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Abstract
Vegetation phenology has been viewed as the nature's calendar and an integrative in-
dicator of plant-climate interactions. The correct representation of vegetation phenol-
ogy is important for models to accurately simulate the exchange of carbon, water, and 
energy between the vegetated land surface and the atmosphere. Remote sensing has 
advanced the monitoring of vegetation phenology by providing spatially and temporally 
continuous data that together with conventional ground observations offers a unique 
contribution to our knowledge about the environmental impact on ecosystems as well 
as the ecological adaptations and feedback to global climate change. Land surface phe-
nology (LSP) is defined as the use of satellites to monitor seasonal dynamics in vegetated 
land surfaces and to estimate phenological transition dates. LSP, as an interdisciplinary 
subject among remote sensing, ecology, and biometeorology, has undergone rapid de-
velopment over the past few decades. Recent advances in sensor technologies, as well 
as data fusion techniques, have enabled novel phenology retrieval algorithms that re-
fine phenology details at even higher spatiotemporal resolutions, providing new insights 
into ecosystem dynamics. As such, here we summarize the recent advances in LSP and 
the associated opportunities for science applications. We focus on the remaining chal-
lenges, promising techniques, and emerging topics that together we believe will truly 
form the very frontier of the global LSP research field.
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1  |  BACKGROUND

Vegetation phenology is an important and integrative proxy that 
characterizes the Earth system dynamics and is the key to under-
standing how atmosphere-biosphere-hydrosphere interactions 
respond to climate change and human activities (Fu et al.,  2020; 
Inouye, 2022). Phenology has been a prominent diagnostic proxy as 
well as an input in prognostic models that is widely used in areas 
such as food security (Alemu & Henebry, 2016; Gao & Zhang, 2021; 
Gray, Friedl, et al.,  2014; Lobell et al.,  2008), frost hazard (Dai 
et al.,  2013; Ge et al.,  2013; Hänninen,  2006), drought (de Beurs 
& Henebry,  2008), forest fire risk (Bison et al.,  2022), landscape 
dynamics, climate change (Brown et al.,  2017; Friedl et al.,  2014; 
Jeganathan et al.,  2014; Jin et al.,  2019), biogeochemical cycling 
(Gray, Frolking, et al., 2014; Piao et al., 2019). Satellite remote sens-
ing, with its synoptic view of the Earth, has become an invaluable 
approach to monitoring phenology at a global scale and in a contin-
uous and highly consistent manner (Caparros-Santiago et al., 2021; 
Zeng et al., 2020).

Despite the prosperity and rapid development in the field of 
land surface phenology (LSP), challenges remain to be addressed 
and emerging new fields of application remain to be explored (Piao 
et al., 2019; Tang et al., 2016). From a technical perspective, incon-
sistent or even controversial pattern and trend in satellite phenol-
ogy are often obtained with various data quality levels or retrieval 
algorithms, suggesting that much effort are still needed in improv-
ing the satellite phenology retrievals (Atkinson et al.,  2012; Jin, 
Jönsson, et al., 2017; Wang, Wu, et al., 2022; Xie et al., 2022; Zheng 
& Zhu,  2017). Meanwhile, validation is integrated as an essential 
component into most LSP applications facilitated by the accessibility 
of established phenocam and in-situ observation networks world-
wide (Tian, Cai, Jin, et al.,  2021), although scaling up from in-situ 
phenology to satellite phenology observations remains a grand chal-
lenge (Peng, Zhang, Zhang, et al., 2017; Zhang et al., 2017). Besides, 
Internet-of-Things (IoT), big data, and artificial intelligence (AI) are 
being increasingly adopted in phenology studies. IoT can gener-
ate massive amounts of data streamed from cameras, phenology 
sensors, or even social medias, so called “pan-spatial data” (Zhou 
et al., 2022). The new data from IoT demand non-conventional an-
alytic approaches such as text mining, computer vision, and AI that 
can truly take advantage of the pan-spatial data and further offer 
a complementary view of global phenology pattern to satellite 
observations.

From a scientific perspective, the breadth of LSP applications 
is expanding to an even great and more diverse extent. Phenology 
has traditionally been considered the key to understanding carbon–
water coupling (Fu et al., 2020), yet a quantitative and mechanical 
understanding has not been achieved. Meanwhile, how climate fac-
tors affect phenology has been studied extensively over the past 

decade, and very recently factors beyond climate such as nitrogen 
deposition have started gaining attention (Luo et al.,  2020; Wang 
et al., 2020). In addition, LSP has also been integrated into the early-
warning system for pollen outbreak forecast, which is highly rele-
vant to public health (Devadas et al., 2018; Li et al., 2019). In this 
case, a multidisciplinary approach that integrates ecologists, meteo-
rologists, epidemiologists, and remote sensing scientists is required.

In this context, here we provide a review on the emerging topics 
that are either related to the scientific applications or the techni-
cal issues of LSP. We noted recent reviews on remote sensing phe-
nology retrieval methodologies (e.g., Zeng et al.,  2020) as well as 
phenology and climate change (e.g., Piao et al., 2019). Our specific 
review, therefore, focused more on the selected topics to highlight 
opportunities to advance the research frontier instead of repeating 
what has been covered in previous review articles. Figure 1 provides 
a graphical overview of the six topics we discussed in this article. The 
first three topics focused on the technical aspects of LSP, followed 
by three topics focusing on the rising opportunities for phenology-
related science applications.

