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Abstract
In this paper, we study two challenging problems in explainable AI (XAI) and data clustering. The
first is how to directly design a neural network with inherent interpretability, rather than giving
post-hoc explanations of a black-box model. The second is implementing discrete k-means with a
differentiable neural network that embraces the advantages of parallel computing, online cluster-
ing, and clustering-favorable representation learning. To address these two challenges, we design
a novel neural network, which is a differentiable reformulation of the vanilla k-means, called in-
Terpretable nEuraL cLustering (TELL). Our contributions are threefold. First, to the best of our
knowledge, most existing XAI works focus on supervised learning paradigms. This work is one
of the few XAI studies on unsupervised learning, in particular, data clustering. Second, TELL is
an interpretable, or the so-called intrinsically explainable and transparent model. In contrast, most
existing XAI studies resort to various means for understanding a black-box model with post-hoc
explanations. Third, from the view of data clustering, TELL possesses many properties highly
desired by k-means, including but not limited to online clustering, plug-and-play module, parallel
computing, and provable convergence. Extensive experiments show that our method achieves su-
perior performance comparing with 14 clustering approaches on three challenging data sets. The
source code could be accessed at www.pengxi.me.
Keywords: transparent neural networks, stochastic k-means clustering, differentiable program-
ming.

1. Introduction

As a fundamental topic in machine learning, clustering aims to group similar samples into the same
cluster and separate dissimilar ones into different clusters. During the past decade, a variety of
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clustering methods (Jain et al., 1999) have been proposed and achieved encouraging success in
various applications. In recent, the main focus of the community shifts to how to handle high-
dimensional data that is usually linear inseparable.

To effectively cluster high-dimensional data, many kinds of methods have been proposed, e.g.,
spectral clustering (Ng et al., 2001), kernel clustering (Wang et al., 2019), convex clustering (Hock-
ing et al., 2011; Yi et al., 2013), subspace clustering (Elhamifar and Vidal, 2013; Liu et al., 2013; Lu
et al., 2012; Yang et al., 2018; Li et al., 2015), and the recent popular deep clustering (Yang et al.,
2016; Peng et al., 2016; Ji et al., 2017). The aforementioned methods share a common clustering
paradigm of first learning a shallow or deep representation and then applying a traditional clustering
method (k-means in most cases) to make cluster assignments.

Though promising results have been achieved on many applications, these methods still suffer
from the following limitations. Namely, though grounded in theory, traditional approaches such
as subspace clustering might be incapable of handling more complex data due to its limited repre-
sentability. On the contrary, although deep clustering methods could capture the hidden nonlinear
structure of data, as a “black box” model, their lack of explainability makes its working mecha-
nism hard to understand. Consequently, unguided and laborious hyper-parameter tuning is usually
required to achieve satisfying results.

In this paper, we propose a novel neural network (illustrated in Fig. 1) from the perspective
of differentiable programming (DP) and learning-based optimization (Gregor and LeCun, 2010;
Sprechmann et al., 2015; Zheng et al., 2015; Liu et al., 2016; Chen et al., 2018; Liu et al., 2019; Long
et al., 2018). The proposed inTerpretable nEuraL cLustering (TELL) is a differentiable alternative of
the vanilla k-means, which reformulates the k-means objective as a neural layer. As a differentiable
reformulation, TELL equips the vanilla k-means with advantages of neural networks, including end-
to-end optimization, pluggability, provable convergence, and interpretable working mechanism. It
could achieve clustering for large-scale and online data, which is impractical for the vanilla k-means.

The contribution and novelty of this work are summarized as follows:

• From the view of XAI, our contribution is twofold. On the one hand, we directly build an
interpretable neural network rather than design some post-hoc analyses to explain a neural
network like most existing XAI works did. As pointed out by (Rudin, 2019), a large number
of works have been conducted on the explainability of black-box models, but few efforts have
been made on directly building an interpretable model. This work could be a valuable attempt
towards this direction. On the other hand, most existing interpretable neural networks like
the well-known perceptron (Rosenblatt, 1961; Freund and Schapire, 1999) are designed for
supervised tasks. To the best of our knowledge, this could be the first attempt on interpretable
neural networks for unsupervised tasks, or more specifically, clustering in this work.

• From the view of clustering, TELL implements the vanilla k-means with a neural network by
reformulating its discrete objective as a neural layer, which enjoys the following advantages.
First, the proposed TELL could be easily optimized by SGD in parallel, and we theoretically
prove that the loss could be monotonously reduced. Second, the vanilla k-means requires the
entire data set to update cluster centers in each iteration, which is computationally inefficient
for large-scale data and even incapable of handling online data, i.e., the data presented in
streams. In contrast, our TELL optimizes the cluster centers through batch-wise SGD and
directly predicts the cluster assignment for each point, which is promising in clustering large-
scale and online data. Third, different from the vanilla k-means, TELL can be plugged into
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any neural network to help it learning a clustering-favorable representation in an end-to-end
fashion.

• From the view of differentiable programming, as far as we know, this could be one of the
first attempts to benefit clustering with DP. On the one hand, this work aims at differentiable
data clustering, whereas most existing DP works only focus on solving an optimization prob-
lem using a neural network (Gregor and LeCun, 2010; Liu et al., 2016; Zuo et al., 2015;
Chen et al., 2015). On the other hand, our TELL recasts the vanilla k-means as a one-layer
feedforward neural network (FNN), whereas most existing DP methods (Wang et al., 2015;
Sprechmann et al., 2015; Liu et al., 2018) are build on recurrent neural networks (RNN).
Therefore, this work might provide some novel insights to the community.

Mathematical Notations: Throughout the paper, lower-case bold letters represent column vectors
and upper-case bold letters denote matrices. A> denotes the transpose of the matrix A and I
denotes the identity matrix.

2. Interpretable Neural Clustering

In this section, we first show how to recast the vanilla k-means objective to a differentiable one on
which a neural layer is built. Then, we discuss the interpretability of our model from the perspective
of XAI, followed by the convergence proofs.

2.1 Deficiency of the Vanilla k-means

For a given data set X = {X1,X2, · · · ,Xn}, k-means aims to group each point Xi into one of
k ≤ n sets S = {S1,S2, · · · ,Sk} by minimizing the distance of the within-cluster data points, i.e.,

argmin
S

∑
j

∑
Xi∈Sj

‖Xi −Ωj‖22, (1)

where Ωj denotes the j-th cluster center which is computed as the mean of points in Sj , i.e.,

Ωj =
1

|Sj |
∑

Xi∈Sj

Xi, (2)

where |Sj | denotes the number of data points in the j-th cluster.
To solve Eq. (1), an EM-like optimization is adopted by updating S and Ω iteratively, i.e., fixing

one while optimizing the other. Such an iterative optimization has several drawbacks.
First, it is NP-hard to find the optimal solution for k-means in the Euclidean space, even for

the bi-cluster problem. To ease the NP-hard problem, some variants of k-means are proposed, e.g.,
parametric methods like Fuzzy c-means (Dunn, 1973; Bezdek, 1981). However, these methods are
sensitive to the value of hyper-parameters that are daunting to tune.

