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Abstract

Hawkes process provides an effective statistical framework for analyzing the interactions of
neural spiking activities. Although utilized in many real applications, the classic Hawkes
process is incapable of modeling inhibitory interactions among neural population. Instead,
the nonlinear Hawkes process allows for modeling a more flexible influence pattern with
excitatory or inhibitory interactions. This work proposes a flexible nonlinear Hawkes pro-
cess variant based on sigmoid nonlinearity. To ease inference, three sets of auxiliary latent
variables (Pólya-Gamma variables, latent marked Poisson processes and sparsity variables)
are augmented to make functional connection weights appear in a Gaussian form, which
enables simple iterative algorithms with analytical updates. As a result, the efficient Gibbs
sampler, expectation-maximization (EM) algorithm and mean-field (MF) approximation
are derived to estimate the interactions among neural populations. Furthermore, to recon-
cile with time-varying neural systems, the proposed time-invariant model is extended to a
dynamic version by introducing a Markov state process. Similarly, three analytical itera-
tive inference algorithms: Gibbs sampler, EM algorithm and mean-field approximation are
derived. We compare the accuracy and efficiency of these inference algorithms on synthetic
data, and further experiment on real neural recordings to demonstrate that the developed
models achieve superior performance over the state-of-the-art competitors.

Keywords: nonlinear Hawkes process, Pólya-Gamma augmentation, conditional conju-
gate, time-varying interaction

1. Introduction

One of the most important tasks in neuroscience is to examine the neuronal activity in the
cerebral cortex under varying experimental conditions. Recordings of neuronal activity are
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represented through a series of action potentials or spike trains. The transmitted informa-
tion and functional connection between neurons are considered to be primarily represented
by spike trains (Brown et al., 2002, 2004; Kass and Ventura, 2001; Kass et al., 2014). A
spike train is a sequence of recorded times at which a neuron fires an action potential and
each spike specifies a timestamp. Spikes occur irregularly both within and across multiple
trials, so it is reasonable to consider a spike train as a point process with the instantaneous
firing rate being the intensity function of point processes (Perkel et al., 1967; Paninski, 2004;
Eden et al., 2004). An example of spike trains for multiple neurons is presented in Figs. 8
and 11 in the real data experiment.

Despite many existing applications, the classic point process models, e.g., Poisson pro-
cesses (Kingman, 1992), neglect the interactions within one neuron and between pairs of
neurons, so they fail to capture the complex dependency within a neural population. In
contrast, Hawkes process is one type of point processes which is able to express the self-
exciting interaction between past and future events, finding applications in a wide range of
domains including seismology (Ogata, 1998, 1999), criminology (Mohler et al., 2011; Lewis
et al., 2012), financial engineering (Bacry et al., 2015; Filimonov and Sornette, 2015) and
epidemics (Saichev and Sornette, 2011; Rizoiu et al., 2018). Unfortunately, due to the lin-
early additive intensity, the vanilla Hawkes process can only represent the purely excitatory
interaction because a negative firing rate may coincide with inhibitory interaction. This
makes the vanilla version inappropriate in the neuroscience domain where the interaction
between neurons is a mixture of excitation and inhibition (Maffei et al., 2004; Mongillo
et al., 2018).

In order to reconcile Hawkes process with inhibition, various nonlinear Hawkes process
variants are proposed to allow for both excitatory and inhibitory interactions. The core
point of the nonlinear Hawkes process is a nonlinearity which maps the convolution of the
spike train with a causal influential kernel to a nonnegative conditional intensity, such as
rectifier (Reynaud-Bouret et al., 2013), exponential (Gerhard et al., 2017), scaled softplus
(Mei and Eisner, 2017) and sigmoid (Linderman, 2016; Apostolopoulou et al., 2019). The
sigmoid mapping function is particularly appealing given that the Pólya-Gamma augmenta-
tion technique (Polson et al., 2013) can be utilized to convert the likelihood into a Gaussian
form w.r.t. activation, namely, the non-conjugate model boils down to a conditional con-
jugate one. In this spirit, Apostolopoulou et al. (2019) augmented the nonlinear Hawkes
process likelihood with thinned points and Pólya-Gamma random variables and derived
a Gibbs sampler. However, the influence functions are confined to be purely exciting or
inhibitive exponential decay. On the one hand, the parametric assumption of influence
functions limits the model’s expressiveness; on the other hand, due to the nonconjugacy
of the excitation parameter of exponential decay influence function, a Metropolis-Hastings
sampling step has to be embedded into the Gibbs sampler, which leads to inefficient Markov
chain Monte Carlo (MCMC).

To address the issues on effectiveness and efficiency of the aforementioned work, we
develop a flexible sigmoid nonlinear multivariate Hawkes processes (SNMHP) model in the
continuous-time regime, which can represent flexible excitation-inhibition-mixture interac-
tions among the neural population, as well as an efficient conjugate inference paradigm.
Inspired by Donner and Opper (2017); Zhou et al. (2020), three sets of auxiliary latent
variables: Pólya-Gamma variables, latent marked Poisson processes and sparsity variables,
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are augmented to convert the non-conjugate model to a conditional conjugate one making
functional connection weights appear in a Gaussian form. Based on the augmented likeli-
hood and prior, we propose three analytical iterative inference algorithms: a Gibbs sampler,
an EM algorithm and a mean-field approximation, to fit neural spike trains. Each inference
algorithm has its own pros and cons. The Gibbs sampler enables the direct characterization
of the posterior over parameters without reliance on any approximation. Unfortunately,
as revealed by our experiments in Sections 7.1 and 7.2, the Gibbs sampler suffers from
an inefficiency issue. The EM algorithm is able to precisely find a maximum a posteriori
probability (MAP) solution. Yet, as a point estimator, it precludes the modeling of the
uncertainty over parameters. Mean-field approximation conjoins the merits of the Gibbs
sampler and EM algorithm, capable of reasoning about parameter uncertainty in an efficient
way, but it induces approximation error and lacks the guarantee of asymptotic consistency.

A typical assumption for spike train modeling is that the base spike rates of individual
neurons and pairwise interactions among the neural population are time-invariant. Though
hold for anesthetized animals, this assumption is routinely invalid when the brain state of
the subject changes dynamically during behavior, stimulation and cognition (Vaadia et al.,
1995; Donner et al., 2017). Ignoring such dynamics and abusing static models will lead to
false model inference and misleading interpretation of interactions.

As a remedy, we extend the proposed SNMHP to a dynamic version. Specifically,
we suggest coupling a Markov state process, which takes values in a discrete finite state
space corresponding to the brain state, with Hawkes processes to construct a closed-loop
dependency. Reciprocally, the base spike rates of individual neurons and interactions among
the neural population depend on the current brain state; in the meantime, the brain state
switches only when a spike occurs according to a state-transition matrix depending on the
spiking neuron. The proposed dynamic-SNMHP empowers SNMHP to handle time-varying
neural systems. Technically, the analytical Gibbs sampler, EM algorithm and mean-field
approximation for SNMHP are extended to dynamic-SNMHP. As shown in our experiments,
dynamic-SNMHP can recover flexible excitation-inhibition-mixture interactions in different
brain states accurately and efficiently.

Conclusively, we make the following contributions in this work:

1. We propose a novel flexible nonlinear Hawkes process variant named SNMHP that
has flexible influence patterns and is able to handle inhibitive interactions among neural
populations.

2. To reconcile with time-varying neural systems, we extend SNMHP to dynamic-
SNMHP by coupling a Markov state process with Hawkes processes, which can represent
dynamic interactions in different brain states.

3. We develop three efficient Bayesian inference algorithms: a Gibbs sampler, an EM
algorithm and a mean-field approximation, that leverage latent variable augmentation tech-
niques to obtain closed-form iterative updates for both SNMHP and dynamic-SNMHP.

The paper is organized as follows: In Section 2, we introduce some background knowl-
edge about temporal point processes and Pólya-Gamma distribution. In Section 3, we
present how we build the SNMHP model starting from classic Hawkes processes step by
step. In Section 4, we describe how the likelihood is augmented with Pólya-Gamma random
variables and latent marked Poisson processes, and how the Laplace prior is augmented with
sparsity variables. Based on the augmented likelihood and prior, we propose a Gibbs sam-
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pler, an EM algorithm and a mean-field approximation with analytical updates. In Section
5, we extend SNMHP to dynamic-SNMHP to reconcile with time-varying neural systems.
In Section 6, similar to SNMHP, we derive the Gibbs sampler, EM algorithm and mean-field
approximation for dynamic-SNMHP. In Section 7, we compare the accuracy and efficiency
between these three inference algorithms on synthetic data, and use our proposed SNMHP
and dynamic-SNMHP to analyze real neural recordings. We discuss the relationship be-
tween our approach and some related works in Section 8, the applicable scenarios for each
inference algorithm in Section 9, then summarize the paper and provide some thoughts on
possible future work in Section 10.

2. Preliminary

In this section, we introduce some background knowledge about temporal point processes
and Pólya-Gamma augmentation technique.

2.1 Temporal Point Processes

The temporal point process is an essential stochastic process for modelling the mechanism
of event occurrence in many real applications, e.g., neural spike train (Paninski, 2004) and
high-frequency financial trade (Bacry and Muzy, 2014) where each event is represented as
a point on the timeline. Although there are many methods of analyzing temporal point
processes, in this work we focus on a convenient way of characterizing how the past history
affects the present, which is called the conditional intensity function. Given a realization
of a temporal point process D = {ti}Ni=1 ∈ [0, T ] where ti is the i-th event timestamp and
T is the observation window of the process, the conditional intensity function specifies the
mean number of events occurring in an infinitesimal interval [t, t + dt) conditional on the
history before t:

λ(t)dt = E[N(t, t+ dt) | Ht−], (1)

where N(·) defines the number of events in an interval and Ht− is the history right up to
but not including t.

2.2 Pólya-Gamma Augmentation

The Bayesian inference for the probit regression is easy because of the simple latent variable
method proposed in Albert and Chib (1993) for posterior sampling. However, the logistic
regression model is more difficult due to the inconvenient form of the likelihood. Polson
et al. (2013) proposed a novel data augmentation technique for Bayesian logistic regression,
which is both exact and simple. The key idea is the binomial likelihood parametrized by log
odds can be represented as a mixture of Gaussians w.r.t. a Pólya-Gamma distribution. The
Pólya-Gamma augmentation technique is used in our model for inference in the following
Section 4. In order to make the derivation of the subsequent inference algorithms more
comprehensive, we provide the definition of the Pólya-Gamma distribution here, which is
cited from Polson et al. (2013): A random variable ω has a Pólya-Gamma distribution with
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parameters b > 0 and c ∈ R, denoted ω ∼ pPG(ω | b, c), if

ω =
1

2π2

∞∑
q=1

γq
(q − 1/2)2 + c2/(4π2)

, (2)

where γq ∼ pGa(b, 1) are independent Gamma random variables. Equation (2) provides a
sampling definition of Pólya-Gamma distribution pPG(ω | b, c) whose probability density
function is more complex (see Polson et al. (2013) for more details). Fortunately, in this
work we do not need the density function but only the first order moment E[ω] = b

2c tanh( c2).

3. Our Model: SNMHP

Neurons communicate with each other by action potentials (spikes) and chemical neuro-
transmitters. A spike causes the pre-synaptic neuron to release a chemical neurotransmitter
that induces impulse responses, either exciting or inhibiting the post-synaptic neuron from
firing its own spikes. The addition of excitatory and inhibitory influence to a neuron de-
termines whether a spike will occur. At the same time, the impulse response characterizes
the exciting or inhibiting influence which can be complex and flexible (Purves et al., 2014;
Squire et al., 2012; Bassett and Sporns, 2017). Arguably, the flexible nonlinear multivariate
Hawkes processes are a suitable statistical model for representing mutually excitatory or
inhibitory interactions and functional connectivity among neural populations.

3.1 Multivariate Hawkes Processes

The vanilla multivariate Hawkes processes (Hawkes, 1971) are sequences of timestamps
D = {{tin}

Ni
n=1}Mi=1 ∈ [0, T ] where tin is the timestamp of n-th event on i-th dimension with

Ni being the number of points on i-th dimension, M the number of dimensions, T the
observation window. The i-th dimensional conditional intensity function, the mean number
of events occurring on i-th dimension in [t, t + dt) conditional on all dimensional history
before t, has a particular functional form:

λi(t) = µi +

M∑
j=1

∑
tjn<t

φij(t− tjn), (3)

where µi > 0 is the baseline rate of i-th dimension and φij(·) ≥ 0 is the causal influ-
ence function (impulse response) from j-th dimension to i-th dimension which is normally
a parameterized function, e.g., exponential decay. The summation explains the self- and
mutual-excitation phenomenon, i.e., the occurrence of previous events increases the intensity
of events in the future. Unfortunately, one blemish is the vanilla multivariate Hawkes pro-
cesses allow only nonnegative (excitatory) influence functions because negative (inhibitory)
influence functions may yield a negative intensity which is meaningless. To reconcile the
vanilla version with inhibitory effect and flexible influence function, we propose the SNMHP.
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3.2 Sigmoid Nonlinear Multivariate Hawkes Processes

Similar to the classic nonlinear multivariate Hawkes processes (Brémaud and Massoulié,
1996), the i-th dimensional conditional intensity of SNMHP is defined as

λi(t) = λiσ(hi(t)), hi(t) = µi +

M∑
j=1

∑
tjn<t

φij(t− tjn), (4)

where µi is the base activation of neuron i, hi(t) is a real-valued activation and σ(·) is
the logistic (sigmoid) function which maps the activation into a positive real value in (0, 1)
with λi being an upper bound to scale it to (0, λi). The sigmoid nonlinearity is chosen
because as will be seen later, the Pólya-Gamma augmentation scheme (Polson et al., 2013)
can be utilized to make inference easy and fast. After incorporating the nonlinearity, it is
straightforward to see the influence functions, φij(·), can be positive or negative. If φij(·)
is negative, the superposition of φij(·) will lead to a negative activation hi(t) that renders
the intensity to 0; instead, the intensity tends to λi with a positive φij(·).

