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1. INTRODUCTION

The paper is concerned with scheduling traffic between
two locations connected by a single track where vehicles
cannot travel simultaneously in both directions. The con-
sidered scheduling problem arises in flexible manufacturing
systems where automated guided vehicles move in both
directions between two stations, connected by a fixed
guided path made by a wire or marking on the floor
Vis (2006). Another application is scheduling automated
vehicles in fully automated transportation systems such
as the underground automated transportation system of
the Amsterdam Schiphol Airport which includes a bidirec-
tional single-track tube van der Heijden et al. (2002). The
applications are not limited to automated guided vehicles
and include, for example, single track railway in various
production systems. Thus, the two considered locations
between which it is required to schedule the bidirectional
traffic that uses a single track can be workstations, ter-
minals, pickup and delivery points, etc. In this paper the
locations will be referred to as stations.

All mentioned above systems are closed ones in the sense
that the fleet of vehicles is finite and known. This makes
the considered problem related to the intensively studied
flow and job shops with transportation Lee and Chen
(2001), Nouri et al. (2016). The majority of research in the
field of flow and job shops with transportation focuses on
simultaneous scheduling the operations on machines and
the movement of vehicles. In contrast, in many systems the
schedule of requests for transportation is known and fixed,
for example, is dictated by the production plan or schedule
of arrivals. This paper addresses the latter situation.

There exists a number publications that are concerned
with transportation between two locations. For example,
⋆ Acknowledgments: The reported study was partially funded by
RFBR, project number 20-38-51010.

a brief survey of publications on two-machine flow shops
with transportation can be found in Lee and Chen (2001).
Another example is Ilani et al. (2014) that considers trans-
portation between two campuses of an academic college
located in two different cities. Such publications, unless
being inspired by railway applications, do not consider a
single bidirectional track, and therefore allow travelling in
both directions simultaneously. As far as railway applica-
tions are concerned (see, for example, Brucker et al. (2002),
Gafarov et al. (2015)), in contrast to our paper, they do
not consider the situation when the same vehicle may visit
a location several times, sometimes arriving empty.

This paper is closely related to Zinder et al. (2016), Zinder
et al. (2018), Zinder et al. (2020). The transportation
problems considered in these three publications can be
viewed as problems where a vehicle is instantly available
when it is needed and can carry only one request for
transportation. In contrast, this paper considers a case
when the number of vehicles is limited and each vehicle
can carry several requests for transportation which may
result in a delay of the departure in order to increase the
load and travelling empty.

The considered transportation system is described in Sec-
tion 2. Section 3 presents an algorithm for scheduling
traffic on a single bidirectional track under the restric-
tion that the requests for transportation at each station
are numbered in a nonincreasing order of their release
times and served in the decreasing order of their num-
bers. The presented algorithm is suitable for a number
of objective functions including the makespan, maximum
lateness, total tardiness, total weighted completion time.
Section 4 assumes that each request for transportation
has an associated deadline. It is shown that the approach,
presented in Section 3, allows to solve the problem with
such additional restrictions. This section also considers
the problem of minimising the average waiting time on
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the set of all schedules optimal for the maximum lateness
objective function and the problem of minimising the total
distance traveled under the restriction imposed by the
delivery deadlines.

2. THE TRANSPORTATION SYSTEM

This paper considers a fleet of identical vehicles that serves
requests for transportation between two stations, Station
1 and Station 2. Each vehicle can carry up to c requests for
transportation simultaneously. The time needed to reach
one station from the other is p units of time regardless of
the direction and load, including the case when a vehicle
is empty. All vehicles use a single track, connecting the
stations, that does not permit simultaneous movement in
opposite directions.

For s ∈ {1, 2}, the element, constituting the set {1, 2}\{s},
will be denoted by s̄. Let Ns be the set of all requests for
transportation from Station s to Station s̄. Each request
for transportation j ∈ Ns has the associated non-negative
release time rjs – the time when the corresponding load
becomes available for transportation. The first departure
can occur at any time t ≥ 0. Observe that if the first
departure occurs at t = 0 and all release times are positive,
this means that the corresponding vehicle is reallocated
without load in order to serve a future request at the
opposite station.

