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Perceived Earthquake Risk in Housing Purchases 

 

Abstract 

This paper investigates the impact of an earthquake on households' perception of the seismic 

risks associated with residential locations—and, consequently, the impact of this change in 

perceptions on real estate prices—by performing revealed preference analysis on a unique data 

set of house prices and damage claims after the 2010/11 Canterbury earthquake in New Zealand. 

We show that both informational and heuristic obstacles could have caused households to 

underestimate location earthquake risk before the quake and overreact to it after the quake. Our 

findings highlight the importance of quake-related information for seismic risk management 

and are robust to households’ risk preferences in neighborhood propensity score matching. 
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Perceived Earthquake Risk in Housing Purchases 

 

1. Introduction 

Households' perception of residential property location risk is important for urban 

economics and environmental risk management (Kunreuther & Slovic, 1978). Limitations that 

prevent fully rational risk perception arise due to bounded rationality (Slovic, Fischhoff & 

Lichtenstein, 1978; Combs & Slovic, 1979; Guttentag & Herring, 1984, 1986; Ganderton et al., 

2000; Kahneman, 2003) or, specifically, individuals' cognitive limitations in (i) acquiring 

information on the probability of a negative event and (ii) processing that information correctly 

(Kunreuther & Slovic, 1978; Tversky & Kahneman, 1974, 1982; Simon, 1978; Howarth, 

1988). 1  These heuristic and informational limitations are magnified for rare risks like 

earthquake damage, which means that individuals often ignore or incorrectly assess seismic 

risk in reality. It is widely accepted, for example, that individuals tend to underinsure against 

low-probability, high-loss events relative to high-probability, low-loss events (Slovic et al., 

1977; Kunreuther & Slovic, 1978; Camerer & Kunreuther, 1989; McClelland, Schulze & Hurd, 

1990; Yin, Chen, Kunreuther & Michel-Kerjan, 2016).  

A major issue in seismic risk research is that risk perceptions are difficult to ascertain 

because they have been deemed subjective. Prior research has mainly measured risk perception 

using survey techniques (e.g., Katona 1975; Bernknopf, Brookshire & Thayer, 1990). However, 

numerous limitations have been identified with survey evidence on risk perceptions of quakes. 

For example, random sampling error and sample selection bias are generally found (Lindell & 

                                               
1 Two accepted heuristics in behavioural economics are (i) ‘optimism or threshold bias’, whereby people tend to 

ignore risks that are severe but rare, and (ii) ‘availability bias’, whereby people tend to worry excessively about 

events that are recent or have been covered by the media, even if they are highly unlikely (Combs and Slovic, 

1979). 
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Perry, 2000). More importantly, households' willingness to pay to reduce the seismic risk 

associated with residence locations is hard to acquire through survey or laboratory experiments, 

since real estate investment is a crucial decision that involves too many factors to be captured 

by a survey or simulated in a lab environment. Therefore, there is only scant evidence on how 

individuals perceive rare environmental risks such as earthquakes in their housing purchases 

and how these characteristics affect their decisions on neighborhood sorting, while factoring in 

potential seismic risks.  

This study offers the first micro-level analysis using ex post quake insurance claims as the 

direct measure of potential loss due to an earthquake at the finest possible neighborhood level. 

We assume that seismic damage for a specific location is unchanged before and after the 

earthquake; this potential loss is an objective cost with certainty. This is in contrast to 

perception of the probability of this loss, or ‘subjective or perceived risk’. It is this risk that is 

factored into investment choices. By analyzing the impact of this potential loss on individual 

house prices before and after the earthquake, we provide rare evidence of the changes in 

households’ perception of seismic risks and how such changes are factored into real estate 

prices in seismic risk reduction. We also examine the moderating effect of demographic 

characteristics on households’ response, in terms of risk perception, to information shocks.  

Our empirical findings suggest that seismic risks were not factored into house prices before 

the quake. We also find that the earthquake rendered households better informed and aware of 

the seismic risks in their neighborhood—and, consequently, changed their risk perception in 

the post-quake period. Such changes were revealed by the different magnitudes of house price 

drop in neighborhoods with different potential loss after the earthquake. More importantly, we 

found that households were homogeneous in their response to earthquake risk, except for the 

ethnicity or race factor in the pre-quake period, which suggests that lack of prior quake-related 
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information might have caused Christchurch residents to be unable to distinguish or estimate a 

location’s seismic risk. 

The practical application of this research is in seismic risk management. Unlike flood or 

bush fire risk, information on location earthquake risk is vague and broad due to the highly 

unpredictable nature of an earthquake. Current practice in earthquake risk reduction is to 

identify hazards and build safer structures. Our research shows that insurance policies and 

premiums can be used as a proxy to improve public awareness of location seismic risk; 

specifically, due to individuals' cognitive limitations in assessing rare events such as 

earthquakes. A successful natural disaster insurance program should provide meaningful 

guidance on location seismic risk and mitigate hazards by spreading the potential loss across 

the society.    

The remainder of the paper is organized as follows. Section 2 introduces the institutional 

background of seismic insurance policy in New Zealand, Section 3 outlines the methodology 

developed in the paper, and Section 4 describes the data. Section 5 presents and interprets our 

empirical findings and Section 6 concludes. 