To achieve flexible modeling of interactions, the influence function is assumed to be a
weighted sum of basis functions (Linderman, 2016)

φij(·) =
B∑
b=1

wijbφ̃b(·), (5)

where {φ̃b}Bb=1 are predefined basis functions and wijb is the weight capturing the influence
from j-th dimension to i-th dimension by b-th basis function with positive indicating ex-
citation and negative indicating inhibition. The basis functions are nonnegative functions
capturing a wide spectrum of interactions. Although basis functions can be in any form,
to make the weights indicative of functional connection strength, basis functions are chosen
to be probability densities with compact support, which means that they have bounded
support [0, Tφ] 1 and the integral is one. As a result, the i-th dimensional activation is

hi(t) = µi +

M∑
j=1

∑
tjn<t

B∑
b=1

wijbφ̃b(t− tjn) = µi +

M∑
j=1

B∑
b=1

wijb
∑
tjn<t

φ̃b(t− tjn)

= µi +

M∑
j=1

B∑
b=1

wijbΦjb(t) = w>i ·Φ(t),

(6)

where Φjb(t) is the convolution of j-th dimensional observation with b-th basis function and
can be precomputed; wi = [µi, wi11, . . . , wiMB]> and Φ(t) = [1,Φ11(t), . . . ,ΦMB(t)]>, both
are (MB + 1) × 1 vectors. A similar model is used in Linderman (2016) where a binary
variable is included to characterize the sparsity of functional connection. As shown later,
the sparsity in our model is guaranteed by employing a Laplace prior on weights instead.

In this paper, for the two conditions mentioned above (bounded support, probability
density function), we choose the basis functions to be scaled (shifted) Beta densities, but

1. The basis function can have unbounded support [0,∞]. Here, we use a bounded support [0, Tφ] and
assume the points before t− Tφ have negligible influence on t to accelerate the computation of Φ(t).
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alternatives also can be used. It is worth noting that if we assume the influence function
has a bounded support, but try to approximate it using mixture of basis functions with
unbounded support such as Gaussian, there will be edge effects when close to the endpoints
of [0, Tφ]. Please refer to Kottas (2006) for more details.

4. Inference for SNMHP

The likelihood of a point process model is provided by Daley and Vere-Jones (2003). Cor-
respondingly, the probability density (likelihood) of SNMHP on the i-th dimension as a
function of parameters in continuous time is

p(D | wi, λi) =

Ni∏
n=1

λiσ(hi(t
i
n)) exp

(
−
∫ T

0
λiσ(hi(t))dt

)
. (7)

It is worth noting that hi(t) depends on wi and observations on all dimensions. Our goal
is to infer the parameters, i.e., weights and intensity upper bounds, from observations, e.g.,
neural spike trains, over a time interval [0, T ]. The functional connectivity in cortical circuits
is demonstrated to be sparse in neuroscience (Thomson and Bannister, 2003; Sjöström
et al., 2001). To include sparsity, a factorizing Laplace prior is applied on the weights
which characterize the functional connection. With the likelihood Eq. (7), the Laplace

prior p(wi) =
∏
j,b

1
2α exp (− |wijb|α ) and the improper prior p(λi) ∝ 1

λi
(Bishop, 2006), the

i-th dimensional posterior of parameters can be expressed as

p(wi, λi | D) ∝ p(D | wi, λi)p(wi)p(λi). (8)

It is straightforward to see the likelihood is non-conjugate to the priors because the
sigmoid function exists in the likelihood term and the absolute value function exists in the
prior term. As a result, we have no closed-form solution for the posterior. Many methods are
proposed to circumvent the intractable problem, such as Laplace approximation (Tierney
and Kadane, 1986), expectation propagation (Minka, 2001), directly applying MCMC (Gilks
et al., 1995) or variational inference (Blei et al., 2017), but unfortunately their efficiency
is poor due to the complex non-conjugate computation. Here we leverage three sets of
auxiliary latent variables: Pólya-Gamma variables, latent marked Poisson processes and
sparsity variables, to augment the likelihood and prior in such a way that the augmented
likelihood becomes conditional conjugate to the augmented prior. Based on the augmented
model, three efficient Bayesian inference algorithms: a Gibbs sampler, an EM algorithm
and a mean-field approximation with analytical updates, are derived to perform inference
for model parameters.

4.1 Augmentation of Pólya-Gamma Variables

Following Polson et al. (2013), the binomial likelihoods parametrized by log odds can be
represented as mixtures of Gaussians w.r.t. a Pólya-Gamma distribution. Therefore, we
can define a Gaussian representation of the sigmoid function

σ(z) =

∫ ∞
0

ef(ω,z)pPG(ω | 1, 0)dω, (9)
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where f(ω, z) = z/2 − z2ω/2 − log 2 and pPG(ω | 1, 0) is the Pólya-Gamma distribution
with ω ∈ R+. Substituting Eq. (9) into the likelihood Eq. (7), the products of σ(hi(t

i
n)) are

transformed into a Gaussian form w.r.t. wi because hi(t) is linear in wi.

4.2 Augmentation of Marked Poisson Processes

Inspired by Donner and Opper (2018); Zhou et al. (2020), a latent marked Poisson process
can be augmented to render the exponential integral term in Eq. (7) appear in a Gaussian
form w.r.t. wi. Utilizing Eq. (9) and the sigmoid symmetry property σ(z) = 1 − σ(−z),
the exponential integral term is transformed to

exp

(
−
∫ T

0
λiσ(hi(t))dt

)
= exp

(
−
∫ T

0

∫ ∞
0

(
1− ef(ω,−hi(t))

)
λipPG(ω | 1, 0)dωdt

)
. (10)

The right hand side is a characteristic functional of a marked Poisson process. According
to Campbell’s theorem (Kingman, 1992) in Appendix A, the exponential integral term can
be rewritten as

exp

(
−
∫ T

0
λiσ(hi(t))dt

)
= Epλi

 ∏
(ω,t)∈Πi

ef(ω,−hi(t))

 , (11)

where Πi = {(ωir, tir)}
Ri
r=1 denotes a realization of a marked Poisson process and pλi is the

probability measure of the marked Poisson process Πi with intensity λi(t, ω) = λipPG(ω |
1, 0). The timestamps {tir}

Ri
r=1 follow a homogeneous Poisson process with rate λi and the

latent Pólya-Gamma variable ωir ∼ pPG(ω | 1, 0) denotes the independent mark at each
timestamp tir. We can see that, after substituting Eq. (11) into the likelihood Eq. (7), the
exponential integral term is also transformed into a Gaussian form w.r.t. wi.

4.3 Augmentation of Sparsity Variables

The augmentation of the two auxiliary latent variables above makes the augmented like-
lihood become a Gaussian form w.r.t. the weights. However, the absolute value in the
exponent of the Laplace prior hampers the Gaussian form of weights in the posterior. To
circumvent this issue, we augment the third set of auxiliary latent variables: sparsity vari-
ables. It has been proved that a Laplace distribution can be represented as an infinite
mixture of Gaussians (Donner and Opper, 2017; Pontil et al., 2000)

p(wijb) =
1

2α
exp (−

|wijb|
α

) =

∫ ∞
0

√
βijb

2πα2
exp

(
−
βijb
2α2

w2
ijb

)
p(βijb)dβijb, (12)

where α is the hyperparameter of the Laplace prior, β is the latent sparsity variable and
p(βijb) = ( 2

βijb
)2 exp (− 1

2βijb
). It is straightforward to see the prior is transformed into a

Gaussian form w.r.t. wi after the augmentation of latent sparsity variables.
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4.4 Augmented Likelihood and Prior

After the augmentation of three sets of latent variables, we obtain the augmented likelihood
and prior (derivation in Appendix B)

p(D,ωi,Πi | wi, λi) =

Ni∏
n=1

[
λi(t

i
n, ω

i
n)ef(ωin,hi(t

i
n))
]
· pλi(Πi | λi)

∏
(ω,t)∈Πi

ef(ω,−hi(t)), (13a)

p(wi,βi) =

MB+1∏
j,b

√
βijb

2πα2
exp

(
−
βijb
2α2

w2
ijb

)(
2

βijb

)2

exp

(
− 1

2βijb

)
, (13b)

where ωi is the vector of ωin on each tin, βi is a (MB+1)×1 vector of [βi00, βi11, . . . , βiMB]>,
λi(t

i
n, ω

i
n) = λipPG(ωin | 1, 0). Combining the augmented likelihood in Eq. (13a), the aug-

mented Laplace prior in Eq. (13b) and the improper prior p(λi) ∝ 1/λi, we obtain the
augmented joint distribution over all variables:

p(D,ωi,Πi,βi,wi, λi) = p(D,ωi,Πi | wi, λi)p(wi,βi)p(λi). (14)

Notice that if we marginalize out the latent variables, the resulting marginal will be same
as the original joint distribution. The motivation of augmenting auxiliary latent variables
should now be clear: the augmented likelihood and prior contain the weights in a Gaussian
form. As a result, the non-conjugate model is transformed to a conditional conjugate model
to facilitate inference.

4.5 Gibbs Sampler

Based on the augmented joint distribution in Eq. (14), it is straightforward to derive the
conditional densities of latent variables and parameters in closed forms. By sampling from
these conditional densities iteratively, we construct an analytical Gibbs sampler. The i-th
dimensional conditional densities are

p(ωi | D,wi) =

Ni∏
n=1

pPG(ωin | 1, hi(tin)), (15a)

Λi(t, ω | D,wi, λi) = λiσ(−hi(t))pPG(ω | 1, hi(t)), (15b)

p(βi | wi) =
MB+1∏
j,b

pIG(βijb |
α

|wijb|
, 1), (15c)

p(λi | D,Πi) = pGa(λi | Ni +Ri, T ), (15d)

p(wi | D,ωi,Πi) = N (wi |mi,Σi). (15e)

Equation (15a) is the conditional posterior of Pólya-Gamma variables where we utilize
the tilted Pólya-Gamma distribution pPG(ω | b, c) ∝ e−c

2ω/2pPG(ω | b, 0). An efficient
sampling method (Polson et al., 2013) can be used to sample from the Pólya-Gamma density.
Equation (15b) is the conditional posterior intensity of the marked Poisson process. For
sampling, we first use the thinning algorithm (Ogata, 1998) to draw timestamps {tir}

Ri
r=1 with

the rate λiσ(−hi(t)) and then draw corresponding marks {ωir}
Ri
r=1 from pPG(ω | 1, hi(t)).

9



Zhou, Kong, Deng, Kan, Zhang, Feng and Zhu

Equation (15c) is the conditional posterior of sparsity variables where pIG is the inverse
Gaussian distribution. Equation (15d) is the conditional posterior of the intensity upper
bound where pGa is the Gamma distribution and Ri = |Πi| is the number of points on Πi.
Equation (15e) is the conditional posterior of activation weights. We define {tin, ωin}

Ni
n=1

to be the observed timestamps and latent marks on the i-th dimension and {tir, ωir}
Ri
r=1 to

be the ones on Πi. The covariance matrix Σi = [ΦiDiΦi
> + diag(α−2βi)]

−1 where Di

is a diagonal matrix with its first Ni entries being {ωin}
Ni
n=1 and the following Ri entries

being {ωir}
Ri
r=1, Φi = [{Φ(tin)}Nin=1, {Φ(tir)}

Ri
r=1] is a (MB + 1) × (Ni + Ri) matrix, diag(·)

constructs a diagonal matrix with the input vector. The mean is mi = ΣiΦivi where the
first Ni entries of vi are 1/2 and the following Ri entries are −1/2. Sampling iteratively by
Eq. (15), we obtain a sequence of samples to characterize the posterior of model parameters.

Complexity We define the number of observed points on all dimensions to be N , the
number of latent points on {Πi}Mi=1 to be R and the average number of points on the support
of Tφ on all dimensions to be NTφ . The computational complexity of the Gibbs sampler is
O(NNTφB + L(RNTφB + CPG(N + R) + CTHM + (N + R)(MB + 1)2 + M(MB + 1)3))
where L is the number of Gibbs loops, CPG and CTH are the complexities of Pólya-Gamma
sampling and thinning algorithm. The sampling of other variables is ignored as it is fast.
The first term corresponds to the precomputation of Φ(t) on observed points, the second
term to the computation of Φ(t) on points of {Πi}Mi=1, the third and fourth terms to the
sampling of Pólya-Gamma variables and marked Poisson processes, the fifth and sixth
terms to the matrix multiplication and inversion, respectively. In the implementation, the
efficiency bottleneck arises from the sampling of marked Poisson processes since the thinning
algorithm is an inefficient acceptance-rejection sampling.

Hyperparameters The hyperparameters of the Gibbs sampler comprise α in the
Laplace prior that encodes the sparsity of weights, the support of influence function Tφ,
the number and parameters of basis functions, and the number of grids for sampling from
{Πi}Mi=1. The hyperparameters α, Tφ and parameters of basis functions can be chosen by
cross validation. The number of basis functions is essentially a trade-off between efficiency
and flexibility, and we gradually increase it until a suitable value. Similarly, the number
of grids is also gradually increased until no more significant improvement in accuracy. The
pseudocode is provided in Algorithm 1.

4.6 EM Algorithm

The aforementioned Gibbs sampler is easy to implement but its efficiency is low due to
the sampling of marked Poisson processes. To further improve efficiency, with the support
of auxiliary latent variables, we propose an analytical EM algorithm to obtain the MAP
estimate in this section. With the augmented likelihood in Eq. (13a) and the augmented
Laplace prior in Eq. (13b), the log-posterior corresponds to a penalized log-likelihood. In
the standard EM algorithm framework, the lower bound (surrogate function) of the log-
posterior can be represented as

Q(wi, λi | ws−1
i , λ

s−1
i ) = Eωi,Πi

[
log p(D,ωi,Πi | wi, λi)

]
+ Eβi [log p(wi,βi)] , (16)

with expectation w.r.t. posterior distributions p(ωi,Πi | ws−1
i , λ

s−1
i ) and p(βi | ws−1

i ), s−1
indicating parameters from the last iteration.