2  |  UNCERTAINTIES IN L AND SURFACE 
PHENOLOGY

Existing studies often obtain inconsistent or controversial re-
sults even on the same research question (Han & Xu,  2013; Qiu 
et al., 2017), suggesting large uncertainties in phenology metrics de-
rived from satellite observations, and even official phenology prod-
ucts. For instance, validated with ground PhenoCam observations, 
root mean square error (RMSE) values of the start of the season 
(SOS) and the end of the season (EOS) are 12.3 and 21.3 days for 
VIIRS LSP product, and 10.1 and 21.6 days for MODIS land cover 
dynamics product respectively (Moon et al.,  2021). The intercom-
parison of six phenology products (i.e., MCD12Q2, VIPPHENEVI2, 
CMGLSP, MOD09Q1PEVI, MOD15PHN, and AVHRRP) showed that 
RMSE of SOS retrievals of these phenology products are around 
20 days (Peng, Zhang, Wu, et al., 2017). The differences in vegeta-
tion phenology detection among diverse satellite-based phenology 
products may result from the uncertainties following major factors 
(Figure 2), including spatial resolution (i.e., mixed pixel effect caused 
by coarse spatial resolutions), sun-view geometry effect, temporal 
resolution (i.e., low-frequency observations), and noises (i.e., atmos-
pheric effects including clouds, hazes, and aerosols). Here we sum-
marize and discuss recent studies on the above four factors, which 
could help future studies to improve the reliability of satellite-based 
vegetation phenology detection.

First, satellite images of various spatial resolutions from 10 m to 
1 km were used to extract vegetation phenology (Cong et al., 2012; 
Melaas et al., 2013; Shen et al., 2014; Tian, Zhu, Shen, et al., 2020; 
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Zhang et al., 2003). Because of the scale effects (Chen et al., 2018; 
Peng, Zhang, Zhang, et al.,  2017; Zhang et al.,  2017), the coarse-
resolution images cannot always provide vegetation phenology ac-
curately at the desired spatial scales, resulting in the misestimation 
of vegetation phenology, especially in the fragmented vegetation 
regions (Zhu & Liu, 2019). For example, Qiu et al.  (2017) reported 
the average rural–urban difference of spring phenology was on the 

order of 5–10 days using 30-m Landsat data, but it was 7–15 days 
when using 1-km SPOT data in the same study area (Han & Xu, 2013). 
Similarly, the average rural–urban difference of green-up dates 
in Salt Lake City, United States, was more than half a month using 
500-m MODIS data (Li et al., 2016), whereas it was less than 4 days 
when using 30-m fused data (Gervais et al., 2017). A recent study 
reveals that coarse-resolution satellite images would overestimate 

F I G U R E  1  Overview of the six emerging topics discussed in this review article.

F I G U R E  2  Diagram of key factors related to the uncertainties (i.e., spatial resolution, temporal resolution, viewing-solar angle 
normalization, and noises in the time-series data) in land surface phenology using satellite-based remote sensing observation. RAA, relative 
azimuth angle; SZA, solar zenith angle; VZA, viewing zenith angle.
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the rural–urban difference in phenological metrics (Tian, Zhu, Wu, 
et al., 2020). A potential reason for this overestimation is that the 
diversity of spring phenological dates is greater in coarser urban pix-
els, thus causing spring phenological dates extracted from coarser 
satellite images to be generally earlier than actual dates, which is 
agreed with another two recent papers revealing that spring phenol-
ogy derived from coarse satellite images can be more controlled by 
vegetation species with earlier spring phenology (Chen et al., 2018; 
Liu et al., 2019).

Second, the necessity of BRDF adjustment including satellite 
viewing angle and solar illumination angle for phenology detection 
is broadly documented. For example, a recent study indicated that 
satellite viewing angles greatly increased the uncertainty of veg-
etation phenology extraction (Lu et al., 2022). Moreover, the sea-
sonal changes in solar zenith angle (SZA) can also alter the temporal 
trajectory of the VI time series, thereby causing a lower precision 
of vegetation phenology extraction than that of fixed SZA (Ma 
et al.,  2019, 2020; Norris & Walker,  2020). As a result, to acquire 
more accurate results of phenological metrics, the BRDF normaliza-
tion should be implemented before vegetation phenology extraction 
(Morton et al., 2014; Petri & Galvão, 2019). Fortunately, some offi-
cial satellite products have offered the opportunity for correcting 
the BRDF effects, for example, MODIS MCD43A1 BRDF/Albedo 
Model Parameters (Schaaf et al., 2002) and Harmonized Landsat and 
Sentinel-2 (HLS) surface reflectance products (Claverie et al., 2018).

Third, satellite data with sparse temporal resolutions (e.g., 
Landsat 16 days) may not be capable of capturing the key stages of 
vegetation phenology, resulting in higher uncertainty in phenology 
retrieval and reduced ability in detecting inter-annual variability or 
long-term trend. A simulation study based on MODIS data shows 
that vegetation phenology can be detected with satisfying precision 
(absolute errors are less than 3 days) with temporal resolutions up 
to 16 days (Zhang et al., 2009). Another recent study used simulated 
EVI with daily to 52 days temporal resolutions to detect spring phe-
nology in North America and found that temporal resolutions non-
linearly affected the accuracy of LSP (Tian, Zhu, Wan, et al., 2021).

Fourth, time-series smoothing (e.g., maximum value composite 
and temporal filters) is a conventional step to process daily noisy 
satellite data (Cai et al., 2017; Chen et al., 2004). The arbitrary choice 
of smoothing methods and parameters may affect the precision of 
phenology detection considering that cloud covers have high spatial 
heterogeneity (Ju & Roy, 2008; Wilson & Jetz, 2016). For example, a 
study uncovered that the spring phenology derived from the coarse 
composites was earlier than that derived from the fine composites 
(Zhu et al., 2019). A recent study investigated the impact of clouds 
on the smoothing process at a global scale and recommended op-
timal smoothing parameters for future studies in different regions 
(Tian, Zhu, Chen, et al., 2021).