Second, the vanilla k-means requires the entire data set to compute the cluster centers in each
iteration (Yang et al., 2018; Bera et al., 2019; Marom and Feldman, 2019). As a result, it is imprac-
tical in large-scale or online clustering scenario, where data is presented in streams. More precisely,
although one could assign the new-coming data to its nearest cluster center, the centers cannot be
further updated unless one replicates the algorithm on all data, including the old and new.
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⨁

⨂ Loss

Figure 1: An illustration of the proposed TELL. This structure is exactly derived from the vanilla
k-means objective and exhibits explicit interpretability. In brief, the hyperplane W is
spanned by the clustering centers Ω and the activation function normalizes the cluster
assignment I(·), which enjoys the model decomposability and algorithmic transparency
as discussed in Section 2.3.

Third, the vanilla k-means is conducted on the fixed inputs and cannot assist the representation
learning. As the success of deep learning largely depends on end-to-end learning, a plug-and-play
neural clustering module is highly expected. In the proposed TELL, the cluster layer could not
only perform clustering but also help the network to learn clustering-favorable representations in an
end-to-end manner.

2.2 The Proposed Method

In this section, we first elaborate on how to reformulate the vanilla k-means into a differentiable
neural layer in Section 2.2.1. Then, in Section 2.2.2, we theoretically prove the necessity of decou-
pling the weight W and bias b of the neural layer even though they are inherently correlated. In
Section 2.2.3, we further reveal that such a decoupling strategy could cause divergent and unstable
training. As a solution, we propose normalizing both the weight of the cluster layer and its gradient
to stabilize the training. Finally, we present an end-to-end framework that could simultaneously
learn a clustering-favorable representation and achieve clustering in Section 2.2.4, which proves the
plug-and-play characteristic and effectiveness of the proposed TELL.

2.2.1 NEURAL NETWORK IMPLEMENTATION OF k-MEANS

To overcome drawbacks of the vanilla k-means mentioned in Section 2.1, we recast its objective
function into a neural layer by rewriting Eq. (1) into

min
n∑
i=1

k∑
j=1

Ij(Xi)‖Xi −Ωj‖22, (3)

where Ij(Xi) indicates the cluster membership of Xi w.r.t. Ωj and only one entry of Ij(Xi) is
nonzero.
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The right part of Eq. (3) could be expanded into

‖Xi −Ωj‖22 = ‖Xi‖22 − 2Ω>j Xi + ‖Ωj‖22. (4)

We then define

Wj = 2Ωj , bj = −‖Ωj‖22, ‖Xi‖22 = βi ≥ 0, (5)

where Wj is the j-th column of W, bj is a scalar which denotes the j-th entry of b, and βi is a
nonnegative constant corresponding to the length of data point Xi.

With the above formulations, we could equivalently recast the scatter between data point Xi and
cluster center Ωj as

‖Xi −Ωj‖22 = βi −W>
j Xi − bj . (6)

For a given temperature factor τ > 0, we relax the categorical variable Ij(Xi) into

Ij(Xi) =
exp(−‖Xi −Ωj‖22 /τ)∑
k exp(−‖Xi −Ωk‖22 /τ)

. (7)

In fact, the above definition of Ij(Xi) can be regarded as the attention of Xi on the j-th cluster,
which will be elaborated later in Section 2.3.

Combining Eq. (6) and Eq. (7), Ij(Xi) could be computed with the proposed neural layer
through

Ij(Xi) =
exp((W>

j Xi + bj − βi)/τ)∑
k exp((W>

k Xi + bk − βk)/τ)
. (8)

Notably, the continuous categorical variable Ij(Xi) could be computed using any normalization
function including but not limited to softmax here. To avoid exhaustively tuning on the temperature
parameter, in our implementation, we adopt an alternative by simply keeping the maximal entry of
Ij(Xi), which is the case when τ approaches 0 and is consistent with the vanilla k-means.

2.2.2 DECOUPLING THE NETWORK WEIGHT AND BIAS

To avoid confusions brought by complex mathematical notations, in the following analysis, we
simply consider the case of one sample x without loss of generality. In this case, the objective
function of TELL could be formulated as

L =
∑
j

Lj =
∑
j

Ij(−W>
j x− bj + β), (9)

where Ij shorts for Ij(x).

Though W and b are inherently coupled (i.e., bj = −‖Wj‖22
4 ) according to the definition in

Eq. (5), we theoretically prove that W and b should be decoupled during the training. In other
words, W and b are optimized independently and the final cluster centers Ω∗ are recovered via
Ω∗ = 1

2W∗.
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To demonstrate the necessity of decoupling W and b, similar to the above reformulation, we
rewrite Eq. (9) into

L = −
∑
j

exp((bj + W>
j x− β)/τ)(bj + W>

j x− β)∑
k exp((bk + W>

k x− β)/τ)

= −
∑
j

exp(zj/τ)∑
k exp(zk/τ)

zj

= −
∑
j

f(zj), (10)

where zj = (−‖Wj‖22
4 + W>

j x− β).
Correspondingly, the objective function becomes

max
∑
j

f(zj)

s.t. zj = −‖Wj‖22
4

+ W>
j x− β.

(11)

As can be seen, Eq. (11) is equivalent to Eq. (3) when W and b are coupled, i.e., bj = −‖Wj‖22
4 .

Since Eq. (11) obtains the optimum at the boundary with z1 = z2 = · · · and f(z) = ∞ when
z =∞, there exists z∗ such that zj = z∗ and f(z∗) reaches the optimum. We can always find a Wj

and bj such that bj + W>
j x − β = z∗, while it is not guaranteed to have a Wj and bj such that

−‖Wj‖22
4 + W>

j x − β = z∗. Notably, though the above analyses are based on the case of a single
sample, the conclusion still holds for multiple samples since they are independent from each other.
In this sense, we have to decouple Wj and bj during training to avoid the trivial solution.

2.2.3 NORMALIZE THE CLUSTER LAYER WEIGHT AND GRADIENT

In Section 2.2.2, we have shown that it is necessary to decouple W and b for preventing the network
from descending into a trivial solution. However, we further notice that when W and b are decou-
pled, directly optimizing them would lead to divergent and unstable training. To address this issue,
we propose normalizing both the cluster layer weight and its gradient to achieve a stable training,
as illustrated in Fig. 2.