10
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Algorithm 1: Gibbs sampler for SNMHP

Result: {λi(t) = λiσ(w>i ·Φ(t))}Mi=1

Predefine basis functions {φ̃b(·)}Bb=1;

Initialize the hyperparameter α and {ωi, Πi, βi, wi, λi}Mi=1;
for Iteration do

for Dimension i do
Sample ωi by Eq. (15a);
Sample Πi by Eq. (15b);
Sample βi by Eq. (15c);

Sample λi by Eq. (15d);
Sample wi by Eq. (15e).

end
Update the hyperparameters.

end

E step The posterior of latent variables is already provided in Eq. (15). For the EM
algorithm, the posterior distributions of Pólya-Gamma variables ωi and sparsity variables
βi, and the posterior intensity of marked Poisson process Πi are

p(ωi | D,ws−1
i ) =

Ni∏
n=1

pPG(ωin | 1, hs−1
i (tin)), (17a)

Λi(t, ω | D,ws−1
i , λ

s−1
i ) = λ

s−1
i σ(−hs−1

i (t))pPG(ω | 1, hs−1
i (t)), (17b)

p(βi | ws−1
i ) =

MB+1∏
j,b

pIG(βijb |
α

|ws−1
ijb |

, 1). (17c)

Comparing Eqs. (15) and (17), the difference is the weights and intensity upper bounds in
Eq. (17) are from the last iteration. The first order moments, E[ωin] = 1/(2hs−1

i (tin)) tanh(hs−1
i (tin)/2)

and E[βijb] = α/|ws−1
ijb |, are used in the M step.

M step Substituting Eq. (17) into Eq. (16), we obtain the lower bound Q(wi, λi |
ws−1
i , λ

s−1
i ). The updated parameters can be obtained by maximizing the lower bound.

The detailed derivation is provided in Appendix C. Due to the augmentation of auxiliary
latent variables, the update of parameters has a closed-form solution

λ
s
i =

Ni +Ri
T

, (18a)

ws
i = Σi

∫ T

0
Bi(t)Φ(t)dt, (18b)

whereRi =
∫ T

0

∫∞
0 Λi(t, ω | ws−1

i , λ
s−1
i )dωdt, Σi =

[∫ T
0 Ai(t)Φ(t)Φ>(t)dt+ diag

(
α−2E[βi]

)]−1
,

Ai(t) =
∑Ni

n=1 E[ωin]δ(t− tin) +
∫∞

0 ωΛi(t, ω)dω, Bi(t) = 1
2

∑Ni
n=1 δ(t− tin)− 1

2

∫∞
0 Λi(t, ω)dω

with δ(·) being the Dirac delta function. It is worth noting that numerical quadrature
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methods, e.g., Gaussian quadrature (Golub and Welsch, 1969), need to be applied to the
intractable integrals above.

Complexity We define the number of Gaussian quadrature nodes to be Rgq. The
computational complexity of the EM algorithm is O((N+Rgq)NTφB+L((N+MRgq)(MB+
1)2+M(MB+1)3)) where L is the number of EM iterations, the definition of other variables
is same as that in the Gibbs sampler. The first term corresponds to the precomputation
of Φ(t) on observed points and Gaussian quadrature nodes, the second and third term to
the matrix multiplication and inversion, respectively. We can see that the EM algorithm is
faster than the Gibbs sampler because the computation of Φ(t) on latent Poisson processes
is replaced by that on Gaussian quadrature nodes, which is taken out of iterations, and the
time-consuming sampling operations are avoided.

Hyperparameters The hyperparameters of the EM algorithm comprise α in the Laplace
prior, the support of influence function Tφ, the number and parameters of basis functions,
and the number of Gaussian quadrature nodes. The hyperparameters α, Tφ and parameters
of basis functions can be chosen by cross validation or maximizing the lower bound Q using
numerical methods. The number of basis functions is similarly determined as in the Gibbs
sampler. Similarly, the number of quadrature nodes is also gradually increased until no
more significant improvement in accuracy. The pseudocode is provided in Algorithm 2.

Algorithm 2: EM algorithm for SNMHP

Result: {λi(t) = λiσ(w>i ·Φ(t))}Mi=1

Predefine basis functions {φ̃b(·)}Bb=1;

Initialize the hyperparameter α, parameters {wi, λi}Mi=1 and the posterior of
{ωi,Πi,βi}Mi=1;

for Iteration do
for Dimension i do

Update the posterior of ωi by Eq. (17a);
Update the posterior intensity of Πi by Eq. (17b);
Update the posterior of βi by Eq. (17c);

Update the intensity upper bound λi by Eq. (18a);
Update the weights wi by Eq. (18b).

end
Update the hyperparameters.

end

4.7 Mean-Field Approximation

The aforementioned EM algorithm is able to find a MAP estimate efficiently. Yet, as a point
estimator, it precludes the modeling of the uncertainty over parameters. In order to conjoin
the merits of efficiency and uncertainty quantification, we propose an analytical mean-
field approximation to the true posterior of model parameters in this section. Variational
inference (Blei et al., 2017) is an approximate inference method in which the exact posterior
of latent variables is approximated by a variational distribution. The optimal variational
distribution is obtained by minimising the Kullback-Leibler (KL) divergence between the

12
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variational distribution and the exact posterior, or equivalently maximizing the evidence
lower bound (ELBO) (Bishop, 2006).

The mean-field approximation is a common type of variational inference where we as-
sume the latent variables can be partitioned so that each partition is independent of the
others. For the current problem, we need to approximate the i-th dimensional posterior
p(ωi,Πi,βi,wi, λi | D) by the variational distribution q(ωi,Πi,βi,wi, λi). We assume the
i-th dimensional variational distribution factorizes as

q(ωi,Πi,βi,wi, λi) = q1(ωi,Πi,βi)q2(wi, λi).

By using the calculus of variations, it can be shown that the optimal distribution for each
factor (Bishop, 2006), in terms of minimizing the KL divergence, can be expressed as

q1(ωi,Πi,βi) ∝ exp
(
Eq2

[
log p(D,ωi,Πi,βi,wi, λi)

])
,

q2(wi, λi) ∝ exp
(
Eq1

[
log p(D,ωi,Πi,βi,wi, λi)

])
.

(19)

Substituting the augmented joint distribution p(D,ωi,Πi,βi,wi, λi) in Eq. (14) into
Eq. (19), we obtain the optimal distribution for each variable:

q1(ωi) =

Ni∏
n=1

pPG(ωin | 1, h̃i(tin)), (20a)

Λ1
i (t, ω) = λ

1
iσ(−h̃i(t))pPG(ω | 1, h̃i(t)) exp (

1

2
(h̃i(t)− hi(t))), (20b)

q1(βi) =

MB+1∏
j,b

pIG(βijb |
α

w̃ijb
, 1), (20c)

q2(λi) = pGa(λi | Ni + R̃i, T ), (20d)

q2(wi) = N (wi | m̃i, Σ̃i). (20e)

Equation (20a) is the optimal density of Pólya-Gamma variables where h̃i(t) =
√
E[h2

i (t)].

The subsequent required expectation in Eq. (20e) is E[ωin] = 1/(2h̃i(t
i
n)) tanh(h̃i(t

i
n)/2).

Equation (20b) is the intensity of the optimal marked Poisson processes where λ
1
i = eE[log λi]

and hi(t) = E[hi(t)]. Equation (20c) is the optimal density of sparsity variables where w̃ijb =√
E[w2

ijb]. The subsequent required expectation in Eq. (20e) is E[βijb] = α/w̃ijb. Equa-

tion (20d) is the optimal density of intensity upper bounds where R̃i =
∫ T

0

∫∞
0 Λ1

i (t, ω)dωdt
that can be solved by Gaussian quadrature. The required expectation in Eq. (20b) is
E[log λi] = ψ(Ni + R̃i)− log(T ) where ψ(·) is the digamma function. Equation (20e) is the
optimal density of activation weights where Σ̃i = [

∫
tAi(t)Φ(t)Φ>(t)dt+diag(α−2E[βi])]

−1,

m̃i = Σ̃i

∫
tBi(t)Φ(t)dt with Ai(t) =

∑Ni
n=1 E[ωin]δ(t − tin) +

∫∞
0 ωΛ1

i (t, ω)dω and Bi(t) =
1
2

∑Ni
n=1 δ(t − tin) − 1

2

∫∞
0 Λ1

i (t, ω)dω. All intractable integrals can be solved by Gaussian
quadrature. The required expectations in Eqs. (20a) and (20b) are E[hi(t)] = Φ>(t)m̃i and
E[h2

i (t)] = (Φ>(t)m̃i)
2 + Φ>(t)Σ̃iΦ(t). Update the posterior of ωi,Πi,βi,wi, λi iteratively

by Eq. (20) and we obtain a mean-field approximation.
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Complexity The computational complexity of the mean-field approximation is O((N+
Rgq)NTφB + L((N +MRgq)(MB + 1)2 +M(MB + 1)3)) where L is the number of mean-
field iterations, the definition of other variables is same as that in the EM algorithm. The
first term corresponds to the precomputation of Φ(t) on observed points and Gaussian
quadrature nodes, the second and third term to the matrix multiplication and inversion,
respectively. We can see the complexity of the mean-field approximation is same as that of
the EM algorithm. In practice, the mean-field approximation is slightly slower than the EM
algorithm because the computation in Eq. (20) is more complex than Eqs. (17) and (18), but
much faster than the Gibbs sampler as we compute the expectation rather than sampling.

Hyperparameters Similar to the EM algorithm, the hyperparameters of the mean-
field approximation comprise α in the Laplace prior, the support of influence function Tφ,
the number and parameters of basis functions, and the number of Gaussian quadrature
nodes. The hyperparameters α, Tφ and parameters of basis functions can be chosen by
cross validation or maximizing the ELBO using numerical methods. The number of basis
functions is a trade-off between efficiency and flexibility, and we gradually increase it until
a suitable value. Similarly, the number of quadrature nodes is also gradually increased until
no more significant improvement in accuracy. The pseudocode is provided in Algorithm 3.

Algorithm 3: Mean-field approximation for SNMHP

Result: {λi(t) = λiσ(w>i ·Φ(t))}Mi=1

Predefine basis functions {φ̃b(·)}Bb=1;
Initialize the hyperparameter α and variational distributions of
{ωi,Πi,βi,wi, λi}Mi=1;

for Iteration do
for Dimension i do

Update q1 of ωi by Eq. (20a);
Update Λ1 of Πi by Eq. (20b);
Update q1 of βi by Eq. (20c);

Update q2 of λi by Eq. (20d);
Update q2 of wi by Eq. (20e).

end
Update the hyperparameters.

end

5. Our Model: Dynamic-SNMHP

Our proposed SNMHP model can represent flexible excitation-inhibition-mixture interac-
tions among the neural population and has three efficient analytical inference algorithms
with the support of auxiliary latent variables. However, a fundamental problem of SNMHP
is that it assumes time-invariant base spike rates for individual neurons and interactions
among the neural population. This assumption does not hold when the brain of the subject
is active, e.g., the internal state of the brain changes dynamically during behavior, stim-
ulation and cognition (Vaadia et al., 1995; Donner et al., 2017). Ignoring such dynamics
leads to incorrect model inference and misleading interpretation of interactions among the
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neural population. To further address the time-invariant problem in SNMHP, we extend
SNMHP to the dynamic-SNMHP by incorporating a Markov state process representing the
brain state, to couple with Hawkes processes. The proposed dynamic-SNMHP empowers
SNMHP to handle time-varying neural systems.

In the following, we elaborate on how to make SNMHP embrace with the state process to
form the dynamic-SNMHP. An M -dimensional dynamic-SNMHP consists of M sequences
of random timestamps and their corresponding states D = {{{tin, z(tin)}Nin=1}Mi=1, z(T )} in
the observation window [0, T ].

The State Process In the dynamic-SNMHP, we introduce a state process z(t) that
takes values in a discrete finite state space Z = {1, . . . ,K} to represent the brain state.
Inspired by Morariu-Patrichi and Pakkanen (2018), we establish a Markov state process
which is coupled with point processes to form a closed-loop dependency. Reciprocally, the
underlying parameters of point processes depend on the current state; at the meantime,
the state process switches only when a spike occurs on point processes by a state-transition
matrix depending on the spiking neuron. Given a set of state-transition matrices G =
{G1, . . . ,GM} with Gi being a K × K transition probability matrix for the i-th neuron,
the transition probability of z(t) at spike timestamp tin is

p(z(tin
+

) = k′ | z(tin) = k) = gi(k, k
′), (21)

where we assume the state process z(t) is left continuous, i.e., limt→c− z(t) = z(c) and

z(tin
+

) is the right limit of z(tin). gi(k, k
′) with k, k′ ∈ {1, . . . ,K} is the entry of Gi.

The Point Processes Equation (21) describes how the state process evolves with point
processes. In turn, we define how point processes depend on the state process. We extend
SNMHP to dynamic-SNMHP that base activations and influence functions depend on the
system state. The i-th dimensional conditional intensity of dynamic-SNMHP is

λi(t, z(t)) = λiσ(hi(t, z(t))), hi(t, z(t)) = µ
z(t)
i +

M∑
j=1

∑
tjn<t

φ
z(t)
ij (t− tjn), (22)

where hi(t, z(t)) is a real-valued state-dependent activation, which is passed through a
sigmoid function σ(·) to guarantee the non-negativity of intensity and then scaled by an

upper bound λi. µ
z(t)
i and φ

z(t)
ij are the z(t)-state base activation and influence function.

Similar to SNMHP, φ
z(t)
ij is assumed to be a mixture function φ

z(t)
ij (·) =

∑B
b=1w

z(t)
ijb φ̃b(·)

where {φ̃b}Bb=1 are predefined basis functions and w
z(t)
ijb is the state-dependent activation

weight characterizing the influence from j-th dimension to i-th dimension by b-th basis
function in z(t) state. The i-th dimensional activation can be rewritten in a vector form

hi(t, z(t)) = µ
z(t)
i +

M∑
j=1

∑
tjn<t

B∑
b=1

w
z(t)
ijb φ̃b(t− t

j
n) = w

z(t)
i

>
·Φ(t), (23)

where w
z(t)
i = [µ

z(t)
i , w

z(t)
i11 , . . . , w

z(t)
iMB]> and Φ(t) = [1,Φ11(t), . . . ,ΦMB(t)]>. Similar to SN-

MHP, the basis functions are assumed to be the scaled (shifted) Beta densities on the support
[0, Tφ]. Combining Eqs. (21) to (23), we obtain the dynamic-SNMHP. The dynamic-SNMHP
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successfully addresses the time-invariant limitation, as its base activations and influence
functions are dependent on the system state. The dynamic-SNMHP can be considered as
a closed-loop system in which the parameters θ = {{Gi}Mi=1, {λi}Mi=1, {wk

i }
M,K
i=1,k=1}.