To address the issues of the above potential uncertainties in LSP 
using satellite-based remote sensing observation. some cutting-edge 
image reconstruction technologies can be used to optimize the spa-
tial and temporal resolutions and reduce noises in time-series data, 
for example, cloud and gap-filling technologies (Zhu et al., 2021) and 

data fusion technologies (Tian, Zhu, Wu, et al., 2020). Alternatively, 
new generation geostationary satellite (e.g., Advanced Baseline 
Imager, ABI) images and CubeSat constellation (e.g., PlanetScope) 
images provide high-frequency and fine-resolution observations 
which can further alleviate the uncertainty effects. In addition, ex-
cept the uncertainties mentioned above, the choice of different sat-
ellite data sets (e.g., AVHRR and MODIS), VI time-series data (e.g., 
NDVI and EVI), and phenology extraction algorithms (i.e., threshold-
based and curvature-based methods) also may result in the uncer-
tainty of detection results, but the difference is slight for these 
factors (Cong et al., 2012; Shen et al., 2014). It is worth noting that 
solving the abovementioned uncertainties could mainly improve 
landscape-scale phenology detection using satellite remote sensing 
observations, which may not work for phenology detection from 
the individual tree to leaf scales. To address this issue, a possible 
solution is to integrate multiscale observations from the space, sky, 
and ground. This is also a new perspective and a frontier for future 
vegetation phenology studies.

3  |  PHENOC AM TR ACKING FINE-SC ALE 
ECOSYSTEM DYNAMIC S AND MECHANISM

Understanding how phenology responds to environmental change 
globally and validating satellite phenology products require more 
high-quality field-collected data (Berra & Gaulton,  2021; Brown 
et al.,  2016; Richardson, Hufkens, Milliman, Aubrecht, Chen, 
et al., 2018). The traditional method of field observations for phe-
nology states is based on human observers (Li, Shen, et al., 2021). 
Although this approach provides species-specific ground phenol-
ogy observations (Klosterman et al.,  2014), inherent subjectivity, 
inconsistency in temporal resolution, and insufficient spatial repre-
sentativeness restrict the field records to characterize vegetation 
phenology at the regional scale (Richardson, Hufkens, Milliman, 
Aubrecht, Chen, et al.,  2018). Furthermore, direct phenological 
surveys provide observations with fine biological details and rep-
resentation of diversity, but they cannot well represent the pheno-
logical response of the whole community (Berra & Gaulton, 2021). 
‘Near-surface’ remote sensing—phenocam integrates phenological 
signals across the whole vegetation canopy, offering opportunity 
for satellite validation on the one hand, and distinguishing indi-
vidual plant phenology on the other hand (e.g., single tree crowns) 
(Seyednasrollah et al., 2019).

Phenocam represents any digital camera used for automatic 
time-lapse photography to observe the variations in the vegeta-
tion cover continuously at a high temporal frequency and spatial 
resolution (Brown et al., 2016; Richardson et al., 2013). Large-scale 
phenocam networks have been developed and widely adopted for 
monitoring ecosystem dynamics worldwide within the last decade 
(Berra & Gaulton, 2021; Richardson, Hufkens, Milliman, Aubrecht, 
Chen, et al.,  2018). For example, the PhenoCam network (http://
pheno​cam.sr.unh.edu; Richardson, Hufkens, Milliman, Aubrecht, 
Chen, et al.,  2018) and Phenological Eyes Network (PEN; http://

http://phenocam.sr.unh.edu
http://phenocam.sr.unh.edu
http://pen.agbi.tsukuba.ac.jp
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pen.agbi.tsuku​ba.ac.jp) (Nasahara & Nagai, 2015). The US National 
Ecological Observatory Network (NEON) (Utz & Prism,  2012) and 
the European Union's Integrated Carbon Observation System (ICOS) 
(http://europ​ean-webca​m-netwo​rk.net/) have also established 
phenocam networks. In the Southern Hemisphere, the Australian 
Phenocam Network (APN) (https://pheno​cam.org.au) was estab-
lished to facilitate the sharing of phenocam data and researches 
using this novel technology and to obtain a better understanding 
of phenological dynamics in this continent (Brown et al.,  2016; 
Marchin et al., 2018; Moore et al., 2016). Crucial issues related to 
data standardization, open-access data, and expanding phenocam 
networks are important for the development of phenocam technol-
ogy (Richardson, Hufkens, Milliman, Aubrecht, Chen, et al., 2018).

Technologically, the camera lens projects the observed object 
onto a digital chip with a light-sensitive structure. Three channels 
(RGB) are used to record the color information of the landscape. 
However, RGB digital number values are generally not directly 
used to conduct phenological analysis due to both external and 
internal factors—scene illumination affected by clouds, aerosols, 
solar azimuth, and so on, and control of exposure and color bal-
ance adjustment—could bring uncontrollability in image processing 
(Sonnentag et al., 2012). To better track phenology variability, the 
respective chromatic coordinates of RGB DN values (RCC, GCC, 
and BCC) are widely used in phenology studies (Brown et al., 2016; 
Klosterman et al., 2014; Liu, Fu, et al., 2016; Migliavacca et al., 2011; 
Moon et al., 2022; O'Connell & Alber, 2016; Songsom et al., 2021). 
Other color indices have since been construed by the nonlin-
ear transformation of RGB DN values, including the VARI (Visible 
Atmospherically Resistant Index) (Sakamoto et al., 2012), grR (green-
red ratio) (Sonnentag et al., 2011), as well as the excess green (ExG) 
(Woebbecke et al., 1995). Furthermore, Figure 3 shows how camera 
sensors work (a and b), and the spectral responses of MODIS and im-
aging sensors (c) (Brown et al., 2016). Typical phenocam records over-
lapping RGB bands, with the near-infrared and part of the red region 
beyond about 650 nm are often omitted in most commercial cam-
eras (dotted line in Figure 3c). The MODIS sensors, however, have 
no band overlapping and higher sensitivity to specific wavelengths 

compared with commercial cameras (Brown et al., 2016). Although 
phenocam image processing technology has made great progress, 
the inherently spectral limitations of camera sensors should not be 
overlooked for vegetation phenology detections, especially ground 
validation for satellite-derived phenology observations.

