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ABSTRACT

Multimodal and Generative Representaion Learning

by

Naiyuan Liu

Representation learning is fundamental for most vision and language tasks. The

quality of the designed or learned representation of the input text or visual signals

determines the success or failure of relevant tasks. In this thesis, I present novel

representation learning methods based on deep neural networks for two different

tasks: Natural Language Queries (NLQ) and Face Swapping. 1) Natural Language

Queries is a multimodal information retrieval task between video and text. Given

an egocentric video clip and a text query, the goal of NLQ is to locate a temporal

moment of the video clip where the answer to the query can be obtained. How to

learn a combined representation by two different modality features: video and text,

is the major problem of this task. To address this challenge, we propose a multi-scale

cross-modal transformer and a video frame-level contrastive loss to fully uncover the

correlation between video and text. 2) Face Swapping is a generative task. Given

a target image and a source image, Face Swapping aims to swap the identity of the

target image to the identity of the source image, while the other attributes of the

target image (background, expression, et al.) should be preserved. The primary

issue of this task is the modulation of identity representation which is solved by our

ID modulation block. Furthermore, we utilize the rich and diverse representation

priors learned in a pre-trained face GAN to obtain high-fidelity and high-quality

face-swapped images. Experiments have shown that our designed representation

learning methods for these two tasks bring significant improvement.

Dissertation directed by Professor Yi Yang

The Australian Artificial Intelligence Institute (AAII), School of Computer Science
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Chapter 1

Introduction

We have witnessed great progress in computer vision over the decade. AlexNet [37]

is the first deep neural network-based method to outperform the hand-crafted fea-

ture based methods on the image classification task of ImageNet [9]. AlexNet is

built by Convolution blocks; we call this kind of model Convolutional Neural Net-

works (ConvNets). AlexNet proves the potential deep neural network for dealing

with various computer vision tasks. Recently, ConvNets achieve extreme high per-

formance on image classification task [59, 25, 62]. R-CNN [18] proposed by Girshick

et al. shows that ConvNets can handle complex computer vision tasks: object detec-

tion [51, 17, 50] and segmentation [6, 71]. Vision Transformer (ViT) [13] first adopts

Transformer [63] for image classification task and get competitive results compared

with ConvNets methods. Transformer based methods [4, 43] also perform well on

object detection and segmentation.

Despite the great success of image classification, object detection and segmenta-

tion, various computer vision tasks remain challenging. In this thesis, I try to tackle

two novel computer vision tasks: Natural Language Queries and Face Swapping.

Natural Language Queries is an information retrieval task between two modalities:

video and text. Natural Language Queries is proposed by FACEBOOK which is

severed for their AR device. The purpose of NLQ is to make their AR device more

intelligent. FACEBOOK’s vision is to hope that the AR glasses will record all the

things the user has seen. When the user asks a question, the AR glasses will give an

answer based on the clips it records. This is a new and practical task, so I choose
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to study it. The critical issue of this task is to align the text information to related

video content through representation learning. Face Swapping is a novel generative

task. This task aims to generate a new face by replacing the identity of the original

face with a specified identity. How to find and modulate the identity representation

is the crucial point to generating a face-swapped image. In addition to being used

in film and television production, Face Swapping can also generate training data

for fake face detection. Forgery detection techniques are used to determine whether

the face in video or image is generated by face swapping methods. They all need

the fake images generated by current face swapping methods to be training set. A

new face swapping method, which can generate realistic faces, can also help the

development of face forgery detection.

1.1 Natural Language Queries

Natural Language Queries (NLQ) is a new task proposed by the recently released

Ego4D dataset [20]. Given an egocentric video clip and a text query, the goal of

this task is to locate a temporal moment of the video clip where the neural network

can obtain the answer to the query. NLQ is a complex task that needs to solve

three visual tasks simultaneously: video understanding [65, 16, 15], multimodal

representation learning [76, 76, 65] and video temporal location [74, 75, 72, 73,

38]. To tackle this task, we propose a multi-scale cross-modal transformer and a

video frame-level contrastive loss to fully uncover the correlation between language

queries and video clips. Besides, we propose two data augmentation strategies to

increase the diversity of training samples. The experimental results demonstrate the

effectiveness of our method. We elaborate on the detail of our solution on NLQ in

Chapter 2.
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1.2 Face Swapping

With the development of Generative Adversarial Network [19], the deep neural

network can generate a photorealistic image. Various generative tasks have at-

tracted the attention of the computer vision community; Face Swapping is one of

them. Given a target image and a source image, Face Swapping aims to swap the

identity of the target image to the identity of the source image while the other at-

tributes of the target image (background, expression et al.) should be preserved.

Previous works on Face Swapping [12, 7, 14, 39] perform well on face swapping for

low-resolution facial images (lower than 256x256). And recently, Hififace [67] focused

on transferring the face shape of the source image to a face-swapped image, which

leads to better face-swapped results. In this thesis, we propose a new face swap-

ping framework which utilizes facial Generative Adversarial Network [31, 32, 33] as

generative prior. We choose StyleGAN2 [33] which can generate super-resolution

(1024x1024) and photorealistic human face photos as our generative prior. The goal

of using generative prior is to create high-fidelity and high-resolution face-swapped

results by utilizing the knowledge from generative prior. Quantitative and quali-

tative experiments have shown that our method gets competitive results compared

with state-of-the-art face swapping methods. We elaborate on the detail of our

solution in Chapter 3.

1.3 Contribution

This thesis is organised as follows. In Chapter 2, we first present the background

of Natural Language Queries. We propose a multi-scale cross-modal transformer

and a video frame-level contrastive loss to uncover the correlation between video

and text fully. We also presented two new data augmentations: variable-length

sliding window sampling and video splicing, to collect more samples and avoid over-

fitting issues. Chapter 3 is about Face Swapping. Besides the background for image
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synthetic and the survey for the existing Face Swapping methods, we elaborated on

our brand new framework for Face Swapping, which utilizes facial generative prior.

In Chapter 4, I briefly summarize the thesis and future works for improvement.
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Chapter 2

Multimodal Representation Learning for Natural

Language Queries

2.1 Introduction

Natural Language Queries is an essential task from Ego4D [20]. Ego4D is a

massive-scale egocentric video dataset. Unlike previous video datasets like HowTo100M

[45] and MSRVTT [68] which provide third-person perspective video, wearable cam-

eras capture all the videos from Ego4D like GoPro. We denote the video captured by

a wearable camera which provides first-person perspective video as egocentric video.

Egocentric video understanding has drawn significant attention. In many applica-

tion scenarios, egocentric video understanding is required, such as augmented reality

and service robots or human-computer interaction. These applications all need to

handle egocentric video input. Compared with conventional video understanding,

the development of egocentric video is relatively slow. The first is the lack of suf-

ficient egocentric video datasets. Since there are not too many egocentric videos

on the Internet, it is impossible to collect video data from video websites and label

them accordingly, like conventional video datasets. Egocentric video datasets usu-

ally require many people to wear wearable devices to record their daily life, which is

time-consuming and expensive. Secondly, the scene of the previous egocentric video

dataset is limited. Most of the videos in the previous datasets were collected indoors,

such as in the kitchen or living room, so the models trained on these datasets could

This chapter is based on our solution (Liu et al. 2022 [42]) for the Ego4D Natural Language

Queries (NLQ) Challenge in CVPR 2022. Our solution got the first place award on this challenge.
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not handle a variety of complex scenes.

The motivation of the Ego4D NLQ task is to locate a temporal moment which

corresponds to a natural language query through an egocentric video. NLQ is a

complex task and can be separated into three subtasks: video understanding, mul-

timodal representation learning and video temporal location.

