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Abstract

Sign language translation (SLT), which generates text in
a spoken language from visual content in a sign language,
is important to assist the hard-of-hearing community for
their communications. Inspired by neural machine trans-
lation (NMT), most existing SLT studies adopted a general
sequence to sequence learning strategy. However, SLT is
signicantly different from general NMT tasks since sign
languages convey messages through multiple visual-manual
aspects. Therefore, in this paper, these unique characteris-
tics of sign languages are formulated as hierarchical spatio-
temporal graph representations, including high-level and
ne-level graphs of which a vertex characterizes a spec-
ied body part and an edge represents their interactions.
Particularly, high-level graphs represent the patterns in the
regions such as hands and face, and ne-level graphs con-
sider the joints of hands and landmarks of facial regions.
To learn these graph patterns, a novel deep learning archi-
tecture, namely hierarchical spatio-temporal graph neural
network (HST-GNN), is proposed. Graph convolutions and
graph self-attentions with neighborhood context are pro-
posed to characterize both the local and the global graph
properties. Experimental results on benchmark datasets
demonstrated the effectiveness of the proposed method.

1. Introduction
Sign languages, which engage visual-manual modali-

ties to convey meanings, are the primary communication
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tools for the deaf and hard-of-hearing community. How-
ever, it is still an open research problem to reduce the gap of
the communications between sign language users and spo-
ken language users who have limited sign language knowl-
edge. Therefore, researchers have utilized various meth-
ods to convert sign language to spoken language for a better
communication between the users of different languages.

Early efforts fell into the category of sign language
recognition (SLR). At the beginning, SLR methods aimed
to recognize an isolated gloss from a sign language video
[11, 34], while the continuous nature of languages was ig-
nored. Therefore, continuous SLR was proposed to gener-
ate a sequence of pre-dened glosses (i.e., the written words
interpreting signing poses) [8, 23]. With the recent success
of deep learning techniques in many applications, SLR can
be regarded as a neural machine translation (NMT) tasks
following an encoder-decoder framework, where the source
is a video and the target is a corresponding spoken sentence.
Early NMT based studies for sign language understand-
ing conducted a SLR task (e.g., [8, 11, 22]). Researchers
adopted an encoder to extract latent representations from
sign language videos and a decoder to perform the process
of generating gloss scripts [4]. Similar to the development
of general NMT studies, attention mechanisms [1, 35] have
been introduced for SLR to focus on the most relevant video
frames when generating a specied gloss [43].

It is worth noting that sign languages convey meaning
frommultiple aspects: the manual articulations and the non-
manual elements such as postures and movements of dif-
ferent body parts contribute to the meaning as well as the
lexical distinction, grammatical structure, adjectival or ad-
verbial content, and discourse functions. It is anticipated
that such unique domain knowledge could be benecial for
advancing sign language understanding. As a result, a num-



ber of studies were proposed to explore such knowledge by
characterizing the local patterns individually of several key
regions of a signer’s body [4, 18, 20, 22, 26, 33]. Recently,
the interactions between these local regions have been ex-
plored by focusing only on the spatial relations between
the regions or the temporal relations across the same re-
gion [23, 24, 43, 15]. Nonetheless, these SLR methods are
not ideal for sign language understanding as the gloss-level
recognition is still different from spoken languages. There-
fore, it is attractive to devise sign language translation (SLT)
methods to reduce the communication barrier. SLT takes a
sign language sentence performed by a signer as input to
produce text scripts of the signing sentence in a spoken lan-
guage. As an early attempt, [7] formalized the SLT prob-
lem and released an SLT dataset PHONEIX-Weather-2014-
T. After that, more MNT based methods were investigated
for SLT tasks (e.g., [13, 39]).

However, existing methods on either SLR and SLT have
not fully explored the interactions between those local re-
gions at a ne-grained level to best utilize the unique aspects
of sign languages, which demands a better representation of
signing poses. Therefore, in this paper, to better represent
the spatio-temporal relations at a ner-grained level for SLT,
a novel graph-based sign language representation and a hi-
erarchical graph neural network architecture are proposed.
As illustrated in Figure 1, a sign language sentence can be
characterized with appearance, motion and pose represen-
tations. The proposed method exploits these representa-
tions from a ne-level to a high-level. A ne-level spatio-
temporal graph is based on the joints within a human body
region (e.g., the left-hand). A high-level spatio-temporal
graph is to formulate the relations between the human body
regions, which can be based on appearance, motion, or pose
features. To this end, a hierarchical spatio-temporal graph
neural network (HST-GNN) to learn the hierarchical graph
patterns with both high-level and ne-level graphs for SLT.
HST-GNN introduces a connection between graph convolu-
tions and graph self-attentions using the neighborhood con-
text, which helps to formulate graph patterns from multi-
ple perspectives. Comprehensive experiments on datasets
demonstrated the performance of our proposed method.