Phenocam has become a promising way for phenological studies 
in forests, grasslands, and agricultural areas (Baumann et al., 2017; 
Brown et al.,  2017; Keenan et al.,  2014; Khare et al.,  2021; 
Nietupski et al., 2021; Ren & Peichl, 2021; Richardson et al., 2012; 
Song et al., 2022; Tian, Cai, Jin, et al., 2021; Toomey et al., 2015). 
Additionally, phenocam images have been used to derive import-
ant information on snowmelt processes (Kim et al.,  2021; Zheng 
et al.,  2022). Using the phenocam imagery and satellite data, Liu 
et al.  (2017) evaluated the detection of vegetation phenology in 
savannas and grasslands. Their results showed that the phenocam 
NDVI was strongly correlated with the satellite NDVI for two grass-
land ecosystems. Recently, a study using HLS, PlanetScope data, and 
phenocam imagery reported that not only the VI temporal profiles 
from satellites and phenocam show high temporal agreement but 
also phenometrics derived from all three data sets agreed very well 
with each other (Moon et al., 2021).

Phenocam color indices are well correlated with satellite VIs 
typically used to detect LSP, suggesting that phenocam can provide 
good ground measurement data for verifying satellite phenology 
detections (Liu et al., 2021; Thapa et al., 2021; Zhang et al., 2018). 
For example, researchers used phenocam observation as the ground 
validation for a new algorithm of 30 m LSP product derived from 
HLS and VIIRS surface reflectance products (Zhang et al.,  2020). 
Phenocam data are also combined with other ecological observa-
tion data, such as surface-atmosphere fluxes, to characterize the 
responses of vegetation productivity to phenological variations 
(Browning et al., 2021; Wingate et al., 2015) and thus depict the re-
lationships between seasonal plant dynamics and ecosystem carbon 
budgets (Vázquez-Lule & Vargas, 2021). Through combined pheno-
cam technology with eddy covariance data at a subalpine grassland, 
digital camera imagery was demonstrated to have the potential for 
the parameterization of phenological and radiation use efficiency 

F I G U R E  3  Diagram shows how phenocam work (a and b) and typical spectral response for MODIS and camera imaging sensors (c). 
Source: Brown et al. (2016).

http://pen.agbi.tsukuba.ac.jp
http://european-webcam-network.net/
https://phenocam.org.au
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models (Migliavacca et al., 2011). Combining carbon flux data from 
FLUXNET2015 Dataset (https://fluxn​et.org/data/fluxn​et201​5-
datas​et/), PhenoCam, and MODIS, researchers reported the sum-
mer physiology can explain the interannual variability of NEP (net 
ecosystem productivity) for most ecosystems, besides grassland. 
This finding highlights the significance of understanding the role 
of summer physiology in carbon accumulation (Liu & Wu, 2020). 
More recently, Moon et al.  (2022) used PhenoCam data as ground 
reference to present a high spatial resolution (3 m) LSP data set for 
AmeriFlux and NEON sites across North America using PlanetScope 
imagery.

In addition to validating LSP derived from satellites and coordi-
nating with flux data to interpret carbon sequestration of terrestrial 
ecosystems, multispectral cameras on board unmanned aerial vehi-
cles (UAVs) are increasingly applied to depict plant characteristics, 
for example, leaf area index (LAI), texture, and plant height (PH), 
especially in agricultural application scenarios (Hassan et al., 2019; 
Su et al.,  2018; Zhou et al.,  2017). Using a multi-spectral camera 
attached to a UAV, researchers assessed the capability of vegeta-
tion indices calculated from cameras to capture variations in LAI 
and plant counts, which are of interest to sorghum breeders, and 
consequently to inform the sorghum breeding practice (Potgieter 
et al., 2017). Shu et al. (2022) improved the accuracy of UAV-based 
digital imagery (RGB bands) in monitoring maize aboveground bio-
mass by integrating PH and LAI predicted from UAV-based multi-
spectral images. Using ground truth flowering data derived from the 
UAV-based RGB images to label flowering pixels in PlanetScope im-
ages, Dixon et al. (2021) produced a landscape-scale flowering phe-
nology map for Southwest Australia eucalypt canopies.

