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A B S T R A C T   

The current study uses a recently-developed metaheuristic method called Crystal Structure Algorithm (CryStAl) 
to achieve optimized vibration control in structural engineering. More specifically, this algorithm, which is 
inspired by the well-established crystallographic principles underlying the formation of crystalline solids in 
nature, is applied to the optimization of fuzzy logic controllers in building structures. To demonstrate the 
capability of this method in solving real engineering problems, two real-size building structures, one with three 
and the other with twenty stories, are considered. The fuzzy controllers are implemented through an active 
control system to control the seismically-induced vibrations of the structures intelligently. The evaluation criteria 
utilized to assess the overall performance of the optimization method applied to the fuzzy control system are 
presented and discussed. Through nonlinear structural analyses, the ductility, energy dissipation, and other 
nonlinear characteristics of the structures are also considered as the structural responses to be controlled. The 
computational results obtained from this novel metaheuristic algorithm are compared with those of the other 
expert systems from the optimization literature. The findings of this paper demonstrate that the Crystal Structure 
Algorithm is capable of outranking the other methods in the majority of considered cases.   

1. Introduction 

Human demand for the control of natural forces has always been of 
great importance and has led to many scientific and engineering ad-
vances throughout history. Automatic control systems are engineered 
devices that automatically, i.e., without any external assistance, make a 
series of checks at desired times and implement appropriate corrections 
if any discrepancies are found with respect to the anticipated results. 
Most of these methods resemble a thoughtful human being and perform 
a pre-determined series of tasks to achieve a predefined goal. In general, 
a major challenge in the design of engineering structures is the control of 
vibration amplitudes, which includes the limits of operation and safety. 
One of the modern approaches to vibration amplitude control is based 
on using structural control systems which are divided into two main 
categories: (1) passive, and (2) active/hybrid/semi-active control 
systems. 

In recent decades, many researchers have used fuzzy logic to control 
the response of structures to earthquake stimulations, aiming to convert 

the equations of motion to analytical equations that can be solved 
algebraically. In this approach, in many cases, minimizing the objective 
function is on the agenda; while this approach does not result in absolute 
optimal controllers, it has been practically used for many applications. A 
fuzzy logic controller works based on fuzzy logic, in which, unlike 
classical logic, logical variables with continuous values in a specific 
range are used. The fuzzy control theory has attracted the attention of 
many researchers in the field of active and semi-active control. The main 
advantages of using fuzzy logic are its greater reliability and better 
nonlinear performance. Also, the calculations required in this method 
are relatively simple and can be implemented inside a fuzzy chip. 

In this paper, the optimization of fuzzy logic controllers has been 
considered, where we investigate the applicability of metaheuristic al-
gorithms to improving the performance of these intelligent systems. The 
Crystal Structure Algorithm (CryStAl), proposed by Talatahari, et al. [1], 
is utilized as the main optimization method. This algorithm is developed 
inspired by the structural design principles of crystalline solids, such as 
the existence of lattice and basis in their configurations [2]. Two 3-story 
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and 20-story real-size building structures are utilized for numerical in-
vestigations. At the same time, fuzzy controllers are implemented 
through an active control system to intelligently control the seismically- 
induced vibration of the structures. By conducting nonlinear structural 
analyses, the ductility, energy dissipation, and other nonlinear charac-
teristics of the structures are also considered as structural responses to 
be controlled. Knowing that the performance of such a recently- 
proposed metaheuristic algorithm should be evaluated in dealing with 
complex real-world problems, CryStAl is utilized as an intelligent tech-
nique for the fuzzy-based vibration control of building structures in this 
study for the first time. 

2. Literature review 

Optimization is the process of tuning a predefined set of variables in 
which the main goal is to provide the best levels for the targets con-
cerning the specifications of the considered system. In recent decades, 
the optimum design of fuzzy systems has been of great interest because 
knowledge-based fuzzy controllers cannot provide acceptable and reli-
able solutions to complex real-life problems. Ochoa, et al. [2] investi-
gated the optimum design of fuzzy controllers with an improved 
differential evolution (DE) algorithm considering dynamic parameter 
adaptation. The authors found that, in general, using Type-1 or Interval 
Type-2 fuzzy systems in DE is better than using the original technique, 
albeit this will depend highly on the specific problem being considered. 
Peraza, et al. [3] utilized the harmony search algorithm for the dynamic 
parameter adaptation of fuzzy logic controllers. In this research work, 
the findings of 30 tests for each technique revealed that stability can be 
achieved by using perturbations; the authors observed this when uti-
lizing a generalized Type-2 fuzzy system for the controller with or 
without perturbation. Civelek [4] considered the optimization of blade 
pitch angle fuzzy controller with a genetic algorithm. Improved wind 
turbine pitch angle control was obtained using a Sugeno-Takagi 
controller designed by Advanced Intelligent Genetic Algorithm 
(AIGA), which according to the authors, would increase the output 
power stability of wind turbines, resulting in a significantly more stable 
power supply to the energy network. Radu-Emil, et al. [5] proposed cost- 
efficient fuzzy controllers for engineering applications through a slime 
mould algorithm (SMA). According to them, SMA was superior over the 
other metaheuristic algorithms that solve the identical optimization 
problem for optimum parameter tuning of cost-effective fuzzy control-
lers. David, et al. [6] presented a unique application of the Whale 
Optimization Algorithm (WOA) to solve a complicated control design 
and tuning problem involving fuzzy control systems that govern pro-
cesses depicted as second-order servo systems with a variable parameter 
and integral component. In another study, David, et al. [7] proved that 
the WOA could be used to solve complex control problems in fuzzy 
control systems (FCSs) with reduced parametric sensitivity. Lagunes, et 
al. [8] presented fuzzy dynamic alpha parameter adjustment for 
generating a fuzzy controller with one input and one output with the 
goal of optimizing the fuzzy controller membership functions, which are 
optimized by a data vector created and evaluated using the Firefly Al-
gorithm (FA). According to the authors, the findings of comparing type 1 
and type 2 fuzzy logic systems were fairly comparable; thus, a noise 
would be added to the plants to examine their behavior during optimi-
zation. Xia, et al. [9] utilized inverted pendulum systems for the opti-
mum design of fuzzy controllers based on dynamic parameter 
investigations, indicating the effectiveness of the proposed method 
using simulated results. Lotfy, et al. [10] proposed an improved version 
of the genetic algorithm for the optimum design of fuzzy controllers 
implemented in the speed control of DC motors. In contrast to existing 
fuzzy controllers, the authors concluded that the optimized fuzzy 
controller has accurate performance and fast convergence, and benefits 
from efficient hardware implementation. Ezzeddine [11] investigated 
the optimum design of fuzzy controllers using particle swarm optimi-
zation regarding the reactive power analysis combined with the 