6. Inference for Dynamic-SNMHP

The Gibbs sampler, EM algorithm and mean-field approximation for SNMHP can be ex-
tended to dynamic-SNMHP. The likelihood of dynamic-SNMHP on the i-th dimension is

p(D | Gi, λi, {wk
i }Kk=1) =

Ni∏
n=1

gi(z(t
i
n), z(ti+n ))λiσ(hi(t

i
n, z(t

i
n))) exp

(
−
∫ T

0
λiσ(hi(t, z(t)))dt

)
.

(24)
We place a conjugate Dirichlet prior on each row of the state-transition matrix Gi, an
improper prior on λi and a factorizing Laplace prior on wk

i to induce sparsity, writing

p(gik) = pDir(g
i
k | η), p(λi) ∝

1

λi
, p(wk

i ) =
∏
j,b

1

2α
exp (−

|wkijb|
α

), (25)

where pDir is the Dirichlet distribution, gik is the k-th row of Gi.
Combining Eqs. (24) and (25), we obtain the joint distribution over all variables. The

posterior of the state-transition matrix is tractable because the Dirichlet prior is conjugate
to the state process likelihood (categorical distribution). However, the non-conjugacy be-
tween the point process likelihood and the Laplace prior renders the inference intractable.
Similar to SNMHP, we here leverage auxiliary latent variable augmentation to facilitate the
inference. Based on the augmented model, we extend the Gibbs sampler, EM algorithm
and mean-field approximation for SNMHP to dynamic-SNMHP. The derivation of all algo-
rithms for dynamic-SNMHP is similar to that for SNMHP, so we omit the derivation and
only provide the final results.

6.1 Gibbs Sampler

Similar to Section 4.5, the i-th dimensional conditional densities are

p(ωi | D,wi) =

Ni∏
n=1

pPG(ωin | 1, hi(tin, z(tin))), (26a)

Λi(t, ω | D,wi, λi) = λiσ(−hi(t, z(t)))pPG(ω | 1, hi(t, z(t))), (26b)

p(βi | wi) =

K∏
k=1

MB+1∏
j,b

pIG(βkijb |
α

|wkijb|
, 1), (26c)

p(Gi | D) =

K∏
k=1

pDir(g
i
k | uik + η), (26d)

p(λi | D,Πi) = pGa(λi | Ni +Ri, T ), (26e)

p(wi | D,ωi,Πi) =

K∏
k=1

N (wk
i |mk

i ,Σ
k
i ). (26f)
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Equation (26a) is the conditional posterior of Pólya-Gamma variables. Equation (26b) is
the conditional posterior intensity of the marked Poisson process. Equation (26c) is the
conditional posterior of sparsity variables. Equation (26d) is the posterior of the state-
transition matrix where uik = [uik,1, . . . , u

i
k,K ] is the count of state transition from k to

k′ ∈ {1, . . . ,K} on the i-th dimension. Equation (26e) is the conditional posterior of the
intensity upper bound where Ri = |Πi| is the number of points on Πi. Equation (26f) is

the conditional posterior of activation weights. We define {ti,kn , ωi,kn }
Ni,k
n=1 to be the observed

timestamps and latent marks on the i-th dimension with state k and {ti,kr , ωi,kr }
Ri,k
r=1 to be

the ones on Πi with state k. The covariance matrix Σk
i = [Φk

iD
k
iΦ

k
i
>

+ diag(α−2βki )]−1

where Dk
i is a diagonal matrix with its first Ni,k entries being {ωi,kn }

Ni,k
n=1 and the following

Ri,k entries being {ωi,kr }
Ri,k
r=1 , Φk

i = [{Φ(ti,kn )}Ni,kn=1, {Φ(ti,kr )}Ri,kr=1 ] is a (MB+1)× (Ni,k +Ri,k)
matrix, diag(·) indicates the diagonal matrix of a vector. The mean mk

i = Σk
iΦ

k
i v

k
i where

the first Ni,k entries of vki are 1/2 and the following Ri,k entries are −1/2.
Complexity The computational complexity of the Gibbs sampler is O(NNTφB +

L(RNTφB + CPG(N + R) + CTHM + (N + R)(MB + 1)2 + KM(MB + 1)3)). We can
see that the incorporation of state process only increases the complexity in the last term.

Hyperparameters Compared with the Gibbs sampler for SNMHP, here we only have
one extra hyperparameter η. In experiments, η is set to 1 to represent a uniform Dirichlet
prior; the choice of other hyperparameters is similar to that for SNMHP.

6.2 EM Algorithm

Similar to Section 4.6, we propose an analytical EM algorithm to obtain the MAP estimate
for dynamic-SNMHP.

E step For the EM algorithm, the posterior distributions of Pólya-Gamma variables ωi
and sparsity variables βi, and the posterior intensity of marked Poisson process Πi are

p(ωi | D,ws−1
i ) =

Ni∏
n=1

pPG(ωin | 1, hs−1
i (tin, z(t

i
n))), (27a)

Λi(t, ω | D,ws−1
i , λ

s−1
i ) = λ

s−1
i σ(−hs−1

i (t, z(t)))pPG(ω | 1, hs−1
i (t, z(t))), (27b)

p(βi | ws−1
i ) =

K∏
k=1

MB+1∏
j,b

pIG(βkijb |
α

|wkijb
s−1|

, 1). (27c)

The first order moments, E[ωin] = 1/(2hs−1
i (tin, z(t

i
n))) tanh(hs−1

i (tin, z(t
i
n))/2) and E[βkijb] =

α/|wkijb
s−1|, are used in the M step.

M step The update of parameters has closed-form solutions:

gik =
uik∑K

k′=1 u
i
k,k′

, (28a)

λ
s
i =

Ni +Ri
T

, (28b)

wk
i
s

= Σk
i

∫
t∈k

Bi(t)Φ(t)dt, (28c)
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where uik = [uik,1, . . . , u
i
k,K ] is the count of state transition from k to k′ on the i-th dimension,

Ri =
∫ T

0

∫∞
0 Λi(t, ω | ws−1

i , λ
s−1
i )dωdt, Σk

i =
[∫
t∈k Ai(t)Φ(t)Φ>(t)dt+ diag

(
α−2E[βki ]

)]−1
,

Ai(t) =
∑Ni

n=1 E[ωin]δ(t− tin) +
∫∞

0 ωΛi(t, ω)dω, Bi(t) = 1
2

∑Ni
n=1 δ(t− tin)− 1

2

∫∞
0 Λi(t, ω)dω

with δ(·) being the Dirac delta function. The
∫
t∈k means the integral over time intervals

with state k. All intractable integrals can be solved by Gaussian quadrature. It is worth
noting that the computation of gik is not iterative as it does not depend on other variables.

Complexity The computational complexity of the EM algorithm isO((N+Rgq)NTφB+
L((N +MRgq)(MB+ 1)2 +KM(MB+ 1)3)). Similarly, the incorporation of state process
only increases the complexity in the last term.

Hyperparameters The choice of hyperparameters is similar to that for SNMHP.

6.3 Mean-Field Approximation

We assume the variational distribution of i-th dimensional point process factorizes as
q(ωi,Πi,βi,Gi, λi,wi) = q1(ωi,Πi,βi)q2(Gi, λi,wi) where q2(Gi, λi,wi) = p(Gi | D)q2(λi,wi).
Similarly, the optimal distribution for each factor is expressed as

q1(ωi) =

Ni∏
n=1

pPG(ωin | 1, h̃i(tin, z(tin))), (29a)

Λ1
i (t, ω) = λ

1
iσ(−h̃i(t, z(t)))pPG(ω | 1, h̃i(t, z(t))) exp (

1

2
(h̃i(t, z(t))− hi(t, z(t)))), (29b)

q1(βi) =

K∏
k=1

MB+1∏
j,b

pIG(βkijb |
α

w̃kijb
, 1), (29c)

p(Gi | D) =
K∏
k=1

pDir(g
i
k | uik + η), (29d)

q2(λi) = pGa(λi | Ni + R̃i, T ), (29e)

q2(wi) =

K∏
k=1

N (wk
i | m̃k

i , Σ̃
k
i ). (29f)

Equation (29a) is the optimal distribution of Pólya-Gamma variables where h̃i(t, z(t)) =√
E[h2

i (t, z(t))]. The required expectation is E[ωin] = 1/(2h̃i(t
i
n, z(t

i
n))) tanh(h̃i(t

i
n, z(t

i
n))/2).

Equation (29b) is the intensity of the optimal marked Poisson processes where λ
1
i = eE[log λi]

and hi(t, z(t)) = E[hi(t, z(t))]. Equation (29c) is the optimal density of sparsity variables

where w̃kijb =
√
E[wkijb

2
]. The required expectation is E[βkijb] = α/w̃kijb. Equation (29d)

is the posterior of state-transition matrix where uik = [uik,1, . . . , u
i
k,K ] is the count of

state transition from k to k′ ∈ {1, . . . ,K} on the i-th dimension. Equation (29e) is the

optimal density of intensity upper bounds where R̃i =
∫ T

0

∫∞
0 Λ1

i (t, ω)dωdt that can be

solved by Gaussian quadrature. The required expectation in Eq. (29b) is E[log λi] =
ψ(Ni + R̃i) − log(T ) where ψ(·) is the digamma function. Equation (29f) is the opti-
mal density of activation weights where Σ̃k

i = [
∫
t∈k Ai(t)Φ(t)Φ>(t)dt+ diag(α−2E[βki ])]−1,

m̃k
i = Σ̃k

i

∫
t∈k Bi(t)Φ(t)dt with Ai(t) =

∑Ni
n=1 E[ωin]δ(t− tin) +

∫∞
0 ωΛ1

i (t, ω)dω and Bi(t) =
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1
2

∑Ni
n=1 δ(t − tin) − 1

2

∫∞
0 Λ1

i (t, ω)dω. The
∫
t∈k means the integral over time intervals with

state k. All intractable integrals can be solved by Gaussian quadrature. The required ex-
pectations in Eqs. (29a) and (29b) are E[hi(t, z(t) = k)] = Φ>(t)m̃k

i and E[h2
i (t, z(t) = k)] =

(Φ>(t)m̃k
i )

2 + Φ>(t)Σ̃k
iΦ(t). It is worth noting that Eq. (29d) is not iterative as it does

not depend on other variables. Computing the posterior of Gi by Eq. (29d) directly and
updating the posterior of ωi,Πi,βi, λi,wi iteratively by Eq. (29), we obtain a mean-field
approximation.

Complexity The computational complexity of the mean-field approximation is O((N+
Rgq)NTφB +L((N +MRgq)(MB + 1)2 +KM(MB + 1)3)). Similarly, the incorporation of
state process only increases the complexity in the last term.

Hyperparameters Compared with the mean-field approximation for SNMHP, here we
only have one extra hyperparameter η. In experiments, η is set to 1 to represent a uniform
Dirichlet prior; the choice of other hyperparameters is similar to that for SNMHP.

7. Experiments

In this section, we first conduct experiments to compare Gibbs sampler, EM algorithm and
mean-field approximation for SNMHP and dynamic-SNMHP on synthetic spike data; and
then we consider a more complicated problem: check if our proposed models can recover
some predefined influence functions; finally we use our proposed SNMHP and dynamic-
SNMHP to analyze two real-world spike datasets. The implementation code is publicly
available at https://github.com/zhoufeng6288/DFN-Hawkes.

7.1 Comparison of Gibbs, EM and Mean-Field for SNMHP

In this section, we compare the accuracy and efficiency of Gibbs sampler, EM algorithm and
mean-field approximation for SNMHP. We analyze spike trains obtained from the synthetic
neural population model shown in Fig. 1a. The synthetic neural population contains two
neurons which are self-exciting and mutual-inhibitive. We assume 4 scaled (shifted) Beta
distributions: φ̃{1,2,3,4} = Beta(α̃ = 50, β̃ = 50, scale = 6, shift = {−2,−1, 0, 1}) as basis

functions with support [0, Tφ = 6]. For the influence functions, it is assumed that φ11 = φ̃1,
φ22 = φ̃3, φ12 = −1

2 φ̃2, φ21 = −1
2 φ̃4 with positive indicating excitation and negative

indicating inhibition. With base activations µ1 = µ2 = 0 and upper bounds λ1 = λ2 = 5,
we use the thinning algorithm (Ogata, 1998) to generate two sets of synthetic spike data
on the time window [0, T = 400] with one being the training dataset and the other one test
dataset, which contain 2700 and 2602 spikes respectively. The spike times of our simulated
training and test data are shown in Figs. 1b and 1c where we zoom in [0, 20]. We aim to
identify the interactions between two neurons from statistically dependent spike trains.

We use the proposed Gibbs sampler, EM algorithm and mean-field approximation to
perform inference on the training data. For hyperparameters, because the ground-truth
basis functions are known, the number, support and parameters of basis functions are
chosen as the ground truth. By cross validation, the hyperparameter α is chosen to be 0.2
for the three algorithms. The number of grids in the Gibbs sampler, quadrature nodes in
the EM algorithm and mean-field approximation is set to 2000, and the number of iterations
for three inference algorithms is set to 200, which is large enough for convergence.
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Figure 1: The synthetic model and data for SNMHP. (a): The synthetic neural popula-
tion contains 2 neurons; the interactions between 2 neurons are self-exciting and
mutual-inhibitive with red arrows indicating excitation and blue arrows indicat-
ing inhibition. (b), (c): The spike times (colorful dots) and firing rates (black
lines) of 2 neurons in the synthetic training and test data (zoomed in [0, 20]).

For accuracy, the estimated interactions among the neural population are shown in
Figs. 2a to 2c. It is easy to see that the interactions between the two neurons estimated
by three inference algorithms are flexible and closely aligned with the ground truth. The
posterior variance of the mean-field algorithm is lower than that of the Gibbs sampler,
which is a well-known result (Blei et al., 2017). Besides, as shown in Fig. 2d, the functional
connectivity estimated by three methods is close to the ground-truth structure. The func-
tional connectivity is defined as

∫
φij(t)dt with positive indicating excitation and negative

indicating inhibition. The MAP estimate, posterior samples of intensity upper bounds and
base activations of three methods are shown in Figs. 3a and 3b with their estimation statis-
tics shown in Fig. 3d. Again, the posterior means of Gibbs and mean-field are close to the
MAP estimate of EM, and the posterior variance of Gibbs is larger than that of mean-field.
We also compare the training/test log-likelihood of the three methods by depicting their
curves in Fig. 3c. We notice that all inference algorithms converge to a near plateau.

