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Abstract

This paper investigates the use of point cloud
processing algorithms to provide annotations
for robotic manipulation tasks completed re-
motely via Virtual Reality (VR). A VR-based
system has been developed that receives and vi-
sualises processed data from real-time RGB-D
camera feeds. A point cloud processing algo-
rithm is introduced to annotate targets, and
simulated experiments were conducted to vali-
date the efficacy of the proposed algorithm. A
real-world robot model has also been developed
to provide realistic reactions and control feed-
back. The targets and the robot model are
reconstructed in a VR environment and pre-
sented to users with different modalities. The
modalities and available information are varied
between experimental settings, and the asso-
ciated task performance is recorded and anal-
ysed. The results accumulated from 288 exper-
iments completed by 12 participants indicated
that point cloud data is sufficient for task com-
pletion. Additional information, neither image
stream nor preliminary processes presented as
annotations, was found to have a significant
impact on the completion time. However, the
combination of image stream and colored point
cloud data visualisation modalities was found
to greatly enhance a user’s performance accu-
racy, with the number of target centres missed
being reduced by 25%.

1 INTRODUCTION

Extended Reality (XR) bridges the gap between digi-
tal and physical worlds, encompassing technologies such
as Virtual Reality (VR), Augmented Reality (AR), and
Mixed Reality (MR). When combining VR with sen-
sors, such as LiDARs (Light Detection and Ranging)
and depth cameras, it is possible to capture the state

of real-world objects in real-time within a VR environ-
ment. Conversely, rather than using sensors to render
the world in a virtual environment, users that are phys-
ically present, with the ability to clearly see the robot
and environment, can leverage AR to view computer-
generated perceptual information that enhances real-
world objects. Thus, by providing a user with additional
information in the form of overlaying annotations that
are ordinarily unavailable in the real world, this work
hypothesises that annotations improve the efficacy of re-
mote manipulation tasks.

This paper presents the findings ascertained from the
observation of users performing real-time remote control
manipulation tasks in a VR environment. For the VR
environment, streamed sensor data such as point clouds
and images are used in conjunction with annotations in
several settings in the user study. A point cloud process-
ing algorithm is also presented, which detects multiple
targets above an estimated ground level and generates
three-dimensional (3D) bounding boxes as annotations.
The annotations aim to help distinguish objects from
the background, allowing them to be more noticeable in
the scene. Thus, a study was designed for participants
to remotely perform a robotic task in VR that required
manipulating an end-effector to targets in the environ-
ment. The VR environment is used to render the 3D
model of the robotic platform and its surrounding envi-
ronment. By monitoring the manipulator’s joint states,
the model can be updated in real-time to reflect the ac-
tions of the real robot providing the participant with
visual feedback. Relevant measurements of participant
performance under various settings were recorded, in-
cluding their completion time and precision score.

2 RELATED WORK

With further development in sensing technologies, VR
facilitating human-robot interaction has become a preva-
lent research area. One particular goal is to understand
how to render real-life scenes appropriately, and poten-
tially control objects in the scene using a robotic manipu-



lator. VR is conducive to creating an intuitive and effec-
tive control interface for remote control robotics systems
while also having the benefit of enhancing the user’s per-
ception through 3D data visualisation. However, achiev-
ing this requires investigating a suitable method of in-
teraction with the VR environment and understanding
how to render the sensor data within VR. Consequently,
research continues to focus on quantifying human perfor-
mance during manipulation tasks to obtain insights into
the effect of different visualisation settings and control
modalities [Whitney et al., 2020][Le et al., 2020].

Another facet of the VR experience that continues
to be an active research area is on enhancing the in-
teractions between the users and the VR scene. [Vélaz
et al., 2014] investigated various modes of interaction
in VR, including mouse, haptic device, motion capture
devices, etc. A custom control interface, which con-
sists of a 6DOF robot, an underwater LiDAR and cam-
eras, has been created to remove underwater munitions
[Gharaybeh et al., 2019]. Another approach has lever-
aged motion-capture technologies to ascertain the pose of
the human wearing a glove, which provides information
regarding joint positions of the fingers and enables intu-
itive fine control of a virtual hand[Kumar and Todorov,
2015].

The aforementioned improvements in visual and hap-
tic feedback, and methods for intuitive interactions have
enabled the exploration of VR for training platforms.
The effectiveness of such training methods has been
explored for the control of manipulators [Pérez et al.,
2019] and human-robot collaborative assembly processes
[Rückert et al., 2018]. Consequently, as training plat-
forms become more prevalent, systematic approaches for
adopting VR become necessary to ensure the efficacy of
such systems. This requires the evaluation of input and
output devices and their suitability for the desired task.
In particular, these evaluations have been considered in
the context of manufacturing when interacting with col-
laborative robots [Paul et al., 2016] [Malik et al., 2020].