In summary, the key contributions of this study are as
follows:

• A novel deep architecture, namely hierarchical spatio-
temporal graph neural network (HST-GNN), is devised
for SLT.

• Multiple spatio-temporal graphs with hierarchical
structures are constructed to represent signing poses.

• Graph convolution and graph self-attention with con-
nections based on their neighborhood context are stud-
ied to learn graph representations from multiple per-
spectives.

2. Related Work
In this section, relevant studies are reviewed from two

aspects: existing SLR and SLT methods, and graph neural
networks which are relevant to our proposed method.

2.1. Sign Language Recognition & Translation

Vision-based sing language recognition and translation
aim to understand visual contents of sign languages to gen-
erate glosses and spoken language text scripts, respectively.

Sign language recognition is a task taking the visual con-
tent performed by sign language signers to produce the as-
sociated glosses. Early studies on SLR focused on recog-
nizing isolated signs or gestures to produce word-level or
phrase-level outputs, which followed a pattern recognition
pipeline: various hand-crafted visual features such as SIFT
and SURF were obtained from an input signing video and a
trained classier took these features to produce signing la-
bels [11, 34]. With the advances of deep learning, convolu-
tion neural networks (CNN) and recurrent neural networks
(RNN) were also adopted for isolated SLR [44]. However,
recognizing isolated signs provides limited understanding
of a complete sign language sentence. Therefore, contin-
uous SLR has been investigated at the sentence level by
treating continuous signings as a sequence of signing poses.
Recently, various deep architectures have been proposed to
perform continuous SLR task [12, 13]. To consider the do-
main knowledge of sign languages, ne-level regional pat-
terns were investigated for accurate SLR in an independent
manner [7, 9, 22, 28, 30, 39]. To explore the interactions be-
tween the local regions of a human body in a signing pose,
graph-based neural networks were proposed to formulate
the spatial relations between the regions or the temporal re-
lations within a region across frames [20, 23, 24, 25, 43].
However, the spatio-temporal relations have been seldom
explored with hierarchical structures, which could miss im-
portant sign language patterns.

Although there have been impressive SLR results, the
gap between glosses and spoken language sentences still
exist. To address this problem, sign language translation
has been studied to take the rich grammatical structures
in spoken languages into consideration. It aims to gen-
erate spoken language sentences rather than a sequence
of glosses [29]. For example, RNN [7] and Hierarchi-
cal LSTM [20] were adopted to extract visual information
and to generate spoken language sentences. Moreover, the
above-mentioned deep learning based SLR methods were
also explored for SLT [39, 40, 43]. However, domain
knowledge of sign languages such as the interactions be-
tween human body regions has not been adequately investi-
gated yet. Missing such ne-grained patterns could result in
less accurate sign language representations, and thus nega-
tively impacts the quality of the generated spoken language
scripts.



2.2. Graph Neural Network

While conventional neural networks have been utilized
to process vectorized data, there are numerous applica-
tions involving data in non-Euclidean forms such as graphs.
Graph neural network (GNN) was rst proposed to address
the learning tasks with graph inputs [16, 17, 32, 38]. Graph
convolution network (GCN) extended convolution lters for
graphs to help construct deep graph representations [2].
Graph attention network (GAT) was further proposed to
estimate adjacency weights [36]. Recently, various meth-
ods have been proposed to discover special graph proper-
ties, which have been ignored by conventional GCNs, such
as CPNGNN [31] which exploits the local ordering of the
nodes to increase the representation capacity of graph net-
works, and DimNet [19] which introduces directed message
passing to improve the capacity of graph representation. [3]
applied the GCN in the sign language segmentation.