At time t = 0, there are v0s vehicles at Station s, s ∈ {1, 2}.
So, the fleet of vehicles is comprised of v01 + v02 vehicles. In
order to avoid a collision, the departure times of any two
vehicles, leaving the same station, must differ at least by β
time units where β < p. Since simultaneous movement in
both directions is prohibited, the difference between any
two departure times from different stations can not be less
than p.

A schedule σ specifies for each s ∈ {1, 2} and each j ∈ Ns,
the arrival time Cj

s(σ) of j at Station s̄. Since a vehicle can
travel from one station to another without any load, the
number of runs from Station s to Station s̄ in schedule σ,
denoted by a(σ, s), may exceed |Ns|. Therefore, a schedule
σ also specifies for each s ∈ {1, 2} an increasing sequence

S1
s (σ), S

2
s (σ), ..., S

a(σ,s)
s (σ)

of all departure times from Station s. Consequently, if
j ∈ Ns is delivered as a result of the ith departure from
Station s, then

Cj
s(σ) = Si

s(σ) + p.

In what follows, the elements of each Ns are numbered in a
nonincreasing order of their release times and are referred
to by these numbers. Hence, Ns = {1, ..., ns} where, for
any {j, g} ⊆ Ns, the inequality j < g implies rjs ≥ rgs .

3. MAIN ALGORITHM

Assume that the requests for transportation must depart
from each station in the decreasing order of their numbers.
This is the case, for example, when all release times are
different and the arrival times must satisfy the first-in-
first-out policy, i.e. for any s ∈ {1, 2} and any {j, g} ⊆ Ns,

the inequality rjs < rgs implies Cj
s(σ) ≤ Cg

s (σ). Consider
the following objective function

γ(σ) = φ1
1(C

1
1 (σ))⊙ . . .⊙ φn1

1 (Cn1
1 (σ))

⊙φ1
2(C

1
2 (σ))⊙ . . .⊙ φn2

2 (Cn2
2 (σ))

=

n1⊙
j=1

φj
1(C

j
1(σ))⊙

n2⊙
j=1

φj
2(C

j
2(σ)),

(1)

where, for each s ∈ {1, 2} and each j ∈ Ns, φ
j
s(·) is a

nondecreasing function associated with request j and ⊙ is
a commutative and associative operation such that for any
numbers a1, a2, b1, b2, satisfying a1 ≤ a2 and b1 ≤ b2,

a1 ⊙ b1 ≤ a2 ⊙ b2. (2)

The operation ⊙ can be, for example, addition or maxi-
mum with

a⊙ b = a+ b and a⊙ b = max{a, b}

respectively.

Since all φj
s are nondecreasing, (2) implies that the objec-

tive function γ is nondecreasing. This, in turn, leads to the
observation that is stated below as a lemma. Consider an
arbitrary schedule σ and a point in time t ≥ 0. Let Ns(t)
be the set of all j ∈ Ns such that rjs ≤ t and

Cj
s(σ)− p ≥ t,

i.e. Ns(t) is the set of all requests for transportation
at Station s that have release times not greater than t
and which transportation, according to the schedule σ,
commences at or after t. If Ns(t) ̸= ∅, then denote by x(t)
the request for transportation with the smallest release
time among all requests in Ns(t) and

y(t) = x(t)−min{|Ns(t)|, c}+ 1.

Lemma. There exists an optimal schedule σ such that,
for each departure time Si

s(σ),

• if Ns(S
i
s(σ)) = ∅, then the corresponding vehicle

leaves Station s without load and its departure time
Si
s(σ) is either 0, or Si−1

s (σ) + β, or Cg
s̄ (σ) for some

g ∈ Ns̄;
• if Ns(S

i
s(σ)) ̸= ∅, then the corresponding vehicle

carries the requests x(Si
s(σ)), ..., y(S

i
s(σ)) and its de-

parture time Si
s(σ) is either Si−1

s (σ) + β, or Cg
s̄ (σ)

for some g ∈ Ns̄, or r
y(Si

s(σ))
s .

