𝜕𝜃𝑖𝑗
𝜕𝒏𝒊

) (3)

𝜕𝜃𝐴
𝜕𝒂

=
𝜕 arccos(cos 𝜃𝐴)

𝜕𝒂
= −1

√

1 − (cos 𝜃𝐴)2
𝜕 cos 𝜃𝐴

𝜕𝒂
(4)

𝜕 cos 𝜃𝐴
𝜕𝒂

=
𝜕 𝑚

2 + 𝑛2 − 𝑙2

2𝑛𝑚
𝜕𝒂

=
2𝑚𝑛(2𝑚𝜕𝑚

𝜕𝒂
+ 2𝑛 𝜕𝑛

𝜕𝒂
− 2𝑙 𝜕𝑙

𝜕𝒂
)

4𝑚2𝑛2

−
(𝑚2 + 𝑛2 − 𝑙2)(2𝑛 𝜕𝑚

𝜕𝒂
+ 2𝑚 𝜕𝑛

𝜕𝒂
)

4𝑚2𝑛2
(5)

Note that, in rare cases, two nodes with identical angles may comprise
different shapes. One example is shown in Fig. 4, where two nodes con-
tain the same first five neighboring vertices and differ in the sixth. Their
corresponding angles are identical, but their shapes are not congruent.
In such cases, the proposed optimization strategy becomes ineffective
as it cannot similarize the node shapes. However, it should be noted
that such undesired cases can be avoided in the global clustering–
optimization framework. Due to the different shapes, the nodes are
4

Fig. 4. Two nodes share the same first five neighboring vertices and differ in the sixth.
Specifically, the first, second, fourth, and fifth vertices are on the same plane, and those
two sixth vertices are mirror images of each other with respect to this plane. Hence,
the corresponding angles of these two nodes are identical. However, their shapes are
not congruent.

often pre-divided into different groups. Then, the optimization only
fine-tunes the nodes that are already similar. Eventually, congruent
nodes identified in the algorithm lie in the same group, contain almost
identical angles, and the similarity metric between them also becomes
nearly zero.

2.2.2. Preserving the overall shape
For architectural applications, the overall shape of the optimized

geometry is often expected to closely approximate the given target
surface. This can be achieved by constraining all vertices to stay close
to the target surface, boundary vertices to align with the boundary
curves, and corner vertices to be fixed [23]. In our algorithm, the
corresponding shape term 𝐹𝑠 is formulated as:

𝐹𝑠 = 𝜔𝑠𝑢𝑟

𝑉
∑

𝑖=1
𝑑𝑠𝑖

2 + 𝜔𝑏𝑜𝑢

𝑉𝑏𝑜𝑢
∑

𝑗=1
𝑑𝑏𝑗

2 + 𝜔𝑐𝑜𝑟

𝑉𝑐𝑜𝑟
∑

𝑘=1
𝑑𝑐𝑘

2 (6)

where 𝑑𝑠𝑖, 𝑑𝑏𝑗 , and 𝑑𝑐𝑘 are the closest distances, respectively, from the
𝑖th vertex to the target surface, from the 𝑗th boundary vertex to the
boundary curve, and from the 𝑘th corner vertex to its initial position.
𝜔𝑠𝑢𝑟, 𝜔𝑏𝑜𝑢, and 𝜔𝑐𝑜𝑟 are the corresponding weights for each term. 𝑉 ,
𝑉𝑏𝑜𝑢, and 𝑉𝑐𝑜𝑟 are the corresponding vertex numbers. The calculation of
the gradient of 𝐹𝑠 is straightforward, hence neglected.