Figure 2.1 is an example to help understand this task. Given a text query:

”Where did I pick the cloth?” and a long egocentric video clip, the goal of the

Ego4D NLQ task is to locate the moment span when the man in the video is picking

up the blue cloth. There are two challenges to the Ego4D NLQ task: an extremely

long duration time and a shortage of videos. First, the total duration of the video

clips on Ego4D is extremely long, while the period of moments span represents a

tiny percentage of the entire time. For example, the average duration of the video

clip is up to 7.5 minutes, while the average time of the span is less than 5 seconds.

The second issue is a shortage of videos. The data collection process of Ego4D is

as follows. First, volunteers are recruited from all over the world. These volunteers

come from all walks of life. These people need to wear a head-mounted camera to

record their daily life. The data annotators will split each video into multiple key

video clips and then mark each video clip with a text query. Here is how the video

clip-text pairs are obtained. Concretely, the Ego4D NLQ training dataset has more

than 10000 video clip-text pairs, but there are only about 1200 union video clips

which is not enough to learn such a complex task as NLQ.

To alleviate both challenges, we propose a multi-scale cross-modal transformer

making the video features interact with text features more adequately. In addition,

video frame-level contrastive loss is introduced to enforce our model to focus on video

frames that fall into a moment span. To solve the challenge of video shortage, we

propose two data augmentation methods: variable-length sliding window sampling
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Query:  Where did I pick the cloth?

Video clip:

Figure 2.1 : An illustration of Natural Language Queries, the red window is the

query corresponding temporal moment span.

(SW) and video splicing (VS), to collect more samples and avoid overfitting issues.

Our method outperforms previous state-of-the-art methods and achieves the best

performance on the test sets.

2.2 Related work

The NLQ task can be treated as a multi-modal retrieval task. There exist similar

tasks, including moment retrieval [74, 75, 73], video highlight detection [38] and

text-video retrieval [65, 76]. Moment DETR [38] is the SOTA method for moment

retrieval. It follows the structure from DETR [4] which is built by transformer

encoder blocks and transformer decoder blocks [63]. Moment DETR combines video

and text input and sends them into transformer encoder blocks aiming to learn the

relationship between these two modalities through the transformer. Moment Queries

are learned embedding severed as the input for decoder blocks. Moment Queries are

set to decode the fused features from transformer encoder blocks for obtaining the

desired moment span. 2D-TAN [75] also gets competitive performance on moment

retrieval. The idea of 2D-TAN is to exhaustively enumerate possible time segments,

and then take the moment span with the highest correlation with the text as the

final result. To be specific, 2D-TAN splits the whole video into time segments with
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even time duration. These time segments are combined into moment spans with

different start times and different end times. 2D-TAN uses ConvNet the calculate

the similarity between moment spans and text input. The moment span with the

highest score is chosen as the answer for the text input. MS 2D-TAN [74] is a

follow-up work of 2D-TAN. 2D-TAN is a time-consuming method because it needs

to enumerate all the possible moment spans. The improvement of MS 2D-TAN is

to perform exhaustive enumeration only on specified time duration scales, which

greatly compresses the time complexity. Many previous works [74, 75, 72, 73, 38]

aim to enhance the interactions among multiple knowledge representations from

different modalities [70] on these tasks. However, the NLQ task is more challenging

due to the long duration of videos and video shortage, and the text input is questions

rather than statements. Our idea is to exploit a more efficient way for this task. We

also use well-trained video representation [16, 15] and text representation [49, 11] to

make the NLQ task easier. SlowFast is a video recognition method that is trained on

large-scale video datasets such as Kinetics-400 [34], Kinetics-600 [5], Charades [58]

and AVA [21].SlowFast is built by a slow pathway that captures spatial semantics

and a fast pathway used to model the temporal relationship. A pre-trained SlowFast

model can be severed as a video feature extractor due it can capture the relationship

between different video frames. CLIP [49] is the SOTA and the most influential

method of image-text retrieval. It demonstrates the benefits of large-scale text-image

pre-training. CLIP uses two different feature encoders to get the image features and

text features. Contrastive loss [23] is used to make the image and text features

belonging to the same pair more similar, and at the same time make the image and

text not belonging to a pair farther apart in the feature space.
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2.3 Analysis of Moment DETR

Ego4D NLQ task is similar to the classical tasks: moment retrieval and temporal

location. All three tasks use textual information to retrieve the period corresponding

to the text in the video. We train the state of the art methods: VSLNet [73], 2D

TAN [75], Ms 2D-TAN [74], and Moment DETR [38] from moment retrieval and

temporal location on the Ego4D NLQ dataset. The result of these methods on the

NLQ dataset is shown in the upper part of Table 2.1. But these methods do not

perform well. After analysis, we find that Ego4d NLQ differs fundamentally from

these two classical tasks. Both classical tasks use the text of declarative sentences to

retrieve information from short videos, while Ego4D NLQ uses questions to retrieve

information from the long egocentric video. Such an essential difference in tasks

leads to the poor performance of these SOTA methods in Ego4D. A declarative

sentence usually describes how an event occurs or the appearance of an object.

This description-driven task is more about finding a key frame with a high enough

similarity with the text to get the best answer. But the question sentence is to ask

the cause or result of an event, the answer cannot be obtained directly from the

interrogative sentence. It needs to be combined with the entire video to get the

optimal result. The answer to this kind of question is usually found before or after

the event, so the requirements for capturing the temporal relationship of the video

are higher, and the relationship between the video and the text needs to be fully

explored. Previous works did not fully uncover the correlation between video and

text. That is why these works get unsatisfactory results.

After analysis, we found that the structure of Moment DETR [38] is very suit-

able for feature fusion between two different modalities. This is because Moment

DETR follows the structure of DETR [4]. DETR is a SOTA detection method using

Transformer [63] for information fusion. The powerful attention mechanism from
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Figure 2.2 : Moment-DETR model overview. Moment DETR follows the pipeline

from DETR [4]. The whole structure is built by transformer encoders and decoders.

And there three prediction heads including saliency scores, foregroud/backgroud

prediction, and span width & coordinate to assist with moment span forecasting.

Transformer uncovers the relationship between different modalities. Therefore, we

analyze Moment DETR and propose a new framework that achieves SOTA perfor-

mance. Next, we frist analyze why Moment DETR performs strugglingly on the

Ego4d NLQ task. And we elaborate on our method in section 3.3.

Shortage of feature fusion part from Moment DETR. Figure 2.2 is the

overview of Moment DETR. Moment DETR directly concatenates the video and text

features along the sequence length dimension and sends the concatenated feature into

a transformer encoder. We denote video features as V = {v1,v2, . . . ,vm}⊤ ∈ Rm×d

and text features as T = {t1, t2, . . . , tn}⊤ ∈ Rn×d, where m and n are the sequence

length of video feature and text feature. After concatenation, we have concatenated

feature Fc = {f1,f2, . . . ,fm+n}⊤ ∈ R(m+n)×d. The transformer encoder consists of a

self-attention layer and a fully connected feed-forward network. The key component

of the transformer encoder is self-attention. The self-attention function is used to

reweigh the input feature by comparing every element along the sequence dimen-

sion. The self-attention role helps capture the contextual relevance inside the input

Man in hoodie 
unpacks his groceries. 

Moment Queries 
(Trainable embeddings)

Transformer Encoder Transformer Decoder

Cross-Entropy Loss

L1 + IoU Loss

Hinge Loss

saliency scores

Linear

saliency scores

FFN FFN FFN FFN

foreground background foreground background

span span
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Figure 2.3 : Overview of how Moment DETR [38] does information fusion.

feature. Self-attention has the following two shortcomings on the Ego4D NLQ task.