AR leverages the user’s presence in their environment
and thus is focused on providing users with graphical
overlays on existing objects in sight [Kipper and Ram-
polla, 2012]. A user study has compared the performance
of AR and VR for manipulating an object in 9 degrees
of freedom (translation, rotation, and scaling) [Krichen-
bauer et al., 2017]. The study’s results indicate that AR
consistently outperforms VR for the object selection and
transformation task based on completion time.

The overlaid information provided in AR can consti-
tute documentation or guidance for the ongoing task
[Gong et al., 2019] [Yew et al., 2017], or processed sen-
sor data. This has been extended to include results
from an object detection algorithm and utilising inverse
kinematics and motion planning algorithms to generate

a robotic manipulator’s movement automatically[Grad-
mann et al., 2018]. More sophisticated methods of in-
teraction, such as using a gesture-based interface, enable
operator movements to be converted into control com-
mands in real-time [Lin et al., 2016]. However, these
types of systems lack the haptic feedback that is pro-
vided by external controllers, which has been shown to
aid the user in following a pre-planned path [Ni et al.,
2017][Sutjipto et al., 2020].

3 METHODOLOGY

3.1 System Overview

The system (Figure 1) consists of a custom-built robotic
manipulator with remote joystick control and a cali-
brated camera system. The camera system includes two
static Intel Realsense D435 RGB-D cameras with differ-
ent viewpoints and partially overlapping fields of view.
The cameras were mounted such that they achieved a
high visual coverage and limited the data loss from oc-
clusions caused by the manipulator during motion. Both
color and depth images are captured and utilised to gen-
erate point clouds in real-time within the VR environ-
ment. Object detection and bounding box creation are
performed using the combined data from the cameras.
The bounding boxes are then transmitted to the VR en-
vironment for visualisation.

3.2 Custom Robotic Manipulator

The manipulator is a 5-DOF robotic arm, with a pris-
matic rail as the first joint and four revolute joints. The
last three revolute joints are actuated by linear motors;
the linear-to-angular control and feedback conversions
are done automatically by the onboard controller. The
end-effector is chisel-shaped with a small area of contact,
and can be moved to various locations in a one-meter-
squared work volume in front of the robot.

A kinematic and dynamic model was constructed from
the CAD model and fed into a kinematic solver that
utilises the MoveIt Motion Planning Framework [Cole-
man et al., 2014]. The robot is equipped with joystick
control allowing the user to send control commands via
ROS, in either the joint space or the end-effector Carte-
sian space. All target locations are within the robot’s
reachable volume, and no joint states exhibited by the
robot are near singularities or joint limits. The robot’s
joint state is displayed in real-time as the model reflects
the robot’s real state in the virtual environment. To
ensure that the point cloud of the manipulator is accu-
rately superimposed on its respective model in VR, the
cameras are extrinsically calibrated with respect to the
manipulator.



Onboard
PC

VR PCRGBD Camera

RGBD Camera

RGBD Camera

Real
Robot

USB 3.0 LAN LAN Display

DHCP Server

Router

Core

Serial Node
Camera Node

TCP Endpoint Node
Segmentation Node

VR Rig

Compressed Images from Cameras

Annotation Data

Control Command

Robot State

ROS-Unity Socket
Logging Node

VR interface

Experiment GUI

Robot state display
Controllers interface

Point Cloud renderingReal Objects

Virtual
Robot

Point Cloud
& annotations

Figure 1: System Overview

Camera

Point

Projection

For each cluster:

RGB-D Camera Data Filtering

RANSACClustering

Coordinate system conversion

PCA Determine min-max

Figure 2: Point Cloud Processing Algorithm Overview

3.3 Point Cloud Render and Data
Transmission

The pipeline used to transmit data from the sensors and
render it within the VR environment is based on an exist-
ing framework presented in [Vu et al., 2021]. The previ-
ous work describes a system capable of transferring point
cloud data from a ROS machine to another machine that
is running the VR environment. In [Vu et al., 2021], the
point cloud frame rate and resolution were variables that
were systematically altered to obtain their effect on user
performance as a trade-off exists between the frame rate
and resolution.