frequency control scheme. These results indicated that the fuzzy logic 
controller (FLC) is effective in frequency stabilization and transient state 
improvement. Numerical simulations and experimental testing showed 
that this method may significantly enhance the transient state and, as a 
result, prevent the collapse of the self-excited induction generator 
(SEIG). Furthermore, Azizi, et al. [12] investigated the optimization of a 
fuzzy controller for a seismically excited nonlinear steel building, with 
objective functions and performance requirements taken into account 
concerning the nonlinear responses of the structure. In another study, 
Azizi, et al. [13] evaluated the effectiveness of an optimized fuzzy 
controller in decreasing the response of benchmark buildings with 
nonlinear behavior, using a hybrid optimization technique based on the 
ant lion optimizer (ALO) and Jaya algorithms, where 17 performance 
criteria were used to evaluate the performance of the improved 
controller using this technique. The numerical findings suggested that 
the reduction in building response (J1 - J3) for the 3- and 20-story 
benchmark structures were up to 23% and 21%, respectively. Azizi, et 
al. [14] evaluated the effectiveness of the improved fuzzy controller in 
decreasing the response of a 20-story benchmark building with 
nonlinear behavior. Azizi, et al. [15] employed Improved Charged Sys-
tem Search to optimize the fuzzy controller’s membership functions and 
rule base. Talatahari and Azizi [16] proposed the Tribe-Charged System 
Search algorithm to optimize the membership functions and rule base of 
a fuzzy controller, in which the seismic inputs for nonlinear dynamic 
analysis were chosen and modified using an energy-based ground mo-
tion selection and modification approach for Tabriz. The suggested 
approach was compared to the conventional Charged System Search 
Algorithm and eight alternative metaheuristic algorithms in terms of 
performance. The authors asserted that the enhanced technique is able 
to achieve comparable outcomes in terms of decreasing building re-
sponses and damage caused by damaging earthquake records. 

Given that many other researchers have studied the optimum design 
of fuzzy controllers, some of the most recent attempts are reviewed here. 
Mahmoodabadi and Javanbakht [17] investigated the optimum design 
of an adaptive fuzzy controller as an active suspension for a quarter-car 
model, in which the Gravitational Search Algorithm (GSA) was used to 
determine the optimal settings of the controller. The body acceleration 
and the relative displacement between the tire and the sprung mass were 
used in the optimization technique to define an appropriate objective 
function. Kayabekir, et al. [18] presented the optimum design of PID 
controlled active tuned mass damper via a modified harmony search. 
Moreover, Chaos Game Optimization (CGO), a newly proposed meta-
heuristic algorithm, was used to optimize the shape and size of truss 
systems [19]. Navabi, et al. [20] investigated the optimum fuzzy sliding 
mode control of fuel sloshing in a spacecraft using the PSO algorithm. 
Conker and Baltacioglu [21] presented a fuzzy self-adaptive PID control 
technique for driving HHO dry cell systems; the researchers stated that 
the self-adaptive fuzzy PID controllers outperformed the previously 
discussed conventional control approaches. For the performance 
improvement of the conventional approach, an improved version of the 
arithmetic optimization algorithm (IAOA) was presented to optimize 
fuzzy controllers used in steel structures with nonlinear behavior [22]. 
Zhang, et al. [23] proposed a novel robust optimum control algorithm 
and its application to semi-active controlled base-isolated structures; the 
simulation results confirmed the stability, robustness, and generaliza-
tion capability of the proposed control algorithm. Rama Mohan Rao and 
Sivasubramanian [24] investigated the optimum design of fuzzy con-
trollers utilizing self-configurable metaheuristic algorithms based on 
swarm intelligence. Azizi, et al. [25] proposed an enhanced version of 
the Upgraded Grey Wolf Optimizer (UGWO) to optimally design FLC 
membership functions and rule bases to minimize seismic structural 
damage. Marinaki, et al. [26] utilized a differential evolution algorithm 
for the optimal design of fuzzy controllers implemented in smart 
structures for vibrations suppression. Li and Yam [27] employed model- 
based fuzzy logic techniques for vibration control of complex systems. In 
addition, a complete review of the active structural vibration control 
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Fig. 1. (a) Metaheuristic-based packing of multiple objects into a rectangular cuboid package (Zhao, et al. [29]). (b) The graphical user interface of the metaheuristic 
optimized least squares support vector machine (MO-LSSVM) utilized for asphalt pavement patch detection (Hoang [30]). (c) Wrench-feasible workspace of a cable 
robot for automated masonry construction (Bruckmann and Boumann [31]). (d) Defining and controlling the depths of the eaves using the positions of multiple 
points in the 3D space for the design optimization of a complex building based on an artificial neural network (Si, et al. [33]). (e) The graphical interface of the 
COBIMG-Revit plugin for building information model optimization (Xue, et al. [34]). (f) Tactical-level planning in liner shipping (Pasha, et al. [35]). (g) The ar-
chitecture of ELM-based ground response prediction model for predicting tunneling-induced ground responses (Zhang, et al. [36]). (g) Measurement of permeability 
of concrete containing metaheuristically optimized nano-MgO additive (Yazdchi, et al. [37]). (i) 3D and section views of a Levy cable dome structure (Chen, et 
al. [56]). 
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and applications of different control schemes, including the fuzzy logic 
controllers, were presented by Korkmaz [28]. 