To be specific, when W and b are decoupled, minimizing the loss function
∑

j Ij(−W>
j x −

bj + β) in Eq. (9) would lead both W>
j and bj to infinity, as shown in Fig. 2(a). In this case, the

optimization of the cluster layer never converges. To solve this problem, we propose simultaneously
normalizing the weight and bias of the cluster layer. In practice, we adopt a more direct way
by normalizing the cluster centers Ωj , j ∈ [1, k] to have a length of 1 (i.e., Ωj = Ωj/‖Ωj‖).
Accordingly, to preserve the validity of Euclidean distance, data points are normalized to have a
unit length as well (i.e., β = 1). In this sense, Wj would have a length of 2 and bj becomes a
constant. As a result, the loss function in Eq. (9) could be rewritten into

L =
∑
j

Lj =
∑
j

Ij(2−W>
j x). (12)
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Gradient

w/o weight normalization & 
w/o gradient normalization 

(a)

Toward 
Infinity

w/ weight normalization & 
w/o gradient normalization 

(b)

w/ weight normalization & 
w/ gradient normalization 

(c)

Unstable Update Stable Update

Gradient
Gradient

Figure 2: Three different cases of optimizing the cluster layer W, i.e., updating the cluster centers
Ω. (a) Directly minimizing −W>X with SGD, which leads W to infinity and non-
convergence. (b) Conducting weight normalization after each SGD update. This will
prevent W from going to infinity. However, when the gradient is much larger than the
weight, W will be greatly changed after each update, which ends up in unstable training
because the physical meaning of W may differ in each iteration. (c) Conducting gradient
normalization and weight normalization, which promises stable training and is adopted
in our implementation.

Note that since Wj is optimized through SGD, in practice, we have to renormalize it after each
update. However, as illustrated in Fig. 2(b), when the gradient is much larger than the length of Wj ,
Wj will be greatly changed after each update. Taking the MNIST data set as an example, Wold

may correspond to the cluster center of digit “3” at first. However, when the gradient is considerably
large, Wnew would shift to the center of digit “5” after optimization. In other words, the intrinsic
semantic meaning of Wj may differ in each iteration, which would cause unstable optimization,
and thus the network is hard to converge.

Considering the aforementioned drawbacks, we propose simultaneously normalizing the weight
and gradient as illustrated in Fig. 2(c). When the gradient is small enough, the cluster centers are
mildly optimized and their semantic meanings keep the same across the training process, which
promises a stable convergence. The ablation studies in Section 4.4 proves the effectiveness of such
a gradient normalization strategy. In practice, we experimentally normalize the gradient to 10% of
the length of Wj .

2.2.4 END-TO-END TRAINING FOR CLUSTERING AND REPRESENTATION LEARNING

Based on the above discussions, we have recast the vanilla k-means to a neural layer with the
following differentiable loss, namely,

Lclu =
∑
i,j

Ij(Xi)(2−W>
j Xi). (13)

Comparing with the vanilla k-means, one major advantage of our TELL is its plug-and-play
characteristic, namely, it could be plugged into any neural network so that the deep representation
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Encoder Decoder

Reconstruction Loss

Clustering Loss

alternate

Optimize
Representation

Update
Cluster Centers

Figure 3: The end-to-end training framework. The reconstruction loss is used to optimize encoder
and decoder simultaneously, while the clustering loss is used to optimize the cluster layer
and encoder alternatively.

could be utilized to boost the clustering performance. To this end, instead of directly conducting
clustering in the raw feature space, we use an autoencoder (AE) to extracted more discriminative
features h = {h1,h2, . . . } by minimizing the following reconstruction loss, namely,

hi = f(Xi),

X̂i = g(hi),

Lrec =
∑
i

‖Xi − X̂i‖22,
(14)

where f(·) and g(·) denote the encoder and decoder respectively, and hi is normalized to have a
unit length as aforementioned. By replacing Xi with hi in Eq. (13), the overall loss of TELL is a
combination of the reconstruction loss and the clustering loss, i.e.,

L = Lrec + λLclu
=
∑
i

‖Xi − g(f(Xi))‖22 + λ
∑
i,j

Ij(Xi)(2−W>
j f(Xi)),

(15)

where λ = 0.01 weights the two losses.
As can be seen, the reconstruction loss is used to simultaneously optimize the encoder f(·) and

decoder g(·). For the clustering loss, we have shown that it can optimize the cluster layer weight
Wj . Here, to further improve the representability of features, we also optimize the encoder f(·)
with the clustering loss by pulling features to their corresponding cluster centers. In practice, to

8
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Similarity

Attention

⨂ Loss

+2+2

Figure 4: Besides the inhere interpretability, our TELL could also be understood from the perspec-
tive of the attention mechanism. The pathway below (denoted by the dot line) implements
attention on the loss of the hyperplane W w.r.t. the input Xi. In brief, our TELL learns
the attention Xi paid on the cluster centers Ω.

stabilize the training, the right term of Eq. (15) is used to optimize W and f(·) alternatively. The
overall end-to-end training framework is summarized in Fig. 3.

2.3 Interpretability of TELL

Although explainable artificial intelligence (XAI) has achieved remarkable progress recently (Arri-
eta et al., 2020), one barrier to the consensus on common grounds is the interchangeable misuse of
“explainability” and “interpretability” in the literature. In brief, explainability often refers to post-
hoc explanations by various approaches to enhance the understandability of the model, such as text
explanations, visual explanations, explanations by simplification, and feature relevance explanations
techniques. Different from explainability, interpretability is rooted in the design of the model itself,
which is highly expected but also quite challenging. The interpretability is also expressed as trans-
parency, which includes the model decomposability and algorithmic transparency (Arrieta et al.,
2020). In the following, we will show that the proposed method (the cluster layer to be specific)
enjoys these two interpretable characteristics.

Our TELL embraces model decomposability which stands for the feasibility to explain each part
of the cluster layer. In other words, the input, weight parameters, activation, and loss function of
our cluster layer are all interpretable. To be specific, the input to the cluster layer corresponds to the
given data points, the weight W is exactly the cluster centers Ω, the argmax activation is used to
achieve clustering by assigning each data point to its nearest cluster, and the loss function is recast
from the vanilla k-means as shown in Eq. (4-5). To strengthen our claim on the interpretability,
we also made some post-hoc explanations by visualizing the learned cluster centers reconstructed
from Ω. As shown in Fig. 5, the reconstruction of cluster centers exactly corresponds to the MNIST
digits, which demonstrates that TELL indeed captures the intrinsic semantic meanings.

Our TELL also possesses algorithmic transparency since its error surface or dynamic behavior
can be reasoned about mathematically, allowing the user to understand how the model acts. To
be specific, we not only theoretically provide the convergence analysis of our method later in Sec-
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tion 2.4, but also show the necessity of decoupling W and b, as well as normalizing both the weight
W and its gradient, to achieve proper and stable optimization.

In addition, we could also understand the working manner of TELL from the standpoint of
attention mechanism that is popular in natural language processing (Bahdanau et al., 2014; Vaswani
et al., 2017). As shown in Fig. 4, TELL aims to learn a linear hyperplane W (denoted by the
upper pathway) spanned by a set of cluster centers. The hyperplane is able to partition similar data
points into the same cluster and dissimilar ones into different clusters based on attention. More
specifically, to learn the hyperplane through Eq. (6), TELL computes the dissimilarity between
input Xi and cluster centers Ω via (2 −W>Xi). After that, the loss of TELL is the summation
of the weighted dissimilarity based on I(Xi). Intuitively, this implements the attention mechanism
as shown in the pathway below in Fig. 4, which decides the cluster centers Xi pays attention to.
Actually, the attention here serves as the clustering assignment.