2.2.3. Global objective function
Combining all the sub-goal terms, the global objective function can

be formulated as:

𝐹 = 𝜔𝑐𝐹𝑐 + 𝜔𝑠𝐹𝑠 (7)

where 𝜔𝑐 and 𝜔𝑠 are the weights for the congruence and shape terms,
respectively. Essentially, this is a multi-objective optimization problem,
with the positions of vertices treated as design variables. Additional
geometric goals (or constraints) can be formulated as sub-goal terms
and incorporated into the objective function. By manipulating the
weight values, users can control the bias toward each sub-goal. Min-
imizing 𝐹 will lead to a final outcome that best meets the user-defined
objectives. However, when the applied geometric goals are in conflict,
the obtained result is typically a comprising solution with each sub-goal
only partially achieved.
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Fig. 5. The computational workflow of the global clustering–optimization framework.
. Numerical analysis and discussion

.1. Implementation details

By assembling the proposed clustering and optimization techniques,
e propose a computational framework to reduce the number of dif-

erent nodes in space frame structures, as shown in Fig. 5. Given an
nput geometry with a specified initial group number 𝑘0, the algorithm

begins the first cycle of clustering and optimization. With the obtained
new geometry, the error, which could be any user-defined metric,
can be updated accordingly. If the current error satisfies the given
threshold, or if the current group number 𝑘 reaches the specified
target group number 𝐾, the algorithm will stop and output the final
eometry. Otherwise, the group number is increased by 𝑚, followed by

a new round of clustering and optimization, until any stop criterion is
triggered. Eventually, the algorithm can either find the minimum group
number that satisfies a given error threshold or determine the errors
that correspond to a specified target group number.

A variety of numerical examples are presented in the following
sections, as shown in Figs. 6–10. The maximum angle difference, 𝜎𝑐 ,
is used as the error metric in this study, which assesses the largest
value among all maximum deviation angles (see Fig. 1) between each
node and its corresponding centroid. This metric reflects the similarity
between the nodes within the same group, which has a clear physical
meaning and is therefore intuitive for real-world fabrication. Another
error metric, 𝜎𝑠, is adopted to evaluate the maximum distance from
each vertex to the target surface. This metric shows the extent of the
optimized geometry approximating the target surface. Additionally,
for fair comparison, all models are uniformly scaled such that the
maximum edge of the corresponding bounding box is of unit length.
Different optimization terms in the global objective function are nor-
malized to make their values comparable. All optimization problems
are solved using the nonlinear conjugate gradient method [40]. The
global framework has been scripted as a plugin using C# codes in the
Rhino-Grasshopper CAD platform. All numerical tests are carried out
on an ordinary personal computer with an i7-7700HQ Intel core and
8 GB of memory.

3.2. Method validation

Three benchmark problems are tested to demonstrate the effective-
ness of the proposed method for achieving congruent nodes, as shown
in Fig. 6. Given three geometries with all nodes being different, the goal
is to optimize their shapes such that only one type of node is required
per case (𝜔𝑐 = 1, 𝜔𝑠 = 0, and 𝐾 = 1). The geometries in (a) and (b) are
two-dimensional single layer structures, and the one in (c) is a three-
dimensional double layer structure. After optimization, it can be seen
that low-valence nodes are divided into high-valence groups, and the
node shapes become nearly congruent, with 𝜎𝑐 being extremely low for
all cases. Specifically, all quads in (a) are transformed into rectangles
5

with 90◦ internal angles. All triangles in (b) are optimized into right
triangles with internal angles of 60◦. In (c), the nodes are translated
onto the same plane for both layers, and all internal angles become
90◦. Besides, each node in the bottom layer intersects with the top
layer at the face center by moving it along the face normal direction.
These benchmark problems well demonstrate the effectiveness of the
proposed optimization strategy to achieve congruent nodes and its
capacity for solving space frame structures of multiple layers.

3.3. Comparison of different clustering methods

Several general clustering methods are compared to understand
their applicability to the specific problem of node-clustering defined
in this study. Here, the comparison is based on the form of an ordinary
doubly-curved surface, as shown in Fig. 7. The methods (1)-(5) are all
based on standard 𝑘-means clustering while adopting different centroid
initialization strategies, as detailed in Fig. 7. The nodes of the input
geometry are divided into 10, 20, 30, 40, 50, 60, and 70 groups, using
different methods, respectively. For each case, the geometry is further
optimized to achieve congruent nodes while preserving its overall shape
(𝜔𝑐 = 𝜔𝑠 = 1).