1) It cannot fully uncover the correlation between the two modalities, w.r.t video

and text. 2) It cannot handle extremely long sequence features.

Figure 2.3 is a detail illustration of how Moment DETR does feature fusion.

In Moment DETR, queries Qc ∈ R(m+n)×d, keys Kc ∈ R(m+n)×d, and values Vc ∈

R(m+n)×d are obtained from the same input Fc by using three different linear layers.

The output is calculated as follows:

Attention(Qc, Kc, Vc) = softmax(
Q KT

c√ c

d
)Vc (2.1)

Fc consists of both video modality and text modality. We denote fi and fj is the i-

th element and the j-th element of Fc. In self-attention, each query gives much higher

Transformer Encoder

FFN FFN

Where was the water bottle before
I left the kitchen?

Concat

Q K V



12

weights for the values from the same modality than that from different modalities.

For example, a video query will apply higher attention weights to video values while

the attention weights for text values are relatively low. Due to the attention weights

for those that belong to different modalities being low, the attention output of fi

is approximately the weighted sum of all fj, which came from the same modality

as fi. In other words, the attention from Moment DETR is hard to uncover the

relationship between video and text. Such an attention way could not meet NLQ’s

goal, which utilizes the relationship between text and video to retrieve the target

moment span. Additionally, time complexity of each self attention layer is O((m +

n)2 · d). The computation cost becomes unaffordable when handling extremely long

video or extremely long text queries.

Shortage of the prediction way from Moment DETR. Moment DETR

follows the pipeline from DETR [4]. The transformer decoder takes a moment query

Mq ∈ RN×d as input and output embedding Odec ∈ RN×d by utilizing the fusion

feature from transformer encoder, where N is the number of moment queries. A 3-

layers multilayer perceptron network (MLP) with Relu activation is applied on Odec

to predict the normalized moment span center and normalized moment span width

w.r.t the input video length. The format of original moment span is [c, w] where c

and w are center value and width value. Normalized moment span is formulated as

[c/Lv, w/Lv] where Lv is the length of input video length. And the unit of c, w, and

Lv is second (s). The prediction of the center and the width for the moment span is

unconstrained. Such a prediction way could produce an unreasonable or extremely

wrong result which both lead to low evaluation performance. Such an unconstrained

prediction way which directly predicts the moment span center and moment span

width, is hard to get an accurate result. In the next section, we elaborate on our

methodology, which solves the above shortages of Moment DETR.
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Figure 2.4 : The overall framework of our approach. (a) depicts our single-scale

cross-modal transformer. (b) shows the details of our multi-scale cross-modal trans-

former.

2.4 Methodology

We propose a multi-scale cross-modal transformer built by T cross-attention

layers, as shown in Figure 2.4. Then, we build a saliency scores predictor [38],

a highlight region predictor [38], and a conditioned span predictor [73] upon the

backbone. The prediction output from the conditioned span predictor is our final

result. Additionally, we utilize pre-extracted video and text features as inputs of

the backbone. To improve the generalization ability of our method, two data aug-

mentation methods are adopted during training, including video splicing (VS) and

variable-length sliding window sampling (SW).
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2.4.1 Input preparation

We use Slowfast features [15] and Omnivore features [16] which are both pre-

trained on Kinetic-400 [34] provided by Ego4D developers as video features. Specif-

ically, Slowfast uses window size 32 and temporary stride 16 to extract features

(roughly two frames of Slowfast features per second for 30-fps videos). In addition,

Omnivore uses window size 32 and temporary stride 6 to extract features (roughly

five frames of Omnivore features per second for 30-fps videos). We introduce CLIP

[49] feature to improve cross-modal representation learning. For each frame of video

features, we randomly select one of its input frames and then feed it to the image

encoder (ViT-B/16) of CLIP to get the CLIP visual feature. The video and CLIP

visual features are concatenated along channel dimension as the final video input.

Text input is obtained by the CLIP text encoder. Instead of taking the EOS to-

ken as an aggregate text representation, we reserve text sequence length to use text

token-level information. We denote video features as V = {v1,v2, . . . ,vm}⊤ ∈ Rm×d

and text features as T = {t1, t2, . . . , tn}⊤ ∈ Rn×d, where m and n are the sequence

length of video feature and text feature.

2.4.2 Multi-scale Cross-modal Transformer

Cross-attention mechanism. Single-scale cross-modal and multi-scale cross-

modal transformer are built by a stack of T cross-attention layers shown in Figure

2.4. We set T = 3 by default. The structure of the cross-modal transformer is the

same as that of the standard transformer encoder block [63], including a multi-head

attention layer and a position-wise fully connected feed-forward network. To fully

uncover the correlation between video and text, we use a cross-attention mecha-

nism in a cross-modal transformer instead of the self-attention mechanism used by

the standard transformer encoder block. Query, key, and value are all obtained

from the same input through three linear layers in the self-attention mechanism.
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However, the cross-attention mechanism exchanges the key-value pairs of different

input modalities for attention operation, as shown in Figure 2.4 (a). To be specific,

video queries Qv ∈ Rm×d, video keys Kv ∈ Rm×d, and video values Vv ∈ Rm×d are

obtained from video input feature V by three linear layers. We get text queries

Qt ∈ Rn×d, text keys Kt ∈ Rn×d, and text values Vt ∈ Rn×d from text input feature

T by another three linear layers. We build two attention input pairs for attention

computation by switching the key-value pairs from video and text: [Qv, Kt, Vt] and

[Qt, Kv, Vv]. These two input pairs are fed into two standard attention blocks sep-

arately. As a result, we get the attention that has been language-conditioned in

the video stream (Eq. 2.2) and attention that has been video-conditioned in the

linguistic stream(Eq. 2.3). Cross attention mechanism ensures that each video fea-

ture interacts with text features independently. We call the output feature of the

cross-modal transformer from the video stream a cross-modal feature. Cross-modal

features are then sent to prediction heads for final forecasting.

Attention(Qv, Kt, Vt) = softmax(
QvK

T
t√

d
)Vt (2.2)

Attention(Qt, Kv, Vv) = softmax(
QtK

T
v√
d

)Vv (2.3)

Moreover, the cross-attention layer is an efficient module. The time complexity

of each cross-attention layer is O(m ·n ·d). The length of video features is far longer

than the text features’ length. In our case, the average length of the video feature

is 600, while the average length of the text feature is 32. Hence, the O(m · n · d) is

much lower than O((m+ n)2 · d) which is the time complexity of each self attention

layer as we mention in section 2.3. Our method can handle extremely long video

and text queries with cross-attention.

Multi-scale mechanism. We build our multi-scale cross-modal transformer
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by adopting multi-scale split-and-concat strategy from VSLNet-L [72] as shown in

Figure 2.4 (b). Here, we summarize the fundamental idea of this strategy below.

This strategy equally splits a video into K video segments: V = [V1, . . . ,VK ]. To

improve the model’s ability to handle video of various lengths, K is a random sample

at each data sample step instead of being a fixed hyperparameter. Additionally,

random sampled K could provide various data samples during training. Each video

segment Vk = {vk,1,vk,2, . . . ,vk,l}⊤ ∈ Rl×d along with the whole text query are fed

to the cross-modal transformer separately and output cross-modal feature Ck =

{ck,1, ck,2, . . . , ck,l}⊤ ∈ Rl×d. Each cross-modal feature Ck is then processed by

Nil Prediction Module (NPM) [72] and produces a score Sk
npm, which indicates the

confidence of video segment Vk overlaps with query corresponding moment span.