Regarding the fact that utilizing metaheuristics in different fields has 
been growing in recent years, some of the recent works are also sum-
marized accordingly. Zhao, et al. [29] investigated the optimum design 
of 3D irregular object packing from 3D scans utilizing multiple meta-
heuristics (Fig. 1(a)). For design purposes, a novel methodology was 
presented in this research work, which starts with capturing each ob-
ject’s initial 3D shape data, followed by a metaheuristic-based packing 
optimization algorithm. In contrast, the proposed methodology was 
demonstrated to be effective in two situations with known optimum 
solutions and a third situation involving the packing of real-life as-is 
objects. Hoang [30] proposed a metaheuristic-based approach for image 
processing-based automatic recognition of asphalt pavement patches 
(Fig. 1(b)). In this paper, a data set of 1000 image samples was utilized 
for training and verifying the proposed integration of image texture 
analysis techniques while the experimental results demonstrated that 
the proposed model could achieve a good prediction result with a 
Classification Accuracy Rate = 95.30%, Positive Predictive 
Value = 0.96, and the Negative Predictive Value = 0.95. Bruckmann and 
Boumann [31] discussed the optimum design of automated masonry 
construction using cable robots with precise utilization of metaheuristic 
algorithms (Fig. 1(c)). In their study, the trajectory modeling was 
formulated employing cost functions derived from physical models of 
the cable robot by including the analysis of simulation results that 
illustrated the generated trajectories. Hu, et al. [32] conducted a critical 
review on automation and optimization in crane lift planning through 
metaheuristic algorithms. In this research work, the assessment of the 
crane lift planning automation and optimization was conducted. 
Furthermore, they presented an overview of the literature in crane lift 
planning, including the planning decision and the type of cranes, while 
the assumptions, objectives, decision variables, and constraints for each 
case were presented in detail. Si, et al. [33] developed a multi-objective 
optimization algorithm for the optimal design of complex buildings by 
combining an artificial neural network with performance evaluation of 
algorithms (Fig. 1(d)). In this study, multiple design variables, including 
the shape of the building’s eaves, were optimized to improve building 
energy efficiency and indoor thermal comfort, while a surrogate model 
developed by an artificial neural network was used rather than a 
detailed simulation model to decrease the computing time. Xue, et al. 
[34] discussed the multimodal optimization and architectural design of 
building information modeling reconstruction from 3D point clouds 
(Fig. 1(e)). They investigated the reconstruction of repetitive objects as a 
multimodal optimization problem for registering the components of the 
building information model which had precise geometries and enriched 
semantics, while the topological information about repetition and 
symmetry in the reconstructed building information model was recog-
nized and regularized for enriching the semantic aspects. Pasha, et al. 
[35] developed an integrated optimization method for tactical-level 
planning in liner shipping with heterogeneous ship fleet and 

environmental considerations (Fig. 1(f)). In this work, a decomposition- 
based optimization algorithm was proposed to solve the engineering 
model while the efficiency of the process was tackled by considering 
large-size problems. Zhang, et al. [36] developed a reinforcement 
learning-based optimizer utilizing metaheuristic algorithms for the 
improvement of predicting tunneling-induced ground responses (Fig. 1 
(g)). The results of this novel optimizer outperformed those of conven-
tional metaheuristic optimization algorithms by their higher accuracy 
and lower computational cost. Yazdchi, et al. [37] used the Charged 
System Search (CSS) metaheuristic algorithm to optimize the amount of 
additive MgO nanoparticles in the composition of freeze–thaw resistant 
concrete, where they measured the compressive and tensile strengths as 
well as the permeability of concrete samples containing nanoparticles 
and compared them with those of ordinary concrete samples (Fig. 1(h)). 
Chen et al. [38] proposed a form-finding technique for prestressable pin- 
jointed structures by combining symmetry-based qualitative analysis 
with the Particle Swarm Optimization (PSO) (Fig. 1(i)). They also 
developed a PSO-based algorithm [39] for the intelligent design of non- 
trivial origami structures which were demonstrated to be computa-
tionally challenging using conventional techniques [40–42]. 

Shape annealing, a computational design process for structural 
design, has been used to create conventional and unique three- 
dimensional domes that meet the design criteria of efficiency, econ-
omy, usefulness, and aesthetics. Shape annealing, a stochastic structural 
optimization approach, employs lateral exploration to develop many 
designs of comparable quality that build a structural language of solu-
tions, in contrast to deterministic structural optimization methods [38]. 
The simulated annealing method is used to determine if a randomly 
chosen shape rule should be implemented at a particular configuration 
stage in shape annealing (i.e., intermediate shape). A rule that is 
applicable to a current configuration state is chosen and applied to that 
state [43]. Once it is concluded that the new design does not break any 
constraints, it is submitted to the Metropolis algorithm, which uses the 
temperature profile to decide whether or not it should be accepted [44]. 
Nonetheless, the drawbacks of the mentioned method are threefold 
[45]: (i) The algorithm uses a gradient-based technique for form opti-
mization; local optima may be obtained with nonconvex constraints; 
and the algorithm is unable to avoid obstacles. (ii) Since each step is 
followed by thorough shape optimization, a significant amount of 
computing effort is expended on manifestly unworthy topologies; and 
(iii) The application of a shape rule from the grammar does not always 
result in significant design modifications. Meanwhile, several research 
studies have been recently conducted in the area of intelligent vibration 
control of buildings; some notable examples include: (1) Using fluid 
viscous dampers for increasing the energy dissipation demand in 
multistory buildings by Zhou, et al. [46]; (2) parameter tuning investi-
gation of tuned mass dampers for the seismic suppression of engineering 
structures by Prakash and Jangid [47], and (3) determining the seismic 
vulnerability of structural systems with nonlinear behavior by Elias and 
Matsagar [48]. 