Several interesting outcomes can be observed from Fig. 7. Firstly,
only by clustering, both methods (2) and (3) mostly produce better
results than (1). This indicates the importance of carefully choosing the
initial centroids and also demonstrates the effectiveness of the adopted
initialization strategies. Besides, it can be seen that (3) is generally
better than (2), which suggests that the randomness introduced in (2)
may not improve the result in the specific problem of node-clustering.
Secondly, the clustering results of (4) and (5) are slightly better than
those of (2) and (3), respectively. This is because different initial
seeds are examined and the best result is chosen as the final output
in (4) and (5). Such a method can somewhat decrease the error but
requires multiple repetitions of the whole process. Therefore, it is
effective for small-scale problems where a single-run is sufficiently
quick, but generally not suitable for large-scale problems due to its lack
of efficiency. Finally, by including optimization, the errors are further
decreased, which again validates the effectiveness of the optimization
process. However, it can be seen that a clustering configuration with
lower error may not guarantee a better optimization result. This is
because the current clustering method is only based on node shapes
without considering the subsequent optimization. How to determine
the clustering configuration such that the best optimization result can
be obtained is rather challenging and requires further research. In
the following numerical examples presented in Sections 3.4 and 4,
we use the farthest point sampling strategy for centroid initialization,
since it generally produces good optimization outcomes (see Fig. 7).
To reduce the runtime, we randomly select one node as the starting
centroid without examining multiple initial seeds. For specific practical
applications, since the relation between clustering and optimization
outcome remains uncertain, it is recommended to experiment with
different clustering methods and select the best result as the final
outcome.
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Fig. 6. Validation of the proposed optimization strategy for achieving congruent nodes. (a) and (b) are two-dimensional single layer structures, and (c) is three-dimensional double
layer structure. Different nodes are optimized into congruent shapes per geometry.
Fig. 7. Comparison of different clustering methods for the specific node-clustering problem based on an ordinary doubly-curved surface. 𝐹 denotes the value of the objective
function. The details of different clustering methods are as follows: (1) The standard k-means clustering method [31], with initial centroids chosen at random. (2) k-means++
[34] to determine the initial centroids, followed by k-means clustering. (3) Farthest point sampling [35] to determine the initial centroids, followed by k-means clustering. (4)
k-means++ to determine the initial centroids, followed by k-means clustering; repeating the process five times with different starting centroids, with the best result chosen as the
final output. (5) Farthest point sampling to determine the initial centroids, followed by k-means clustering; repeating the process five times with different starting centroids, with
the best result chosen as the final output.
3.4. Parametric investigation

Aside from the clustering method, the term 𝐹𝑠 for preserving the
overall shape, the initial group number 𝑘0, and the step length of the
group number 𝑚, do all have an effect on the final outcome. Here,
we conduct a series of independent tests with different input param-
eters to investigate their corresponding effects on the final outcome.
Specifically, the investigation is based on an ordinary doubly-curved
surface with 256 nodes, as shown in Fig. 8(a). The parameter settings
and results of all numerical examples are summarized in Table 1.

3.4.1. The effect of preserving the overall shape
For the input geometry, to satisfy the given error threshold only

by clustering (𝜔𝑐 = 𝜔𝑠 = 0), the required group number 𝑘 is 99,
as shown in Fig. 8(b). The corresponding variation of the objective
function 𝐹 with respect to 𝑘 is depicted in Fig. 8(c). Then, we include
the proposed optimization term 𝐹𝑐 (𝜔𝑐 = 1) for achieving congruent
nodes to improve the results. It is found that the required group number
can be significantly reduced to 1, as shown in Fig. 8(d). However, the
overall shape is largely modified; the original free-form geometry is
deformed into a flattened surface. For architectural applications, this
is not acceptable as the target shape is severely violated. Therefore, we
further include the optimization term 𝐹𝑠 (𝜔𝑠 = 1) to preserve the overall
shape of the input geometry. The new results are presented in Fig. 8(e),
where the overall shape is successfully preserved, and 𝑘 is increased to
34 due to the extra constraints. However, a new problem is noticed in
the obtained geometry: the mesh pattern is largely distorted.
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Table 1
Data for the numerical tests using the global clustering–optimization framework. 𝑁
is the number of nodes. 𝜔𝑐 and 𝜔𝑠 are the optimization weight values for achieving
congruent nodes and preserving the overall shape, respectively. In the global iteration,
𝑘0 is the starting group number, 𝑚 is the step length of the group number, and 𝐾 is the
target group number. For the output geometry, 𝑘 is the final group number, 𝜎𝑐 denotes
the maximum deviation angle between nodes and their centroids, and 𝜎𝑠 denotes the
maximum deviation distance from nodes to the target surface.