NPM is built by an attention layer, a linear layer, and a sigmoid activation. The

output score Sk
npm from NPM is computed as:

wk = SoftMax(Conv1x1(Ck))

Ak =
∑l

i=1
wk,i · ck,i

Sk
npm = σ(FFN(Ak))

(2.4)

Cross entropy is used as the loss function for Nil Prediction Module:

LNPM = fCE(Snpm, Ynpm) (2.5)

We denote cross entropy as fCE and Ynpm is the ground true label of Snpm. Y k
npm is

1 if the k-th video segment has an intersection with the target moment span. Y k
npm

is 0, while the k-th video segment does not has any intersection with the target

moment span. All features Ck are re-weighted by Sk
npm and produce C̄k:

S̄k
npm =

Sk
npm

max(Snpm)
, C̄k = S̄k

npm ×Ck (2.6)

All C̄k are concatenated into C̄final along the sequence dimension. In the end,

we send C̄final to prediction heads. For computational efficiency, the split and

concatenation are operated at the feature level instead of the original video.
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2.4.3 Video Frame-level Contrastive Loss

The goal of the Ego4D NLQ task is to locate the moment span using text in-

formation. The similarity between text features and video frame features belonging

to the moment span should be higher than the similarity between text features and

video frame features that fall out of the moment span. Therefore, we introduce

video frame-level contrastive loss. The similarity calculation function between the

video frame feature and text embedding is as follows:

F (v, T ) =

∑
tj∈T v · tj/τ

|T |
, (2.7)

where v ∈ R1×dv is the single video frame from the whole video clip sequence, and

T ∈ RLt×dt is the whole text embedding sequence ( tj ∈ R1×dt), τ is the temperature

hyper-parameter. We set τ = 0.07 by default. The loss function is formulated as

follows:

LNCE
i =

1

|Pi|
∑
v+
i ∈Pi

− log
exp(F (v+

i ,Ti))

exp(F (v+
i ,Ti)) +

∑
v−
i ∈Ni

exp(F (v−
i ,Ti))

, (2.8)

Where Pi and Ni denote video embedding collections of the positive and negative

frames of ith video-text pair. A video frame feature is a positive sample if it falls into

the moment span. In contrast, a video frame feature that falls out of the moment

span is a negative sample. The total contrastive loss is as follows:

LNCE =
∑

i
LNCE
i , (2.9)

2.4.4 Prediction heads

To estimate the target moment span, we use the conditioned span predictor

and highlight predictor from VSLNet [73], and we also use the saliency predictor

following Moment DETR [38].

The conditioned span predictor is constructed with transformer encoder layers
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and linear layers to predict the start and end boundary of the moment span:

hs = Transformer(C)

he = Transformer(hs)

P s
t = Ws([h

s
t ;Ct]) + bs

P e
t = We([h

e
t ;Ct]) + be

(2.10)

Ss
t and Se

t is the logit score of being start and end boundary in position t. C

denote the cross-modal feature produced by our cross-modal transformer. P s =

Softmax(Ss) = {ps
1,p

s
2, . . . ,p

s
m} and P e = Softmax(Se) = {pe

1,p
e
2, . . . ,p

e
m} are

the probability of start and end boundary. The loss function for conditioned span

predictor is formulated as:

Lspan =
1

2

[
fCE(Ps, Ys) + fCE(Pe, Ye)

]
(2.11)

Ys and Ye are one-hot labels for the start and end boundary. During inference, we

compute the joint probability distribution and take [tsp, t
e
p] with maximum probability

as the final prediction:

[tsp, t
e
p] = arg max

tsp,t
e
p

Ps(t
s
p)Pe(t

e
p)

s.t. 0 ≤ tsp ≤ tep ≤ n

(2.12)

The saliency predictor and highlight predictor are both built with two linear

layers. The highlight predictor to predict which video frame feature falls into the

target moment span belongs to predict region information. Here is the loss function

for the highlight predictor:

Lhl = fCE(Shl, Yregion) (2.13)

Shl is the output of the highlight predictor and Yregion 0-1 label. Y t
region is 1 if the

t-th video frame falls into the target moment span and 0 otherwise. The saliency
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loss ensures the saliency score of a video frame that falls into the target moment

span should be higher than that falls out of the span. Hinge loss is used to achieve

this goal:

Lsa = max(0,∆ + Ssa(tout) − Ssa(tin)). (2.14)

We denote the output from the saliency predictor is Ssa. tin is a clip that falls into

the target moment span, and tout is a clip that falls out of the target moment span.

The total loss of our method is shown below:

L = Lspan + Lhl + LNPM + Lsa + LNCE, (2.15)

2.4.5 Data augmentation

Even though the Ego4D NLQ training dataset has more than 10000 video clip-

text pairs, there are only about 1200 original video which is not enough to learn such

a complex task as NLQ. To get more video clip data to facilitate convergence and

avoid overfitting issues, we design a new data augmentation method by inserting

positive clips into null video clips. Positive clips are sampled from a long video with

variable background padding to increase diversity. This approach is a combination

of two primary methods: variable-length sliding window sampling strategy (SW)

and video splicing strategy (VS), as shown in Figure 2.5.

Variable-length sliding window sampling strategy. Inspired by MS 2D-

TAN [74], we propose a variable-length sliding window sampling strategy to get more

positive clips during training, as shown in Figure 2.5 (a). Specifically, we define a

length ratio interval [rs, re]. Suppose we sample a video V whose length is lv. Then

we will randomly sample a ratio r̂ from the length ratio interval (rs ≤ r̂ ≤ re). The

sliding window size is equal to r̂∗ lv. We use this sliding window to generate positive

clip Vp from the video V , and we ensure that the generated positive clip contains

the whole query corresponding moment span.
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Figure 2.5 : Illustration of data augmentation. (a) shows how the variable-length

sliding window sampling strategy (SW) works. (b) shows how the video splicing

strategy (VS) works. (c) is a combination of these two data augmentations which

leads to better performance.

Video splicing strategy. Another data augmentation method is to insert one

video clip into a null video clip, as shown in Figure 2.5 (b). Specifically, we sample

two videos V1 and V2 each time. We randomly select a cut-in position on V2, divide

the video into two parts V21 and V22, and place V21 and V22 on the head and tail of V1

respectively to generate a new video clip. There is a hyper-parameter called splicing

probability Pvs to control whether to splice V2 and V1 together for this sampling.

Drawback of video splicing strategy. Due to V1 and V2 being randomly

sampled, the scenes or activity of these two videos could be different. Splicing these

two videos could cause the continuity of the video to be broken, especially in the

splicing part. And since the data augmentation method is only used in the training

phase, there is another problem there will be a domain gap between the training data

Video clip 1 Video clip 2

Query: "Where was the socket set pack before I removed it ?"

Variable length sliding window 
Example 1:

(a) SW (b) VS (c) SW + VS

Splicing with video clip 1

Separate

Splicing with cropped video clip 1

Example 2:

Example 3:
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and the test data. A video usually has some black frames at the beginning and the

ending. We call this kind of frame a meaningless blank frame. These empty frames

will only appear at the beginning and end of the regular video. When the splicing

method is used for training data, there will be a black screen outside the beginning

and end of the video. However, the test set does not have this phenomenon, resulting

in a domain gap between the training data and the test data, eventually leading to

poor performance on the test set.

For the destruction of time continuity, using a video splicing strategy is inevitable

to weaken the time continuity. However, the egocentric video has sudden changes in

the environment and activities, but the degree of sudden changes is not so obvious.