3.4 Point Cloud Processing Algorithm

The point cloud processing pipeline, shown in Figure 2,
combines multiple algorithms to produce bounding boxes
that highlight objects above the scene’s ground surface.
The pipeline builds upon prior work [Vu et al., 2019], in
combination with additional algorithms from the open-
source Point Cloud Library (PCL) [Rusu and Cousins,
2011]. The algorithm utilises the point cloud that is gen-
erated by multiple RGB-D cameras and can be received
directly without additional processing steps. Concur-
rently, the point cloud rendered in the VR environment
is generated through the fusion of color and depth im-
ages. Assumptions that were made about the scene in
the field of view from the cameras are listed below:

• The multiple cameras must be extrinsically cali-
brated, and an overlap between the cameras’ field of
view must exist to implement the point cloud pro-
cessing pipeline

• The surface on which the objects to be detected are
placed must comprise a large portion of the com-
bined field of view of the cameras.

The raw point cloud, Pr received directly from the
RGB-D camera contains millions of points with noise
that proportionally increases with the distance between
objects and the camera lens. Due to the overwhelm-
ing amount of information and noise in Pr, preliminary
processes need to be applied. Consequently, Pr is down-
sampled with the voxel grid filter from PCL and addi-
tionally, a distance threshold is applied to filter points
that are outside of the required bounds. The distance
filter aims to remove noisy data recorded from distanced
objects [Vu et al., 2019].

After filtering, the point cloud, Pf remains from Pr.
Due to the assumptions listed above, the surface where
objects are located will be the surface determined by
RANSAC [Fischler and Bolles, 1981]. The list of points
that belong to this surface will be denoted as SR.

Before the clustering step, all the points that reside
on and below SR relative to the camera position, c must
be removed. The method implemented to determine the
point’s relative position to a surface is shown in Algo-
rithm 1. Let Ptemp be the point cloud, Pf after removing
PR. The projection point of c onto SR is denoted as pj .
The vector from the projected point to c is ~vpc. For ev-
ery point, pi in Ptemp, vector, ~vpp is the mapping from pi
to pj . The relative position of point, pi to a surface, SR

and c is determined based on the dot product dp of ~vpc
and ~vpp. If dp < 0, pi and c are on the same side relative
to SR, or are on opposite sides if dp > 0. All points pi
that satisfy dp < 0 are stored in point cloud, Pss

The Euclidean distance algorithm [Trevor et al., 2013]

is applied to Pss to obtain a set that contains clusters of
points. Each cluster, Ci represents an individual object
on the surface, SR. To generate a bounding box that



Algorithm 1 Two Points Relative Position to Surface

1: Ptemp = Pf \ PR

2: for pi ∈ Ptemp do
3: dp = ~vpc • ~vpp
4: if dp < 0 then
5: pi and c are on the same side relative to SR

6: pi → Pss

7: end if
8: if dp > 0 then
9: pi and c are not on the same side relative to

SR

10: end if
11: end for

encompasses each of the objects, a three-step process is
implemented. The three steps involve the application
of Principle Component Analysis (PCA), extracting the
minimum and maximum values of the axes generated
by PCA and converting the corners of the bounding box
from the PCA coordinate frame to a camera’s coordinate
frame.

PCA is a multivariate statistical technique that ex-
tracts important information from an existing set of data
and represents the set accordingly. This results in a
set of new orthogonal variables labeled principal com-
ponents [Abdi and Williams, 2010]. For each cluster,
Ci, a three-dimensional coordinate system, Oi, can be
derived from the eigenvectors obtained from the PCA
algorithm. Each Cartesian point, pWj ∈ Ci is converted

from the camera coordinates, Oc, to point, pOj of coor-
dinate Oi. The minimum and maximum values on each
of the axes, [xmin, xmax, ymin, ymax, zmin, zmax] among
all points, pOj are utilised to define the set of corners of

the bounding box, BO
i , wrapping the cluster, Ci. The

corner points are then converted from PCA coordinates,
Oi, to the camera frame, Oc, for visualisation. The set
of corner points in Oc coordinate system is denoted as
BW

i .

4 EXPERIMENT

The point cloud processing algorithm is evaluated
through simulated experiments. For these experiments,
a system of two RGB-D cameras was utilised to capture
the scene and generate the point cloud input for the algo-
rithm. Additionally, a human participation study utilis-
ing the proposed point cloud algorithm was designed to
investigate the practicality of incorporating point cloud
processing as an overlay and additional information in
VR. The user study conducted involved a remote ma-
nipulation task that required participants to move the
custom-built robotic manipulator’s end-effector to spec-
ified targets. The criteria for assessing participant per-
formance is based on the completion time and precision.