2.4 Convergence Proofs

In this section, we theoretically prove that the proposed loss L sufficiently converges with the SGD
optimization. Due to the space limitation, we provide full details of the proof in Appendix A,
including some supporting experimental studies.

For ease of presentation, let L∗ denote the optimal loss, L∗t be the smallest loss so far at step t,
and W∗ be the desirable weight which corresponds to the optimal cluster centers Ω∗. We consider
the case that the standard SGD is used to optimize our network, i.e.,

Wt+1 = Wt − ηt∇L(Wt), (16)

where ∇L(Wt) denotes the gradient of L w.r.t. Wt. In the following, we abbreviate ∇L(Wt) to
∇Lt for simplicity.

Definition 1 (Lipschitz Continuity) A function f(x) is Lipschitz continuous on the set Ω, if there
exists a constant ε > 0, ∀x1, x2 ∈ Ω such that

‖f(x1)− f(x2)‖ ≤ ε‖x1 − x2‖, (17)

where ε is termed as the Lipschitz constant.

Namely, the objective function L of TELL is Lipschitz continuous i.i.f. ‖∇Lt‖ ≤ ε. In other
words, to meet the Lipschitz continuity, we need to prove that the upper boundary of∇Lt/τ exists.

Theorem 1 There exists ε > 0 such that ‖∇Lt‖ ≤ ε, where ε = τ + 2τ max(‖zi‖) and zi =
W>

i x/τ .

Theorem 1 shows that the proposed objective function L(W) will be upper bounded by a pos-
itive real number ε when ‖zi‖ is bounded. As a matter of fact, there exists an upper boundary of
‖zi‖ for any real-world data set. Furthermore, without loss of generality, one could normalize x and
Ωi to meet ‖x‖ = ‖Ωi‖ = 1, and thus ‖Wi‖ = 2 is bounded. Based on Theorem 1, we have the
following theorem.

Theorem 2 One could always find an optimal model L∗T which is sufficiently close to the optimal
L∗ after T steps, i.e.,

L∗T − L∗ ≤
‖W1 −W∗‖2F + ε2

∑T
t η

2
t

2
∑T

t=1 ηt
. (18)

10
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Based on Theorem 2, we could derive the following two lemmas.

Lemma 1 For the fixed step size (i.e. ηt = η) and T →∞,

L∗T − L∗ →
ηε2

2
. (19)

Lemma 2 For the fixed step length (i.e. ηt = η/∇Lt) and T →∞,

L∗T − L∗ →
ηε

2
. (20)

Lemma 1 and 2 show that the loss will eventually converge to L∗ with a radius of ηε2

2 and ηε
2

within T steps.

3. Related Works

This work is closely related to XAI, clustering, and differentiable programming, which will be
briefly introduced in this section.

3.1 Model Explainability vs. Interpretable Model

Generic deep architectures, as often referred to as “black-box” methods, rely on stacking somewhat
ad-hoc modules, which makes it prohibitive to understand their working mechanisms. Despite a few
hypotheses and intuitions, it appears difficult to understand why deep models work, how to analyze
them, and how they are related to classical machine learning models.

To solve the aforementioned problem, a variety of works (Zeiler and Fergus, 2014; Koh and
Liang, 2017; Bau et al., 2017; Dosovitskiy and Brox, 2016; Kim et al., 2016) have devoted towards
the explainability of neural networks. In general, these works mainly focus on establishing some
post-hoc explanations by designing some visualization techniques or agent models to enhance the
understandability of neural networks.

Different from these studies on the explainability of neural networks, we directly develop a novel
interpretable neural network as advocated in (Rudin, 2019). To be specific, the proposed TELL
enjoys not only the post-hoc explainability but also the interpretability by design (see Section 2.3).
In short, one could explicitly understand why the structure of the TELL is presented as itself, the
physical meaning of each part of the cluster layer, and why it can perform data clustering.

3.2 Stochastic k-means Clustering

To enhance the scalability of the vanilla k-means, the stochastic approximation was first presented
in (Bottou and Bengio, 1995), which is also called online k-means. Another pathway is generalizing
the idea to mini-batch k-means (Newling and Fleuret, 2016; Tang and Monteleoni, 2017). The
major difference between stochastic and mini-batch k-means is that the former updates all centers
asynchronously whereas the latter updates cluster centers after each iteration. Another difference
is that mini-batch k-means is provable to converge to a local optimum, whereas it is not easy to
promise that stochastic k-means could monotonically approximate the k-means objective, or even
its expectation.

Compared with the stochastic methods, our TELL enjoys both online and mini-batch charac-
teristics brought by its neural network implementation. In addition, instead of computing cluster

11
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centers as the mean of samples, TELL optimizes the network weight W to obtain the centers via
Ω = 1

2W. As far as we know, there has not been any attempt like TELL before to establish a
differential neural network for the vanilla k-means or its stochastic variants. Another advantage of
TELL is that it could be plugged into any neural network to perform clustering and help the network
to learn a clustering-favorable representation in an end-to-end manner (see Section 2.2.4).

3.3 Differentiable Programming

Differentiable programming (DP, also called model-based optimization) is an emerging and impact-
ful topic. It bridges classical machine learning models and deep neural networks by emphasizing
problem-specific prior and interpretability. DP advocates building complicated end-to-end machine
learning pipelines by assembling parameterized functional blocks, that are later jointly trained from
examples, using some form of differential calculus—mostly stochastic gradient descent (SGD). It
bears resemblances to building software, except that it is parameterized, automatically differenti-
ated, and trainable/optimizable.

To the best of our knowledge, Learned ISTA (LISTA) (Gregor and LeCun, 2010) could be the
first well-known DP work in the area of deep learning, which unfolds the ISTA algorithm (Blu-
mensath and Davies, 2008), a popular `1-optimizer, as a simple RNN. In the unrolled RNN, the
number of layers and the weight correspond to the iteration number and the dictionary, respectively.
Inspired by the success of LISTA, numerous methods have been proposed to address a variety of
problems, e.g. image restoration (Chen et al., 2015), audio processing (Sprechmann et al., 2015),
segmentation (Zheng et al., 2015), hashing (Liu et al., 2018), and clustering (Wang et al., 2015).

As discussed in the Introduction section, this work is remarkably different from most existing
DP approaches in either network structure (FNN vs. RNN) and applications (clustering vs. opti-
mization), which may serve as a novel angle to facilitate future DP works.

4. Experimental Results

In this section, we carry out experiments to verify the effectiveness of the proposed TELL comparing
with 14 state-of-the-art clustering approaches. Due to the space limitation, we present additional
theoretical and experimental analyses in the attached supplementary material.

4.1 Experimental Settings

All experiments are conducted on a Nvidia 2080Ti GPU with PyTorch 1.7.0 and CUDA 11.0. For
all the compared baselines, we use the source code released by authors.