Figure N 𝜔𝑐 𝜔𝑠 𝑘0 𝑚 Stop
criterion

𝑘 𝜎𝑐 (◦) 𝜎𝑠 Runtime
(min)

8(b) 256 0 0 1 1 𝜎𝑐 < 1◦ 99 0.988 0 9.8
8(d) 256 1 0 1 1 𝜎𝑐 < 1◦ 1 0.999 0.202 0.1
8(e) 256 1 1 1 1 𝜎𝑐 < 1◦ 34 0.890 0.012 2.5
8(f) 256 1 1 1 1 𝐾 = 1 1 8.070 0.022 0.1
8(g) 256 1 1 20 1 𝜎𝑐 < 1◦ 30 0.995 0.004 1.0
8(h) 256 1 1 20 5 𝐾 = 30 30 1.100 0.004 0.3
8(i) 256 1 1 20 10 𝐾 = 30 30 1.517 0.004 0.2
9 1535 1 1 40 5 𝜎𝑐 < 3◦ 75 2.882 0.007 8.1
10 3006 1 1 90 20 𝜎𝑐 < 3◦ 410 3.000 0.010 150.0

3.4.2. The effect of the initial group number 𝑘0
The reason for the severe distortion in the mesh pattern is the

value of the initial group number 𝑘0 being too small. A small 𝑘0
would introduce overly strong constraints during optimization, which
often lead to a large deformation in the vertices, hence causing a
distorted mesh pattern. For example, 𝑘0 = 1 requires all the nodes to
be congruent. The generated geometry after trying to merge all nodes
into congruent shapes is shown in Fig. 8(f), where the mesh pattern is
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Fig. 8. Investigating the effects of different parameters on the final outcome. (a) The input geometry. (b) The obtained results only by clustering. (c) The variation of the objective
function 𝐹 with respect to the group number 𝑘 for the input geometry through only clustering. (d) The obtained results after including the optimization term for achieving
congruent node (𝜔𝑐 = 1), where the obtained geometry is deformed into a flattened surface. (e) The obtained results by further adding the optimization term for preserving the
overall shape (𝜔𝑠 = 1), where the overall shape is preserved while the mesh pattern is largely distorted. (f) The results at the early stage (𝑘 = 1) of the global iteration, showing
that the mesh pattern is already distorted after the first round of clustering and optimization. (g) Using an appropriate 𝑘0 = 20, as determined in (c), leads to a solution where the
mesh pattern is well preserved. (h) Compared to (g), increasing 𝑚 to 5 and stopping at the same group number (𝑘 = 30) leads to a higher error 𝜎𝑐 . (i) Compared to (h), increasing
𝑚 to 10 and stopping at the same group number (𝑘 = 30) leads to a higher error 𝜎𝑐 .
already distorted. The following clustering and optimization iterations
are continued based on the current geometry, which cannot recover the
pattern to the initial state.

To alleviate the distortion in the mesh pattern, choosing an ap-
propriate 𝑘0 is rather important. Here, the goal is to find a 𝑘0 that
can capture the main features of the input mesh. In that case, the
optimization only fine-tunes the geometry with the vertices merely
undergoing slight movement, hence the initial pattern can be mainly
preserved. In this study, the elbow method [41] is used to determine the
𝑘 , which is chosen as the cutoff point of the 𝐹–𝑘 curve with respect
7