4  |  PAN-SPATIAL BIG DATA AND SMART 
SENSING FOR L AND SURFACE PHENOLOGY

There has been a long history of artificial observation of plant 
phenology, which mainly aims to adapt to climatic changes and im-
prove agricultural management activities (sowing, harvesting, etc.; 
McGowan et al., 2021; Ren et al., 2019; Vitasse et al., 2022). In many 
countries, ancient literary works and agricultural books have re-
corded abundant clues in plant phenology (e.g., tree flowering, bird 
migration) and climate changes (e.g., snowing in low-latitude regions) 
(Dye, 2002; Shi et al., 2017; Vitasse et al., 2022). From the current 
perspective, these observations naturally have a citizen science-like 
characteristic implying phenological observations can be performed 
by everyone. Nowadays, millions of automatic sensing equipment 
have been deployed over the Earth's surface and around space, 
such as web cameras, weather (ecological) stations, satellites, and 
drones, to monitor land surface changes. The wide use of portable 
smart devices (e.g., cell phones, cameras mounted in cars) and their 
data sharing through internet, also have greatly improved the infor-
mation capacity of the Earth's observation database. Thus, a huge 
sensing data flow with the spatial feature, from real or cyber space, 
constructs a multivariate data pool that together can be termed as 

“pan-spatial big data” (Figure  4; Zhou et al.,  2022). Therefore, we 
will enter into a big data era for phenological studies that on the one 
hand forms invaluable data for comparative and integrative spatial 
phenology analysis with satellite remote sensing, whereas on the 
other hand demands technical advances in various dimensions, such 
as data quality filtering and data mining approach.

Currently, AI technique has demonstrated a promising perfor-
mance in extracting information from pan-spatial big data (Boukabara 
et al.,  2021; Irrgang et al.,  2021; Mehajan & Verma,  2020; Sun 
et al., 2022). However, researchers need to identify specific areas 
where AI techniques could be used for phenological study across 
multiple scales, that is, from individual plant to landscape phenology, 
as well as from texts, photos, to other information acquired with a 
variety of new sensors (Figure 4). Massive street-level imagery has 
been applied to monitor crop phenology based on deep learning 
(DL) and unleashed its power in plant classification and phenology 
identification (d'Andrimont et al., 2022; Hufkens et al., 2019). Using 
computer vision and machine learning methods, plant individual phe-
nology (e.g., bud bursting, leafing) can be detected from noisy time-
lapse images (Correia et al., 2020). Plant growing data collected by 
volunteers have increasingly contributed to mapping phenological 
status, jointly used with remotely sensed data (Elmore et al., 2016; 
MacKenzie et al., 2017; Wallace et al., 2016), whereas data quality 
should be carefully assessed to be consistent with scientific inten-
tions. Crowd-sourced photographs from social sensors (e.g., Flickr, 
Twitter) also construct a geospatial cloud for monitoring phenology 
(Breckheimer et al., 2019; Cope et al., 2017). For instance, a smart-
phone application was designed to record bud bursts. Text mining 
technique was also used for revealing autumn phenology information 
from social networking platforms such as Twitter, Flicker, and Weibo 
(Nagai et al., 2021). It should be noted that there is much to improve 
in terms of the accessibility of pan-spatial phenology data. For in-
stance, although a significant amount of urban photos are taken by 
the surveillance camera that has a potential for retrieving phenology, 
but most of these data are restricted from access. Besides, it is also 
time-consuming for the researchers to retrieve phenology informa-
tion from internet sources. From this perspective, an open-source 
repository of pan-spatial phenology data with standardized format 
and metadata would surely be valuable to the community.

The big challenge for AI application in phenological pan-spatial 
data will exist in its entire workflow, including data pre-processing, 
model training, and evaluation. How to obtain a statistically mean-
ingful sample density for training, which will greatly impact its ap-
plicability, as well as the credibility of results. For instance, if we 
use DL approach to identify tree flowering dates based on photos 
retrieved from web-camera or cell phones, the reliability of the 
result relies on the specie classification accuracy of flower im-
ages. Although the classification of plants and their phenological 
phase from imagery depends on human interpretation of sample 
images, which highly needs professional knowledge. In that case, 
it will reduce the cost-efficiency in AI-based phenological analysis 
and introduce some uncertainties in model outputs. Additionally, 
it is difficult to construct an efficient and widely applicable deep 

https://fluxnet.org/data/fluxnet2015-dataset/
https://fluxnet.org/data/fluxnet2015-dataset/


7192  |    MA et al.

neural network in AI phenological experiments. Even though there 
are many DL networks in image analysis, transfer learning from 
these models requires great programming skills to adapt model 
parameters. Lastly, the optimal workflow to scale up from pan-
spatial phenology to regional or even global scale, in conjunction 
with LSP remains to be established.

5  |  L AND SURFACE PHENOLOGY AND 
HUMAN HE ALTH

Satellite phenology has been used in human health-related science 
applications. Studies have reported shifts in forest and grass phe-
nology associated with changing climate (Buermann et al.,  2013; 
Munson & Long, 2017; Xie et al., 2022), which could contribute to 
changing allergenic pollens exposure due to altered flowering and 
pollination times. Pollen exposure is projected to intensify with 
climate change and changes in land cover, raising the risks for al-
lergic respiratory diseases that pose threats of severe public health 
problems (Rojo et al.,  2015). This suggests more days with high 
pollen concentration and more extreme events like thunderstorm 
asthma. These diseases afflict nearly 500 million people worldwide 
(Khwarahm et al., 2017). Pollen concentration forecast is important 
to help public health emergency planning and response arrange-
ments around events like thunderstorm asthma. A major shortcom-
ing in current pollen surveillance methods is that they do not include 
available ecological information on plant species composition and 
plant phenology, land cover conditions (McInnes et al., 2017), and 
spatially detailed information on pollen concentration.

The amount of pollen in the atmosphere at any given location de-
pends on many factors, including the vegetation type and vegetation 
coverage in the area, climate factors, and geographical conditions. 
Estimation of allergic pollen has been done using these factors to-
gether with patients' symptom reports and local expert knowledge 
(Silver et al.,  2020) through linear and nonlinear regression mod-
els (Smith & Emberlin,  2006). These traditional approaches using 

statistical-based receptor-orientated models (Skjøth et al., 2010) are 
observation-based. They usually use multiple years of pollen con-
centrations (Sánchez et al., 2007), chilling requirements and photo-
period process models (García-Mozo et al., 2009), or meteorological 
data-driven models (Voukantsis et al.,  2010). However, forecast 
models based on empirical relationships between these factors with 
airborne pollen concentrations from one site are not likely to be suit-
able for other locations in different environments.