Fig. 2. A fuzzy logic controller implemented in a closed-loop control system.  
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3. Fuzzy logic controller (FLC) 

The main idea of control is to steer a system arbitrarily by monitoring 
the performance and adjusting the input of that system so that the 
performance of the system has to follow the desired actions. For this 
purpose, the output or state of the system is measured and fed to the 
controller. Based on this information, the controller decides how to 
change the system input to improve system performance. Many common 
control methods are model-based, meaning that the controller design is 
based on a mathematical model of the system. Linear mode feedback 
controllers and proportional-integral-derivative controllers are in this 
category. However, these methods are not always successful because an 
exact mathematical model of the system is unavailable in some cases. In 

such cases, if there is sufficient knowledge of how an expert controls the 
system, a fuzzy system can be designed to effectively control the system 
even if the mathematical model is completely unknown. In fact, one of 
the main applications of fuzzy systems in closed-loop control is 
nonlinear systems whose mathematical models are unknown or little is 
known about them. The diagram of a fuzzy controller is shown in gen-
eral and schematically in Fig. 2. The steps of the control process with 
fuzzy controllers are as follows:  

i. Determining the input and output variables of the controlled 
dynamic system (Scaling).  

ii. Determining variables’ upper and lower boundaries and creating 
fuzzy sets based on natural language parameters (Normalization). 

iii. Create membership functions based on natural language vari-
ables (Knowledge base).  

iv. Determining the relationships between the input and output of 
the control system and creating a fuzzy rule database (Rule base).  

v. Determining the scale factor for system input and output in order 
to normalize them (Output normalization).  

vi. Fuzzification of the control system inputs (Fuzzification).  
vii. Forming a fuzzy inference engine and performing the inference 

process based on existing methods (Inference).  
viii. Defuzzification of the control system outputs (Defuzzification & 

Denormalization). 

4. Crystal structure algorithm (CryStAl) 

The inspirational concept of CryStAl is based on the crystalline 
structures of natural solid minerals in which molecules, atoms, or ions 
are neatly arranged in three spatial directions. This algorithm was 
recently introduced by Talatahari, et al. [1], followed by further devel-
opment and verifications [49,50]. Here, after a brief review of the 
foundations of this method, we will apply it to the problem considered in 
this paper. 

According to the fundamentals of crystallography, crystals are made 
of a primary component known as ‘lattice’ which represents a periodic 
array of imaginary points in a predefined space. Besides, the specific 
arrangement of atoms in the structure of a crystal is known as ‘basis’ (for 
more details, see e.g. [51–53]). Therefore, crystals are determined by the 
combinations of these two components, i.e., Crystal = Lattice + Basis. To 
mathematically present CryStAl as a metaheuristic optimization algo-
rithm, the Bravais model [54] is considered in which a periodic crystal 
structure is defined by a lattice geometry where any lattice point is 

Fig. 3. The pseudo-code of the Crystal Structure Algorithm (CryStAl) [1].  

Fig. 4. Benchmark design example with three stories (adapted from [55]).  
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described by a vector as follows: 

r =
∑

niai, (1)  

where ni is an integer, ai is the shortest vector along the principal 
crystallographic directions, and i is the number of crystal corners. In 
CryStAl, each candidate solution of the optimization algorithm is 
considered as a single crystal in the space while the number of crystals is 
determined randomly for initialization purposes as follows: 

Cr =

⎡
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⎥
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,

{ i = 1, 2,⋯, n.

j = 1, 2,⋯, d.
(2)  

where n is the number of crystals (candidate solutions), and d is the 
dimension of the problem. The initial positions of these crystals are 
determined randomly in the search space by the following equation: 

Fig. 5. Benchmark design example with 20 stories (adapted from [55]).  
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xj
i(0) = xj

i,min + rand.
(
xj

i,max − xj
i,min

)
,

{ i = 1, 2,⋯, n.

j = 1, 2,⋯, d.
(3)  

where, xj
i(0) determines the initial position of the crystals; xj

i,min and 

xj
i,max are the minimum and maximum allowable values for the j-th de-

cision variable of the i-th solution candidate; rand is a random number in 
the interval of [0,1]. Based on the concept of basis, each of the crystals at 
the corners is considered as the main crystal (CrMain) which is deter-
mined randomly by considering the initially created crystals (candidate 
solutions). The crystal with the best configuration is determined as Crb 

while the mean values of randomly selected crystals are determined as 
FC. For updating the position of solution candidates in the search space, 
the basic principles of lattice are determined in which four kinds of 
updating process are determined as follows:  

▪ Simple cubicle: 

CrNew = CrOld + rCrMain, (4)  

where CrNew is the new position, CrOld is the old position and r is a 
random number.  

▪ Cubicle with best crystals: 

CrNew = CrOld + r1CrMain + r2Crb, (5)  

where CrNew is the new position, CrOld is the old position, and r1 and r2 
are random numbers.  

▪ Cubicle with mean crystals: 

CrNew = CrOld + r1CrMain + r2Fc, (6)  

where CrNew is the new position, CrOld is the old position, and r1 and r2 
are random numbers.  

▪ Cubicle with best and mean crystals: 

CrNew = CrOld + r1CrMain + r2Crb + r3Fc, (7)  

where CrNew is the new position, CrOld is the old position, and r1 to r3 are 
random numbers. 

In order to deal with the solution variables xj
i violating the boundary 

conditions of the variables, a mathematical flag is defined in which for 
the xj

i outside the variables range, the flag orders a boundary change for 
the violating variables. The terminating criterion is considered based on 
the maximum number of iterations in which the optimization process is 
terminated after a fixed number of iterations. The pseudo-code of the 
algorithm is presented in Fig. 3. 

By considering the fact that ‘shape annealing’ is a variant of the 
stochastic optimization approach ‘simulated annealing’ that uses shape 
grammars to specify allowed item orientations in various situations 
[43], the capability of this concept in enhancing the overall performance 
of metaheuristics is one of the other options that can be explored as a 

Fig. 6. Bilinear hysteresis model for structural members.  

Table 1 
Parameter summary of the nonlinear hysteresis model.  