4.1 Point Cloud Processing Algorithm

A simulated Gazebo environment was created containing
multiple simple-shaped objects and a system of two cal-
ibrated cameras. The experiment includes seven unique
trials, and for each trial, the cameras are placed fac-
ing the objects from multiple viewpoints. The environ-
ment used for the first three trials contains one object,
as shown in the first row of Figure 3. The object’s shape
and location vary between trials. For the latter trials,
multiple objects were placed within the view of the cam-
era and remained stationary between trials, as seen in
the second row of Figure 3.

Figure 3 shows the bounding box generated by the
algorithm in Rviz. The algorithm is evaluated by com-
paring the centre of the generated bounding box and the
centre of the object in a simulated environment. The ob-
jects’ centres are ground truth values obtained directly
from the simulation. The error is calculated as the Eu-
clidean distance between the bounding box centre and
the objects’ centre. The bounding boxes’ centre and er-
ror values are shown in Table 1.

Table 1: Bounding boxes centre and error values
Exp Bounding Box Centre (m) Error (m)

1 Box 0.000,-0.402,2.836 0.002
2 Sphere 0.263,-0.395,4.494 0.0086
3 Cylinder -0.124,-0.403,4.198 0.0059

4
Box 0.003,-0.401,3.836 0.0032

Sphere -1.499,-0.394,5.120 0.041
Cylinder 1.400,-0.401,4.797 0.0221

5
Box 0.001,-0.237,3.956 0.0033

Sphere -1.761,-0.685,5.159 0.07
Cylinder 1.770,-0.540,4.864 0.0319

6
Box 0.000,-0.825,3.689 0

Sphere -1.756,-1.902,4.393 0.0778
Cylinder 1.761,-1.611,4.236 0.0437

7
Box 0.000,-0.827,3.684 0.0054

Sphere -1.748,-1.903,4.358 0.1094
Cylinder 1.753,-1.606,4.230 0.0526

4.2 VR-based User Study

In order to evaluate if the annotations computed from
point clouds, or additional information such as image
streams would have a significant impact on user perfor-
mance, a VR-based user study was conducted. Eight
healthy participants with no neuromuscular or debili-
tating visual impairments volunteered to partake in the
study. Prior to completing the study, participants pro-
vided informed consent approved by an ethics committee
(UTS, Australia, approval number ETH21-5929). The
participants were asked to perform the experiments per-
taining to 4 sets of six repetitions.



(a) (b) (c) (d)

Figure 3: Bounding boxes from the simulated experiments: (a), (b) individual objects experiment; (c), (d) multiple
objects experiment with different cameras viewpoints

(a) Setting 1 (b) Setting 2 (c) Setting 3 (d) Setting 4

Figure 4: Participant’s view in VR with differing settings: (a) Setting 1 - Point cloud only; (b) Setting 2 - Point
cloud and two image streams; (c) Setting 3 - Point cloud and annotations; (d) Setting 4 - Point cloud, two image
streams, and annotations

Table 2: Experimental setting

Setting
Available Information

Colored PC Images Bounding Box
1 A N/A N/A
2 A A N/A
3 A N/A A
4 A A A

4.3 Experiment Design and Procedure

Participants were given a set of written instructions and
shown how to fit and adjust the VR headset. Partici-
pants were asked to remain seated with the VR headset
on during the experiment for their health and safety.

The experiment required participants to perform a se-
ries of remote manipulation tasks. The task designed
for the study involves using a joystick controller to ma-
noeuvre a robotic manipulator whilst wearing a Virtual
Reality headset. Within the VR environment, camera
data ascertained from the 2 RGB-D cameras is rendered
as a point cloud. Depending on the task configuration,
the bounding boxes and color image streams may be pre-
sented.

Each participant is required to perform the manipu-
lation task 24 times in four sets of six. The scene lay-
out was varied after each repetition. Six different scene
layouts were designed and were presented to the par-
ticipants in a randomised sequence. The four different
settings shown in Figure 4, which visualise the environ-
ment with a combination of data modalities, were used

Figure 5: A participant manipulating the end-effector to
the green area of the target while in VR

as shown in Table 2. For each repetition of the experi-
ment, the four settings sequence are randomised, and one
target is in the sensors’ fields of view. The participant’s
aim is to move the robot’s end-effector to the centre of
the target, indicated by the green area, as quickly as
possible (Figure 5). The additional colors are shown as
supplemental information available to the participant.

Before putting on the VR headset, participants were
given three minutes to perform the manipulation task



while looking at the real-world experiment setup. This
is to aid participants in familiarising themselves with the
task, thus reducing the effect of the learning component.
The layout used for this practice is a unique scene layout
and is not one of the six scene layouts used for the study.