Plant phenology information is critical to decipher climate and 
ecological-driven factors of pollen aerobiology, and such informa-
tion should aid in the short-term pollen concentration forecasting 
as well as future trends of pollen aerobiology, as shown in Figure 5a 
(Davies et al., 2015). Moreover, pollen emission and transport have 
not been well studied (Emmerson et al.,  2019), due to a lack of 
emission inventories of the pollen-producing species, for example, 
the distribution and abundance, within a given geographical area. 
Research progress has been made on tracking pollen sources at large 
scales mostly in Europe (Bogawski et al., 2019; Skjøth et al., 2010; 
Thibaudon et al., 2014); however, the change in the vegetation cover 
associated with global warming requires dynamic monitoring of 
such pollen sources. Pollen forecasts have been achieved mostly at 
local scales so far and rely on statistical relationships between pol-
len and meteorological factors, or labor-intensive pollen monitoring 
traps that are only available at limited sampling locations (Devadas 
et al., 2018).

Recently there is an increase in using remote sensing derived LSP 
data to expand the restrictive coverage of in-situ pollen networks. 
The phenological timing when grass turns from maximum greenness 
to a drying, flowering period, and season peak was used in pollen 
monitoring (Emmerson et al., 2019). Devadas et al. (2018) have found 
close relationships between strongly seasonal and pronounced pol-
len periods and satellite-derived greenness (Figure 5b), which shows 
the power of using satellite remote sensing data to spatially extend 
point-based pollen forecasts. However, remote sensing pollen sur-
veillance studies have so far mostly been carried out in Europe and 
the United States only (Khwarahm et al., 2017; Skjøth et al., 2013) 

F I G U R E  4  Workflow for pan-spatial big data, smart sensing, and AI applications in plants phenology analysis.
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and the distribution areas of the important allergenic pollen types 
are mapped at a regional scale. To improve the capacity and accuracy 
of pollen forecast, satellite-derived vegetation phenology should be 
incorporated to track the up-to-date composition and biogeograph-
ical distribution of species and their seasonal timings (Campbell 
et al.,  2020; Davies et al.,  2021). This ecological information will 
provide insights into patterns of pollen release and distribution and 
prediction of future pollen outbreaks (Huete et al., 2019).

Advances in satellite monitoring capabilities, phenology re-
search, and machine learning models now make it feasible to develop 
and implement pollen exposure observation and forecast in both 
urban and regional areas. By tracking all the key stages in grass pol-
len production through pollen release and dispersal, the improved 
pollen forecast models could enhance our understanding of envi-
ronmental drivers of allergic respiratory disease as well as mitigating 
human health threats.

6  |  L AND SURFACE PHENOLOGY AND 
C ARBON–WATER COUPLING

LSP and other surface variables derived from satellite observations 
have been adopted extensively in exploring the relationship be-
tween phenology and carbon–water coupling. From the individual 
plant level to ecosystem level, phenological variabilities can alter 
physiological and structural traits, including photosynthetic rate/
light use efficiency, stomatal/canopy conductance, LAI and surface 
roughness, etc. (Keenan et al., 2014; Piao et al., 2007; Richardson 
et al., 2010, 2013; Shen et al., 2014; Wu et al., 2013). Hence, phe-
nology directly/indirectly, positively/negatively, and synchro-
nously/asynchronously regulates carbon (e.g., photosynthesis and 

respiration) and water (e.g., water absorption and evapotranspira-
tion) exchanges on the land surface. Here, the coupling between 
carbon gain and water loss in response to phenology is a notable 
topic. Water use efficiency (WUE) is calculated as the ratio of car-
bon assimilation per unit of water consumption. WUE is a crucial 
ecological indicator, that is, the coupling capability between carbon 
and water cycles (Keenan et al., 2013; Tang et al., 2014). Given the 
difference in sensitivities of photosynthesis and transpiration to 
variation in phenology, the responses of WUE to phenology can 
potentially vary with the magnitude of the coupling between them 
(Richardson et al.,  2013). For example, the conceptual scenarios 
shown in Figure  6, which follow Richardson et al.  (2010), exhibit 
diverse variabilities in the components of WUE in response to an 
earlier spring phenology.

In spring and autumn, ecosystem-scale WUE is closely associated 
with the satellite phenology, for example, SOS and EOS of the growing 
season, across the continents (Jin, Wang, et al., 2017). The variabil-
ity of WUE to SOS and EOS could be explained by the difference in 
sensitivities of carbon gain and water loss to the phenological indi-
cators. For example, an increasing spring (or autumn) WUE with an 
advanced SOS (or delayed EOS) might because the magnitude of en-
hanced GPP is larger than that of simulated ET, or an increase in GPP 
is accompanied by a decrease in ET with an earlier SOS (or a later EOS) 
(Beer et al., 2009; Keenan et al., 2014; Kljun et al., 2006; Luyssaert 
et al., 2007; Zha et al., 2010). However, summer WUE was less related 
to or slightly reduced by SOS due to water deficit and/or plant ecolog-
ical strategy (Leuzinger et al., 2005; Wolf et al., 2016). In the Northern 
Hemisphere, the sensitivity of WUE to phenology exhibits a gradual 
enhancement from warm to cold climates. Specifically, the sensitivity 
of spring WUE to SOS showed a significantly negative correlation with 
radiation, which was associated with dramatic water loss in the high 