3. Methodology
The proposed HST-GNN adopts an encoder-decoder

scheme as illustrated in Figure 1. The encoder represents
an input video of a sign language sentence to a latent space,
which includes graph construction, graph convolution and
graph self-attention mechanism. Two levels of graphs are
constructed including high-level graphs between the key
body regions (i.e., the left and right hands and the face) with
appearance and optical ow vertex features and ne-level
graphs of the key regions with appearance features (i.e., left-
hand graph, right-hand graph and facial graph). The graph
convolution and the graph self-attention with neighborhood
context are introduced to formulate the local and the global
graph properties, respectively. A hierarchical graph pool-
ing mechanism is adopted to fuse these graphs as the nal
encoded latent vector for an input sign language sentence.

The decoder generates text scripts in a spoken language
using the encoded representation, which adopts a two stage
recognition scheme with two LSTMs containing attention
mechanisms: the rst one translates the fused vector to
glosses (i.e., written words corresponding to individual
signing poses) and the second one translates the glosses to
text scripts in a spoken language. In this section, the details
of the proposed methods are introduced.

3.1. Hierarchical Spatio-temporal Graphs

As illustrated in Figure 1, two levels of graphs including
high-level graphs and ne-level graphs are constructed to
characterize the three key-regions of a signer’s body and
their interactions in hierarchical structures.

A high-level graph characterizes the spatio-temporal re-
lationships between the three key regions of a human body
in video frames. That is, a high-level graph can be con-
structed with three vertices which denote facial region, left-

hand region, and right-hand region, respectively. The three
key regions can be obtained by pose estimation algorithms
(e.g., HRNet [37]). To characterize each vertex, a bound-
ing box is used to extract an associated frame sub-patch and
the vertex-level feature can be computed using the image
patch with a pre-trained CNN. Note that the frame used to
extract the visual features can be in the modality of appear-
ance (RGB) or motion (e.g., optical ow[41]) in this paper.
As a result, two high-level graphs are constructed, one for
each modality.

In more detail, denote the vertex-level features for high-
level graphs (Level 1 graphs) derived from the t-th frame
of the input video as V̇m,1

t = v̇m,1
i,t ∈ Rd, where d

is the dimension of the feature vectors of modality m ∈
apparanc(a), opticalow(o) and i indicates the i-th
body region in the frame. To involve additional temporal
relationship from neighbouring frames, a slide window W
is dened and the set of the vertices of the t-th graph is de-
ned as follows:

Vm,1
t =

W⋃

w=−W

V̇m,1
t+w := vm,1

i,t ∈ Rdi = 1, ..., n1, (1)

which contains n1 vertices.
An adjacency matrixAm,1

t is dened to represent the re-
lationships between the vertices inVm,1

t . Instead of using a
pre-denedAm,1

t empirically, in this study,Am,1
t is learned

in an unsupervised way. The element am,1
ij,t ofAm,1

t in the i-
th row and j-th column denotes the interaction between the
vertices vm,1

i,t and vm,1
j,t . The following computation char-

acterizes the interaction am,1
ij,t by considering the relevant

vertex-level features:

am,1
ij,t = σ(vm,1

i,t

T
Mm,1vm,1

j,t ), (2)

where Mm,1 ∈ Rd×d is the matrix of a bilinear transform
containing trainable parameters and σ is an non-linear func-
tion to increase the capability to represent complex patterns.
Furthermore, to reduce the number of the parameters in
Mm,1 and the model complexity, a low-rank decomposition
ofMm,1 is introduced:

Mm,1 = Mm,1
1 Mm,1

2

T
, (3)

whereMm,1
1 ∈ Rd×p,Mm,1

2 ∈ Rd×p, and p << d.
In this paper, two additional constraints are applied to the

adjacency matrixAm,1
t . The rst one is for symmetry:

Ȧm,1
t = Am,1

t

T
Am,1

t . (4)

The second one is for the normalization, which alleviates
the scale difference between the vertices. In detail, Ȧ is
normalized by its matrix norm:

Äm,1
t =

Ȧm,p
t

Ȧm,1
t 

. (5)



Figure 1. Illustration of the proposed HST-GNN architecture for SLT.

For convenience, in the following discussion, Am,1
t , Ȧm,1

t

and Äm,1
t are not particularly distinguished. In summary,

for a particular modality m, a high-level graph sequence
can be obtained as Gm,1

t = Vm,1
t ,Am,1

t .
For the ne-level graphs, key points (e.g., the joints for

hands and the landmarks for face) are further identied to
construct individual graphs (Level 2 graphs) for each body
region (i.e., left hand, right hand, and face). Similar to the
high-level graphs, the regions near the joints can be used
to characterize these key points and their relationships. For
computational efciency, only appearance features are used
for the ne-level graphs and Gr,2

t = Vr,2
t ,Ar,2

t  can be
obtained, where r ∈ left hand, right hand, face indicates
the body regions under consideration.