Properties Value Unit 

Modulus of Elasticity (E) 200,000 MPa 
Yield Strength of Columns (σy) 345 MPa 
Tensile Strength of Columns (σu) 450 MPa 
Yield Strength of Beams (σy) 248 MPa 
Tensile Strength of Beams (σu) 400 MPa 
Yield Strain (εy) 0.001725 mm/mm 
Tensile Stain (εu) 0.18 mm/mm  

Fig. 7. Acceleration time histories of the considered earthquakes (adapted from [55]).  
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future challenge. 

5. Problem statement 

In this section, the optimization of fuzzy systems is described as a 
vibration control problem in building structures with active control 
systems. At first, the key characteristics of the considered building 
structures are described, while the fuzzy logic implementation in these 
structures as a control scheme is presented next. The evaluation criteria 
which are utilized to assess the overall performance of the optimization 
fuzzy control system are presented in detail accordingly, followed by 
presenting the optimization problem in which CryStAl is utilized as a 
metaheuristic algorithm. 

5.1. Structural details 

For numerical investigation purposes, two building structures with 3 
and 20 stories are selected as design examples where they are 11.88 (m) 
and 80.77 (m) high, respectively. These two design examples are the 
benchmark control problems provided by Ohtori, et al. [55] to evaluate 
the performance of control systems in a standard way. The detailed 
specifications of these two structures are presented in Figs. 4 and 5. 

Regarding the fact that most structural systems can experience large 
displacements, which may result in very large deformations in their 
structural elements, the linear concepts for analysis purposes cannot 
present accurate results when we deal with severe seismic inputs. 
Therefore, the possibility of the yielding of structural elements into 
nonlinear phases should be considered by employing a well-defined 
bilinear model, presented in Fig. 6 and Table 1 accordingly. 

The seismic inputs of the considered buildings consist of the El 
Centro, Hachinohe, Northridge, and Kobe earthquakes as four well- 
known ground motions with Peak Ground Accelerations (PGA) of 
3.417, 2.250, 8.267, and 8.178 m/s2, respectively. The time histories for 
the acceleration of these earthquake records are presented in Fig. 7. 

5.2. FLC implementation 

Based on the presented details of the fuzzy logic controllers, there 
have to be control devices and sensors attached to the structure to 
implement the FLC as a control algorithm. For this purpose, active 
control devices implemented as tendons in the structures are used while 
3 sensors and 3 actuators are also utilized for conducting control actions 

Fig. 8. Control scheme for the vibration control of the 3-story building.  

Fig. 9. Control scheme for the vibration control of the 20-story building.  

Table 2 
Fuzzy linguistic variables.  

Variables Definition 

PVL Positive and very Large 
PL Positive and Large 
PM Positive and Medium 
PS Positive and Small 
PVS Positive and very Small 
ZR Zero 
NVS Negative and very Small 
NS Negative and Small 
NM Negative and Medium 
NL Negative and Large 
NVL Negative and very Large  
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in the 3-story building, while for the 20-story one, a total number of 4 
sensors and 20 actuators are utilized. For the 3-story building, three 
accelerometers are used in each story for sensing purposes, while three 
actuators with three fuzzy chips are implemented to perform the control 

actions. For the 20-story building, the sensors are on the 4, 8, 12, 16, and 
20 stories. At the same time, the actuators are implemented in each of 
the story levels of the structure because only four fuzzy chips are utilized 
for calculating the control signals. The maximum control force that the 
actuators can provide in both structures is 1000 kN. The schematic 
presentations of the control schemes for the 3-story and 20-story 
structures are presented in Fig. 8 and Fig. 9, respectively. 

In Figs. 8 and 9, a feedback control scenario is demonstrated for 

Fig. 10. The optimization variables of membership functions for the (a) fuzzy inputs and (b) fuzzy outputs.  

Table 3 
Optimization variables for the fuzzy rule base.  

Control force 

Second input First input 

NL NM NS NVS PVS PS PM PL 

NL PVL/c1 PL/c9 PM/c17 PS/c25 PVS/c33 ZR/c41 NVS/c49 NS/c57 
NM PL/c2 PM/c10 PS/c18 PS/c26 PVS/c34 ZR/c42 NVS/c50 NS/c58 
NS PM/c3 PS/c11 PS/c19 PVS/c27 PVS/c35 ZR/c43 NVS/c51 NS/c59 
NVS PM/c4 PS/c12 PVS/c20 PVS/c28 ZR/c36 NVS/c44 NS/c52 NM/c60 
PVS PM/c5 PS/c13 PVS/c21 ZR/c29 NVS/c37 NVS/c45 NS/c53 NM/c61 
PS PS/c6 PVS/c14 ZR/c22 NVS/c30 NVS/c38 NS/c46 NS/c54 NM/c62 
PM PS/c7 PVS/c15 ZR/c23 NVS/c31 NS/c39 NS/c47 NM/c55 NL/c63 
PL PS/c8 PVS/c16 ZR/c24 NVS/c32 NS/c40 NM/c48 NL/c56 NVL/c64  

Table 4 
Summary of the considered performance criteria.  

Interstory drift ratio 
(IDR) 
C1 =

max
7EQs

{max
t,i

|di(t) |
hi

δmax

⎫
⎪⎬

⎪⎭

Level acceleration 
C2 =

max
7EQs

⎧
⎨

⎩

max
t,i

⃒
⃒
⃒
⃒ẍai(t)

⃒
⃒
⃒
⃒

ẍa
max

⎫
⎪⎪⎬

⎪⎪⎭

Base shear 
C3 =

max
7EQs

⎧
⎨

⎩

max
t,i

⃒
⃒
⃒
⃒
∑

imiẍai(t)
⃒
⃒
⃒
⃒

Fmax
b

⎫
⎪⎪⎬

⎪⎪⎭

Ductility 
C4 =

max
7EQs

⎧
⎨

⎩

max
t,j

⃒
⃒φj(t)

⃒
⃒

φyj

φmax

⎫
⎪⎪⎬

⎪⎪⎭

Dissipated energy 
C5 =

max
7EQs

⎧
⎪⎨

⎪⎩

max
t,j

∫
dEj

Fyj .φyj

Emax

⎫
⎪⎪⎬

⎪⎪⎭

Plastic connections 

C6 = max
7EQs

{Nc
d

Nd

}

Control force 
C7 =

max
7EQs

{max
t,l

⃒
⃒fl(t)

⃒
⃒

W

⎫
⎬

⎭

Control device stroke 
C8 =

max
7EQs

{max
t,l

⃒
⃒ya

l (t)
⃒
⃒

xmax

⎫
⎬

⎭

Control power 

C9 = max
7EQs

{max
t

|
∑

Pl(t) |

ẋmax

}

Table 5 
Optimized evaluation criteria for the 3-story building associated with the El 
Centro earthquake.   