This is due to the nature of the egocentric video. We can assume that egocentric

video is how we observe things in our daily lives. For example, I am currently at my

desk looking at the computer, but the next step I might pick up the water glass and

go to the water dispenser next to the desk and start collecting water. This change

is very rapid in our daily life, and it may not take a second. In the egocentric video,

such scene and activity changes are commonplace. Although video splicing does

cause continuity to be broken, the actual impact is not particularly large. A video

stitching strategy can be a trade-off between temporal continuity and data scale.

Combination of these two data augmentation. We combine these two

methods as our final data augmentation method, as shown in Figure 2.5 (c). In the

experiments section 2.5, we observe that combining these two methods gains better

performance than using any of them alone. Similarly, we first sample two videos V1

and V2. Moreover, we adopt the variable-length sliding window sampling strategy

for V1 to obtain the positive clip V1p, and then utilize the video slicing strategy for

V1p and V2 to achieve the final video clip. We set the length ratio interval to [0.4,0.8]

and set the splicing probability Pvs to 0.5. We found this to be the best value

for these two hyper-parameters. It is worth noting that these data augmentation
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Method
IoU=0.3 IoU=0.5

R@1 R@5 R@1 R@5

2D-TAN [75] 5.04 12.89 2.02 5.88

VSLNet [73] 5.45 10.74 3.12 6.63

MS 2D-TAN [74] 7.05 14.15 4.75 9.16

Moment DETR [38] 4.52 8.03 1.99 3.33

Ours-variant (self-attention) 6.53 11.02 4.05 7.59

Ours-base 7.69 11.51 4.83 7.8

+SW 9.06 11.36 5.68 7.25

+VS 7.38 10.66 4.31 6.84

+SW and VS 9.96 12.55 6.3 8.34

+SW, VS, and Contra 10.79 13.19 6.74 8.85

Table 2.1 : Performance of different methods on the val set.

strategies are only used during the training stage.

2.5 Experiments

All the experiments run on a single NVIDIA Tesla V100 GPU. Unless otherwise

specified, the default video features are Slowfast features. We implement previous

state-of-the-art methods: VSLNet [73], 2D TAN [75], Ms 2D-TAN [74], and Moment

DETR [38] on the Ego4D NLQ dataset for comparison. We denote our multi-scale

cross-modal transformer as Ours-base. We also mark Ours-base with variable-length

sliding window sampling (SW), video splicing (VS), and video frame-level contrastive

loss (Contra) as Ours-full.

The comparison results are shown in Table 2.1. Ours-full outperforms all state-
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Method
IoU=0.3 IoU=0.5

R@1 R@5 R@1 R@5

Ours-full-slowfast 10.79 13.19 6.74 8.85

Ours-full-omnivore 10.74 13.47 6.87 8.72

Ensemble 11.33 14.77 7.05 8.98

Table 2.2 : Performance of our method with different video input feature on the val

set.

of-the-art methods on R1@0.3 and R1@0.5. To verify the effectiveness of the cross-

attention mechanism, we replace the cross-attention mechanism on Ours-base with

the self-attention mechanism as Moment DETR and denote it as Ours-variant (self-

attention). In Moment DETR, features of texts and video are concatenated along

the sequence dimension before a self-attention operation. Compared with Ours-base,

the performance of the Ours-variant on all the metrics is degraded. It shows that

using a cross-attention mechanism to interact video features with textual features

explicitly can improve localization performance on Ego4D.

After adding a variable-length sliding window sampling strategy, the performance

improved by 1.3% on R1@0.3 without significant improvement in other metrics.

When we use the video splicing strategy, the performance has not improved, even

worse. When we use the two data augmentation together, the performance on four

metrics is boosted by 2.27%, 1.04%, 1.47%, and 0.54% compared with Ours-base. If

we add video frame-level contrastive loss to this setting, the performance will reach

the highest, and the four indicators are improved by 3.1%, 1.68%, 1.91%, and 1.05%

compared to Ours-base, respectively.

As can be seen from Table 2.1, Ours-full can achieve the best performance in
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Method
IoU=0.3 IoU=0.5

R@1 R@5 R@1 R@5

Ensemble 12.89 15.41 8.14 9.94

Table 2.3 : Performance of our ensemble model on test set.

Participant team
IoU=0.3 IoU=0.5 Mean

R@1 R@5 R@1 R@5 R@1

Ours 12.89 8.14 15.41 9.94 10.51

EgoVLP 10.46 6.24 16.76 11.29 8.35

MSRA AIM3 teams 10.34 6.09 18.01 10.71 8.22

Teamretrival 9.94 5.72 17.48 10.21 7.83

Tianti 9.24 5.24 16.36 9.82 7.24

TarHeels 6.42 3.55 10.46 6.39 4.98

Host Team(VSLNet) 5.42 2.75 8.79 5.07 4.08

Table 2.4 : Test set performance compared with other participating teams. Column

Mean-R@1 means the average value of Iou=0.3-R@1 and Iou=0.5-R@1.

Slowfast input. In addition, Ego4D provides video features extracted from two

models: Slowfast and Omnivore. As shown in Table 2.2, Ours-full has a similar

performance on the val set with these two different features as input. However, the

ensemble result has improved. That is, Ours-full-omnivore and Ours-full-slowfast are

complementary. The ensemble strategy here is straightforward. These two models

output top5 results according to their prediction score (the format of the result is

(start time, end time, score)), so there are ten results. We sort these ten results
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according to the score value and take the top5 as the final result. For the final

submission, we train Ours-full-slowfast and Ours-full-omnivore on the combination

of the train set and val set. The test set performance of our ensemble model achieves

the best performance on R1@0.3 and R1@0.5 and competitive result on R5@0.3 and

R5@0.5 as shown in Table 2.3.

Table 2.4 summarizes the test set results of all the participating teams of Ego4D

Natural Language Queries (NLQ) Challenge in CVPR 2022. We denote our ensemble

model as Ours. Our method outperforms all teams on R@1 metrics, including

Iou=0.3-Mean, Iou=0.3-R@1, and Iou=0.5-R@1.
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Chapter 3

High-fidelity Face Swapping with Generative

Facial Prior

3.1 Introduction

Given a target image and a source image, Face Swapping aims to swap the iden-

tity of the target image to the identity of the source image while the other attributes

of the target image (background, expression et al.) should be preserved. Face swap-

ping has attracted significant attention from the computer vision community. Face

Swapping is quite topical, and it can be used for entertainment. But it is likely to

be used for evil purposes, such as using this method to forge a fake video to defraud.

However, instead of knowing nothing about this technology, it is better to explore

the mystery and find a way to distinguish the authenticity of that face-swapped

video. Forgery detection techniques are used to determine whether the face in video

or image is generated by face swapping methods. They all need the fake images gen-

erated by current face swapping methods to be training set. A new face swapping

method, which can generate realistic faces, can also help the development of face

forgery detection.

Generative Adversarial Network (GAN) such as StyleGAN [32], BigGAN [3] and

PGGAN [31] can produce photorealistic facial image. The image produced from

pre-trained facial GAN has detailed texture and super-resolution. Inspired by GFP-

GAN [66], we proposed a new framework for Face Swapping by utilizing generative

facial prior. Generative facial prior means the well-trained facial generative model

which can produce the photorealistic facial image. With the help of generative fa-



27

Labels to Facade BW to Color

Aerial to Map

Labels to Street Scene

Edges to Photo

input output input

inputinput

input output

output

outputoutput

input output

Day to Night

Figure 3.1 : This is the legend provided by the original pix2pix paper. Pix2pix

show that conditional GAN has the ability to complete translation between various

domains

cial prior, the model can focus on the identity swapping between the source person

and the target person. Our framework consists of a pre-trained facial generative

prior and an ID injection module. These two modules are connected by Channel-

Split SFT (CS-SFT). We proposed an ID modulation block for identity swapping

in ID injection module. Quantitative and qualitative experiments have shown that

our method gets competitive results compared with state-of-the-art face swapping

methods.