The proposed encoder of HST-GNN encodes these
graphs to a latent graph space for SLR by considering the
local and the global graph properties. For convenience, the
superscripts are omitted in the following discussion of the
graph convolution and the graph self-attention.

3.2. Graph Convolution

Graph convolution neural networks generalize the con-
volution lters for graph inputs of arbitrary structures, of
which the input and the output are graphs. In detail, it can
be viewed as the message passing through the neighbors
of each vertices in a graph in line with its vertex-level fea-
tures and adjacency patterns. By stacking multiple graph
convolution layers, a deep graph neural network can be ob-
tained for graph-based deep representations. Formally, the
computations for the t-th graph of a video in the l-th graph
convolution layer can be formulated as:

Hl+1
t = f(Hl

t,At;W
l) = f(AtH

l
tW

l), (6)

where Hl
t ∈ Rpl

is the input of the layer, Hl+1
t ∈ Rpl+1

is
the output of the layer, Wl ∈ Rpl×pl+1

contains the learn-
able parameters as a linear transform, and f is a non-linear
vertex-wise activation function. Note that the multiplication

of At and Hl
t implements the message passing through the

vertices, which helps each vertex to obtain proper patterns
from its neighbouring body regions or key points for ag-
gregating and modeling the graph context. In this way, the
graph convolutions mainly focus on the local properties for
each vertex. In particular, H0

t = [vt
1,v

t
2, ...,v

t
n]

T and p0 is
the dimension of the vertex-level feature vectors. The out-
put graph from the last graph convolution layer is denoted
asG′

t = V′
t,A

′
t.

3.3. Graph Transformer

The transformer with the self-attention mechanism and
the positional encoding was proposed for sequentially or-
ganized data [35], which processes the sequential patterns
globally in a parallel manner. As graph convolutions mainly
formulate the local graph properties, inspired by the trans-
former, we propose a novel graph transformer to formulate
the global graph properties with a shortcut connection of the
graph convolutions by involving the neighboring patterns.

The self-attention mechanism can be regarded as a
querying process with queries, keys and values. For an in-
put graphG′

t = V′
t,A

′
t, the computations are as follows:

Qt = V′
tW

Query,Kt = V′
tW

Key,Lt = V′
tW

V alue,
(7)

whereWQuery ,WKey andWV alue are learnable parame-
ters of three linear projections. With these computations, for
a particular vertex vt

i
′ ∈ V′

t, the associated query q
t
i, which

is the i-th row of Qt, is used to query a context from other
vertices. More specically, the inner product of qt

i and kt
j

(the j-th row of Kt) is computed as a score sij to measure
the extent of collecting patterns from the values ltj (the j-th
row of Lt) of the vertex vt

j
′ to the vertex vt

i
′. Formally, the

score matrix computations can be written as:

St = QtKt
T . (8)

To eliminate the effects in terms of the variable graph nodes,



a normalization step is introduced:

Ṡt = softmax(
St√
n
), (9)

where n is the number of the vertices of an input graph. In
order to incorporate the guidance of the local graph proper-
ties, a shortcut for the neighborhood context is established
with the estimated adjacency matrix At that is used for
graph convolutions. The score matrix is computed as fol-
lows:

s̈ij =
aijexp( ˙sij)
k aikexp(ṡik)

. (10)

For the sake of convenience, St, Ṡt and S̈t are all repre-
sented by St in the following discussion. With the score
matrix, the vertex-level features with contextual informa-
tion can be computed as:

V̇′′
t = StLt. (11)

Therefore, with the above computations, the self-attention
mechanism helps each vertex to collect information glob-
ally compared with graph convolutions which focus only
on local neighborhoods.

In addition, to take different perspectives for the graph
modelling, multiple independent self-attention heads can be
computed as V′′

t,k, where k ∈ 1, ..., Khead and Khead

is the number of the independent heads. A fully connected
layer can be used to summarize these concatenated attention
heads as:

V̇′′
t = [V̇′′

t,1, V̇
′′
t,2, ..., V̇

′′
t,n]W

Multihead, (12)

where WMultihead is the parameter matrix of a linear pro-
jection.