Metaheuristic approaches 

Criteria ALO [13] JAYA [13] ALO-JAYA [13] CryStAl 

C1  0.9478  0.9470  0.9431  0.9250 
C 2  1.0354  1.0328  1.0568  1.0324 
C 3  1.1475  1.1101  1.1792  1.2176 
C 4  0.9778  0.9605  0.9629  0.9548 
C 5  1.1531  1.1121  1.1200  1.1112 
C 6  1.0000  1.0000  1.0000  1.0000 
C 7  0.0244  0.0212  0.0226  0.0205 
C 8  0.3746  0.3743  0.3727  0.3656 
C 9  0.0178  0.0153  0.0197  0.0214  
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conducting a vibration control act for the considered buildings in which 
xddg is the input acceleration signal of the buildings, f is the control force 
which is calculated through u as the control signal of the fuzzy logic 
controller, ye represents the structural responses, ym denotes the struc-
tural responses which is utilized as input signals of the fuzzy logic 
controllers, yc is the responses of the control devices implemented in the 
structure, and yf is the normalized responses of the control devices. 

To configure a fuzzy control system, the linguistic variables should 
be utilized for converting crisp values to fuzzy ones. For this purpose, 
eleven fuzzy linguistic variables are considered, which can be found in 
Table 2. 

In the 3- and 20-story buildings, accelerations of each story which 
are achieved from the implemented sensors are utilized as the inputs of 
the fuzzy controllers, while the control signals, which are utilized for 
determining the required control forces, are determined as the fuzzy 
outputs. 

5.3. Optimization problem 

An optimization problem is a minimization (or maximization) 
problem in which a predefined objective function is supposed to be 
minimized (or maximized). The objective function should be defined by 
means of some decision variables which can define each state of the 
system considered in the problem. In other words, optimization is the 
problem of tuning multiple variables to fulfill predefined objectives. To 
formulate a fuzzy optimization problem, decision variables are deter-
mined as the specific parameters that are utilized for the configuration of 
the fuzzy membership functions for inputs and outputs alongside the 
fuzzy rule base. Regarding the fact that tringles-shaped membership 
functions are utilized for the configuration of fuzzy inputs and outputs, 
a1, a2,⋯, a11 in Fig. 10.a denote the variables of the fuzzy inputs and b1,

b2,⋯, b15 represent the optimization variables of the fuzzy outputs in 
Fig. 10.b. The fuzzy rule base utilizes 64 rules through 64 design vari-
ables (c1,c2,⋯, c64) which can be found in Table 3 (See Table 4). 

As we aim to cover a wide range of responses of the two building 
structures, the optimization algorithms should be appropriately pre-
pared to tune the predefined decision variables to reduce these re-
sponses. Based on the fact that some evaluation criteria were proposed 
for these benchmark design examples as represented in Table 5, the 
objective function is formulated in this paper using the first criterion 
regarding the maximum drift of the structures. The complete description 
of these criteria is presented in detail by Ohtori, et al. [55]. Furthermore, 
for completeness, the results of the earthquakes of this study are all 
considered using a weighted sum regarding the peak ground accelera-
tions of these records as follows: 

Fig. 11. Convergence history of Obj for the 3-story building.  

Table 6 
Optimized evaluation criteria for the 3-story building associated with the 
Hachinohe earthquake.   

Metaheuristic approaches 

Criteria ALO [13] JAYA [13] ALO-JAYA [13] CryStAl 

C1  0.9246  0.9489  0.9617  0.9149 
C 2  0.9996  1.0137  1.0162  0.9850 
C 3  1.0282  1.1115  1.0953  1.0218 
C 4  0.7705  0.7795  0.8070  0.7653 
C 5  0.1890  0.1596  0.2174  0.1448 
C 6  0.9091  0.9091  0.9091  0.6364 
C 7  0.0145  0.0251  0.0227  0.0252 
C 8  0.3623  0.3718  0.3768  0.3585 
C 9  0.0164  0.0290  0.0263  0.0266  

Table 7 
Optimized evaluation criteria for the 3-story building associated with the 
Northridge earthquake.   

Metaheuristic approaches 

Criteria ALO [13] JAYA [13] ALO-JAYA [13] CryStAl 

C1  0.9172  0.9295  0.9075  0.8946 
C2  1.1057  1.0893  1.0995  1.0750 
C3  1.1330  1.1209  1.1244  1.1251 
C4  0.9206  0.9049  0.8825  0.8758 
C5  0.9593  0.9427  0.9272  0.9358 
C6  1.0000  1.0000  1.0000  1.0000 
C7  0.0249  0.0254  0.0259  0.0242 
C8  0.3386  0.3431  0.3350  0.3302 
C9  0.0445  0.0423  0.0416  0.0480  

Table 8 
Optimized evaluation criteria for the 3-story building associated with the Kobe 
earthquake.   

Metaheuristic approaches 

Criteria ALO [13] JAYA [13] ALO-JAYA [13] CryStAl 

C1  0.8100  0.8045  0.7786  0.7769 
C2  0.8578  0.8977  0.8760  0.8500 
C3  1.1186  1.1026  1.1084  1.1085 
C4  0.8898  0.8763  0.8912  0.9054 
C5  0.9870  0.9432  0.9377  0.9179 
C6  0.9375  0.9375  0.9375  0.8750 
C7  0.0249  0.0256  0.0258  0.0242 
C8  0.3820  0.3794  0.3672  0.3805 
C9  0.0378  0.0353  0.0368  0.0396  
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Obj =
w1(C1)Elc + w2(C1)Hachi + w3(C1)North + w4(C1)Kobe

w1 + w2 + w3 + w4
(8)  

where (C1)Elc is the drift of the El Centro earthquake, (C1)Hachi is the drift 
of the Hachinohe earthquake, (C1)North is the drift of the Northridge 

earthquake, and (C1)Kobe is the drift of the Kobe earthquake. w1tow4 are 
the peak ground accelerations of the El Centro, Hachinohe, Northridge, 
and Kobe earthquakes which are set to be 3.41, 2.25, 8.26, and 8.17, 
respectively. 