For efficiency, we compare the running time of three inference methods w.r.t. the number
of observations in Fig. 3e where the number of dimensions is fixed to 2, basis functions to
4, the grid for Gibbs and quadrature nodes for EM and mean-field to 200, iterations of all
methods to 200. As a result, the Gibbs sampler is the least efficient; the EM algorithm is
slightly faster than the mean-field approximation since the computation in EM is simpler
than that in mean-field. The efficiency bottleneck of the Gibbs sampler is the sampling
of the marked Poisson process. On the one hand, we use the thinning algorithm to draw
timestamps which produces a large number of events to reject; on the other hand, for each
timestamp, we need to draw the corresponding mark from a Pólya-Gamma distribution.
Both the sampling of timestamps and marks are slower than the computation of expectation
in EM and MF.

20



Efficient Inference for Dynamic Flexible Interactions of Neural Populations

0 1 2 3 4 5 6
T

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Ac
tiv

at
io

n
Influence functions 11

11 Ground Truth

11 Gibbs

0 1 2 3 4 5 6
T

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Ac
tiv

at
io

n

Influence functions 12

12 Ground Truth

12 Gibbs

0 1 2 3 4 5 6
T

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Ac
tiv

at
io

n

Influence functions 21

21 Ground Truth

21 Gibbs

0 1 2 3 4 5 6
T

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Ac
tiv

at
io

n

Influence functions 22

22 Ground Truth

22 Gibbs

(a) Gibbs sampler
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(b) EM algorithm
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(c) Mean-field approximation
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Figure 2: For SNMHP: (a): The 100 posterior trajectories of interactions between two
neurons by Gibbs sampler. (b): The MAP estimate of interactions between two
neurons by EM algorithm. (c): The 100 posterior trajectories of interactions
between two neurons by mean-field approximation. The interactions estimated
by three inference algorithms are close to the ground truth. (d): The heat map of
functional connectivity between two neurons with red indicating excitation and
blue indicating inhibition. From left to right, we present the ground truth and
functional connectivity estimated by three inference algorithms.

We also increase the observation window, the firing rate and the number of neurons
to demonstrate how the estimation accuracy scales with them. To evaluate the accuracy,
we use the mean squared error (MSE) to measure the distance between the estimated
parameters and the ground truth (intensity upper bounds and activation weights). Taking
efficiency into account, we only conduct experiments with EM algorithm and mean-field
approximation because the Gibbs sampler is time-consuming. The result is shown in Figs. 3f
to 3h. For the observation window, we still use the two-neurons setting with the same model
parameters and increase the observation window T from 100 to 400. We can observe that
the MSE becomes smaller when we increase the observation window. MF performs better
than EM when given few observation data, but they finally converge to a similar MSE.
For the firing rate, we fix the observation window to 400, use the same model parameters
as before and increase the intensity upper bound λ from 0.5 to 5. We can observe that
the MSE becomes smaller when we increase the intensity upper bound. Both cases above
are easy to understand: we have more observation data when we increase T or λ, which
contributes to better accuracy. For the number of neurons, we generate 5 groups of 2
neurons as described above with T = 400, λ = 5, and then gradually construct a larger
population by concatenating the independent groups. We perform inference on the first
group, then two groups until five groups (2 neurons to 10 neurons). We can observe that
the MSE does not change significantly when we have more neurons.

Conclusively, three inference algorithms for SNMHP provide similar estimations, which
are close to the ground truth. The Gibbs sampler can accurately characterize the posterior
but is the least efficient; the EM algorithm can provide an accurate MAP estimate efficiently
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Figure 3: For SNMHP: The 100 posterior samples and MAP estimate of (a): intensity
upper bounds λ and (b): base activations µ from Gibbs sampler, mean-field
approximation and EM algorithm. (c): The training/test log-likelihood curves
of three methods w.r.t. iterations (for mean-field, it is evaluated by the mean).
(d): The estimation statistics of intensity upper bounds and base activations by
three algorithms based on 100 posterior samples and MAP estimate. The mean
and standard deviation (in brackets) are provided. (e): The running time of
three methods w.r.t. the number of observations (the precomputation of Φ(t)
is included). (f), (g), (h): The MSE between estimated parameters and ground
truth w.r.t. the observation window, the intensity upper bound and the number
of neurons.

but can not characterize the uncertainty as a point estimator; the mean-field approximation
has merits in uncertainty quantification and inference efficiency but can only provide an
approximated posterior. In practice, which inference algorithm to use depends on what we
desire in specific applications.
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7.2 Comparison of Gibbs, EM and Mean-Field for Dynamic-SNMHP

In this section, we compare the accuracy and efficiency of Gibbs sampler, EM algorithm
and mean-field approximation for dynamic-SNMHP. We still analyze spike trains obtained
from the synthetic neural population model in Section 7.1, but extend it to the time-
varying neural system shown in Fig. 4a, which is a 2-neuron 2-state dynamic-SNMHP
with self-exciting and mutual-inhibitive interactions in the first state and self-inhibitive and
mutual-exciting interactions in the second state.

In the following, we use the superscript in brackets to indicate states and the subscript to
indicate neurons or basis functions. We use the same 4 scaled (shifted) Beta distributions:
φ̃{1,2,3,4} = Beta(α̃ = 50, β̃ = 50, scale = 6, shift = {−2,−1, 0, 1}) as basis functions with
support [0, Tφ = 6]. The state-dependent interactions between two neurons are designed as

φ
(1)
11 = φ̃1, φ

(1)
12 = −1

2 φ̃2, φ
(1)
21 = −1

2 φ̃4, φ
(1)
22 = φ̃3 in the first state and φ

(2)
11 = −1

2 φ̃1, φ
(2)
12 = φ̃2,

φ
(2)
21 = φ̃4, φ

(2)
22 = −1

2 φ̃3 in the second state with positive indicating excitation and negative

indicating inhibition. The state-dependent base activations are µ
(1)
1 = µ

(1)
2 = µ

(2)
1 = µ

(2)
2 = 0

in two states. The intensity upper bounds are λ1 = λ2 = 5. The dimension-dependent state-
transition matrices are G1 = [[g1(1, 1) = 0.99, g1(1, 2) = 0.01], [g1(2, 1) = 0.01, g1(2, 2) =
0.99]], G2 = [[g2(1, 1) = 0.80, g2(1, 2) = 0.20], [g2(2, 1) = 0.20, g2(2, 2) = 0.80]], which
means it has a high probability to keep the original state. We use the thinning algorithm to
generate two sets of synthetic spike data on [0, T = 500] as the training and test datasets,
which contain 4025 and 3760 spikes respectively. The state process and spike times of our
simulated training and test data on [0, 100] are shown in Fig. 4b where the state process
switches between two states and the spike dynamics are temporally heterogeneous according
to the state. We aim to identify the state-dependent interactions between two neurons and
dimension-dependent state-transition matrices from statistically dependent spike trains.

We use the proposed Gibbs sampler, EM algorithm and mean-field approximation for
dynamic-SNMHP to perform inference on the training data. For hyperparameters, the
number, support and parameters of basis functions are chosen as the ground truth. The
hyperparameter η is set to 1 to represent a uniform Dirichlet prior. By cross validation, the
hyperparameter α is chosen to be 0.2 for Gibbs, EM and mean-field. The number of grids in
the Gibbs sampler, quadrature nodes in the EM algorithm and mean-field approximation is
set to 5000, and the number of iterations for three inference algorithms is set to 600, which
is large enough for convergence.

For accuracy, the estimated interactions between two neurons in two states by three
inference algorithms are shown in Figs. 5a to 5c, which are all close to the ground truth.
The estimated functional connectivity in two states by three methods is shown in Fig. 5d,
which successfully recovers the dynamic ground-truth structure. The posterior samples
and MAP estimate of intensity upper bounds and base activations in two states by three
methods are shown in Figs. 6a to 6c with their estimation statistics shown in Fig. 6e where
the posterior means of Gibbs and mean-field are close to the MAP estimate of EM and
the posterior variance of Gibbs is larger than that of mean-field. The estimated dimension-
dependent state-transition matrices are shown in Fig. 6e in which the estimations of three
methods are close to the ground truth. We also compare the training/test log-likelihood
of three inference algorithms in Fig. 6d where we obtain a similar result as SNMHP: the
training/test log-likelihood curves of three algorithms converge to a similar maximum.
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Figure 4: The synthetic model and data for dynamic-SNMHP. (a): The synthetic neu-
ral population contains 2 neurons; the interactions are self-exciting and mutual-
inhibitive in the 1-st state and self-inhibitive and mutual-exciting in the 2-nd
state. The switching between two states follows the dimension-dependent state-
transition matrices G. (b): The state process and spike times of 2 neurons in the
synthetic training and test data.

For efficiency, we compare the running time of three inference methods w.r.t. the number
of observations in Fig. 6f where the number of states is fixed to 2, dimensions to 2, basis
functions to 4, grid for Gibbs and quadrature nodes for EM and mean-field to 200, iterations
of all methods to 200. As expected, a similar conclusion as SNMHP is obtained: the
Gibbs sampler is the least efficient due to the time-consuming sampling operation; the EM
algorithm is slightly faster than the mean-field approximation because the computation in
EM is simpler than that in mean-field. The same inference algorithm for dynamic-SNMHP
is slower than that for SNMHP because of more parameters for estimation.

As for SNMHP, we also increase the observation window, the firing rate and the number
of neurons to demonstrate how the estimation accuracy scales with them for dynamic-
SNMHP. Taking efficiency into account, we only conduct experiments with EM algorithm
and mean-field approximation. All experimental settings remain same as Section 7.1. The
result is shown in Figs. 6g to 6i. We obtain the same conclusion as that for SNMHP: the
MSE becomes smaller when we increase the observation window and intensity upper bound,
but does not change significantly when we have more neurons.

Conclusively, three inference algorithms for dynamic-SNMHP provide similar estima-
tions close to the ground truth. Similar to SNMHP, each method has its own pros and
cons in terms of accuracy, efficiency and uncertainty quantification. The choice of inference
algorithms depends on specific requirements of the application.
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(a) Gibbs sampler
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(b) EM algorithm

0 1 2 3 4 5 6
T

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Ac
tiv

at
io

n

Influence functions (1)
11

(1)
11  Ground Truth
(1)
11  MF

0 1 2 3 4 5 6
T

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Ac
tiv

at
io

n

Influence functions (1)
12

(1)
12  Ground Truth
(1)
12  MF

0 1 2 3 4 5 6
T

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Ac
tiv

at
io

n

Influence functions (1)
21

(1)
21  Ground Truth
(1)
21  MF

0 1 2 3 4 5 6
T

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Ac
tiv

at
io

n

Influence functions (1)
22

(1)
22  Ground Truth
(1)
22  MF

0 1 2 3 4 5 6
T

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Ac
tiv

at
io

n

Influence functions (2)
11

(2)
11  Ground Truth
(2)
11  MF

0 1 2 3 4 5 6
T

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Ac
tiv

at
io

n

Influence functions (2)
12

(2)
12  Ground Truth
(2)
12  MF

0 1 2 3 4 5 6
T

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Ac
tiv

at
io

n

Influence functions (2)
21

(2)
21  Ground Truth
(2)
21  MF

0 1 2 3 4 5 6
T

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Ac
tiv

at
io

n

Influence functions (2)
22

(2)
22  Ground Truth
(2)
22  MF

(c) Mean-field approximation (d) Functional connectivity

Figure 5: For dynamic-SNMHP: (a): The 100 posterior trajectories of interactions between
two neurons in two states by Gibbs sampler (up: 1-st state, down: 2-nd state).
(b): The MAP estimate of interactions between two neurons in two states by
EM algorithm. (c): The 100 posterior trajectories of interactions between two
neurons in two states by mean-field approximation. The interactions estimated
by three methods are close to the ground truth. (d): The heat map of functional
connectivity between two neurons in two states with red indicating excitation and
blue indicating inhibition. From left to right, we present the ground truth and
functional connectivity estimated by three inference algorithms.

7.3 Influence Function Recovery

In the above two sections, we use the presumed model setting (predefined basis functions to
formulate influence functions) to generate the data and analyze the difference among three
inference methods. In this section, we consider a more complicated setting: we use some
predefined influence functions to generate the data directly and check if our model (mixture
of Beta densities) can recover them.

Because SNMHP is a special case of dynamic-SNMHP, we only analyze dynamic-SNMHP
in this section; and due to the inefficiency of Gibbs, the inference is performed by only
EM algorithm and mean-field approximation. We still analyze the simulated data from
the 2-neuron 2-state neural population model in Section 7.2. We define two kinds of pa-

rameterized influence functions with support Tφ = 2π, (1) sine function: φ
(1)
11 (·) = sin(·),

φ
(1)
12 (·) = −1

2 sin(·), φ(1)
21 (·) = −1

2 sin(·), φ(1)
22 (·) = sin(·) in the first state and φ

(2)
11 (·) =

−1
2 sin(·), φ(2)

12 (·) = sin(·), φ(2)
21 (·) = sin(·), φ(2)

22 (·) = −1
2 sin(·) in the second state; (2) ex-
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Figure 6: For dynamic-SNMHP: The 100 posterior samples and MAP estimate of (a): in-
tensity upper bounds λ, (b): base activations µ(1) in the 1-st state and (c): µ(2)

in the 2-nd state from Gibbs sampler, mean-field approximation and EM algo-
rithm. (d): The training/test log-likelihood curves of three inference algorithms
w.r.t. iterations (for mean-field, it is evaluated by the mean). (e): The estimation
statistics of intensity upper bounds and base activations in two states by three
algorithms based on 100 posterior samples and MAP estimate. The mean and
standard deviation (in brackets) are provided (for state-transition matrices, we
only show the mean). (f): The running time of three inference algorithms w.r.t.
the number of observations (the precomputation of Φ(t) is included). (g), (h), (i):
The MSE between estimated parameters and ground truth w.r.t. the observation
window, the intensity upper bound and the number of neurons.
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(a) EM (sine function)
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(b) MF (sine function)
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(c) EM (exponential decay sine function)
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(d) MF (exponential decay sine function)

Figure 7: For the sine influence function: (a): the MAP estimate of interactions between
two neurons in two states by EM algorithm (up: 1-st state, down: 2-nd state), (b):
the 100 posterior trajectories of interactions between two neurons in two states
by mean-field approximation. For the exponential decay sine influence function:
(c): that by EM algorithm, (d): that by mean-field approximation.
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upper bounds and the dimension-dependent state-transition matrices all follow Section 7.2.
We use the thinning algorithm to generate the synthetic spike data on [0, T = 1000].