F I G U R E  5  (a) Release, dispersal and impact of pollen on respiratory health (Davies et al., 2015); (b) normalized pollen concentration at 
monitoring sites and normalized satellite-derived Enhanced Vegetation Index within 100 km to pollen monitoring sites at Melbourne and 
Sydney in Australia (Devadas et al., 2018).
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radiation part; the sensitivity of WUE to SOS in summer increased 
along the precipitation gradient while decreased along the tempera-
ture gradient. This might be resulted from the compensation of GPP to 
the delayed SOS and water deficiency due to heat stress. The sensitiv-
ity of autumn WUE to EOS enhanced significantly with both radiation 
and precipitation, which may be attributed to the increase of energy 
and water for photosynthesis. Despite the variance of the sensitivities 
for different PFTs in homogeneous climatic conditions, the degree of 
variation is much less than that in heterogeneous climates, showing a 
fundamental similarity of ecological functions over a broad spectrum 
of climates, with the respective characteristics of different plant types 
(Jin, Zhan, et al., 2017).

7  |  UNE XPLORED DRIVERS OF PL ANT 
PHENOLOGY: BE YOND CLIMATE

Although much attention has been paid to reveal phenological pat-
terns in space and time using satellite observations, identifying the 
underlying drivers and mechanisms of what we have observed using 
satellite observations is crucial to predict phenology changes in the 
future and accurately evaluate the phenology-induced effects on 
ecosystem functioning (Piao et al., 2019). To date, much progress has 
been made to understand how climatic factors mediate the changes 
in phenology (Chamberlain & Wolkovich, 2021; Fu et al., 2015; Li, 

Liu, et al., 2021; Piao et al., 2015; Zohner et al., 2020). Key knowl-
edge, however, remains highly lacking concerning the effects of driv-
ers beyond climate (Figure 7). We are still limited to understanding 
how other environmental cues, regulating the leaf emergence and 
senescence, such as water, and nutrient availability (Luo et al., 2020; 
Piao et al.,  2019), as well as elevated CO2 concentration (eCO2). 
Moreover, recent studies indicated biotic cues such as leaf age, spe-
cies diversity, and physiological activities also have a strong impact 
on plant phenology (Chuine, 2010; Luo et al., 2022; Zani et al., 2020). 
For instance, increased photosynthesis was hypothesized to be the 
direct and determinant driver that advances the leaf senescence in 
the autumn and its importance of control on autumn phenology can 
differ in different growth periods. In this session, we mainly sum-
marize the recent advances in studying the effects of factors beyond 
climate on phenology and discuss the possible directions to improve 
elucidating their effects on phenology with a combined remote 
sensing, experimentation, and modeling approach.

In addition to phenological cues such as temperature and day 
length, other environmental drivers such as water and nutrient 
availability, eCO2 can also influence the variation of phenology 
(Piao et al., 2019), especially for the sites that are limited by these 
factors (Chapin et al.,  1990; Luo et al.,  2020). For the drylands, 
water availability is a critical factor that can significantly influence 
the onset of SOS and EOS along with changes in soil water content 
(Luo et al., 2020; Reynolds et al., 2004). With the relief of limiting 

F I G U R E  6  The conceptual scenarios of water use efficiency in response to spring phenology, which follows Richardson et al. (2010). 
Ecanopy, canopy interception evaporation; EOS, end of the season; Esoil, soil evaporation; GPP, gross primary productivity; SOS, start of the 
season; T, transpiration
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effects of water, nutrients' availability starts to play a more import-
ant role in regulating phenology (Guo et al., 2016; Lee et al., 2010; 
Luo et al., 2020). Increased soil water availability can help plants use 
more nutrients to synthesize organic matter and biomass during the 
growing season, which may enhance plants' resistance when facing 
stresses such as cold thus delaying senescence (Fu et al., 2019). At 
the same time, a threefold increase in anthropogenic nitrogen depo-
sition with less obvious phosphorus deposition since the Industrial 
Revolution in 1860 has increased the ratio of nitrogen (N) to phos-
phorus (P). This leads to the so-called N-P imbalance and stoichiome-
try that are expected to have large impacts on ecosystem properties 
and dynamics of carbon and plant growth (Janssens et al.,  2010; 
Nair et al., 2019). One landscape-scale nutrient manipulation study 
in the Mediterranean tree-grass ecosystem that involves the use of 
eddy-covariance flux towers, phenocams, and satellite observations 
illustrated that nitrogen-added treatment would accelerate the se-
nescence rate and advance phenocam/satellite detected EOS com-
pared with N:P balanced treatments (El-Madany et al.,  2021; Luo 
et al., 2020). This was attributed to the fact that soil water depleted 
more rapidly in the nitrogen-added treatment during the dry-down 
period due to enhanced leaf biomass production (Luo et al., 2020). 
Additionally, free air CO2 enrichment experiments can delay the tim-
ing of leaf senescence under elevated CO2, which might attribute 
to eCO2 improves the WUE (Ainsworth & Long, 2005; Norby, 2021; 
Reyes-Fox et al.,  2014) and ameliorates the soil water deficit (Fay 
et al., 2012).

From the recent report of the World Meteorological Organization 
(WMO), the global CO2 concentration continues to increase and al-
ready surpassed 415 ppm (WMO, 2022). Even though the amount 
of reactive nitrogen (Nr) has reached its peak worldwide, a large 
spatial variation of Nr deposition in different continents exists (Liu 
et al.,  2022). Besides, we have a long road to clearly understand-
ing the interactions between Nr and climate (Greaver et al., 2016). 
Due to the above reasons, there is large uncertainty to predict the 

spatiotemporal variation of plant phenology under future climate 
changes. Hence, multi-factorial experiments, especially the interac-
tion between different drivers are strongly needed in future work 
to elucidate the mechanisms and effects of environmental factors 
on phenology.