Baselines: We compare TELL with i) three popular subspace clustering approaches including
Spectral Clustering (SC) (Ng et al., 2001), LRR (Liu et al., 2013), and LSR (Lu et al., 2012); ii)
two large-scale clustering methods including Scalable LRR (SLRR) (Peng et al., 2015) and Large-
scale Spectral Clustering (LSC) (Cai and Chen, 2015); iii) two matrix decomposition based meth-
ods and agglomerative clustering methods, i.e. NMF (Cai et al., 2011) and Zeta function based
Agglomerative Clustering (ZAC) (Zhao and Tang, 2009); and iv) two deep learning based clus-
tering methods, i.e., Deep Embedding Clustering (DEC) (Xie et al., 2016) and Variational Deep
Embedding (VaDE) (Jiang et al., 2016). Moreover, we also use the vanilla k-means, GMM, and
FCM (Bezdek, 1981) as baselines. Notably, either of LSR and LSC has two variants, which are
denoted by LSR1/LSR2 and LSC-R/LSC-K, respectively.

12



XAI BEYOND CLASSIFICATION: INTERPRETABLE NEURAL CLUSTERING

Implementation Details: We adopt a convolutional autoencoder to extract 10-dimensional
features for all the data sets and then pass the feature into our cluster layer (see Fig. 3). More
specifically, the encoder consists of four convolutional layers conv(16, 3, 1, 1)-conv(32, 3, 2, 1)-
conv(32, 3, 1, 1)-conv(16, 3, 2, 1) followed by a two-layer MLP fc(256)-fc(10), where conv(16, 3,
1, 1) denotes a convolutional layer with a channel number of 16, a kernel size of 3, a stride length
of 1, and a padding size of 1, and fc(256) denotes a fully connected layer with 256 neurons. Batch
normalizations are applied after each convolutional layer, and the ReLU activation is used at the
end of each layer except the last. The decoder is mirrored from the encoder, with the sigmoid acti-
vation at the output layer. Both the autoencoder and the cluster layer are randomly initialized with
Kaiming uniform (He et al., 2015), which are then simultaneously trained for 3000 epochs with the
default Adadelta (Zeiler, 2012) optimizer. Motivated by the vanilla k-means, in practice, we run
TELL five times with different random initializations and obtain the final result by the run with the
minimal clustering loss Lclu in Eq. (13)(see Appendix B for more details). For fair comparisons,
we have tuned hyper-parameters for compared methods following the parameter tuning strategies
suggested in the original papers and report them with corresponding results. Note that there is no
hyper-parameter in the proposed method and no laborious tuning is needed.

Data sets: Our method is evaluated on the following three data sets, namely, the full MNIST
handwritten digital database (Lecun et al., 1998), the full CIFAR-10 image database (Krizhevsky
and Hinton, 2009), and the full CIFAR-100 image database (Krizhevsky and Hinton, 2009). For
CIFAR-100, we adopt its 20 super-classes as partitions. In other words, we conduct experiments on
the 20 super-classes of CIFAR-100 and report the mean, median, and maximum of the performance
over these subsets, respectively. We normalize the data to be in the range of [0, 1] before feeding
them into the network, and no more preprocessing is applied.

Evaluation Metrics: Three widely used metrics are used to evaluate the clustering perfor-
mance, including Clustering Accuracy (ACC), Normalized Mutual Information (NMI), and Ad-
justed Rand Index (ARI). For these three metrics, a higher value indicates a better clustering perfor-
mance.

4.2 Experimental Comparisons

In this section, we evaluate the performance of TELL on three image benchmarks, including MNIST,
CIFAR-10, and CIFAR-100. The training and test split are merged in all our experiments. Specifi-
cally, the MNIST data set consists of 70,000 handwritten digits over 10 classes, and each grayscale
image is of size 28×28. The CIFAR-10 data set consists of 60,000 RGB images of size 32×32×3
from 10 classes. The CIFAR-100 data set contains 60,000 RGB images of size 32 × 32 × 3 from
100 fine-grained classes which belong to 20 coarse-grained superclasses. The CIFAR-10/100 data
sets are quite challenging and have been less touched in prior clustering works.

The clustering results on MNIST and CIFAR-10 are shown in Table 1. As can be seen, the
proposed TELL gives superior clustering results in all three metrics. For example, the proposed
TELL outperforms VaDE, a Gaussian Mixture Model (GMM) based deep clustering method, by
4.57% in the term of ARI on MNIST, which proves its effectiveness. Note that LRR and SLRR
show inferior performance on these two data sets, which may attribute to that the data does not meet
the low-rank assumption well. We would like to point out that the performance of TELL could be
further improved when a more powerful representation learning method is adopted, as verified in
Table 5.
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Methods MNIST CIFAR-10
ACC NMI ARI Parameter ACC NMI ARI Parameter

k-means 78.32 77.75 70.53 — 19.81 5.94 3.01 —
GMM 80.83 84.40 76.84 — 19.31 7.06 3.33 —
FCM 21.56 12.39 5.10 — 17.02 3.92 2.56 —
SC 71.28 73.18 62.18 1 19.81 4.72 3.22 10
LRR 21.07 10.43 10.03 10.01 13.07 0.43 0.03 0.01
LSR1 40.42 31.51 21.35 0.4 19.79 6.05 3.64 0.6
LSR2 41.43 30.03 20.00 0.1 19.08 6.37 3.16 0.5
SLRR 21.75 7.57 5.55 2.1 13.09 1.31 0.94 0.1
LSC-R 59.64 56.68 45.98 6 18.39 5.67 2.58 3
LSC-K 72.07 69.88 60.81 6 19.29 6.34 3.89 3
NMF 46.35 43.58 31.20 10 19.68 6.20 3.21 3
ZAC 60.00 65.47 54.07 20 5.24 0.36 0.00 10
DEC 83.65 73.60 70.10 10 18.09 4.56 2.47 80
VaDE 92.36 86.58 85.09 — 20.87 7.20 3.95 —
TELL 95.16 88.83 89.66 — 25.65 10.41 5.96 —

Table 1: Clustering performance on the MNIST and CIFAR-10 data set.

Methods S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Max Mean Median

k-means 29.63 43.30 31.53 30.03 34.83 30.43 33.60 38.80 28.93 30.70 43.30 33.18 31.12
GMM 28.37 38.07 28.80 27.53 32.10 34.10 32.30 33.57 29.67 28.43 38.07 31.29 30.89
FCM 26.77 37.80 25.30 25.97 29.77 26.37 32.60 36.73 25.00 25.33 37.80 29.16 26.57
SC 31.90 39.30 33.67 27.53 34.27 27.77 33.10 36.17 26.90 32.30 39.30 32.29 32.70
LRR 21.77 21.73 21.37 20.13 21.60 21.80 21.53 21.27 21.90 21.50 21.90 21.46 21.57
LSR1 21.93 21.40 22.27 21.87 21.47 21.30 22.33 21.97 21.07 21.90 22.33 21.75 21.89
LSR2 22.93 22.67 22.87 23.80 24.10 21.83 22.07 25.30 21.77 22.10 25.30 22.94 22.77
SLRR 22.40 22.27 21.77 21.73 22.50 22.63 22.53 22.57 22.40 22.50 22.63 22.33 22.45
LSC-R 31.97 40.50 30.77 28.87 34.30 28.67 32.90 35.27 27.13 32.03 40.50 32.24 32.00
LSC-K 32.36 39.97 34.30 30.93 34.37 30.07 32.80 37.87 28.23 32.60 39.97 33.35 32.70
NMF-LP 31.30 43.93 33.40 30.57 34.87 30.93 31.03 34.33 29.47 32.23 43.93 33.21 31.77
ZAC 20.13 20.33 20.20 20.27 20.40 20.23 20.30 20.33 20.43 20.20 20.43 20.28 20.29
DEC 31.17 43.97 29.97 30.60 34.87 28.50 33.40 20.07 29.87 31.97 43.97 31.44 30.89
VaDE 28.47 35.83 23.83 25.67 35.23 29.57 33.10 36.53 28.20 26.27 36.53 30.27 29.02
TELL 34.07 46.20 30.03 31.47 37.30 31.03 36.90 38.73 29.83 35.13 46.20 35.07 34.60

Table 2: Clustering accuracy on the first 10 super-classes of the CIFAR-100 data set.