In what follows, only schedules which departure times and
workloads of the vehicles satisfy the above lemma will be
considered. Furthermore, the only reason for sending a
vehicle without load from Station s to Station s̄ is the
use of this vehicle for transportation from Station s̄ to
Station s. Therefore, 2(n1 + n2) can be taken as an upper
bound on the number of departures. Consequently, in what
follows, without loss of generality, it will be assumed that
all possible departure times belong to the following set:

T = {t | t = m0r
i
s +m1p+m2β, where s ∈ {1, 2},

i ∈ Ns, m0 ∈ {0, 1}, m1,m2 ∈ {0, 1, . . . , 2(n1 + n2)}}.
(3)

A tuple (t, s, v1, v2, k1, k2) where

t ∈ T, (4)

s ∈ {1, 2}, (5)

vs ≥ 1, vs̄ ≥ 0, v1 + v2 = v01 + v02 , (6)

n1 ≥ k1 ≥ 0, n2 ≥ k2 ≥ 0, k1 + k2 ≥ 1, (7)

if either ks = 0 or t < rks
s , then ks̄ > 0. (8)

will be called a state. It is easy to see that the entire
transportation process, specified by a schedule σ, can be
viewed as a sequence of states where t is a departure time
from Station s; vs is the number of vehicles at Station s
at t, including the considered departing vehicle; vs̄ is the
number of all other vehicles (each of these vehicles is either
at Station s̄ or is on its way to Station s̄); and each ke is
the number of all j ∈ Ne such that

Cj
e(σ)− p ≥ t.

If, for a schedule σ, in the corresponding sequence of
states, after state (t, s, v1, v2, k1, k2) the next state is
(t′, s′, v′1, v

′
2, k

′
1, k

′
2), then

v′s = vs − 1 and v′s̄ = vs̄ + 1. (9)

As far as t′ and k′e are concerned, it is convenient to
introduce the following notations:

µ(t, s, ks) =

{
0, if either ks = 0 or t < rks

s
χ(t, s, ks), otherwise

,

where

χ(t, s, ks) = max{j : j ≤ min{ks, c}; t ≥ rks−j+1
s },

and

h(s, s′) =

{
β, if s = s′

p, if s ̸= s′
.

Observe that

min{|Ns(t)|, c} = µ(t, s, ks),

where Ns(t) corresponds to the considered schedule σ.
Then, taking into account the above lemma,

k′s = ks − µ(t, s, ks) and k′s̄ = ks̄, (10)

t′ ∈ {t+ h(s, s′)}
∪{rjs′ : r

j
s′ ≥ t+ h(s, s′); j ≥ k′s′ − c+ 1}. (11)

Observe also that µ(t, s, ks) is computed using only the
information provided by the state (t, s, v1, v2, k1, k2) and
does not use any additional information about the corre-
sponding schedule.

As has been discussed above, the only reason for sending a
vehicle without load from Station s to Station s̄ is the use
of this vehicle for transportation from Station s̄ to Station
s. Since all vehicles are identical, this observation implies
that, without loss of generality,

if s′ = s̄ and either ks = 0 or t < rks
s , then t′ ≥ r

k′
s′

s′ . (12)

A state (t, s, v1, v2, k1, k2) such that

0 < ks ≤ c; ks̄ = 0; t ≥ r1s . (13)

will be called a final state. Given the above lemma, if
(t, s, v1, v2, k1, k2) is the last state in the sequence of states
associated with some schedule σ, then (t, s, v1, v2, k1, k2) is
a final state. A state (t, s, v1, v2, k1, k2) will be called feasi-
ble if it is either a final state or there exists a feasible state
(t′, s′, v′1, v

′
2, k

′
1, k

′
2) that together with (t, s, v1, v2, k1, k2)

satisfies (9) - (12). For any feasible state (t, s, v1, v2, k1, k2),
which is not a final state, denote by Ω(t, s, v1, v2, k1, k2) the
set of all feasible states satisfying (9) - (12).

Each feasible state (t, s, v1, v2, k1, k2) induces a set of
partial schedules each of which specifies how to transport
the requests for transportation, constituting the set {j :
j ∈ N1; j ≤ k1} ∪ {j : j ∈ N2; j ≤ k2}. In all these
schedules the transportation process commences at the
point in time t with the departure at this point in time
from Station s, assuming that there are v1 and v2 vehicles
at Station 1 and Station 2 respectively.