Lastly, a vertex-level feed-forward network (FFN) is ap-
plied to V̇′′

t , which is constructed by fully connected lay-
ers. The computations in the transformer are computed in
a vertex-wise manner, so the outputs are still in graphs. In
addition, the graph transformer can also be stacked to con-
struct deep architectures: each of them takes the inputs from
the outputs of its previous layer. The output of the graph
transformer is denoted asG

′′
t = V′′

t ,A
′′
t .

3.4. Hierarchical Graph Pooling

With the above discussions, the graphs at the two lev-
els, Gm,1

t and Gr,2
t , have been encoded to a latent space

by using graph convolutions and graph transformers. Par-
ticularly, in the latent space, Ga,1′′

t , Go,1′′
t , Gleft−hand,2′′

t ,
Gright−hand,2′′

t and Gface,2′′
t can be obtained as encoded

graph representations for high-level appearance, high-level
motion, ne-level left hand, ne-level right hand and ne-
level face, respectively. To use these graphs for decoding,
a hierarchical pooling strategy is introduced as illustrated

in Figure 1. First, average pooling is applied to each ne-
level graph individually and a pooled feature vector can be
obtained. These feature vectors are further used to con-
struct another high-level graph denoted as Gh,1′′

t . Next,
the high-level graphs are pooled individually and the vec-
tors obtained can be concatenated as a fused latent vec-
tor pt to represent the t-th video frame and a sequence
p = p0, ...,pT  is used to represent the entire video se-
quence.

3.5. Language Decoder

Following a two-stage scheme, the language decoder
aims to generate a translation in a spoken language by using
the fused latent vector. Based on the latent vector sequences
p, the rst stage - feats2gloss - outputs an estimated gloss
ĝi for each video frame (i.e., latent vector) and a sequence
can be obtained as ĝ = ĝ0, ..., ĝT . The sequence ĝ can
be viewed as an alignment path to video frames of an es-
timated gloss sequence ĝ∗ = ĝ∗

0, ..., ĝ
∗
L∗

g
 of the ground

truth g∗ = g∗
0, ...,g

∗
Lg∗

, where Lg∗ is the length of the
gloss sequence. The second stage - gloss2text - outputs
the sentence ŵ = ŵ0, ..., ŵLw

 as an estimation of the
ground truthw = w0, ...,wLw

 in spoken language using
the estimated gloss sequence ĝ∗, where Lw is the sentence
length.

The feats2gloss stage involves an LSTM network for se-
quential to sequential recognition. Formally, this stage for-
mulates the following conditional probability:

p(gtĝ0, ..., ĝt−1,p0, ...,pt−1), (13)

which is the probability that the t-th generated gloss is gt

by considering the previously generated glosses ĝ0, ..., ĝt−1

and the encoded vectors p0, ...,pt−1. In particular, denote
the output of this LSTM network as Yg = (ygij), in which
the element ygij indicates the probability that the i-th gloss
in the output sequence is associated with the j-th encoded
latent vector.

The gloss2text stage is based on another LSTM network
with a general attention mechanism. It adopts the generated
gloss sequence to formulate the following probability:

p(wlŵ0, ..., ŵl−1, ĝ
∗
0, ..., ĝL∗

g
), (14)

where the estimation ŵl of the l-th word wl is obtained
according to the previously estimated words ŵ0, ..., ŵl−1

and the gloss sequence ĝ∗ estimated by decoding stage 1.
The generation starts from wstart, which is a start signal,
and ends with a stopping signal wend.

3.6. Optimization Loss

The translation error is measured by considering the er-
ror of the generated glosses and the generated words, as-
sociated with the two decoding stages - feats2gloss and
gloss2text, respectively.



Following a conventional practice in SLR, a connection-
ist temporal classication (CTC) loss [10] is adopted for the
glosses, which helps to obtain the unknown alignment be-
tween the encoded vector sequence and the gloss sequence.
In detail, given the encoded vector sequence p and the gloss
annotation g∗ of the corresponding video, the CTC loss is
dened as:

Lctc = − lo pctc(g
∗p), (15)

where pctc is a probability to generate the given gloss se-
quence with the condition of the given encoded vector se-
quence.