For CIFAR-100, we conduct clustering on its 20 super-classes of which each contains 3000
images from 5 fine-grained classes. As shown in Tables 4.2 and 3, the proposed TELL shows
encouraging performance, which is 1.72% and 3.30% higher than its best competitor in terms of
mean ACC on the first and last 10 super-classes, respectively. Comparing with the recently proposed
DEC and VaDE, our method earns a performance gain of 6.43% and 5.87% on the last 10 super-
classes, respectively. The results demonstrate the effectiveness of TELL and the benefits brought by
the end-to-end training paradigm. Note that only the ACC metric is reported here due to the space
limitation.
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Methods S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 Max Mean Median

k-means 39.53 28.37 25.23 26.87 24.10 31.83 27.50 32.83 31.00 39.80 39.80 30.71 29.69
GMM 30.10 30.03 27.07 29.50 24.83 32.80 27.70 31.83 29.27 38.83 38.83 30.20 29.77
FCM 41.80 29.33 23.77 26.77 23.30 29.40 27.43 23.27 25.70 32.97 41.80 28.37 27.10
SC 40.77 31.80 24.83 26.33 23.97 31.03 30.57 30.97 28.50 39.30 40.77 30.81 30.77
LRR 21.87 21.67 21.97 21.67 20.37 21.27 21.77 22.00 21.20 21.47 22.00 21.53 21.67
LSR1 21.80 21.93 21.57 21.30 22.10 22.27 22.00 21.70 21.60 21.90 22.27 21.82 21.85
LSR2 26.43 22.13 20.30 24.10 22.00 21.97 21.47 21.07 21.17 24.60 26.43 22.52 21.99
SLRR 22.63 22.50 22.03 22.90 22.27 21.57 21.47 22.77 23.30 22.37 23.30 22.38 22.44
LSC-R 41.53 30.87 24.47 26.43 23.70 20.97 29.10 31.97 28.63 32.93 41.53 29.06 28.87
LSC-K 43.90 30.67 24.67 26.57 24.10 29.10 30.77 30.37 29.57 38.60 43.90 30.83 29.97
NMF-LP 42.00 30.27 25.00 25.33 22.83 30.33 29.13 32.13 29.13 40.97 42.00 30.71 29.70
ZAC 20.20 20.23 20.30 20.27 20.23 20.30 20.30 20.27 20.23 20.23 20.30 20.26 20.25
DEC 21.80 20.17 25.03 26.90 23.80 31.83 27.07 28.57 30.63 41.17 41.17 27.70 26.99
VaDE 31.07 32.00 27.17 28.47 25.73 24.63 28.23 21.87 24.57 38.90 38.90 28.26 27.70
TELL 46.70 35.93 29.73 29.10 24.63 35.93 30.53 37.37 27.57 43.83 46.70 34.13 33.23

Table 3: Clustering accuracy on the last 10 super-classes of the CIFAR-100 data set.

4.3 Visualization Analyses

To give a more intuitive understanding of the proposed TELL, in this section, we conduct two
visualization analyses, including cluster center reconstruction and t-SNE visualization.

Cluster Center Reconstruction: We feed the cluster representations into the decoder and re-
construct the clustering centers learned by TELL and AE+k-means across the training process.
According to reconstruction outcomes in Fig. 5, both TELL and k-means learn more representative
cluster centers as the training goes. However, k-means could fail to capture the intrinsic 10 digit
numbers and mix confusing digits like ‘3’-‘8’ or ‘3’-‘5’ up. Notably, TELL also confuses the digit
‘4’ and ‘9’ at the early training stage (see results at epoch 1000), but it successfully distinguishes
them after more iterations. In other words, TELL is more likely to achieve the global optimum than
the vanilla k-means.

(a) TELL Epoch=100 (b) TELL Epoch=1000 (c) TELL Epoch=3000

(d) AE+k-means Epoch=100 (e) AE+k-means Epoch=1000 (f) AE+k-means Epoch=3000

Figure 5: Cluster centers reconstruction on the MNIST data set.
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(a) epoch=0 (b) epoch=50 (c) epoch=500

(d) epoch=1000 (e) epoch=1500 (f) epoch=3000

Figure 6: t-SNE visualization on the learned MNIST representations across the training process.
Different digits are denoted with different colors, and the black pentagrams denote the
cluster centers estimated by TELL.

t-SNE Visualization: To visualize the clustering result, we employ t-SNE (Maaten and Hinton,
2008) to reduce the dimensionality of the learned representation to two. As shown in Fig. 6(a), as
the training goes, TELL learns a more compact and discriminative representation, which improves
the separability of the estimated cluster centers.

4.4 Ablation Studies

In this section, we conduct three ablation studies to investigate the robustness and effectiveness of
the proposed TELL. Specifically, we test the performance of TELL with different training paradigms,
features, and optimization strategies.

Effectiveness of End-to-end Training: In our method, the clustering loss is used to iteratively
update cluster centers and optimize instance features. To prove the effectiveness of such an end-to-
end learning paradigm, we test TELL on fixed features learned by autoencoders, i.e., the clustering
loss is used to update cluster centers only.

In practice, we adopt a convolutional autoencoder to extract features from images with different
channels (e.g., 1 for MNIST and 3 for CIFAR-10/100). Here, to see how our TELL relies on the
feature extraction ability of the network, we also test TELL with the fully connected autoencoder
on the MNIST data set. The structure of encoder is fc(500)-fc(500)-fc(2000)-fc(10), and the
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Method
FCN CNN

ACC NMI ARI ACC NMI ARI
k-means 78.32 77.75 70.53 80.40 79.65 74.34

TELL-TwoStage 80.68 77.12 72.27 84.07 79.04 74.52
TELL 93.25 85.52 85.76 95.16 88.83 89.66

Table 4: Influence of different network structures on the MNIST data set. “TwoStage” means TELL
is conducted on the fixed representations learned by the autoencoder instead of the standard
end-to-end training.

decoder is symmetric. The ReLU activation is applied at the end of each layer except the last layer
of encoder where no activation is used and the last layer of decoder where sigmoid is applied instead.