0

to the input geometry (Fig. 8(c)). The idea is that the first clusters
will add much information about the mesh pattern, so increasing 𝑘
will significantly reduce 𝐹 ; however, once 𝑘 exceeds the necessary
number (i.e., the cutoff point), the added information will drop sharply
because it is only adding the details, and the 𝐹–𝑘 curve will flatten out.
Specifically, the cutoff point is defined as the point after which 𝐹 starts
decreasing in a nearly linear fashion. In the case of Fig. 8(c), the cutoff
point is calculated as 𝑘 = 20. The resultant geometry with 𝑘0 = 20 is
shown in Fig. 8(g), where it can be seen the mesh pattern is successfully
preserved.
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Fig. 9. Results of the single layer structure. (a) The input geometry with 1535 nodes. (b) The variation of the objective function 𝐹 with respect to the group number 𝑘 for the
input geometry through only clustering. (c) The optimized geometry with 𝑘 = 75, 𝜎𝑐 = 2.882◦, and 𝜎𝑠 = 0.007. All nodes are superimposed per group on the bottom.
3.4.3. The effect of the step length of the group number 𝑚
Lastly, we investigate the effect of the step length 𝑚 on the final

results. In Fig. 8(g), 𝑘 is increased from 20 to 30 with 𝑚 = 1. Here,
we conduct two additional tests with 𝑚 = 5 and 10, respectively.
Fig. 8(h) and (i) show the corresponding results, which indicate that a
smaller 𝑚 tends to produce a lower error. This is because, for the highly
nonlinear optimization problem in this study, lots of local minimum
exist, and the gradient-based algorithm can very easily become stuck
at one of them. Gradually increasing the group number with a small
𝑚 allows the algorithm to proceed further every time a local minimum
is reached. Eventually, this may generate a final result that is closer
to the global optimum. However, a smaller 𝑚 typically leads to more
cycles of clustering and optimization, hence costing longer runtime.
The consideration of runtime is also important when determining the
value of 𝑚, particularly for large-scale problems.

4. Case study: Heydar Aliyev center

We demonstrate the potential practical application of the proposed
method by applying it to re-design a complex, free-form architectural
project—the Heydar Aliyev Museum (designed by Zaha Hadid Archi-
tects). The detailed parameter settings and results are summarized in
Table 1. The input geometry is a recreated quad-dominant mesh [28,42,
43], which is uniformly scaled beforehand such that the maximum edge
of its bounding box is of unit length. Both single layer and double layer
cases are considered in this study. The single layer structure is directly
represented by the input mesh, as shown in Fig. 9(a). The double layer
structure is created by offsetting the vertices of the dual mesh along the
face normal directions by 0.02, and then connecting the corresponding
vertices, as shown in Fig. 10(a). 𝑚 is set as 5 and 20 rather than 1 for
the single layer and double layer structures, respectively, to accelerate
the overall process. 𝑘0 is determined using the elbow method. We set
𝜔𝑐 = 𝜔𝑠 = 1 to achieve congruent nodes while preserving the overall
shape. It should be noted that for the double layer structure, only
the top layer vertices are constrained by 𝐹𝑠. The error threshold is
exemplarily set as 𝜎𝑐 < 3◦ for both cases.

The obtained results for the single and double layer structures are
shown in Figs. 9 and 10, respectively. For the single layer case, the
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input geometry (Fig. 9(a)) contains 1535 nodes, with valence ranging
from three to five. We set 𝑘0 = 40 based on the 𝐹–𝑘 curve (Fig. 9(b))
obtained by only clustering the nodes of the input geometry. Fig. 9(c)
depicts the optimized final geometry, which requires only 75 different
groups of nodes (4.9% of the total node number) to achieve 𝜎𝑐 < 3◦.
The overall runtime is 8.1 min. The maximum deviation 𝜎𝑠 is 0.007. For
the double layer case, the input geometry (Fig. 10(a)) contains 3006
nodes, with 1535 nodes in the top layer and 1471 nodes in the bottom
layer. The node valence ranges from three to ten, which is much more
complex than the single layer case. 𝑘0 is set to 90 based on the 𝐹–𝑘
curve shown in Fig. 10(b). The final geometry obtained is shown in
Fig. 10(c), with only 410 different groups of nodes (13.6% of the total
node number) required for 𝜎𝑐 < 3◦. The whole iteration costs 150 min.
The maximum deviation 𝜎𝑠 is 0.010.