Consider all partial schedules σ induced by a feasible state
(t, s, v1, v2, k1, k2) and denote by f(t, s, v1, v2, k1, k2) the
minimal value of⊙

j∈{1,...,k1}

φj
1(C

j
1(σ))⊙

⊙
g∈{1,...,k2}

φg
2(C

g
2 (σ)) (14)

over all these schedules. Each such partial schedule de-
fines a sequence of feasible states where the first state is
(t, s, v1, v2, k1, k2), the last state in the sequence is a final
one, and for any two consecutive states (t′, s′, v′1, v

′
2, k

′
1, k

′
2)

and (t′′, s′′, v′′1 , v
′′
2 , k

′′
1 , k

′′
2 ),

(t′′, s′′, v′′1 , v
′′
2 , k

′′
1 , k

′′
2 ) ∈ Ω(t′, s′, v′1, v

′
2, k

′
1, k

′
2).

Then, for the final states,

f(t, 1, v1, v2, k1, 0) =

k1⊙
i=1

φi
1(t+ p) (15)

and

f(t, 2, v1, v2, 0, k2) =

k2⊙
i=1

φi
2(t+ p). (16)

For any other feasible state (t, s, v1, v2, k1, k2), if either
ks = 0 or t < rks

s , then

f(t, s, v1, v2, k1, k2)
= min

(t′,s′,v′
1,v

′
2,k

′
1,k

′
2)∈Ω(t,s,v1,v2,k1,k2)

f(t′, s′, v′1, v
′
2, k

′
1, k

′
2) (17)

and, if ks ̸= 0 and t ≥ rks
s , then

f(t, s, v1, v2, k1, k2) =

µ(t,s,ks)⊙
i=1

φks−i+1
s (t+ p)

⊙ min
(t′,s′,v′

1,v
′
2,k

′
1,k

′
2)∈Ω(t,s,v1,v2,k1,k2)

f(t′, s′, v′1, v
′
2, k

′
1, k

′
2).

(18)

Let r0s = 0 and k = min{ns,max{ns − c, 0} + 1}.
Consider the set of tuples (t, s, v01 , v

0
2 , n1, n2) where t ∈

{rks , . . . , rns
s }∪ {0}, and denote by H its subset comprised

of all feasible states in this set of tuples.Then, the optimal
value of the objective function is

γ∗ = min
(t,s,v0

1 ,v
0
2 ,n1,n2)∈H

f(t, s, v01 , v
0
2 , n1, n2) (19)

and can be obtained using (15)–(18) and dynamic pro-
gramming. The complexity of the corresponding algorithm
is O((n1 + n2)

3n1n2(v
0
1 + v02)c).

Taking into account (3), it is easy to see that each
tuple (t, s, v01 , v

0
2 , n1, n2), where t ∈ {rks , . . . , rns

s } ∪ {0},
is a feasible state. Section 4 below considers scheduling



 Yakov Zinder  et al. / IFAC PapersOnLine 55-10 (2022) 2893–2897 2895

vs ≥ 1, vs̄ ≥ 0, v1 + v2 = v01 + v02 , (6)

n1 ≥ k1 ≥ 0, n2 ≥ k2 ≥ 0, k1 + k2 ≥ 1, (7)

if either ks = 0 or t < rks
s , then ks̄ > 0. (8)

will be called a state. It is easy to see that the entire
transportation process, specified by a schedule σ, can be
viewed as a sequence of states where t is a departure time
from Station s; vs is the number of vehicles at Station s
at t, including the considered departing vehicle; vs̄ is the
number of all other vehicles (each of these vehicles is either
at Station s̄ or is on its way to Station s̄); and each ke is
the number of all j ∈ Ne such that

Cj
e(σ)− p ≥ t.

If, for a schedule σ, in the corresponding sequence of
states, after state (t, s, v1, v2, k1, k2) the next state is
(t′, s′, v′1, v

′
2, k

′
1, k

′
2), then

v′s = vs − 1 and v′s̄ = vs̄ + 1. (9)

As far as t′ and k′e are concerned, it is convenient to
introduce the following notations:

µ(t, s, ks) =

{
0, if either ks = 0 or t < rks

s
χ(t, s, ks), otherwise

,

where

χ(t, s, ks) = max{j : j ≤ min{ks, c}; t ≥ rks−j+1
s },

and

h(s, s′) =

{
β, if s = s′

p, if s ̸= s′
.