There are many different potential paths to align the
encoded vectors with the given gloss sequence. Denote
M−1(g∗) as the set of all these paths. For a particular path
z = z0, ..., zT  ∈ M−1(g∗), the probability to obtain this
path is in line with the probability computed inYg:

p(zp) =
∏

t

ygztt. (16)

Hence, the probability for all potential paths, which is ex-
actly the probability pctc, can be computed as:

pctc(gp) =
∑

z∈M−1(P)

p(zp). (17)

For the generated words in a spoken language, the align-
ment between the words and the glosses is often not re-
quired due to the lack of proper orders. Therefore, a general
cross-entropy loss is used to measure the error of each word
in a sequence. In detail, the loss can be written as:

Lce = − lo
∏

l

p(wlŵ0, ..., ŵl−1, ĝ0, ..., ĝT ). (18)

Note that the softmax function to compute the probability is
embedded in the computations of the output of the LSTM
in the stage 2 decoder.

Therefore, the total loss is a linear combination of the
two loss functions Lctc and Lce with an additional regular-
ization term for the parameters Θ of the proposed architec-
ture,

L = λctcLctc + λceLce + λrΘ, (19)

where λctc, λce and λr are the weights associated with the
three losses and can be tuned as hyper-parameters during
the optimization.

4. Experimental Results
4.1. Datasets & Evaluation Metrics

The proposed method was evaluated on two widely used
benchmark sources: PHOENIX-2014, PHOENIX-2014-
T [4] and Chinese Sign Language Recognition (CSL) [18,
30, 42]. PHOENIX-2014 contains videos from PHOENIX

TV station, which includes the weather forecast content
featured with signers over a period of three years. The
videos were collected with a resolution of 210 by 260 at
25 frames per second (fps) using a stationary color cam-
era. The dataset was annotated with sign language glosses
and texts in German spoken language. The vocabulary size
is 1,115 for sign glosses and 3,000 for German. The CSL
dataset contains two subsets: Split I and Split II. In this
study, Split II was adopted, which contains 100 sign lan-
guage sentences related to the daily life with a vocabulary
size of 178. Each sentence in the split was performed by
50 signers each of whom repeated the signing for 5 times.
These sentences were recorded in RGB videos with a spatial
resolution 1280 by 720 at 30 fps. Among the 100 sentences,
94 sentences were in the training set and 6 sentences were
in the test set.

In terms of the evaluation metrics to evaluate the per-
formance, two metrics are adopted: word error rate (WER)
and bilingual evaluation understudy (BLEU) score, which
are widely used for natural language processing (NLP) [27].
WER measures the recognition performance at the gloss
level, whilst BLEU scores measure the performance of the
translation. BLEU was rst proposed to measure the perfor-
mance of machine translation by comparing the recall and
the precision of n-grams.

4.2. Implementation Details

To construct input graphs, human skeletons were ex-
tracted by two algorithms, HRNet [37] and OpenPose [6].
In detail, the coordinates can be extracted for the key points
and the key body regions that are used in this study. For
high-level graphs, key body regions of the face, the left hand
and the right hand were extracted using a window of size 24
by 24 of which the center was located on the correspond-
ing detected key point. Appearance and motion features for
these regions were further computed to represent the ver-
tices by using ResNet-152 [14] and TVL1-ow [41], re-
spectively. The dimension of these feature vectors is 1,024.
For ne-level graphs, 29 landmarks and 21 joints were ob-
tained for face and hands, respectively. The coordinates de-
tected by the skeleton detection algorithms were adopted as
vertex-level features directly.

Our proposed method was implemented with PyTorch.
An Adam optimizer with an initial leaning rate 0.001, and
30 epochs were used to train the model. At the validation
stage, hyper-parameters λctc and λce were set to 0.5 and
0.5, respectively; the temporal window size to construct the
spatio-temporal graphs was set to 3 and further discussions
are provided in Section 4.5.

4.3. Overall Performance

To demonstrate the effectiveness of the proposed
method, a number of recently proposed methods were com-



Figure 2. Effect of the windows size on recognition performance
(lower is better). WER scores on PHONIX (left y-axis) WER
scores on CSL (right y-axis) vs. window size (x-axis).

Table 1. Recognition Performance on PHOENIX-2014. Metric:
WER: Lower is better.