Table 4 shows that the performance of TELL with end-to-end training is much better than the
“Two-Stage” paradigm, which suggests that pulling features to its corresponding cluster center helps
the network to learn clustering-favorable representations. It is also interesting to note that under
the “Two-Stage” learning paradigm, TELL finds slightly better cluster centers with higher ACC
and ARI but a bit lower NMI than the vanilla k-means. Besides, TELL achieves slightly inferior
performance with FCN than CNN due to the weaker feature extraction ability. But we would like
to point out that the clustering accuracy of TELL with FCN still outperforms all the 14 compared
baselines.

Influence of Feature Representability: We notice that the deep clustering method IMSAT (Hu
et al., 2017) could achieve a promising result by employing some data augmentation techniques.
It achieves 98.4% ACC on MNIST compared with 95.16% by TELL. However, we would like to
point out that TELL enjoys the following advantages. On the one hand, TELL is a transparent
neural model which could be interpreted from perspectives of model decomposability, algorithmic
transparency, and post-hoc explainability. On the other hand, TELL is a plug-and-play online clus-
tering module complementary to any neural network. In other words, the clustering performance
of TELL would benefit from a better representation learning module. To see how the proposed
TELL relies on the quality of representations, we test TELL on the raw data and features learned
by IIC (Ji et al., 2019), which uses data augmentations to enhance the feature extraction ability. As
shown in Table 5, TELL achieves a higher ACC than IMSAT. Besides, consistent with the results
in Table 4, TELL could find slightly better cluster centers than the vanilla k-means with batch-wise
optimization, while the latter needs the entire data set and is impractical for large-scale or online
data sets.

Effectiveness on handling online data: To see how well TELL handles new coming data,
we also test it under a different online scenario wherein the model is first trained on a relatively
small data set and then evaluated on a large online data set. Specifically, 1,000 digits are randomly
sampled from the MNIST test set as the training data on which we apply the vanilla k-means and
train our TELL to obtain the clustering centers. After that, 60,000 digits from the MNIST training
set are used to evaluate the performance. During the evaluation, the data is presented in an online
manner (i.e., each time only a batch of data comes, and it will not be accessible afterward). As the
vanilla k-means could not update cluster centers without accessing the entire data set, clustering is
achieved by assigning each digit to the closest cluster center computed on the early 1,000 digits.
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Method
Raw IIC

ACC NMI ARI ACC NMI ARI
k-means 55.34 53.20 40.28 98.20 96.08 96.06

TELL-TwoStage 56.20 52.82 40.33 98.64 96.54 96.98
k-means† 48.52 46.75 31.25 98.10 95.90 95.85

TELL-TwoStage† 54.59 50.80 38.33 98.44 96.22 96.56

Table 5: Influence of features with different representability on the MNIST data set. ‘†’ indicates
that the network is trained on 1,000 samples randomly selected from the test set, and
evaluated on 60,000 training samples in an online manner.

Optimizers ACC NMI ARI AMI Homo. Comp. V Mea.

AdaDelta 95.16 88.83 89.66 88.83 88.80 88.86 88.83
Adam 93.75 87.36 87.03 87.36 87.34 87.38 87.36

AdaDelta w/o grad. norm. 81.08 82.85 76.09 82.84 81.69 84.04 82.85
Adam w/o grad. norm. 80.49 80.48 73.36 80.47 79.32 81.67 80.48

Table 6: Influence of different optimizers on the MNIST data set.

On the contrary, our TELL could timely update parameters of the cluster layer to fit new coming
data through Eq. (13). The last two rows in Table 5 indicate that such a batch-wise optimization of
cluster centers improves the clustering performance on online data, especially when there is a fair
degree of biases between the training and test set. Note that here the superior performance of TELL
than the vanilla k-means solely attributes to its timely update of cluster centers, since the feature is
fixed and will not be optimized through end-to-end representation learning introduced in Sec 2.2.4.

Influences of Optimizers: Besides the above investigations on different initializations and fea-
tures, we further consider the role of the used optimization strategies. To this end, we carry out
experiments on the MNIST data set by training TELL with two popular SGD variants, namely,
Adadelta (Zeiler, 2012) and Adam (Kingma and Ba, 2015). In the implementation, we adopt the
default setting for these optimizers. For a more comprehensive study, we adopt four more met-
rics to evaluate the clustering quality, i.e. Adjusted Mutual Index (AMI), Homogeneity (Homo.),
Completeness (Comp.), and V Measure (V Mea.). Note that ACC, AMI, ARI, and AMI are ex-
ternal metrics that are computed based on the ground-truth, while Homogeneity, Completeness,
and V Measure are internal metrics that measure the compactness/divergence of within-/between-
cluster samples. Table 6 shows that TELL with Adadelta performs slightly better than with Adam,
and it is not necessary to tune the optimizer parameter.

Recall that to stabilize the update of cluster centers, we normalize their gradient to have an L2-
norm of 0.1, which is 10% of the L2-norm of cluster centers. Here, to show the necessity of such
a gradient normalization strategy, we conduct the following ablation study by simply applying the
standard gradient descent on the cluster layer. One could see that both two optimizers give inferior
performance when no normalization is performed. Because when the length of the gradient is much
larger than that of cluster centers, the cluster centers change exceedingly at every iteration, thus
preventing them from convergence.
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(a) TELL with FCN. (b) TELL with CNN.

Figure 7: Performance w.r.t training epoch on the MNIST data set. The left and right y-axis denote
the clustering metrics and the loss, respectively.

4.5 Convergence Analysis

In Section 3.2, we have theoretically proved that our method will sufficiently approximate the global
optimum under some mild conditions. In this section, we conduct experiments on the MNIST data
set to verify our theoretical analysis. In Figure 7, we report the clustering performance and the
loss value of our method with the fully connected neural network and the convolutional neural
network. From the result, one could observe that TELL convergences after ∼1400/800 epochs
with FCN/CNN in terms of NMI, ACC, ARI, and the loss value. It should be pointed out that the
results reported in Table 1—3 are with 3000 training epochs, and if we continue training TELL to
5000 epochs, the performance could be further improved. Namely, TELL achieves better results of
93.62%, 86.25%, 86.47% and 95.54%, 89.72%, 90.44% in terms of ACC, NMI, and ARI with FCN
and CNN, respectively.

5. Conclusion

In this paper, we directly build an interpretable neural layer which is a differentiable alternative
of the vanilla k-means. The proposed clustering neural network overcomes some shortcomings
of the vanilla k-means and owns the properties of parallel computing, provable convergence, on-
line clustering, and clustering-favorable representation learning. In addition, our method enjoys
interpretability in terms of model decomposability, algorithmic transparency, and post-hoc explain-
ability. Such interpretability is inhered in the model itself rather than by an agent model, which is
highly expected in XAI. It should be pointed out that this paper only focuses on the interpretability
of the cluster layer. In the future, we plan to investigate how to create an interpretable neural module
for representation learning as well.
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Appendix A.

In this appendix, we provide full details of the convergence analysis of our TELL. In brief, we theo-
retically prove that the loss L of our network will sufficiently converge with the SGD optimization.