For hyperparameters, we choose 9 scaled shifted Beta distributions φ̃{1,...,9} = Beta(α̃ =

20, β̃ = 20, scale = 2π, shift = {−2,−1.5,−1,−0.5, 0, 0.5, 1, 1.5, 2}) with support [0, Tφ =
2π] as basis functions for the first case, and φ̃{1,...,9} = Beta(α̃ = 20, β̃ = 20, scale =
2π, shift = {−2.5,−2,−1.5,−1,−0.5, 0, 0.5, 1, 1.5}) as basis functions for the second case;
the hyperparameter η is set to 1 to represent a uniform Dirichlet prior; α is chosen to be
0.2 by cross validation; the number of quadrature nodes is set to 5000.

The estimated influence functions for two cases in two states by EM algorithm and mean-
field approximation are shown in Fig. 7. It is straightforward to see our model successfully
recovers the predefined influence functions.
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Figure 8: The training and test spike trains in the dataset of cat primary visual cortex.

7.4 Neural Spike Data from Cat Primary Visual Cortex

In this section, we analyze the performance of SNMHP (single-state dynamic-SNMHP) and
dynamic-SNMHP on a real multi-neuron evoked spike train data in cat primary visual cortex
by visual stimulation. The neural data (Blanche, 2009) was recorded by Tim Blanche in
the laboratory of Nicholas Swindale, University of British Columbia, and downloaded from
the Collaborative Research in Computational Neuroscience data sharing website. Several
multi-channel silicon electrode arrays are designed to record simultaneously spike times of
10 cells from a single penetration in cat primary visual cortex areas 17. Neural spikes are
evoked by three visual stimuli on a monitor: spatiotemporal white noise, drifting bars and
a natural movie that simulate retinal stimulation under natural views.

We extract the spikes evoked by three stimuli in the time window [0, 800] (time unit:
100ms) as the training data and [800, 1000] as the test data. To evaluate the performance of
SNMHP and dynamic-SNMHP, we concatenate 3 sets of training spike trains sequentially
to constitute the state-switching training data on [0, 2400]. The training dataset contains
15050 spikes and the test dataset contains 637, 1194 and 2089 spikes by stimuli of white
noise, drifting bar and natural movie, respectively. The training and test datasets are shown
in Fig. 8.

To compare the performance of single- and multi-state models, we pre-process the data
in two different ways: in the first case, we assume base spike rates and interactions among
the neural population are time-invariant and ignore the dynamics caused by three different
stimuli to make the data eligible for single-state models, e.g., SNMHP and some baselines
below; in the second case, we regard spike times evoked by three different stimuli as neural
responses in three different brain states to make the data well-suited for multi-state models,
e.g., dynamic-SNMHP and some baselines below.

We compare our proposed SNMHP and dynamic-SNMHP with cutting-edge multivariate
Hawkes process models in recent years, including single- and multi-state statistical Hawkes
process models and deep Hawkes process models. Specifically, the following most relevant
baselines are considered:

• The Granger causality Hawkes processes (GC-Hawkes) (Xu et al., 2016) which are
single-state nonparametric linear multivariate Hawkes processes with influence func-
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tions formulated by mixture of basis functions. The inference is performed by maxi-
mum likelihood estimation (MLE) with regularization terms.

• The inhibitive Hawkes processes (IN-Hawkes) (Mei and Eisner, 2017) which are para-
metric nonlinear multivariate Hawkes processes with the scaled softplus link function
and exponential decay influence functions. The inference is performed by MLE.

• The neural Hawkes processes (NE-Hawkes) (Mei and Eisner, 2017) which are deep
nonlinear multivariate Hawkes processes with the scaled softplus link function and
the activation is modeled by an LSTM. The inference is performed by MLE.

• The state-dependent Hawkes processes (SD-Hawkes) (Morariu-Patrichi and Pakkanen,
2018) which are multi-state parametric linear multivariate Hawkes processes with
exponential decay influence functions. It is a multi-state statistical model and the
inference is by MLE.

• The mutually regressive point processes (MR-PP) (Apostolopoulou et al., 2019) which
are parametric nonlinear multivariate Hawkes processes with the sigmoid link function
and exponential decay influence functions. It is a single-state statistical model whose
inference is by MCMC based on Pólya-Gamma augmentation and Poisson thinning.

• The self-attentive Hawkes processes (SA-Hawkes) (Zhang et al., 2020) whose frame-
work is similar to NE-Hawkes except that the activation is modeled by the self-
attention mechanism. The inference is performed by MLE.

• The Transformer Hawkes processes (TR-Hawkes) (Zuo et al., 2020) whose framework
is similar to NE-Hawkes except that the activation is modeled by a Transformer
architecture. The inference is performed by MLE.

Taking efficiency into account, the inference is performed by EM algorithm and mean-
field approximation. All hyperparameters are carefully tuned to obtain the optimal test
log-likelihood. Specifically, the basis functions are chosen as: φ̃{1,2,3} = Beta(α̃ = 500, , β̃ =
500, scale = 10, shift = {−5,−4,−3}) with support [0, Tφ = 10]; the hyperparameter α of
Laplace prior is optimised to be 0.1; the hyperparameter η is set to 1 to represent a uniform
Dirichlet prior; the number of quadrature nodes is set to 2000 and the number of iterations
to 100, which is large enough for convergence.

For SD-Hawkes, there are no additional hyperparameters needed to be tuned. We
employ the same sets of hyperparameters provided in the code repositories from Apos-
tolopoulou et al. (2019); Xu et al. (2016); Mei and Eisner (2017); Zhang et al. (2020)
and Zuo et al. (2020) for tuning MR-PP, GC-Hawkes, NE-Hawkes, SA-Hawkes and TR-
Hawkes, respectively. For IN-Hawkes, we find the original implementation in Mei and Eisner
(2017) is hard to converge on our data, so we implement it by ourselves. We use a work-
station with Intel Xeon Gold 6240R CPU and Nvidia Quadro RTX 6000 GPU for training
these models.

Because we do not know the ground-truth functional connectivity and model parameters
for the real data, we evaluate the models by the log-likelihood on test data. Our goal is
to compare the test log-likelihood between deep models (NE-Hawkes, SA-Hawkes, TR-
Hawkes), single-state models (GC-Hawkes, IN-Hawkes, MR-PP, SNMHP) and multi-state
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models (SD-Hawkes, dynamic-SNMHP), infer the interactions among the neural population,
and provide some macroscopic property analysis about the functional connectivity of cortical
circuits.

Results One important advantage of our proposed model comes from the interpretabil-
ity, which is in stark contrast to the ‘black-box’ deep Hawkes process models. As we stated
in the previous sections, the influence functions in our model represent the interactions
between neurons. By estimating the activation weights, our model can characterize the
functional connectivity among the neural population, which most deep models cannot pro-
vide. For example, the functional connectivity estimated by SNMHP and dynamic-SNMHP
is shown in Fig. 9. SNMHP can characterize the static functional connectivity among the
neuron population while dynamic-SNMHP can represent the time-varying functional con-
nectivity under different stimuli. Each neuron in area 17 has its own receptive field which
contains regions that exert an exciting influence on the neuron response and regions that
exert an inhibitive influence. If we put a lot of light on the exciting region and only a little
on the inhibitive region of the receptive field, the corresponding neuron will exhibit a strong
self-exciting response; but if the light shines on both exciting and inhibitive regions, the
corresponding neuron cannot display strong response. We speculate the white noise stimuli
coincide with the exciting region of #2, #4 and #5 neurons, which leads to their strong
self-excitation. In the work of Hubel and Wiesel (1962), they found the neuron in area 17
is more likely to respond to the bar stimuli. This explains why the functional connectivity
strength is larger in face of drifting bar stimuli. For the natural movie, the stimuli are
much more complex and changeable w.r.t. position and orientation, and this leads to the
generally moderate response for all neurons. Moreover, the estimated dynamic functional
connectivity under different stimuli from dynamic-SNMHP (Fig. 9b) is quite different from
the static one from SNMHP (Fig. 9a). This validates our speculation that ignoring dynam-
ics in neural spike trains leads to incorrect model inference and misleading interpretation
of interactions, because spikes in different states may interfere with the inference of each
state if they are incorrectly assumed to be static.

The main motivation for modelling the time-varying interactions of the neural popu-
lation is to understand the macroscopic properties of the time-varying network (Donner
et al., 2017). In the following, we mainly focus on two macroscopic metrics. The first is
the log-likelihood on test data which characterizes the fitting performance of the estimated
time-varying interaction network. For deep models and single-state statistical models, the
training/test data are considered as single-state spike trains. The test log-likelihood of EM
algorithm and mean-field approximation for SNMHP and dynamic-SNMHP are compared
with baselines in Table 1. As expected, the two algorithms for each model provide simi-
lar results. The multi-state statistical models generally surpass the single-state statistical
models with dynamic-SNMHP being the champion in most cases. This is because dynamic-
SNMHP inherits the flexibility from SNMHP to represent the flexible interactions; in the
meantime, dynamic-SNMHP can characterize the time-varying interactions that vary in
different states leading to better goodness-of-fit. Deep Hawkes process models are strong
baselines w.r.t. test log-likelihood because deep models have better expressiveness due to
a large amount of parameters, but, as we stated above, they lack interpretability which is
a crucial requirement in the neuroscience domain. An example of estimated interactions
among 10 neurons in cat primary visual cortex is provided in Appendix D.
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(a) SNMHP (b) Dynamic-SNMHP (white noise, drifting bar, natural movie)

Figure 9: The heat map of functional connectivity among 10 neurons estimated by EM algo-
rithm (top) and mean-field approximation (bottom). (a): For SNMHP. (b): For
dynamic-SNMHP, left: white noise, middle: drifting bar, right: natural movie.
For mean-field, it is evaluated by the mean. The estimations by two algorithms
are similar to each other.

The second is the complementary cumulative distribution function (CCDF) of functional
connectivity which is defined as the percentage of |

∫
φij(t)dt| greater than a given strength.

This metric characterizes the functional connectivity strength distribution of the interaction
network. The CCDF of SNMHP and dynamic-SNMHP in three states from EM algorithm
and mean-field approximation are demonstrated in Fig. 10. The results of two algorithms
are similar to each other. For the natural movie stimuli, the strength of all interactions
is below 2.0 (EM) and 2.5 (MF); this is consistent with our observation in Fig. 9 that
most neurons generally have moderate responses in face of natural movie stimuli. More
importantly, for the drifting bar stimuli, more interactions are concentrated in the domain
of high strength (> 1.2) than white noise and natural movie; this is also consistent with
the existing finding that cells in area 17 have elongated receptive fields and consequently
respond best to elongated stimuli such as bars. The CCDF of dynamic-SNMHP under three
stimuli are different from that of SNMHP, which means the functional connectivity strength
distributions of static and dynamic models are different. This demonstrates the necessity
of using a dynamic model to characterize the time-varying interactions in different states.

An extra advantage of our proposed inference algorithms is the efficiency due to closed-
form expressions. We compare the running time of SNMHP and dynamic-SNMHP with
statistical baselines2: IN-Hawkes, MR-PP and vanilla multivariate Hawkes processes with
exponential decay influence functions. For vanilla Hawkes processes, we use two methods,

2. SD-Hawkes is excluded because the optimization provided in the code repository from Morariu-Patrichi
and Pakkanen (2018) is implemented in C but our methods are implemented in Python.
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Models White Noise Drifting Bar Natural Movie

Deep
NE-Hawkes -1109.18 -615.84 -1361.29

SA-Hawkes -1697.73 -1558.88 -1898.13

TR-Hawkes -1038.24 -791.99 -1186.12

Single-State

GC-Hawkes -1804.97 -2650.66 -3246.12

IN-Hawkes -1111.19 -588.78 -1046.27

MR-PP -1377.26 -1475.23 -1720.89

SNMHP
-1068.09(EM) -609.47(EM) -1048.48(EM)
-1066.67(MF) -632.87(MF) -1047.28(MF)

Multi-State
SD-Hawkes -1085.06 -590.12 -975.33

Dynamic-SNMHP
-1048.62(EM) -579.97(EM) -974.71(EM)
-1040.98(MF) -602.08(MF) -975.28(MF)

Table 1: The comparison of log-likelihood on test real data stimulated by white noise,
drifting bar and natural movie between our proposed models (SNMHP, dynamic-
SNMHP) and alternatives.
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Figure 10: The CCDF of SNMHP and dynamic-SNMHP in three states from EM algorithm
and mean-field approximation.

numerical differentiation and analytical expressions (Ozaki, 1979), to compute the gradient
of log-likelihood; and use the ‘SLSQP’ method in ‘scipy.optimize.minimize’ for optimization.
For IN-Hawkes, we implement the log-likelihood by ourselves, use ‘autograd’ to compute
the gradient and use ‘SLSQP’ for optimization. All aforementioned models use CPU and a
full batch of data for computation to achieve a fair comparison. As shown in Table 2, for
SNMHP, our EM algorithm and mean-field approximation cost 6 minutes and 6 minutes 30
seconds respectively; for dynamic-SNMHP, our EM algorithm and mean-field approximation
cost 6 minutes 10 seconds and 6 minutes 41 seconds respectively; MR-PP costs 2 hours 15
minutes, IN-Hawkes costs 8 hours 34 minutes and the analytical gradient implementation
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Models
vanilla-Hawkes

(numerical grad)
vanilla-Hawkes

(analytical grad)
IN-Hawkes MR-PP SNMHP Dynamic-SNMHP

Running
Time

> 2 days 24mins 40secs 8hrs 34mins 2hrs 15mins
6mins (EM) 6mins 10secs (EM)

6mins 30secs (MF) 6mins 41secs (MF)

Table 2: The running time of different models on the dataset of cat primary visual cortex.

of MLE for vanilla Hawkes processes costs 24 minutes 40 seconds with the same number of
iterations, while the numerical differentiation implementation takes more than 2 days.