3.2 Literature review

3.2.1 image-to-image translation

Face Swapping is a sub filed of image-to-image translation [28, 78, 8, 48]. Cy-

cleGAN [78] uses two generator and discriminator pairs to achieve the image-to-

image translation between two different domains. Pix2pix [28] proposes a condi-

tional GAN to utilize additional condition input to control the generated output

image. SPADE [48] proposes a new spatial modulation module: Spatially-adaptive

normalization to achieve condition injection. With spatially-adaptive normalization,
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x

Figure 3.2 : Taking edge to photo as an example, the training purpose of D is to

identify whether the input is from real data or fake data.Training purpose of G

hopes that the quality of the generated image can make D judge it as coming from

real data.

generated fake images can well preserve the semantic information from input. Star-

GAN [8] is the first method to achieve multiple-domain image-to-image translation

within a single model. StarGAN accepts the image and target domain label as gen-

erator input and outputs the translated image within the target domain. There are

two goals for the discriminator from StarGAN: 1) Determining whether the input

image is real or fake. 2) Domain classification. Next, we will elaborate on Pix2pix

to help understand the concept of image-to-image translation.

Pix2pix is the most influential paper on image-to-image translation that applies

GAN to supervised image-to-image translation. Supervised means that training

data is paired, and image-to-image translation means image-to-image mapping. It

is the process of producing the required output picture from an input image, which

can be seen as a type of image-to-image mapping. For example, image restoration

and super-resolution are two populate and practical subtasks of image-to-image

translation.

Previous image-to-image translation methods are based on conventional GAN.
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Conventional GAN takes a random sampled noise from a predefined distribution as

input and outputs a generated output. Due to only random sampled noise being

used as input, we could not specify any attribute of the rendered image, including

shape, color, and texture. The methods based on conventional GAN add addi-

tional constraints on the loss function side to guide image generation. Pix2pix

proposed conditional GAN (cGAN) to achieve image-to-image translation. cGAN

guides image generation by adding conditional information. Instead of just using

random sampled noise as input, cGAN utilizes extra conditional input to steer pic-

ture synthesis and gets specified generated images. The form of condition input is

unrestricted; it could be edge, segmentation map and labels. As long as a paired

dataset is constructed, any type of feature or image can be used as a conditional

input. Figure 3.1 demonstrates six subtasks of image-to-image translation by us-

ing different types of conditional information, including the processes from label to

image generation, image edge to image generation and so on.

The pipeline of the pix2pix is shown in Figure 3.2. As shown in the figure, image

generation, which takes an edge photo as input is taken as an example to introduce

the workflow of pix2pix. First, the edge map is represented by x, and the ground

truth image is denoted as y, which is the corresponding image representation of x.

Pix2pix requires paired images (x and y) during training. Edge map x and random

noise z are used as the input of generator G. Random noise z is not shown in

the figure. Removing z does not have much impact on the generation effect, but

if x and z are combined as the input of G, more variety can be obtained. G(x)

is the generated fake image. Discriminator D takes fake or real data as input to

get the predicted probability value. This value is used to determine the probability

that the input belongs to real data distribution. The closer this value is to 1, the

discriminator considers that the input has a greater probability of coming from real

data. In addition, the real images y and x are also merged based on the channel
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Figure 3.3 : The pipeline and structure of Deepfake

dimension and used as the input of the discriminator D to obtain the probability

prediction value. Therefore, the training goal of the discriminator D is to output a

small probability value (the minimum value is 0) when the input is a pair of generated

fake image and edge map and output an enormous probability value when the input

is a pair of real image and edge map. The training purpose of the generator G is to

make the generated G(x) and x as the input of the discriminator D, the probability

value of the output of the discriminator D is as large as possible, which is equivalent

to successfully deceiving the discriminator D.

3.2.2 Existing face swapping method

Given a target image and a source image, Face Swapping aims to swap the

identity of the target image to the identity of the source image while the other at-

tributes of the target image (background, expression et al.) should be preserved.

There are two types of face swapping methods: subject-specific and subject-agnostic.
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Subject-specific means that the model should train in the image set, which in-

cludes a large number of images from both the target person and source person.

There are many excellent works [12, 55, 54, 40, 29, 69, 36, 77] focus on improving

the performance and visual effect about the subject-specific method.

DeepFake [36] is the first to propose the technology of Face Swapping. The

pipeline and structure of Deepfake are shown in Figure 3.3. The architecture of

DeepFakes consists of an encoder to compress a human face into a latent space,

as well as two decoders, A and B. Decoder A is supposed to restore the human

character A (Fallon) and decoder B is used to restore the human nature B (Oliver).

After training, when Jimmy’s face image is fed to the combination of encoder and

decoder B, we can get a new face image replacing Jimmy’s identity with Oliver’s.

However, Subject-specific can not apply widely. For example, a decoder trained for

LeBron James can not achieve the goal of swapping faces with Kobe Bean Bryant’s

identity. In other words, a person for a trained decoder. To achieve the purpose

of face swapping with three different people’s identities, three decoders need to be

prepared separately. It also required many images of the specific person to train the

face swapping decoder.

Subject-agnostic.This type of method aims to swap the identity of the face

image with an arbitrary identity by a single model without any finetuning operation

on the specific person. The face area of the source picture is represented as a vector

in FSNet [46], which is merged with a non-face target image to obtain the swapped

face image. IPGAN [2] separate identities and face characteristics into distinct vec-

torized representations. FSGAN [47], FaceShifter [39], Hififace [67], MegaFace [79],

and Simswap [7] produce state-of-the-art outcomes by their remarkable performance,

based on earlier efforts. The whole pipeline of FaceShifter is shown in Figure 3.4.

FaceShifter called the model in the first stage AEI-Net and the model in the second
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Simswap employ Identity Loss to urge his network to produce outcomes that are

comparable to the source face’s identity. Weak feature matching loss help achieve

the balance between face-swapped extent and authenticity of the output image.
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stage HEAR-NET. In the subject-agnostic method, the key point is to train a model

to extract features of the source image, while the feature should be sufficient to ex-

press the identity information of the source person. FaceShifter proposed a new way

to achieve Subject-agnostic face swapping. Instead of using a random initialization

and training the feature extraction model from scratch, to learn what kind of feature

can be used to represent the identity of the source person just like FSNet, IPGAN,

and FSGAN did. FaceShifter proposed to use a well-trained face recognition model

to get the representative feature zid of source person Xs. As shown in the upper

part of Figure 3.4(a), AEI-Net employs an Encoder-Decoder model while the feature

of the encoder layer while be concatenated with the feature from the corresponding

decoder layer as UNET [53] did. FaceShifter apply such a model to target person

image Xt and defines the output feature of each decoder layer as zk
att. All the zid

along with zk
att are fed to AAD Generator while the zid and zk

att do fusion operation

by using in AAD Reslk which is shown in Figure 3.4(b). The key component of

AAD ResBlk is AAD which is illustrated in Figure 3.4(c).

The idea of using an identity encoder to extract identity feature proposed by

FaceShifter is very influential, and later work like Simswap [7] and Hififace [67] all

have used this idea, and the effect is excellent.