Observe that

min{|Ns(t)|, c} = µ(t, s, ks),

where Ns(t) corresponds to the considered schedule σ.
Then, taking into account the above lemma,

k′s = ks − µ(t, s, ks) and k′s̄ = ks̄, (10)

t′ ∈ {t+ h(s, s′)}
∪{rjs′ : r

j
s′ ≥ t+ h(s, s′); j ≥ k′s′ − c+ 1}. (11)

Observe also that µ(t, s, ks) is computed using only the
information provided by the state (t, s, v1, v2, k1, k2) and
does not use any additional information about the corre-
sponding schedule.

As has been discussed above, the only reason for sending a
vehicle without load from Station s to Station s̄ is the use
of this vehicle for transportation from Station s̄ to Station
s. Since all vehicles are identical, this observation implies
that, without loss of generality,

if s′ = s̄ and either ks = 0 or t < rks
s , then t′ ≥ r

k′
s′

s′ . (12)

A state (t, s, v1, v2, k1, k2) such that

0 < ks ≤ c; ks̄ = 0; t ≥ r1s . (13)

will be called a final state. Given the above lemma, if
(t, s, v1, v2, k1, k2) is the last state in the sequence of states
associated with some schedule σ, then (t, s, v1, v2, k1, k2) is
a final state. A state (t, s, v1, v2, k1, k2) will be called feasi-
ble if it is either a final state or there exists a feasible state
(t′, s′, v′1, v

′
2, k

′
1, k

′
2) that together with (t, s, v1, v2, k1, k2)

satisfies (9) - (12). For any feasible state (t, s, v1, v2, k1, k2),
which is not a final state, denote by Ω(t, s, v1, v2, k1, k2) the
set of all feasible states satisfying (9) - (12).

Each feasible state (t, s, v1, v2, k1, k2) induces a set of
partial schedules each of which specifies how to transport
the requests for transportation, constituting the set {j :
j ∈ N1; j ≤ k1} ∪ {j : j ∈ N2; j ≤ k2}. In all these
schedules the transportation process commences at the
point in time t with the departure at this point in time
from Station s, assuming that there are v1 and v2 vehicles
at Station 1 and Station 2 respectively.

Consider all partial schedules σ induced by a feasible state
(t, s, v1, v2, k1, k2) and denote by f(t, s, v1, v2, k1, k2) the
minimal value of⊙

j∈{1,...,k1}

φj
1(C

j
1(σ))⊙

⊙
g∈{1,...,k2}

φg
2(C

g
2 (σ)) (14)

over all these schedules. Each such partial schedule de-
fines a sequence of feasible states where the first state is
(t, s, v1, v2, k1, k2), the last state in the sequence is a final
one, and for any two consecutive states (t′, s′, v′1, v

′
2, k

′
1, k

′
2)

and (t′′, s′′, v′′1 , v
′′
2 , k

′′
1 , k

′′
2 ),

(t′′, s′′, v′′1 , v
′′
2 , k

′′
1 , k

′′
2 ) ∈ Ω(t′, s′, v′1, v

′
2, k

′
1, k

′
2).

Then, for the final states,

f(t, 1, v1, v2, k1, 0) =

k1⊙
i=1

φi
1(t+ p) (15)

and

f(t, 2, v1, v2, 0, k2) =

k2⊙
i=1

φi
2(t+ p). (16)

For any other feasible state (t, s, v1, v2, k1, k2), if either
ks = 0 or t < rks

s , then

f(t, s, v1, v2, k1, k2)
= min

(t′,s′,v′
1,v

′
2,k

′
1,k

′
2)∈Ω(t,s,v1,v2,k1,k2)

f(t′, s′, v′1, v
′
2, k

′
1, k

′
2) (17)

and, if ks ̸= 0 and t ≥ rks
s , then

f(t, s, v1, v2, k1, k2) =

µ(t,s,ks)⊙
i=1

φks−i+1
s (t+ p)

⊙ min
(t′,s′,v′

1,v
′
2,k

′
1,k

′
2)∈Ω(t,s,v1,v2,k1,k2)

f(t′, s′, v′1, v
′
2, k

′
1, k

′
2).