Conclusively, our proposed SNMHP can achieve competitive test log-likelihood because
SNMHP can represent the flexible excitation-inhibition-mixture interactions among the neu-
ral population. More importantly, our proposed dynamic-SNMHP demonstrates prominent
advantages over other single- and multi-state baselines, because on the one hand dynamic-
SNMHP inherits the flexibility from SNMHP, on the other hand it can describe the dy-
namics in neural spike trains driven by brain states, which serves as a source of advantages
for dynamic-SNMHP over single-state models that are unable to represent a time-varying
neural system. In the meantime, our proposed inference algorithms achieve a competitive
performance on efficiency due to closed-form expressions.

7.5 Neural Spike Data from Rat Frontal Cortex

In this section, we use the proposed SNMHP and dynamic-SNMHP to analyze a more
challenging real multi-neuron spike train dataset which contains 50 neurons. In the frontal
cortex of male Long-Evans rats, the spike train data (Watson et al., 2016) was recorded
by silicon probe electrodes. There are no stimuli rather the rats are left alone in the cage
with a ‘wake-sleep’ episode where the wake state is at least 7 minutes and followed by at
least 20 minutes sleep state. Due to no stimuli, the spike train data is mainly composed
of spontaneous activities and the macroscopic properties of the interaction network should
remain similar in different states. In Section 7.4, we have shown the dynamic-SNMHP can
find the time-varying interactions when given spike train data whose macroscopic properties
change with brain state. On the contrary, in this section, we check if dynamic-SNMHP can
find the consistent interactions when the spike train data whose macroscopic properties
do not change significantly is forced into several states. More importantly, we can verify
whether our proposed methods are applicable to high-dimensional spike train data.

The dataset includes simultaneous records of 50 neurons and indicates a threshold time τ
separating the wake and sleep episodes. We extract the spikes in the time window [τ−100, τ ]
(time unit: 1s) as the wake-state training data, [τ−200, τ−100] as the wake-state test data,
[τ, τ + 100] as the sleep-state training data, and [τ + 100, τ + 200] as the sleep-state test
data. We concatenate the training (test) sequences in two states in chronological order to
constitute a two-state training (test) data on [0, 200]. The training dataset contains 30510
spikes and test dataset contains 31872 spikes, respectively. The training and test datasets
are shown in Fig. 11a.

Similar to Section 7.4, we pre-process the data in two different ways to make it eligible
for single-state or multi-state models. Due to the similarity of results from EM algorithm
and mean-field approximation shown in above sections and the efficiency issue of Gibbs,
we only use mean-field approximation for inference in this section. All hyperparameters
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are carefully tuned to obtain the optimal test log-likelihood. Specifically, we choose the
basis function as φ̃ = Beta(α̃ = 10, , β̃ = 10, scale = 10, shift = 0) with support [0, Tφ =
10]; the hyperparameter α of Laplace prior is optimised to be 0.5; the hyperparameter
η is set to 1 to represent a uniform Dirichlet prior; the number of quadrature nodes is
set to 4000 and the number of iterations to 100, which is large enough for convergence.
We employ the same sets of hyperparameters provided in the code repositories from the
corresponding baseline models. Our goal is to compare the test log-likelihood with baseline
models, infer the interactions among the neural population in different states, and check if
dynamic-SNMHP can find the similarity of interaction networks when the spike train data
of consistent macroscopic properties is forced into two states.

Results The functional connectivity estimated by SNMHP and dynamic-SNMHP is
shown in Figs. 11b and 11c respectively. Most of the interactions are excitatory. Obviously,
the interaction networks estimated in wake and sleep states from dynamic-SNMHP are
similar to that from SNMHP. Some neurons, e.g., #36, #38, #46, have a strong impact on
all the other neurons. This observation is consistent with the common sense that the neurons
of ‘output’ type always correspond to the ones with a high firing rate (Fig. 11a). Similar to
Section 7.4, we analyze the macroscopic properties of the network quantificationally w.r.t.
test log-likelihood and CCDF. The test log-likelihood curves of SNMHP and dynamic-
SNMHP are shown in Fig. 11d where the converged test log-likelihood of SNMHP and
dynamic-SNMHP are close to each other. This demonstrates the similarity of macroscopic
properties in two states. Moreover, as shown in Fig. 11e, the test log-likelihood of our models
is competitive with TR-Hawkes being the champion, SNMHP and dynamic-SNMHP being
the runners-up. This again demonstrates the excellent fitting performance of SNMHP and
dynamic-SNMHP. Besides, the CCDF of dynamic-SNMHP in two states is approximately
consistent with that of SNMHP (shown in Fig. 11f), which also demonstrates that the
macroscopic properties of networks are similar in wake and sleep states.

The 50-dimensional neural spike train data is a challenge for the inference. For example,
both SA-Hawkes and TR-Hawkes produce an out-of-memory error with the original model
size on this dataset due to the high dimensionality. To address this problem, we reduce the
size of both models to 1 head and 1 layer. For efficiency, the mean-field approximation of
SNMHP costs 40 minutes 20 seconds, that of dynamic-SNMHP costs 40 minutes 34 seconds,
while IN-Hawkes and MR-PP are slow and cannot finish in 24 hours. This demonstrates
that SNMHP and dynamic-SNMHP can perform inference for high-dimensional spike train
data with a reasonable running time.

Conclusively, all the experimental results above demonstrate that for spike train data
with consistent macroscopic properties, dynamic-SNMHP can find a similar pattern even
though the spike train is forced into several states. This validates that dynamic-SNMHP will
automatically degrade to SNMHP when the patterns of spike train data in different states
are highly consistent. More importantly, our proposed SNMHP and dynamic-SNMHP can
be applied to high-dimensional neural spike train data.
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Figure 11: The dataset of rat frontal cortex. (a): The training (left) and test (right) spike
trains with red indicating wake state and blue indicating sleep state. (b): The
heat map of functional connectivity among 50 neurons from SNMHP. (c): That
from dynamic-SNMHP, left: wake state, right: sleep state. (d): The test log-
likelihood curves w.r.t. iterations from SNMHP and dynamic-SNMHP. (e): The
test log-likelihood results of baseline models. (f): The CCDF of functional
connectivity of SNMHP and dynamic-SNMHP in two states.

8. Related Work

In this section, we introduce some related works about linear/nonlinear Hawkes processes,
deep point processes and latent variable augmentation.

Linear Hawkes Processes The traditional linear Hawkes processes model is assumed
to be in a parametric form, as we introduced in Eq. (3), which limits its expressiveness

3. The baseline models cannot finish in 24 hours.
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severely because the actual influence function or base rate can be flexible in different appli-
cations. Extending the expressiveness of linear Hawkes processes has been a long-standing
research topic and many papers have been published in this area. Lewis and Mohler (2011)
proposed to extend both the base rate µ and influence function φ(·) to flexible functions
and perform estimation by solving Euler-Lagrange equations, and Zhou et al. (2013) ex-
tended this method to multivariate Hawkes processes. Similarly, Zhou et al. (2020, 2021a)
employed the Gaussian processes to model the flexible base rate and influence function,
and performed Bayesian inference with different methods. To model stochastic influence
functions, Dassios et al. (2013) assumed the exponential decay influence functions have i.i.d.
random excitations, and Lee et al. (2016) further assumed all excitations are subject to a
stochastic process and modeled by stochastic differential equations. Alaa et al. (2017); Xu
et al. (2017); Morariu-Patrichi and Pakkanen (2018); Wu et al. (2019) further extended the
traditional linear Hawkes processes to the time-varying versions.

Nonlinear Hawkes Processes The nonlinear Hawkes processes are more general than
the classic linear Hawkes processes because nonlinear variant can characterize the inhibitive
influence from past events to future ones. This makes the nonlinear Hawkes processes well
suited in neuroscience where both excitatory and inhibitory interactions exist among neu-
ron populations. Various nonlinear functions are used to map the real-valued activation
to a nonnegative conditional intensity, such as rectifier (Reynaud-Bouret et al., 2013), ex-
ponential (Gerhard et al., 2017), sigmoid (Linderman, 2016; Apostolopoulou et al., 2019)
or directly learned from data (Wang et al., 2016). Escola et al. (2011) also proposed to
use Markov-modulated nonlinear Hawkes processes to study switching neural responses.
For most nonlinear Hawkes processes, the nonlinear maps complicate the likelihood func-
tion to constitute a non-conjugate problem, but the sigmoid mapping function has the
advantage that the Pólya-Gamma augmentation technique can be utilized to transform the
non-conjugate problem into a conditional conjugate one. For this reason, we also utilize
sigmoid nonlinearity in this work. Besides, most of these works employ parametric influ-
ence functions, e.g., exponential decay, to characterize interactions between neurons, but
this is inconsistent with complex interactions in real neural recordings. In contrast with
these works, the influence function is assumed to be a weighted sum of basis functions in
our proposed models, which is more flexible in practice.

Deep Point Processes Another line of point process models is the deep point processes
which are a class of point process models based on cutting-edge deep neural networks. Du
et al. (2016) proposed a recurrent neural network (RNN) based temporal point process
whose conditional intensity is formulated as a function of the hidden state of the RNN. Boyd
et al. (2020) further extended the RNN-based temporal point process to the multi-source
scenarios, where event sequences are assumed to be from different distributions. Some
other variant models were also developed to use long short-term memory (LSTM) (Mei
and Eisner, 2017; Mei et al., 2020) and attention-based transformer architecture (Zhang
et al., 2020; Zuo et al., 2020). To circumvent the intensity integral issue, some recent works
proposed to model the cumulative intensity function rather than the intensity function itself
with deep neural networks (Omi et al., 2019; Shchur et al., 2020). The deep point processes
have superior expressiveness due to the powerful fitting ability of neural networks. However,
they are prone to be overfitting and lack the interpretability in neuroscience domain because
they always directly model the intensity function and ignore the influence function.
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Latent Variable Augmentation The auxiliary latent variable augmentation tech-
nique has been introduced into the Bayesian nonparametric inference of Poisson process
and linear Hawkes process in many existing works. Adams et al. (2009) proposed a non-
parametric Poisson process whose intensity is modeled as a sigmoid transformed Gaussian
process and the Poisson process likelihood is augmented with thinned points to construct
a tractable but inefficient MCMC inference algorithm. To improve the inference efficiency,
Donner and Opper (2018) proposed to augment the Poisson process likelihood with Pólya-
Gamma random variables and latent marked Poisson processes. As a result, the augmented
likelihood is conditional conjugate to the Gaussian process prior and efficient Bayesian in-
ference algorithms can be derived. Zhou et al. (2020) further extended the approach in
Donner and Opper (2018) to linear single-variate Hawkes process by introducing an addi-
tional branching latent variable. For nonlinear Hawkes process, Linderman (2016) proposed
a discrete-time model to convert the likelihood from a Poisson process to a Poisson distri-
bution; then Pólya-Gamma random variables are augmented on discrete observations to
propose a Gibbs sampler. This method is further extended to a continuous-time regime
in Apostolopoulou et al. (2019) by augmenting thinned points and Pólya-Gamma random
variables to propose a Gibbs sampler. However, the influence function is limited to be
purely exciting or inhibitive exponential decay. Besides, due to the nonconjugacy of the ex-
citation parameter of exponential decay influence function, a Metropolis-Hastings sampling
step has to be embedded into the Gibbs sampler making the inference inefficient. Unlike
aforementioned works, our models utilize multiple basis functions to characterize influence
functions to guarantee flexibility; for inference, except Pólya-Gamma random variables, we
also augment the nonlinear Hawkes process likelihood with latent marked Poisson processes
and the Laplace prior with sparsity variables to construct a conditional conjugate model.
As a result, three efficient Bayesian inference algorithms can be derived. It is worth not-
ing that although our proposed Gibbs sampler is less efficient than the EM algorithm and
mean-field approximation, but it has better efficiency than Apostolopoulou et al. (2019)
since the time-consuming Metropolis-Hasting sampling is not needed. In Apostolopoulou
et al. (2019), a tighter intensity upper bound is used to reduce the number of thinned points
to accelerate the sampler. Instead, our EM algorithm and mean-field approximation do not
encounter this problem as we compute the expectation rather than sampling.

9. Discussion

It is worth noting that the SNMHP model was originally proposed in Zhou et al. (2021b) and
the corresponding EM algorithm is derived there for the inference. In this work, we further
derive the additional Gibbs sampler and mean-field approximation for it. Moreover, we
extend SNMHP to dynamic-SNMHP in this work to handle a time-varying neural system,
for which three efficient inference algorithms: Gibbs sampler, EM algorithm and mean-field
approximation, are derived.

We have proposed three inference algorithms for both the static and dynamic models
in this work. Ones may wonder if there is a dominant method surpassing all the others
and particularly recommended in practice. We remark that each inference algorithm has
its own pros and cons. Theoretically, the Gibbs sampler enables the direct characterization
of the posterior over parameters without reliance on any approximation. Unfortunately, as
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revealed by our experiments, the Gibbs sampler suffers from an inefficiency issue. The EM
algorithm is able to precisely find the MAP solution. Yet, as a point estimator, it precludes
the modeling of the uncertainty over parameters. Mean-field approximation conjoins the
merits of Gibbs sampler and EM algorithm, capable of reasoning about parameter uncer-
tainty in an efficient way, but it induces approximation error and lacks the guarantee of
asymptotic consistency. In real-world applications, if the accuracy is the primary demand
regardless of how much the cost is, the Gibbs sampler is recommended. If the efficiency
is of key concern and the uncertainty over parameters is dispensable, the EM algorithm
is the most appropriate. If we want to keep efficiency without compromising uncertainty
quantification, it is better to use mean-field approximation.

10. Conclusion

In this paper, we develop an SNMHP model in the continuous-time regime which can char-
acterize excitation-inhibition-mixture interactions among the neural population. To address
the non-conjugate problem, three auxiliary latent variables are augmented into the likeli-
hood and prior to convert the non-conjugate model to a conditional conjugate model. As
a result, three efficient Bayesian inference algorithms: Gibbs sampler, EM algorithm and
mean-field approximation are derived in closed form with superior efficiency. To empower
SNMHP to reconcile with time-varying neural systems, we extend SNMHP to dynamic-
SNMHP by incorporating a Markov state process to interact with point processes consti-
tuting a closed-loop framework. For inference, three efficient Bayesian inference algorithms
for SNMHP are extended to dynamic-SNMHP.