For ease of presentation, let L∗ denote the optimal loss, and L∗t be the smallest loss found so far
at the t-th step. Similarly, W∗ denotes the optimal weight corresponds to cluster centers Ω∗. We
consider the case when the standard SGD is used to optimize our network, i.e.

Wt+1 = Wt − ηt∇L(Wt), (1)

where ∇L(Wt) denotes the gradient of L w.r.t. Wt. In the following, we abbreviate ∇L(Wt) to
∇Lt for simplicity.

Definition 1 (Lipschitz Continuity) A function f(x) is Lipschitz continuous on the set Ω, if there
exists a constant ε > 0, ∀x1, x2 ∈ Ω such that

‖f(x1)− f(x2)‖ ≤ ε‖x1 − x2‖, (2)

where ε is termed as the Lipschitz constant.

Namely, the objective function L of TELL is Lipschitz continuous i.i.f. ‖∇Lt‖ ≤ ε. In other words,
to meet the Lipschitz continuity, we need to prove that the upper boundary of∇Lt/τ exists. To this
end, we propose the following theorems.

Theorem 1 There exists ε > 0 such that ‖∇Lt‖ ≤ ε, where ε = τ + 2τ max(‖zi‖) and zi =
W>

i x/τ .

Proof Without loss of generality, we consider our loss in the form of

L(Wi) = −exp((W>
i x− 2)/τ)(W>

i x− 2)∑
k exp((W>

k x− 2)/τ)
. (3)

Let zi = (W>
i x− 2)/τ , we have

f(zi) = −τ exp(zi)(zi)∑
j exp(zj)

= −τpizi, (4)

and then

∇if(zi) =− τ

(
(exp(zi) + exp(zi)zi)

∑
j exp(zj)

(
∑

j exp(zj))2
− exp(zi) exp(zi)zi

(
∑

j exp(zj))2

)
=τ(−pi − pizi + pipizi). (5)

As 0 ≤ ‖pi‖ ≤ 1, we further have

‖∇if(zi)‖ ≤ τ‖pi‖(1 + ‖zi‖+ pi‖zi‖) ≤ τ(1 + ‖zi‖+ ‖zi‖). (6)

It shows that our objective function L(Wi) will be upper bounded by a positive real number
ε when ‖zi‖ is bounded (see Figure 1 for an illustrative example). In fact, there exists the upper
boundary of ‖zi‖ for any real-world data set. Moreover, without loss of generality, one could en-
force ‖Xi‖ = 1 and ‖Ωi‖ = 1 and thus ‖Wi‖ = 2 is bounded.

Based on Theorem 1, we have the following convergence result based on (Boyd et al., 2003).
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Figure 1: A toy example to show the bound of our loss function in the 1-dimensional case. The
x-axis denotes the data points (z) randomly sampled from -100 to 100, and the y-axis de-
notes the corresponding loss value. One could see that our loss function will be bounded
if z is bounded.

Theorem 2 One could always find an optimal model L∗T which is sufficiently close to the desired
L∗ after T steps, i.e.,

L∗T − L∗ ≤
‖W1 −W∗‖2F + ε2

∑T
t η

2
t

2
∑T

t=1 ηt
. (7)

Proof Let W∗ = 2Ω∗ be the minimizer to our objective function, i.e. Eq. (3), then

‖WT+1 −W∗‖2F =‖WT −W∗‖2F − 2tr(ηT∇L>T (WT −W∗)) + η2t ‖∇LT ‖2F , (8)

where tr(·) denotes the trace of a matrix.
By recursively applying the above equation, we have

‖WT+1 −W∗‖2F =‖W1 −W∗‖2F − 2
T∑
t=1

ηttr(Wt −W∗) +
T∑
t=1

η2t ‖∇Lt‖2F . (9)

As L(W) satisfies the Lipschitz Continuity and according to the definition of gradient, i.e.

f(x∗) ≥ f(xt) +∇L>t (x∗ − xt) (10)

then,

‖WT+1 −W∗‖2F ≤‖W1 −W∗‖2F − 2
T∑
t=1

ηt(Lt − L∗) + ε2
T∑
t=1

η2t , (11)

2
T∑
t=1

ηt(Lt − L∗) ≤ ‖W1 −W∗‖2F + ε2
T∑
t=1

η2t , (12)
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Lt − L∗ ≥ min
t=1,2,··· ,T

(Lt − L∗) = L∗T − L∗, (13)

where L∗T is the best L found so far in T steps.
Combining Eq. (12) and Eq. (13), we finally have

L∗T − L∗ ≤
‖W1 −W∗‖2F + ε2

∑T
t=1 η

2
t

2
∑T

t=1 ηt
. (14)

Based on Theorem 2, the following two lemmas could be derived.

Lemma 1 For the fixed step size (i.e. ηt = η) and T →∞,

L∗T − L∗ →
ηε2

2
. (15)

Proof After T steps, we have

L∗T − L∗ ≤
‖W1 −W∗‖2F + Tε2η2

2Tη
=
‖W1 −W∗‖2F /(Tη) + ηε2

2
. (16)

Lemma 2 For the fixed step length (i.e. ηt = η/∇Lt) and T →∞,

L∗T − L∗ →
ηε

2
(17)

Proof Similar to the proof for Lemma 1.

Lemma 1—2 show that the loss will eventually converge toL∗ with a radius of ηε
2

2 and ηε
2 within

T steps.
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Run ACC NMI ARI Lclu
1 95.16 88.83 89.66 0.018138861
2 95.10 89.03 89.53 0.018156468
3 82.88 87.00 81.01 0.018166682
4 82.04 83.90 77.05 0.018166506
5 81.69 83.87 77.33 0.018164165

Table S1: The clustering performance on MNIST in five different runs with random initialization.
The best and second-best results are shown in bold and underline, respectively.

Run ACC NMI ARI Lclu
1 24.44 10.59 5.37 0.018088905
2 24.97 10.19 5.73 0.018088135
3 22.19 10.40 5.50 0.018093264
4 23.25 10.12 5.36 0.018089087
5 25.65 10.41 5.96 0.018088113

Table S2: The clustering performance on CIFAR-10 in five different runs with random initializa-
tion. The best and second-best results are shown in bold and underline, respectively.

Appendix B.

As a neural surrogate of the vanilla k-means, the performance of TELL naturally relates to the
network initialization. Just like all machine learning methods, TELL faces the problem of model
selection as well. To solve model selection in unsupervised setting, motivated by the vanilla k-
means, in practice, we run TELL several times with different random initializations and obtain the
final result by the run with the minimal clustering loss Lclu. To show the correctness of such a
criterion, we provide the clustering performance of TELL in five different runs on MNIST and
CIFAR-10 in Table S1 and S2.

The results show that the clustering accuracy of TELL is correlated to the clustering loss Lclu.
On both data sets, the best and second-best results correspond to the smallest two clustering losses.
As the clustering loss measures the within-cluster distance, a smaller clustering loss indicates a
more compact clustering result. Thus, in practice, one could always run TELL several times and
choose the run with the smallest Lclu as the final output.
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