Fig. 12. Maximum required control forces in the 3-story building structure associated with different earthquakes.  

Fig. 13. Convergence history of Obj for the 20-story building.  

Table 9 
Optimized evaluation criteria for the 20-story building associated with the El Centro Earthquake.   

Metaheuristic approaches 

Criteria WOA [12] UWOA [12] MVO [14] CSS [15] ICSS [15] ALO [13] JAYA [13] ALO-JAYA [13] CryStAl 

C1 0.9238 0.9580 0.9126 0.9223 0.9102 0.9241 0.9408 0.9072 0.8908 
C 2 0.9375 0.9120 0.8574 0.9010 0.8838 0.8741 0.8943 0.8946 0.8813 
C 3 0.9422 0.8632 0.8529 0.9107 0.8877 0.8735 0.8778 0.8871 0.8519 
C 4 0.9832 0.9786 0.9599 0.9768 0.9631 0.9800 0.9749 0.9436 0.9410 
C 5 – – – — — — — — — 
C 6 – – – — — — — — — 
C 7 0.0035 0.0022 0.0037 0.0023 0.0032 0.0027 0.0019 0.0024 0.0016 
C 8 0.0986 0.0967 0.0980 0.0976 0.0958 0.0971 0.0972 0.0917 0.0915 
C 9 0.0045 0.0023 0.0024 0.0019 0.0023 0.0020 0.0020 0.0019 0.0021  
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6. Numerical results 

In this section, the results of the CryStAl algorithm in dealing with 
the mentioned fuzzy optimization problems are investigated, while the 
results of other approaches from the literature are also provided to make 
a valid judgment. In Fig. 11, the convergence history of CryStAl and 
other approaches are presented for the predefined Obj as the objective 
function regarding the 3-story building. It can be concluded that CryStAl 
is capable of providing 0.8578 for the objective functions, which is the 
best among other approaches, while the Hybrid Ant Lion Optimizer-Jaya 
(ALO-JAYA) [13] with 0.8708, Ant Lion Optimizer (ALO) [13] with 
0.8831, and Jaya [13] with 0.8879 have the second to fourth ranks. 

In Tables 5 to 8, the evaluation criteria which are utilized for per-
formance estimation of the optimally tuned fuzzy controllers imple-
mented in the 3-story building are presented for different seismic inputs. 
It can be seen that CryStAl has a better performance in most of the 
considered cases. 

Given that in active vibration control systems the total control force, 
provided through the actuators, have multiple limitations, metaheuristic 
algorithms are supposed to reduce the amount of this force during the 
optimization process, knowing that the main objective of the optimum 
design scheme is not the control force. In Fig. 12, the maximum required 
control force in the 3-story building structure is presented in which the 

capability of different approaches in reducing the overall amount of the 
control force in this building is in perspective. It can be concluded that 
CryStAl is capable of providing the lowest values for El Centro (593.05 
kN), Northridge (700.09 kN), and Kobe (700.09 kN). Moreover, for 
Hachinohe, the result of CryStAl is very competitive. 

For the 20-story building, the convergence history for the Obj is 
presented in Fig. 13, while the CryStAl with 0.8869 outranks the other 
approaches, including the Whale Optimization Algorithm (WOA) [12] 
with 0.9127, Upgraded WOA (UWOA) [12] with 0.9099, Multi-Verse 
Optimizer (MVO) [14] with 0.8981, Charged System Search (CSS) 
[15] with 0.9075, Improved CSS (ICSS) [15] with 0.8993, ALO-JAYA 
[12] with 0.9085, ALO [13] with 0.9131 and Jaya [13] with 0.9190. 

In Tables 9–12, the evaluation criteria which are utilized for the 
performance evaluation of the optimally-tuned fuzzy controllers 
implemented in the 3-story building are presented for different seismic 
inputs. As can be seen from these results, CryStAl has a better perfor-
mance in the majority of the considered cases. 

In Fig. 14, the maximum required control force in the 20-story 
building structure is presented, in which the capability of different ap-
proaches in reducing the overall value of the control force in this 
building is considered. It can be concluded that CryStAl is capable of 
providing the lowest amount of 170.01 kN for El Centro, 156.34 for 
Hachinohe, 412.91 for Northridge, while for Kobe, the result of CryStAl 

Table 10 
Optimized evaluation criteria for the 20-story building associated with the Hachinohe Earthquake.   

Metaheuristic approaches 

Criteria WOA [12] UWOA [12] MVO [14] CSS [15] ICSS [15] ALO [13] JAYA [13] ALO-JAYA [13] CryStAl 

C1 0.9666 0.9638 0.9584 0.9576 0.9472 0.9552 0.9554 0.9399 0.9254 
C 2 1.0675 0.9629 0.9305 0.9363 0.9526 0.9436 0.9366 0.9902 0.9225 
C 3 0.9989 0.9875 0.9933 0.9683 1.0326 0.9477 0.9675 1.0421 1.0053 
C 4 0.9801 0.9700 0.9640 0.9568 0.9431 0.9665 0.9606 0.9600 0.9298 
C 5 – – – — — — — — — 
C 6 – – – — — — — — — 
C 7 0.0035 0.0022 0.0028 0.0021 0.0017 0.0021 0.0019 0.0017 0.0014 
C 8 0.0772 0.0786 0.0780 0.0780 0.0758 0.0780 0.0762 0.0769 0.0772 
C 9 0.0015 0.0010 0.0016 0.0010 0.0016 0.0011 0.0010 0.0013 0.0014  

Table 11 
Optimized evaluation criteria for the 20-story building associated with the Northridge Earthquake.   