Dataset Phoenix CSL
Subset Test Dev -
IAN [30] 36.7 37.1 32.7
DenseTCN [12] 36.5 35.9 44.7
CNN-LSTM-HMM [21] 26.0 26.0 -
DNF [9] 24.4 23.8 -
STMC [43] 20.7 21.1 28.6
HLSTM [13] - - 48.7
Ours 19.8 19.5 27.6

pared as shown in Table 2: iterative alignment network
(IAN) [30], which adopts an iterative alignment network to
reduce the gap between videos and generated glosses, en-
abling a better correspondence between glosses and frames;
DenseTCN [12], which introduced temporal convolutions
to efciently explore temporal patterns; CNN-LSTM-HMM
[21], which combined LSTM and HMM in language model-
ing for the construction of gloss sequences and an interme-
diate synchronization constraints, respectively. Deep neu-
ral frame (DNF) [9], which incorporates RGB and motion
features of body regions to explore ne-level sign language
patterns; Spatial-temporal multi-cue network (STMC) [43],
which involved a dense network to characterize the spatial
and the temporal dependencies to improve the recognition
quality; Hierarchical LSTM (HLSTM) [13], which was pro-
posed to extract multiple levels of attention with adaptive
online key clip mining; Neural sign language translation
(NSLT) [7], which was the rst study using CNN-LSTM
sign language translation in an end-to-end manner; Neural
language translation with transformer (SLTT) [39], which
utilized transformers for sign language translation based on
STMC [43].

It can be observed that the methods with ne-level re-
gional body patterns (e.g., DNF and STMC) achieved bet-

ter performance compared to IAN. The introduction of the
relationships between these body regions further improved
the performance as STMC was better than DNF. The ex-
plicit inclusion of the temporal clues could also help to
improve the SLR performance, for example, CNN-LSTM-
HMM was superior to IAN. Moreover, the adoption of the
transformer helped to increase the recognition performance,
such as NSLT vs SLTT, which suggested that proper trans-
former designs could be benecial for the sign language
modelling. In terms of WER, our method achieved 19.8 on
the Phoenix-2014-T dev set, 19.5 on Phoenix-2014-T test
set and 27.6 on the CSL dataset; for BLEU-1 score, our
method achieved 45.2 on the Phoenix-2014-T dev set, 46.1
on Phoenix-2014-T test set and 49.1 on the CSL dataset.
This indicates that our method achieved the state-of-the-art
performance on the two benchmark datasets for sign lan-
guage recognition and translation.

4.4. Effect of Temporal Window Size

It is anticipated that the temporal window size impacts
the performance of our proposed HST-GNN as a larger tem-
poral window implies that longer time dependencies can be
captured. Nonetheless, a long temporal perception could
increase the model complexity and introduce unnecessary
historical information. Therefore, the trade-off to select a
proper window size was investigated. The results are shown
in Figure 2 in terms of the WER and BLEU scores on the
two benchmarks. It can be observed that the recognition
performance increased when the window size was changed
from 1 (i.e., only the current state without any historical
patterns) to 3. However, if the window size further in-
creased, the performance was negatively impacted for the
two datasets. Hence, a window size of 3 was used as a
proper choice in line with the experimental results.

4.5. Ablation Study

To further explore how the proposed mechanisms work
for SLR under different congurations, ablation studies
were conducted for the spatial, temporal and hierarchi-
cal modules in HST-GNN. A baseline model denoted as
Model I was introduced without involving any graph pat-
terns. Next, a number of architectures involving parts of
these mechanisms were investigated on top of the baseline
model: Model II involves temporal graphs; Model III in-
volves spatial graphs; Model IV involves both spatial and
temporal graphs; and Model V considers spatial, temporal,
and hierarchical graphs all, which is the full version of the
proposed HST-GNN. The results are shown in Table 3 and
Table 4. It can be observed that using the spatial or the
temporal graph patterns individually improved the perfor-
mance compared to the baseline model in terms of WER
and BLEU scores on both benchmark datasets. Introduc-
ing both the spatial and temporal graph patterns clearly en-



Table 2. Translation Performance on PHOENIX-2014-T (Phoenix) and CSL. BLEU: Higher is better.
Metric BLEU-1 BLEU-2 BLEU-3 BLEU-4
Dataset Phoenix CSL Phoenix CSL Phoenix CSL Phoenix CSL
Subset Test Dev - Test Dev - Test Dev - Test Dev -
NSLT [7] 43.3 42.9 - 30.4 30.3 - 22.8 22.02 - 18.1 18.4 -
SLTT[39] 44.95 48.27 - 36.53 35.20 - 29.30 27.47 - 24.00 22.47 -
JSL[5] 46.61 47.26 - 33.73 34.40 - 26.19 27.05 - 21.32 22.38 -
Ours 45.2 46.1 49.1 34.7 33.4 33.1 27.1 27.5 22.7 22.3 22.6 17.8

Table 3. Ablation studies on PHOENIX-2014-T (Phoenix) and CSL. WER: Lower is better, BLEU: Higher is better. ✓ (or ✗) indicates
the inclusion (or exclusion) of a specic mechanism (S: spatial graph, T: temporal graph, H: hierarchical graph).