(18)

Let r0s = 0 and k = min{ns,max{ns − c, 0} + 1}.
Consider the set of tuples (t, s, v01 , v

0
2 , n1, n2) where t ∈

{rks , . . . , rns
s }∪ {0}, and denote by H its subset comprised

of all feasible states in this set of tuples.Then, the optimal
value of the objective function is

γ∗ = min
(t,s,v0

1 ,v
0
2 ,n1,n2)∈H

f(t, s, v01 , v
0
2 , n1, n2) (19)

and can be obtained using (15)–(18) and dynamic pro-
gramming. The complexity of the corresponding algorithm
is O((n1 + n2)

3n1n2(v
0
1 + v02)c).

Taking into account (3), it is easy to see that each
tuple (t, s, v01 , v

0
2 , n1, n2), where t ∈ {rks , . . . , rns

s } ∪ {0},
is a feasible state. Section 4 below considers scheduling
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when the requests for transportation have deadlines and,
therefore, some tuples may not be feasible states and even
H can be empty.

4. TRANSPORTATION WITH DEADLINES

This section assumes that each request for transportation
j ∈ Ns has an associated deadline Dj

s, i.e. its arrival time
cannot exceed Dj

s. In what follows, it is also assumed that,
for any two requests for transportation j ∈ Ns and g ∈ Ns

from the same station s ∈ {1, 2}, the inequality j < g
implies Dj

s ≥ Dg
s . Observe that a schedule that meets all

deadlines may not exist.

Such deadlines can arise in bi-criteria problems with or-
dered objective functions. As an example, consider the
problem of minimising

δ(σ) =
∑

s∈{1,2}

∑
j∈Ns

Cj
s(σ) (20)

on the set of all schedules which are optimal for

Lmax(σ) = max
s∈{1,2}

max
j∈Ns

{Cj
s(σ)− djs}, (21)

where djs is the due date associated with request j, and
all these due dates satisfy the condition that, for any two
requests for transportation j and g from the same station
s, the inequality rjs > rgs implies djs ≥ dgs .

Indeed, for each station, if when assigning numbers to
requests for transportation as specified in Section 2, i.e. in
a nondecreasing order of their release times, requests with
equal release times receive numbers in a nondecreasing
order of their due dates, then for any two j ∈ Ns and
g ∈ Ns, the inequality j < g implies rjs ≥ rgs and djs ≥ dgs .
It is easy to see that, among all schedules optimal for (21),
there exists a schedule according to which the requests
departs from each station in a nonincreasing order of
their numbers. Such a schedule can be found, using the
algorithm presented in Section 3 where

φj
s(C

j
s(σ)) = Cj

s(σ)− djs.

Let L∗ be the optimal value of (21). Then, the bi-criteria
problem reduces to the problem of minimising (20) on the
set of all schedules σ, satisfying

Cj
s(σ) ≤ L∗ + djs for s ∈ {1, 2} and all j ∈ Ns,

where the deadlines Dj
s = L∗ + djs satisfy the condition

that, for any station s and any {j, g} ⊆ Ns, the inequality
j < g implies Dj

s ≥ Dg
s . Observe that a desired schedule

always exists regardless of the choice of due dates. Fur-
thermore, (20) is (1) with

φj
s(C

j
s(σ)) = Cj

s(σ),

and there exists an optimal schedule for (20) according
to which the requests for transportation depart from each
station in a nonincreasing order of their numbers.

4.1 Minimisation of γ in the presence of deadlines

Consider the objective function (1) and arbitrary deadlines
Dj

s such that, for any two requests for transportation
j ∈ Ns and g ∈ Ns from the same station s ∈ {1, 2},

the inequality j < g implies Dj
s ≥ Dg

s . As in Section 3,
assume that the requests for transportation must depart
from each station in the decreasing order of their numbers.