Metaheuristic approaches 

Criteria WOA [12] UWOA [12] MVO [14] CSS [15] ICSS [15] ALO [13] JAYA [13] ALO-JAYA [13] CryStAl 

C1  1.0026  0.9963  0.9799  1.0032  0.9946  1.0096  1.0039  1.0087  0.9783 
C2  1.0094  0.9851  1.0078  0.9882  0.9823  0.9799  0.9670  0.9800  0.9614 
C3  0.8925  0.9590  0.9580  0.9468  0.9621  0.9458  0.9696  0.9673  0.9827 
C4  1.0059  1.0035  1.0186  1.0216  1.0180  1.0176  1.0202  1.0045  0.9969 
C5  1.0267  0.9947  1.0374  0.9765  0.9154  1.0164  1.0177  1.0410  0.9927 
C6  1.0000  1.0000  1.0104  1.0208  1.0208  1.0104  1.0000  1.0104  1.0208 
C7  0.0055  0.0057  0.0059  0.0048  0.0045  0.0063  0.0040  0.0057  0.0038 
C8  0.1091  0.1060  0.1070  0.1093  0.1089  0.1092  0.1089  0.1077  0.1053 
C9  0.0071  0.0033  0.0046  0.0039  0.0040  0.0034  0.0030  0.0044  0.0039  

Table 12 
Optimized evaluation criteria for the 20-story building associated with the Kobe Earthquake.   

Metaheuristic approaches 

Criteria WOA [12] UWOA [12] MVO [14] CSS [15] ICSS [15] ALO [13] JAYA [13] ALO-JAYA [13] CryStAl 

C1  0.8022  0.7876  0.7930  0.7908  0.7853  0.7994  0.8141  0.7993  0.7822 
C2  0.9892  0.9507  0.9857  0.9339  0.9110  0.9553  0.9513  0.9528  0.9108 
C3  0.9570  0.9269  0.9131  0.9229  0.9330  0.9423  0.9216  0.9219  0.9422 
C4  0.7536  0.7539  0.7781  0.7620  0.7359  0.7536  0.7692  0.7645  0.7328 
C5  0.9787  0.9358  0.9236  0.9352  0.9183  0.9816  1.0099  0.9794  0.9064 
C6  0.9951  0.9881  1.0000  0.9762  0.9643  1.0119  1.0000  0.9762  0.9643 
C7  0.0061  0.0055  0.0068  0.0048  0.0052  0.0064  0.0040  0.0065  0.0075 
C8  0.1258  0.1236  0.1244  0.1240  0.1232  0.1254  0.1277  0.1254  0.1227 
C9  0.0092  0.0052  0.0055  0.0048  0.0055  0.0056  0.0037  0.0053  0.0058  
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is very competitive. 

7. Summary of results and concluding remarks 

This paper presented the optimization of fuzzy logic controllers in 
building structures where the application of a range of metaheuristic 
algorithms for the performance enhancement of these intelligent sys-
tems was examined and evaluated. The Crystal Structure Algorithm 
(CryStAl) was utilized as the primary optimization algorithm in which 
the fundamental principles of crystal structures, including the lattice 
and basis in their geometric configurations, are the underlying inspira-
tional concepts. Two 3-story and 20-story real-size building structures 
were used for numerical investigations. At the same time, fuzzy con-
trollers were implemented through an active control system to intelli-
gently control the seismically-induced vibration of the structures. By 
conducting nonlinear structural analyses, the ductility, energy dissipa-
tion, and other nonlinear characteristics of the structures were also 
considered as structural responses to be controlled. The results of 
CryStAl were compared with those of other expert systems from the 
literature, where we observed that CryStAl is capable of outranking the 
other methods in most cases. The main results obtained from this study 
are summarized as follows:  

• For the 3-story building, CryStAl provided 0.8578 for the objective 
functions, which was the best among all the approaches, while ALO- 
JAYA with 0.8708, ALO [13] with 0.8831, and Jaya [13] with 
0.8879 had the second to fourth ranks.  

• Concerning the maximum required control force, CryStAl provided 
the lowest amounts of force which were 593.05 kN for El Centro, 
700.09 for Northridge, and 700.09 for Kobe, while for Hachinohe the 
result of CryStAl was very competitive.  

• For the 20-story building, CryStAl with 0.8869 outranked the other 
approaches including WOA [12] with 0.9127, UWOA [12] with 
0.9099, MVO [14] with 0.8981, CSS [15] with 0.9075, ICSS [15] 
with 0.8993, ALO-JAYA [13] with 0.9085, ALO [13] with 0.9131, 
and Jaya [13] with 0.9190.  

• For this building, CryStAl produced the lowest amounts of control 
force as 170.01 kN for El Centro, 156.34 for Hachinohe, and 412.91 
for Northridge, while for Kobe the result of CryStAl was again very 
competitive.  

• Furthermore, CryStAl produced the lowest amounts of force which 
were 593.05 kN for El Centro, 700.09 for Northridge, and 700.09 for 
Kobe, while the result of CryStAl for Hachinohe turned out to be 
competitive.  

• It was observed that CryStAl delivered the lowest amounts of force 
which were 170.01 kN for El Centro, 156.34 kN for Hachinohe, and 
412.91 kN for Northridge, while offering a highly competitive 
outcome for Kobe. 

The findings of this research revealed that, in the majority of cases, 
the results from CryStAl were more accurate in comparison with those 
produced by the other metaheuristic optimization methods. This moti-
vates the exploration of potential applications of CryStAl for solving 
problems in other fields of engineering. Importantly, given that two 
benchmark building structures are considered as design examples in this 
paper, all of the complex details of the problems should be determined 
based on the main reference [55] in order to have a fair judgment about 
the capability of the selected metaheuristic algorithm. However, the 
possibility of increasing the seismic inputs to evaluate the capability of 
the considered methods in dealing with different types of earthquakes 
can be considered as a future challenge. 

Fig. 14. Maximum required control forces in the 20-story building structure associated with different earthquakes.  
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