Simswap.The framework of Simswap is shown in Figure 3.5. Simswap proposed

an ID-Block to inject identity information. The key component of ID-Block is the

AdaIN [27] and Resblock design [25]. Different from Faceshifter, which uses zatt

to preserve the attribute from the target image, Simswap modified the Feature

Matching Loss from [30] to Weak Feature Matching Loss, which is shown below:

LwFM(D) =
M∑

i=m

1

Ni

∥D(i)(IR) −D(i)(IT )∥1 (3.1)

IR means the swapped image, Di means the feature of i-th layer from discriminator,

and IT means the target image.
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cial prior. The corresponding layers between U-Net and StyleGAN2 are connected

through Channel-Split Spatial Feature Transform (CS-SFT) and latent code map-

ping.

3.2.3 Generative Priors for Image Generation

Using pre-trained GANs as generative prior is a new method previously exploited

by GAN inversion. Powerful GANmodel like PGGAN [31], StyleGAN [32] and Style-

GAN2 [33] can produce photorealistic and high resolution (up to 1024*1024) human

face picture. Previous methods [1, 22, 52, 44] achieve the goal of GAN inversion

by modulating the latent code of pre-trained GANs. Abdal et al. [1] and Gu et

al. [22] project the original image to latent space by repeat optimization, which is

super slow and not practical. Pixel2Style2Pixel (pSp) [52] adopt a ResNet [25] with

Feature pyramid networks (FPN) [41] to extract the multi-scale features of desired

image. pSp feeds the multi-scale extracted features as latent code of generative pri-

ors and gets the desired output. The above methods utilize the generative prior by

a channel-wise operation. These methods can get the rough outline of the original

image, but they are not good in detail and texture reconstruction.

GFPGAN [66] is a beautiful work which applies generative prior information

in Blind Face Restoration. The framework of GFPGAN is shown in Figure 3.6.
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The biggest difference between GFPGAN and ours framework is the ID injection

module. We modify the original U-NET of GFPGAN by removing the skip connec-

tion, resulting in an Encoder-Decoder structure. We use ID modulation blocks to

achieve the face swapping goal.

Previous works utilize generative prior by only exploiting the mapping between

image and latent code. GFPGAN proposed to use a U-Net network as a degradation

removal module that can represent an image by hierarchical information, that is, the

multiple-resolution feature map generated by each layer of the decoder in the U-Net.

And GFPGAN proposes a Channel-Split Spatial Feature Transform (CS-SFT) to

guide the generative prior generation by the hierarchical information.

In this section, we introduce the background of Image Synthesis. We also elab-

orate on the existing Face swapping methods and the ability of Generative Facial

GAN Prior. In the next section, we will explain how to utilize Generative Facial

GAN Prior in Face Swapping task to obtain high-fidelity Face Swapping results.
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3.3 Methodology

3.3.1 Network design

Inspired by GFPGAN [66], we proposed a new framework to achieve face swap-

ping goal via generative prior, shown in Figure 3.7. Given a target image and a

source image, Face Swapping aims to exchange the identity of the target image

to the identity of the source image while the other attributes of the target image

(background, expression et al.) should be preserved.

The overall framework of our method consists of an ID injection module, a pre-

trained StyleGAN2 as generative prior and discriminators. The central part of this

framework is the ID injection module. GFPGAN used a U-NET structure where

the feature on the encoder side will directly feed to the corresponding decoder layer

via the skip connection. Such a skip connection design is helpful for the model to

capture all the spatial information of the input image and make the reconstruction.

Such a design works very well when only small-scale or local editing is performed

on the input image. This is, no large-scale geometric editing is involved. Since

the blind face restoration task does not include large-scale changes in geometry, the

output result maintains the same geometric shape as the input. Using U-Net here

is beneficial to produce good results. However, the U-Net structure is not helpful

for face swapping tasks. The face swapping task aims to switch the target image’s

identity to the source image’s identity. This process is equivalent to replacing the

target face’s geometry with the source face’s geometry. Using the U-Net structure in

the face swapping task will cause the model’s output to be more biased towards the

input image, damaging the ability of face swapping. Therefore, we removed the skip

connection in U-Net. That is, there is no direct information interaction between the

encoder and the decoder. We called the U-Net without skip connection Enc-Dec.

We get Flatent and Fspatial by feeding input image x to Enc-Dec as shown in Eq. 3.2.



37

Flatent,Fspatial = Enc-Dec(x). (3.2)

The latent features Flatent is the bottleneck feature in which will then be mapped

to the same size as the latent code of StyleGAN2 through multi-layer perceptron

layers (MLP), and then the mapped latent features are fed to StyleGAN2 as latent

code(Eq. 3.3). Flatent are the feature from each decoder layer.

W = MLP(Flatent),

FGAN = StyleGAN(W).

(3.3)

To perform id information injection, we modulate the features from the bottle-

neck and decoder of the ID injection module by our proposed Id Modulation Blocks.

The detailed design of ID Modulation block is shown in the lower part of Figure 3.7.

ID Modulation block is inspired by Residual Block [25] and we replace the con-

volution and batch normalization of the residual branch with our proposed style

convolution. Inspired by Faceshifter [39] and Simswap [7], we used a face recog-

nition network to extract the id embedding to represent the id information of the

source image. The face recognition network we used here is Arcface [10]. Arcface’s

network design intends to obtain a unique id embedding for each independent per-

son, and the id embedding of two different people should be entirely dissimilar. That

is, this embedding theoretically only contains a unique id feature of a person, and

other attributes of the current person, such as the current background, the lighting

environment and the orientation of the face are not included. Such information is

precisely what the face swapping framework need. In Faceshifter and Simswap, they

both use Adaptive Instance Normalization (AdaIN) [27] to fuse id embedding with

a network feature. AdaIN is formulated by:

AdaIN(F, idS) = σS
F − µ(F )

σ(F )
+ µS (3.4)
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Here, F means the input feature and idS is obtained by sending the source image

into the face recognition network, and µ(F ) and σ(F ) means the channel-wise mean

and standard deviation of F . σS and µS obtained from idS via fully connection

layers. However, as pointed out by StyelGAN2, the instance normalization in AdaIN

causes water droplet-like artifacts. We use style modulation proposed in StyleGAN2

to integrate id information instead of AadIN. The style modulation is formulated

in Eq. 3.5 and Eq. 3.6, where i, j and k enumerate the convolution footprint of

input feature,the output feature and spatial dimension. ms is generated from id

embedding idS via fully connected layer and s is the scale of input feature. Due to

the characteristics of StyleGAN2, each layer of StyleGAN2 outputs an intermediate

result, so we used id modulation blocks for the bottleneck in the id injection module

and each layer of the decoder to ensure that the id information is fully integrated.

w′
ijk = si · wijk ·ms

j , (3.5)

w′′
ijk = w′

ijk

/√∑
i,k

w′
ijk

2 + ϵ, (3.6)

To utilize the information from the ID injection module, we adopt the Channel-

Split Spatial Feature Transform (CS-SFT) from GFPGAN [66]. GFPGAN find out

that only using latent code to control image generation may not achieve satisfactory

results. CS-SFT is proposed to fuse the multi-resolution spatial with StyleGAN2

features to modulate the generation. The full name of CS-SFT is Channel-Split

Spatial Feature Transform. Spatial Feature Transform is inspired by SPADE [48],

formulated by:

α,β = Conv(Fspatial),

Foutput = SFT(FGAN|α,β) = α⊙ FGAN + β.

(3.7)
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GFPGAN points out that preforming modulation on GAN features by leaving half

GAN features to directly pass through can achieve better fidelity and realness. CS-

SFT is formulated by:

Foutput = CS-SFT(FGAN|α,β)

= Concat[Identity(F split0
GAN ),α⊙ F split1

GAN + β],

Following GFPGAN [66], we introduce a global discriminator D and three fa-

cial component discriminators. Facial component discriminators including left eye

discriminator Dleye, right eye discriminator Dreye and mouth discriminator Dmouth.