The participants are placed in a VR waiting room after
the VR headset is put on. They are asked to not move
the manipulator while waiting. When the scene layout
is prepared, the administrator begins the VR simula-
tion, and the scene is revealed to the participants in VR.
During the experiment, the participants must verbally
indicate when the end-effector of the manipulator has
touched the target based on their own judgment. After
the participants have indicated that the task is complete
or two minutes has elapsed, the VR simulation is ter-
minated, and the participants are returned to the VR
waiting room. The administrator then configures the
scene for the next task and returns the manipulator to
its predefined home position. After a set of tasks, the
participants remove the VR headset and rest for 3 min-
utes before continuing the next set of repetitions. This
minimises the effect of fatigue on the participants’ per-
formance.

4.4 Experimental Results

Experimental results collected from 12 participants per-
forming a total of 288 repetitions of the task are shown
in Figure 6.

Objective Task Completion Time

The task completion time is determined as the time from
when the participant starts operating the manipulator
till when they verbally indicate that the task is com-
pleted. A one-way ANOVA test was conducted with the
null hypothesis being that there is no significant differ-
ence between the mean completion time of the various
settings implemented during the study. An F-statistic
value of 1.71 and a p-value of 0.1644 were obtained from
the analysis, showing no statistical significance.

Objective Task Precision

To quantify the accuracy of the participants during the
experiment, the participants receive a point score based
upon whether the end-effector touches the target. The
participants are given 5 points if the end-effector is
touching the green area on the target surface when they
indicate they have completed the task. Similarly, if the
end-effector stops when touching the yellow area, the
participants receive 3 points, and 1 point is allocated for
touching the red area. If the end-effector is not touch-
ing the target surface, the participant is not given any
points.

Similar to section 4.4, a one-way ANOVA test was also
conducted with the null hypothesis being that there is no
significant difference between the mean accuracy of the

above-mentioned settings. An F-statistic value of 2.37
and a p-value of 0.0705 were reported, supporting the
previous statement.

5 DISCUSSIONS

The experimental results indicate that the availability
of the information presented through various mediums,
namely 2D images, and bounding box annotations, did
not significantly impact the objective task completion
time, as seen in Figure 6a. The median completion time
of the participants collectively for all settings is similar,
despite the varied fluctuation range. Figure 6b shows
that among the four settings investigated, participants
are able to manipulate the end-effector to the target’s
centre in most trials. However, Figure 6c demonstrates
a difference in the resulting score when images are avail-
able. In settings where images are available (Setting 2
and 4), participants failed to hit the target’s centre 14
times in total. Within the 14 misses, there were 12 occur-
rences (85.7%) where the end-effector touched the edge
of the green target area, resulting in a score of 4. On the
other hand, for other settings, participants missed the
centre 23 times. The participants only scored 4 a total
of 15 times (65%). Amongst all the investigated set-
tings, participant performance improved with Setting 4,
as indicated by the low number of times the participants
missed the green area.

The experimental results suggest that the non-
annotated visualisation that the presented colored point
cloud alone, was sufficient for this remote-controlled ma-
nipulation task. However, this may be due to the con-
trolled and ideal indoor setup where depth sensors were
not exposed to excessive infrared noise, such as from the
sun. Furthermore, bounding box annotations did not
impact the overall performance as the target could be
easily identified in the scene. In other scenarios, where
the target cannot be distinguished through color or if the
color information is unavailable, the target becomes less
recognisable, and annotations may better assist a user.

6 CONCLUSIONS

This paper investigated the effect of annotations on par-
ticipant performance when executing a remote manipu-
lation task in VR. The annotations are generated and
presented as overlays on the real-time 3D point cloud
data displayed in VR. The point cloud processing algo-
rithm integral to the creation of the annotations is also
presented. A simulated experiment was conducted to
determine the accuracy of the point cloud processing al-
gorithm in a controlled environment. In addition, the
experimental results from the user study indicate that a
combination of point clouds and images greatly improves
the task precision. On the other hand, there are no sig-
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Figure 6: Experimental results for each setting: (a) Completion time; (b) Precision quantified score; (c) Histogram
of repetitions where participants missed the green target area

nificant differences between the four settings examined
in terms of completion time.

Future work requires undertaking further experiments
regarding the implementation of annotations in VR, es-
pecially for scenarios where the targets are difficult to
see without additional assistance. Furthermore, this re-
search necessitates experiments to be conducted in more
challenging environments. Outdoor environments, par-
ticularly those with bland colors, are expected to result
in more RGB-D camera data error, which is predicted
to significantly reduce a user’s performance and increase
the need for annotations.
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