Model
Method WER BLEU-1 BLEU-2 BLEU-3 BLEU-4
Dataset Phoenix CSL Phoenix CSL Phoenix CSL Phoenix CSL Phoenix CSL

S T H Test Dev - Test Dev - Test Dev - Test Dev - Test Dev -
I ✗ ✗ ✗ 35.8 35.4 32.1 43.2 43.3 48.1 30.2 30.1 28.1 22.1 21.9 16.6 18.0 18.2 14.3
II ✗ ✓ ✗ 23.4 23.2 30.8 43.4 43.4 48.4 30.9 30.7 29.1 23.2 23.1 17.1 18.5 18.8 14.6
III ✓ ✗ ✗ 22.4 22.5 29.3 43.6 43.5 48.8 31.7 31.2 31.3 24.7 25.2 19.9 19.2 19.7 15.9
IV ✓ ✓ ✗ 20.7 20.3 28.6 43.7 43.8 49.1 32.1 32.5 32.1 25.9 26.1 21.1 20.8 21.3 17.4
V ✓ ✓ ✓ 19.8 19.5 27.6 45.2 46.1 49.1 34.7 33.4 33.1 27.1 27.5 22.7 22.3 22.6 17.8

Table 4. Ablation Study on PHOENIX-2014T: Different Features.
Dev

HST-GNN WER B1 B2 B3 B4
w/o appearance 23.8 44.1 31.3 26.2 20.7
w/o motion 20.1 42.3 32.2 24.9 19.1
w/o pose 22.3 43.7 32.8 25.1 20.3

Test
HST-GNN WER B1 B2 B3 B4
w/o appearance 23.7 44.8 31.8 26.7 20.1
w/o motion 20.3 42.1 32.9 24.5 17.9
w/o pose 21.9 40.1 33.1 23.9 19.3

hanced the performance further. Lastly, hierarchical mod-
elling also showed its effectiveness for SLR.

4.6. Qualitative Analysis

To understand the proposed methods, two examples,
which were featured by two different signers, were illus-
trated in Figure 3. Video frames, the frame-level gloss
predictions of the ve models and the ground truth of the
gloss sequence are presented. From the rst example, it
can be observed that the Baseline method (Model I) missed
the glosses DONNERSTAG andWEITER. With the tempo-
ral graphs (Model II), the gloss WEITER can be detected,
whilst the gloss DONNERSTAG was still missed and a
new insertion error occurred. Similarly, for the case only
with the spatial graphs (Model III), three glosses were de-
tected and one was missed with an insertion error. By in-
troducing the spatial and the temporal mechanisms simul-
taneously (Model IV), all glosses were detected correctly
without insertion errors. The hierarchical mechanism fur-
ther improved the gloss predictions, by which the number

of frames with glosses were increased signicantly. The
present of both graph can successfully detect the all of the
glosses.

Figure 3. Sample results of our proposed HST-GNN model under
different congurations. CTC objectives are illustrated to indi-
cate the associations of the gloss (with English translation) and
the video frames. INSERTION means a wrong gloss prediction
outside the ground truth gloss annotation.

5. Conclusion

In this paper, a novel neural network, namely HST-GNN,
is presented for sign language understanding. Hierarchical
graphs are introduced to characterize visual signing con-
tent, which include high-level graphs and ne-level graphs
associated with key body regions. HST-GNN follows an
encoder-decoder framework: the encoder adopts graph con-
volutions and graph transformers with an adjacency ma-
trix based connection to explore both the global and local
graph properties; the decoder reconstructs the glosses and
the spoken language script in line with the latent embed-
ding. Experiments on two widely used dataset including
PHOENIX-2014-T and CSL were conducted and the results
clearly demonstrated the effectiveness of the proposed HST-
GNN. In our future work, we will investigate additional
graph properties to improve the performance of SLT.
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