It is easy to see that if there exists a schedule that meets
all deadlines, then among these schedules, there exists a
schedule according to which all requests for transportation
departs from each station in the decreasing order of their
numbers. Each such schedule has the property

Si(j,s)
s (σ) + p ≤ Dj

s for s ∈ {1, 2} and all j ∈ Ns, (22)

where i(j, s) is a number of the vehicle departure with
request j ∈ Ns. Therefore, the sequence of states that
is associated with such schedule contains only states
(t, s, v1, v2, k1, k2) satisfying the condition

if ks > 0 and t ≥ rks
s , then t+ p ≤ Dks

s . (23)

This observation leads to the following change in the
definition of a feasible state originally given in Section 3:
a state (t, s, v1, v2, k1, k2) is feasible if it satisfies (23) and
it is either a final state or there exists a feasible state
(t′, s′, v′1, v

′
2, k

′
1, k

′
2) that together with (t, s, v1, v2, k1, k2)

satisfies (9) - (12).

If the set H (see Section 3) is empty, then no feasible
schedules exist. If H ̸= ∅, then the optimal value of the
objective function is given by (19) and can be obtained
using (15)–(18) and dynamic programming.

4.2 Minimisation of the number of departures

Recall that the number of departures from Station s in
schedule σ has been denoted by a(σ, s). Therefore, the
number of departures, or equivalently, the number of
vehicle runs in schedule σ is

η(σ) = a(σ, 1) + a(σ, 2). (24)

The objective function (24) differs from (1) and, there-
fore, the algorithm in Section 3 requires some changes,
although, as will be shown below, the definition of a state
and the definition of a feasible state remain the same as
in Subsection 4.1.

Indeed, consider an arbitrary schedule σ that meets all
deadlines and the schedule σ′ with the same departure
times from the same stations as in σ in which the requests
for transportation depart in the decreasing order of their
numbers. Since for any requests j and g from the same
station s, the inequality j < g implies Dj

s ≥ Dg
s , the

schedule σ′ also meets all deadlines. Furthermore, η(σ) =
η(σ′). Therefore, without loss of generality, only schedules
where the requests for transportation depart from each
station in the decreasing order of their numbers can be
considered. Consequently, the definition of a state and
the definition of a feasible state remain the same as in
Subsection 4.1.

Similar to Section 3, consider all partial schedules σ
induced by a feasible state (t, s, v1, v2, k1, k2) and denote
by z(t, s, v1, v2, k1, k2) the minimal number of vehicle runs
among all these partial schedules. For the feasible final
states,

z(t, 1, v1, v2, k1, 0) = 1, (25)

z(t, 2, v1, v2, 0, k2) = 1. (26)

For all other feasible states (t, s, v1, v2, k1, k2),

z(t, s, v1, v2, k1, k2) = 1 (27)

+ min
(t′,s′,v′

1,v
′
2,k

′
1,k

′
2)∈Ω(t,s,v1,v2,k1,k2)

z(t′, s′, v′1, v
′
2, k

′
1, k

′
2).

If the set H (see Section 3) is empty, then no feasible
schedules exist. If H ̸= ∅, then the optimal value of the
objective function is

η∗ = min
(t,s,v0

1 ,v
0
2 ,n1,n2)∈H

z(t, s, v01 , v
0
2 , n1, n2)

and can be obtained using dynamic programming.

5. CONCLUSION

The paper presents polynomial-time algorithms for schedul-
ing a homogeneous fleet of vehicles that use a single track
between two stations. The directions of further research
may include cases with more complex structure of the
transportation system, as well as a heterogeneous fleet
of vehicles and/or several types of the requests for trans-
portation.
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For all other feasible states (t, s, v1, v2, k1, k2),

z(t, s, v1, v2, k1, k2) = 1 (27)

+ min
(t′,s′,v′

1,v
′
2,k

′
1,k

′
2)∈Ω(t,s,v1,v2,k1,k2)

z(t′, s′, v′1, v
′
2, k

′
1, k

′
2).
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schedules exist. If H ̸= ∅, then the optimal value of the
objective function is
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1 ,v
0
2 ,n1,n2)∈H

z(t, s, v01 , v
0
2 , n1, n2)

and can be obtained using dynamic programming.
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