The global discriminator is used to supervise the overall image realism. But the

authenticity of the facial component is also critical for face realism. Only using a

global discriminator cannot achieve part-specific supervision. The introduction of

the facial component discriminator is to ensure the authenticity of the face. During

training, we crop each facial component by ROI align [24] and then feed to the

corresponding facial component discriminator.

3.3.2 Loss function

The loss function of our method consists of reconstruction loss, identity loss,

adversarial loss and weak feature matching loss.

Reconstruction loss. Face Swapping aims to swap the target image’s identity

with the source image’s identity. If the target image and source image came from

the same person, the output image of our framework should be the same as the

target image. We use L1 loss which captures the pixel-wise difference between the

output image and target image as our reconstruction loss, which is formulated as:

LRecon = ∥G(IT,1, IT,2) − IT,1∥1 (3.8)

Here G(·, ·) is the generator of our method. It takes two images as input. IT,1 and

IT,2 are two different images from the same person.
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Identity loss. After feeding a source image and a target image to the generator,

the identity of the output image should be the same as the source image, while the

background from the target image should persevere. We use Arcface [10], which is

a face recognition network to extract the id vector of source image VS and the id

vector of output image VO. Cosine similarity between these two vector is used as

identity loss. The higher the cosine similarity of two id vectors, the closer they are.

The id loss is shown in Eq. 3.9, where cos(·, ·) is the function to calculate the cosine

similarity of two different id vector.

LID = 1 − cos(VO, VS) (3.9)

Adversarial loss. We adopt adversarial loss to encourage generator output

photorealistic face-swapped images. The adversarial loss is formulated as follows:

Ladv = Eŷ[log(1 −D(ŷ))]+

Eŷleye [log(1 −Dleye(ŷleye))]+

Eŷreye [log(1 −Dreye(ŷreye))]+

Eŷmouth [log(1 −Dmouth(ŷmouth))]

(3.10)

where ŷ is the whole output image from generator and {ŷleye, ŷreye, ŷmouth} are

the crop regions of output image which are belong to facial component collection

{left eye, right eye, mouth}. D is the global discriminator and {Dleye, Dreye, Dmouth}

are the facial component discriminators.

Weak Feature Matching loss. Simswap [7] proposes weak feature matching

loss to help achieve the balance between face-swapped extent and authenticity of

the output image. Weak feature matching loss aims to ensure the authenticity of

face-swapped images by closer the feature map distance between the output image

and the target image on the discriminator side. Here is the formulation of weak
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feature matching loss:

LwkFM(D) =
M∑

i=m

1

M −m
∥D(i)(IO) −D(i)(IT )∥1 (3.11)

M is the total layer number of the discriminator, and D(i) is the i-th layer of the

discriminator. Weak feature matching loss forces the output image and target image

to have similar features from layer m to layer M of global discriminator D.

The overall loss function is a weighted sum of the above four losses:

L = λIDLID + λReconLRecon + λadvLadv + λwkFMLwkFM (3.12)

We set the loss weights as follows: λID = 10, λRecon = 10, λadv = 1 and λwkFM = 5.

λID, λRecon, λadv and λwkFM are the weights of reconstruction loss, identity loss,

adversarial loss and weak feature matching loss respectively.

3.4 Experiment

Implementation detail. We use StyleGAN2 (512x512) trained on the FFHQ

dataset as our generative prior. Our method can generate a high-fidelity face-

swapped image with 512x512 resolution with this setting. We trained the overall

model on both VGGFace2-HQ [64] and FFHQ [32] for 200 epochs on four NVIDIA

RTX 2080Ti 12G. We use Adam [35] as our optimizer with β1 = 0 and β2 = 0.999.

The learning rate is set to 0.0002 without decay.

Quantitative comparison on FaceForensics++. We compare our method

with state-of-the-art face swapping method: Simswap [7], FaceSwap [14], FaceShifter [39]

and Hififace [67]. Following Hififace [67], we evaluate these methods on FaceForen-

sics++ [55] dataset by measuring ID retrieval, pose error and face shape error. ID

retrieval measure the degree of similarity between the face-swapped image and the

source image by using facial recognition network [10]. Pose error estimate how well



42

Method ID↑ Pose↓ Shape↓

FaceSwap [14] 54.19 2.51 0.610

FaceShifter [39] 97.38 2.96 0.511

SimSwap [7] 92.83 1.53 0.540

Hififace [67] 98.48 2.63 0.437

Ours 97.83 2.50 0.504

Table 3.1 : Quantitative comparison on FaceForensics++.

the face-swapped image maintains the face orientation of the target image by uti-

lizing a head pose estimator [56]. Face shape error calculate the face shape distance

between swapped image and the source image facial by using a 3DMM method [57],

which is a 3D facial reconstruction network. A good face swapping method should

get a high ID retrieval value, low pose error and low face shape error. The quan-

titative comparison is shown in Table. 3.1, our method ranks second on all three

metrics.

Qualitative results. We collect a celebrity set from 16 stars, including Amer-

ican, European and Asian. We randomly combine the photos from the celebrity

set and form the source-target pairs; the high-fidelity face-swapped results from

celebrity source-target pairs are shown in Figure 3.8 and Figure 3.9. All the target

images, source images and face-swapped results are high resolution (512x512). From

Figure 3.8 and Figure 3.9, we can see that our model performs well in the follow-

ing three scenarios: 1) Face swapping between different races. 2) Face swapping

between different genders. 3) Face swapping involving profile faces. The qualita-

tive results prove that our method can generate high-fidelity and high-quality face

swapped results while perverse the attribute from the target image.
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Figure 3.8 : Some HR (512x512) face-swapped results on celebrity photos. Please

zoom in for detail. On each sub-figure, the photo from the first row are served as

source images, and the photo from the first column are served as target images. The

rest images are the face-swapped results generated by source-target image pairs.
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Figure 3.9 : More face swapped results on high quality celebrity photos.
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Chapter 4

Future Works

4.1 Conclusion.

In this thesis, I investigate representation learning on two different tasks: Natural

Language Queries and Face Swapping. In particular, we focus on Natural Language

Queries in Chapter 2. We propose a multi-scale cross-modal transformer and a video

frame-level contrastive loss to learn the relation between video and text. Besides,

we propose two brand new data augmentation methods to obtain more meaningful

training data to further improve performance. Our methods achieve the SOTA

performance on Natural Language Queries and won the first place award on Ego4D

Natural Language Queries (NLQ) Challenge in CVPR 2022. Chapter 3 is about

Face Swapping. We propose to utilize generative facial prior to obtaining high-

fidelity Face Swapping results. Generative facial prior means the well-trained facial

generative model which can produce the photorealistic facial image. With the help

of generative facial prior, the model can focus on the identity swapping between the

source person and the target person. Our method gets competitive results compared

with SOTA Face Swapping methods.

4.2 Future Directions

Natural Language Queries. In our work, we use cross-attention to fuse video

and text input and then hand it over to a deep-learning model to learn the cor-

relation. Such a process is difficult to converge. Using some deep-learning based

clustering methods should be able to lower the difficulty of learning. Of course, cross-
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attention is just a kind of naive attention modification, and trying more attention

variants is also a future direction.

Face Swapping. Recently, Diffusion Model [61, 60, 26] has shown its ability

on various generative tasks including text to image generation, super-resolution,

image translation, and so on. Diffusion Model gradually replaces the dominance of

the Generative Adversarial Network (GAN) in generating tasks. Many researchers

achieve the SOTA performance on generative tasks by utilizing Diffusion Model.

My proposed Face Swapping method is based on Generative Adversarial Network

(GAN) and more studies can be conducted by using Diffusion Model paradigm.
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