The synthetic data experimental results confirm that three inference algorithms have
similar accuracy; the EM algorithm and mean-field approximation have better efficiency
than the Gibbs sampler. In practice, which inference algorithm to use depends on desired
requirements of the application. The experimental comparison with state-of-the-art com-
petitors on real neural recordings demonstrates that: the fitting performance of SNMHP
is superior to single-state baselines and that of dynamic-SNMHP surpasses other single-
and multi-state models; SNMHP and dynamic-SNMHP are applicable to high-dimensional
neural spike train data; dynamic-SNMHP degrades to SNMHP automatically when the
patterns of spike train data in different states are highly consistent.

From the application perspective, although our models are proposed in the neuroscience
domain, they can be applied to other applications where the inhibition is a vital factor or
the event dynamics are changing with system state, e.g., in the coronavirus (COVID-19)
spread, the inhibitive effect may represent the medical treatment or cure, or the forced
quarantine by the government; in the high-frequency trading markets, the state of limit
order book has a vital impact on the arrival rate of orders because it implies the trend of
price change.

In this work, we utilize the mixture of basis functions to characterize flexible influence
functions. Future work can be done to represent influence functions in a nonparametric way,
e.g., Gaussian process, which raises a greater challenge for inference. For dynamic-SNMHP,
the system state takes value in a discrete finite state space and it can be extended to be a
continuously varying quantity in the future, where the activation weights will also change
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continuously over time. For efficiency, the stochastic EM and mean-field using mini-batch
can be developed in the future to further accelerate the inference.
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Appendix A. Campbell’s Theorem

Let ΠẐ = {(zn,ωn)}Nn=1 be a marked Poisson process on the product space Ẑ = Z×Ω with
intensity Λ(z,ω) = Λ(z)p(ω | z). Λ(z) is the intensity for the unmarked Poisson process
{zn}Nn=1 with ωn ∼ p(ωn | zn) being an independent mark drawn at each zn. Furthermore,
we define a function h(z,ω) : Z × Ω → R and the sum H(ΠẐ) =

∑
(z,ω)∈ΠẐ

h(z,ω). If

Λ(z,ω) <∞, then

EΠẐ

[
exp

(
ξH(ΠẐ)

)]
= exp

[∫
Ẑ

(
eξh(z,ω) − 1

)
Λ(z,ω)dωdz

]
,

for any ξ ∈ C. The above equation defines the characteristic functional of a marked Poisson
process. This proves Eq. (11) in the paper. The mean is

EΠẐ

[
H(ΠẐ)

]
=

∫
Ẑ
h(z,ω)Λ(z,ω)dωdz,

which is used when substituting Eq. (17) into Eq. (16) in the EM algorithm, and Eq. (20)
into Eq. (19) in the mean-field approximation for SNMHP. The same applies to the dynamic-
SNMHP.

Appendix B. Derivation of Augmented Likelihood and Prior

Substituting Eqs. (9) and (11) into Eq. (7), we obtain

p(D | wi, λi) =

Ni∏
n=1

λiσ(hi(t
i
n)) exp

(
−
∫ T

0
λiσ(hi(t))dt

)

=

Ni∏
n=1

(∫ ∞
0

λie
f(ωin,hi(t

i
n))pPG(ωin | 1, 0)dωin

)
· Epλi

 ∏
(ω,t)∈Πi

ef(ω,−hi(t))


=

∫∫ Ni∏
n=1

[
λi(t

i
n, ω

i
n)ef(ωin,hi(t

i
n))
]
· pλi(Πi | λi)

∏
(ω,t)∈Πi

ef(ω,−hi(t))dωidΠi.

where ωi is the vector of ωin and λi(t
i
n, ω

i
n) = λipPG(ωin | 1, 0). It is straightforward to see

the integrand is the augmented likelihood

p(D,Πi,ωi | wi, λi) =

Ni∏
n=1

[
λi(t

i
n, ω

i
n)ef(ωin,hi(t

i
n))
]
· pλi(Πi | λi)

∏
(ω,t)∈Πi

ef(ω,−hi(t)),

which is Eq. (13a). Similarly, the integrand in Eq. (12) is the augmented prior in Eq. (13b).
The same applies to the dynamic-SNMHP where the difference is the incorporation of the
state-transition matrix.

Appendix C. Derivation of Gibbs, EM and Mean-Field

C.1 Gibbs Sampler

Based on the augmented joint distribution in Eq. (14), we can derive the conditional densi-
ties of latent variables and parameters in closed form. By sampling from these conditional
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densities iteratively, we construct an analytical Gibbs sampler. Because the derivation is
relatively easy for ωi, βi, λi and wi but difficult for Πi, we here elaborate the derivation
for Πi and omit that for other variables. The posterior of Πi is dependent on wi and λi

p(Πi | wi, λi) =
pλi(Πi | λi)

∏
(ω,t)∈Πi

ef(ω,−hi(t))∫
pλi(Πi | λi)

∏
(ω,t)∈Πi

ef(ω,−hi(t))dΠi

,

where Campbell’s theorem can be applied to convert the denominator, the equation above
can be transformed as

p(Πi | wi, λi) =
pλi(Πi | λi)

∏
(ω,t)∈Πi

ef(ω,−hi(t))

exp (−
∫∫

(1− ef(ω,−hi(t)))λipPG(ω | 1, 0)dωdt)

=
∏

(ω,t)∈Πi

(
ef(ω,−hi(t))λipPG(ω | 1, 0)

)
· exp

(
−
∫∫

ef(ω,−hi(t))λipPG(ω | 1, 0)dωdt

)
.

The above posterior is in the likelihood form of a marked Poisson process with intensity

Λi(t, ω | wi, λi) = ef(ω,−hi(t))λipPG(ω | 1, 0) = λiσ(−hi(t))pPG(ω | 1, hi(t)).

C.2 EM Algorithm

In the standard EM algorithm framework, the lower bound of log-posterior has been pro-
vided in Eq. (16). For the E step, the posterior of latent variables is already provided in
Eq. (15); the only difference is the activation weights and intensity upper bounds are from
the last iteration. For the M step, we elaborate the derivation below.

Substituting the posterior distributions of latent variables into Eq. (16), we obtain the
lower bound Q. The first term of Eq. (16) is

Eωi,Πi
[
log p(D,ωi,Πi | wi, λi)

]
=− 1

2
w>i ·

∫ T

0
Ai(t)Φ(t)Φ>(t)dt ·wi + w>i ·

∫ T

0
Bi(t)Φ(t)dt

− λiT +

(
Ni +

∫∫
Λi(t, ω)dωdt

)
log λi + C

where we utilize the mean rule in Campbell’s theorem, C is a constant and

Ai(t) =

Ni∑
n=1

E[ωin]δ(t− tin) +

∫ ∞
0

ωΛi(t, ω)dω,

Bi(t) =
1

2

Ni∑
n=1

δ(t− tin)− 1

2

∫ ∞
0

Λi(t, ω)dω,

with δ(·) being the Dirac delta function and E[ωin] = 1/(2hs−1
i (tin)) tanh(hs−1

i (tin)/2) (Polson
et al., 2013). The integral of intensity function has no closed-form solution but can be solved
by numerical quadrature methods. The second term of Eq. (16) is

Eβi [log p(wi,βi)] = −1

2
w>i · diag

(
E[βi]

α2

)
·wi + C,
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where C is a constant, E[βi] = {E[βijb]}MB+1
jb = {α/ws−1

ijb }
MB+1
jb and diag(·) indicates the

diagonal matrix of a vector.
The updated parameters λ

s
i and ws

i can be obtained by setting the gradient of Q to
zero. Due to auxiliary variables augmentation, we obtain an analytical expression

λ
s
i = (Ni +Ri) /T,

ws
i = Σi

∫ T

0
Bi(t)Φ(t)dt,

whereRi =
∫ T

0

∫∞
0 Λi(t, ω | ws−1

i , λ
s−1
i )dωdt, Σi =

[∫ T
0 Ai(t)Φ(t)Φ>(t)dt+ diag

(
α−2E[βi]

)]−1
.

Numerical quadrature methods need to be applied to intractable integrals above.

C.3 Mean-Field Approximation

In the mean-field approximation framework, substituting the augmented joint distribution
Eq. (14) into Eq. (19), we can obtain the optimal distribution for each factor. For ωi and
βi, the derivation is relatively easy; for Πi, the derivation is similar to that in Appendix C.1;
for λi and wi, the derivation is similar to that in Appendix C.2.

C.4 Extension to Dynamic-SNMHP

The above derivation of Gibbs sampler, EM algorithm and mean-field approximation for
SNMHP can be easily extended to dynamic-SNMHP. The only difference is the incorpo-
ration of state-transition matrix. Because the likelihood of dynamic-SNMHP factorizes as
state process likelihood and point process likelihood, and the Dirichlet prior is conjugate
to the state process likelihood, the incorporation of state process does not complicate the
inference severely.

Appendix D. Interactions among Neural Populations

In this section, we visualize some estimated interactions among the neurons in cat primary
visual cortex. Due to sparsity, most of the interactions are almost 0, here we show the
influence functions φ̂11 and φ̂29 estimated by SNMHP and dynamic-SNMHP as an example.
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Figure 12: For SNMHP: The influence functions φ̂11 and φ̂29 estimated by EM algorithm
and mean-field approximation. For mean-field, it is evaluated by the mean. We
can see the estimations by two algorithms are similar to each other.
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Figure 13: For dynamic-SNMHP: The influence functions φ̂11 and φ̂29 under three different
stimuli estimated by EM algorithm and mean-field approximation. For mean-
field, it is evaluated by the mean. We can see the estimations by two algorithms
are similar to each other and the influence functions under different stimuli are
quite different from the one estimated by SNMHP.
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Appendix E. Maximization of Log-posterior with Numerical
Optimization

One anonymous reviewer pointed out that an important baseline to compare against is
to maximize the log-posterior (Eq. (8)) of the nonlinear Hawkes process model proposed
in our work directly, using Gaussian quadrature to approximate the integral of intensity
without any augmentation, since this can demonstrate the advantage of the proposed
EM algorithm on the extended space. We compare the convergence of our proposed
EM for SNMHP with the numerical optimization implemented by the ‘SLSQP’ method
in ‘scipy.optimize.minimize’ on the real data in Fig. 14. We can see both methods finally
converge to a similar training log-likelihood, which proves the efficacy of our EM algorithm.
More importantly, our EM algorithms converges faster than the SLSQP method: the former
converges in 40 steps while the latter in more than 300 steps.
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Figure 14: The training log-likelihood curves of our proposed EM algorithm for SNMHP
and that of the numerical optimization implemented by ‘SLSQP’ method in
‘scipy.optimize.minimize’ on the real data.
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Buzsáki. Network homeostasis and state dynamics of neocortical sleep. Neuron, 90(4):
839–852, 2016.

Jing Wu, Owen Ward, James Curley, and Tian Zheng. Markov-modulated Hawkes processes
for sporadic and bursty event occurrences. arXiv preprint arXiv:1903.03223, 2019.

Hongteng Xu, Mehrdad Farajtabar, and Hongyuan Zha. Learning Granger causality for
Hawkes processes. In International conference on machine learning, pages 1717–1726.
PMLR, 2016.

Hongteng Xu, Dixin Luo, and Hongyuan Zha. Learning Hawkes processes from short doubly-
censored event sequences. In International Conference on Machine Learning, pages 3831–
3840. PMLR, 2017.

Qiang Zhang, Aldo Lipani, Omer Kirnap, and Emine Yilmaz. Self-attentive Hawkes process.
In International Conference on Machine Learning, pages 11183–11193. PMLR, 2020.

Feng Zhou, Zhidong Li, Xuhui Fan, Yang Wang, Arcot Sowmya, and Fang Chen. Efficient
inference for nonparametric Hawkes processes using auxiliary latent variables. Journal of
Machine Learning Research, 21(241):1–31, 2020.

Feng Zhou, Simon Luo, Zhidong Li, Xuhui Fan, Yang Wang, Arcot Sowmya, and Fang Chen.
Efficient em-variational inference for nonparametric hawkes process. Stat. Comput., 31
(4):46, 2021a.

Feng Zhou, Yixuan Zhang, and Jun Zhu. Efficient inference of flexible interaction in spiking-
neuron networks. In International Conference on Learning Representations, 2021b.

Ke Zhou, Hongyuan Zha, and Le Song. Learning triggering kernels for multi-dimensional
Hawkes processes. In International Conference on Machine Learning, pages 1301–1309,
2013.

Simiao Zuo, Haoming Jiang, Zichong Li, Tuo Zhao, and Hongyuan Zha. Transformer
Hawkes process. In International conference on machine learning, pages 11692–11702.
PMLR, 2020.

49


	Introduction
	Preliminary
	Temporal Point Processes
	Pólya-Gamma Augmentation

	Our Model: SNMHP
	Multivariate Hawkes Processes
	Sigmoid Nonlinear Multivariate Hawkes Processes

	Inference for SNMHP
	Augmentation of Pólya-Gamma Variables
	Augmentation of Marked Poisson Processes
	Augmentation of Sparsity Variables
	Augmented Likelihood and Prior
	Gibbs Sampler
	EM Algorithm
	Mean-Field Approximation

	Our Model: Dynamic-SNMHP
	Inference for Dynamic-SNMHP
	Gibbs Sampler
	EM Algorithm
	Mean-Field Approximation

	Experiments
	Comparison of Gibbs, EM and Mean-Field for SNMHP
	Comparison of Gibbs, EM and Mean-Field for Dynamic-SNMHP
	Influence Function Recovery
	Neural Spike Data from Cat Primary Visual Cortex
	Neural Spike Data from Rat Frontal Cortex

	Related Work
	Discussion
	Conclusion
	Campbell's Theorem
	Derivation of Augmented Likelihood and Prior
	Derivation of Gibbs, EM and Mean-Field
	Gibbs Sampler
	EM Algorithm
	Mean-Field Approximation
	Extension to Dynamic-SNMHP

	Interactions among Neural Populations
	Maximization of Log-posterior with Numerical Optimization