Apart from abiotic drivers, less studied biotic drivers also con-
tribute to explaining the variation of phenology. Previous studies 
have demonstrated a positive intercorrelation between leaf onset 
and leaf senescence on species and ecosystem scales (Fu et al., 2014; 
Keenan & Richardson, 2015; Liu, Wu, et al., 2016). This phenomenon 
could be related to programmed cell death and relatively stable leaf 
longevity for specific species (Lim et al., 2007), as well as the conse-
quence of the interaction of phenology and environmental drives, for 
example, earlier leaf-out and expansion possibly result in advance of 
senescence by depleting limited water resources in the early stage of 
growing season (Luo et al., 2020; Wolf et al., 2016). Besides, leaf age 
and species diversity can also significantly influence the phenology 
and ecosystem functioning (Chuine, 2010; Wu et al., 2016). Studies 
on evergreen broadleaved trees reveal that leaf quantity as mea-
sured by LAI alone cannot explain the seasonality of photosynthesis 
capacity thus the same for the timing of important transition period 
(phenology) unless leaf age is considered (Wu et al.,  2016, 2018). 
Likewise, for ecosystems with diverse species, phenology as an in-
tegrative indicator represents the variation of leaf development and 
greenness variation of different species, which would be affected 
if species composition is shifted (Chuine et al., 2010; Filippa et al., 
2016) when facing environmental changes such as nutrients addi-
tion. However, the linkage between species changes and phenology 
variation, as well as their impact on ecosystem functioning (Cleland 
et al., 2007) have not been extensively studied.

A recent study proposed that enhancement of trees' photosyn-
thesis in the growing season will advance autumn leaf senescence 
in temperate trees (Zani et al., 2020). If this is true, temperate and 
boreal ecosystems that are regarded as the important carbon sink 

F I G U R E  7  Overview of the biotic and abiotic drivers of plant phenology. The changes of critical phenophases such as start of the season 
(SOS), end of the season (EOS) are both influenced by abiotic and biotic factors, which further impact the growing season length (GSL) of 
vegetation growth and functioning. eCO2, elevated CO2; GPP, gross primary productivity; NSC, nonstructural carbon; Tair, air temperature
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might not continue to sink in the second half of the 21st century as 
the advance of leaf senescence and reduced growing season length 
in a CO2-enriching atmosphere (Norby,  2021; Zani et al.,  2020). 
Although strong controversy with respect to whether accumulated 
photosynthesis is the main regulator of autumn phenology or not 
(Lu & Keenan, 2022; Norby, 2021), the most updated studies on this 
topic have illustrated that phenology should not only be affected by 
climate but also regulated by physiological activities such as pho-
tosynthesis and variation/mobility of non-structural carbon. Hence, 
more studies on biotic factors' effects as well as their relative im-
portance compared with environmental factors on phenology are 
needed to be further investigated (Piao et al., 2019).

With rapid development in remote sensing techniques and their 
application, it is an opportunity and imperative to explore and bridge 
the underlying mechanisms of phenological variation at field scale 
and landscape scale by combining different approaches (i.e., exper-
iments, observations from field measurements and remote sensing, 
and phenological modelling). Specifically, we can deepen the under-
standing of phenological changes through the following manners: (1) 
conducting manipulative experiments on the ecosystem scale (El-
Madany et al., 2018; Luo et al., 2018, 2020; Richardson, Hufkens, 
Milliman, Aubrecht, Chen, et al.,  2018; Richardson, Hufkens, 
Milliman, Aubrecht, Furze, et al.,  2018) that encompass different 
ecosystem components (e.g., overstorey and understorey, different 
plant species). By integrating data and knowledge from different 
sources, we can have an overview of the ecosystem phenological 
changes under the altered environment while elucidating the contri-
butions from different ecosystem components and (2) fostering the 
development of the linkage between field and spatial observations. 
With the establishment of continental and global phenology and 
ecological monitoring networks, significant progress is made to con-
necting phenology information across spatial and temporal scales. 
This is particularly important for us to evaluate the consistency of 
phenology variation at different scales (Donnelly et al., 2022; Wang, 
Li, et al., 2022; Wang, Wu, et al., 2022), and further investigate the 
relationship between changes in environmental drivers, physiolog-
ical activities, and variation of phenology (Lu & Keenan, 2022); (3) 
strengthening our ability to predict the spatiotemporal variation 
of phenology through modeling. With a wealth of data mentioned 
above becoming available, we not only gain the confidence to fal-
sify the competing phenology hypotheses embedded into the global 
dynamic vegetation models (Hufkens et al., 2018; Richardson, 2019) 
but also can potentially add the overlooked processes in the models 
(Zani et al., 2020).

8  |  CONCLUDING REMARKS

In summary, after decades of development, LSP is becoming more 
and more mature in terms of data source, retrieval algorithm, and 
validation strategy. At the same time, the most important driv-
ing force of LSP is the demand from other fields for high-quality 
and high-resolution phenology information. This requires a close 

communication between the remote sensing community and sci-
entists from other fields to foster mutual understanding. LSP is a 
research field that weaves together multiple disciplines, including 
remote sensing, climatology, agriculture, ecology, public health, and 
global change biology. It is perhaps worth to stress again the ne-
cessity of coupling technological advances to scientific questions as 
we elaborated in this review. We truly believe that only through a 
collaborative approach can we achieve both technically sound and 
scientifically meaningful global phenology monitoring goals.
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