In both single layer and double layer cases, the numbers of different
nodes are significantly reduced. The mesh patterns are slightly modi-
fied. The generated geometries closely approximate the target surface
with small deviations. In practical applications, the maximum deviation
𝜎𝑠 may be constrained by certain thresholds. Users can adjust the
corresponding weight 𝜔𝑠 to manipulate the value of 𝜎𝑠 until satisfying
the given requirements. Overall, the obtained results well demonstrate
the capacity of our method for solving complex, large-scale, free-form
frame structures. However, for cases with a large number of nodes,
our algorithm is not very fast. For the double layer case, 150 min are
required to finish the whole iteration process. The runtime could be
reduced by increasing the step length 𝑚, but this generally results in
more groups of nodes. Another option is to improve the efficiency of
the clustering strategy, but this requires further research. Additionally,
the current algorithm focuses on the geometric aspect, specifically
the shape variety of nodes, without considering the overall structural
performance. On the one hand, since only geometric considerations
are involved, the proposed method is equally effective for space frame
and space truss structures. On the other hand, although the positions
of nodes are only fine-tuned with the mesh topology remaining un-
changed, the specific influence of the node movements on the structural
performance is uncertain. For the future research, we intend to incor-
porate the sensitivity analysis of structural performance with respect to
the node movements [44] into the global computational framework to

achieve fabrication-aware structural designs.
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Fig. 10. Results of the double layer structure. (a) The input geometry with 3006 nodes. (b) The variation of the objective function 𝐹 with respect to the group number 𝑘 for the
input geometry through only clustering. (c) The optimized geometry with 𝑘 = 410, 𝜎𝑐 = 3.000◦, and 𝜎𝑠 = 0.010. A part of nodes are superimposed per group on the bottom.
5. Conclusion

This study presents a clustering–optimization framework to reduce
the number of different nodes in space frame structures. First, an eval-
uation metric is proposed to quantify the similarity between different
nodes, which contains a solid mathematical basis that ensures the mini-
mization of the sum of squared distances between corresponding vertex
pairs. Based on the proposed similarity metric, we adapt the 𝑘-means
clustering method to partition nodes into a specific number of groups
of similar shapes. By comparing five different centroid initialization
strategies, we find that both farthest point sampling and 𝑘-means++
can improve clustering results, and farthest point sampling tends to
yield better outcomes. Also, it is observed that the starting centroid has
a minor effect on the clustering results for both initialization methods.

Furthermore, an effective optimization strategy is developed that
can transform geometrically different nodes into near-congruent shapes
by equalizing corresponding angles, as validated through three bench-
mark tests. This strategy leads to a well-formulated objective function
with attainable gradient information, which enables efficient optimiza-
tion using gradient-based methods, making it feasible to solve large-
scale practical problems. An additional geometric goal is included to
better approximate the target surface for architectural applications.

By interleaving clustering and optimization, we propose a computa-
tional framework to reduce the number of different nodes in free-form
space frame structures. The effects of input parameters on the final out-
come are investigated, with corresponding suggestions provided on the
parameter selection. To demonstrate potential practical applications of
this method, a case study based on the Heydar Aliyev Center, a complex
architectural project, is presented. Both single and double layer struc-
tures are considered, and the final group number is reduced to 4.9%
and 13.6% of the total node number, respectively, while ensuring the
maximum deviation angle between nodes and corresponding centroids
below 3◦.

The proposed clustering–optimization framework is generic and
can be applied to a wide range of space frames composed of sin-
gle, double, or multiple layers of grids, regardless of mesh topol-
ogy. By adjusting the error threshold, our method can be applied
9

to various practical projects with different angle tolerances. Overall,
the proposed framework provides a flexible way for designing free-
form space frame structures to achieve cost-effective solutions with
node-fabrication considerations.

Replication of results

The results of the optimized designs and the basic code of this work
are available from the corresponding author on reasonable request.
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