 

2. Background 

2.1.   The 2010/2011 Canterbury earthquake 

Christchurch is a city of about 370,000 residents in the Canterbury province, which has 

550,000 residents. Canterbury was initially struck by a magnitude 7.1 earthquake on 4 

September 2010, which was centered about 44 km west of the Christchurch CBD. Remarkably, 

there were relatively few casualties and no deaths as a direct result of the earthquake. The 
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damage to property was widespread, however, and also produced liquefaction in some city 

areas.  

The quake was followed by a 6.3 aftershock on 22 February 2011. Although the energy 

from the aftershock was less than the 4 September magnitude of 7.1, the February event 

occurred much closer to the city (about 6 km southeast of the Christchurch CBD) and was at a 

shallow depth. As a result, it measured 9.0 on the Modified Mercalli Intensity scale, making it 

one of the largest ever recorded in an urban area2. This caused catastrophic destruction in 

Christchurch and resulted in 185 deaths and damage to almost 100,000 buildings. The 

earthquakes combined caused widespread liquefaction3, cliff collapses, and land subsidence in 

riverside areas. In June 2011, the New Zealand government decided to condemn houses in 

several severely impacted (residential red zoned) areas that were uneconomical to rebuild. This 

led to voluntary buyouts of about 7,857 badly damaged residential properties at the official 

2007 valuation for demolition. A notable feature of the Canterbury earthquake was the 

unusually extended sequence of more than 10,000 aftershocks that occurred during the 2 years 

following the February 2011 event, with extensive repeated damage to residences and 

infrastructure. To date (mid-2021), the combined 2010/2011 events have cost insurers more 

than 31 billion New Zealand dollars, and total economic losses are estimated to be more than 

40 billion New Zealand dollars (Insurance Council of New Zealand, 2021).  

2.2.  Public natural disaster insurance schemes in New Zealand 

At the time of the quake, the Earthquake Commission (EQC), a government agency that 

invests in natural disaster research and insurance, provided a uniform public risk insurance 

                                               
2 The 2010 quake was measured at about 6.5 on the MMI scale. 
3 Liquefaction is the process whereby, during the earthquake process itself, sand and silt grains in wet soil are 

rearranged and the soil behaves more like a liquid than a solid. Pressurised water is forced up to the ground 

surface and the remaining land sinks and distorts.  
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program that was invariant with property specific seismic risks, up to NZ$100,000 plus Goods 

and Services Tax (GST), to all privately insured residential homeowners. Uniquely, both 

building and land damage were covered, as well as some external elements, such as driveways 

and retaining walls. Amounts above this level were covered by private insurers, and these were 

generally full-replacement policies4.  

EQC coverage is automatically included in private property insurance when homeowners 

take out general building insurance. These arrangements mean that an unusually high level 

(95%) of natural disaster insurance coverage existed in Christchurch prior to the earthquake 

(Nguyen & Noy, 2020b), in contrast to between 10% and 13% in California. In the event of 

post-quake property damage claims, initial insurance damage assessments were first carried 

out by EQC; additional private insurer assessments were done only for damage estimated to be 

more than NZ$100,000. As a result, there is less concern about selection bias within the EQC 

data set in terms of who is and who is not insured or making claims—or in terms of groups 

with differing willingness to pay for quake insurance—which generates differing price bids.  

EQC premiums are generally at a set rate regardless of property value, while private 

insurance is based on house value. At the time of the quake, private insurers based premiums 

on natural disaster risk in three broad regions, with Canterbury in the low-risk zone. However, 

the difference in premiums between risk regions did not reflect actual risk, with cross-

subsidization occurring from low-risk to high-risk regions. This noncorrelation between risk 

and premiums is common in public natural disaster insurance schemes, but less common for 

private insurers. Although New Zealand has world-leading earthquake research capability, 

                                               
4 Now insurers place a cap on the maximum loss that can be claimed as a result of an earthquake. 
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private insurers were reluctant to translate this into explicit locality-premium differentiation 

until 2018. 

We used the spatial distribution of quake damage-to-value ratios, calculated using EQC 

claims data against a property’s pre-quake value, which is depicted in Figure 1. This ratio is 

widely used by building structural engineers to assess post-quake building damage. The figure 

shows that damage from the 2010/2011 Canterbury earthquake was mainly in the CBD area 

and on the eastern side of city. 

<Insert Figure 1 about here> 

2.3.  Earthquake risk in Christchurch 

Although New Zealand is known for its frequent earthquakes, prior to the quake 

Christchurch itself was officially regarded as a low-risk area because no major fault lines were 

known to run near the city. People’s perception of the risk of a major earthquake was therefore 

low.  

In contrast, the potential for liquefaction was known, and soil maps were available at some 

aggregated levels before the earthquake (Brown & Weeber, 1992; Center for Advanced 

Engineering, 1997; Christensen, 2002, 2004; Clough, 2005; Elder, McCahon & Yetton, 1991). 

However, this quake-related information was limited in terms of the areas covered and lack of 

specific details (Brackley, 2012). The 2010/2011 Canterbury earthquake sequence thus served 

as an information shock, and people updated their perceived earthquake risk accordingly when 

losses were better revealed.   

 

3. Methodology 
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3.1.  Estimation of loss 

We first estimate the direct property loss caused by the earthquake for neighborhoods, 

which was proxied by meshblocks (MB)5. The cost of quake damage for individual residential 

properties was estimated by a logarithmic functional form against a set of property attributes. 

The damage analysis model is  

ln(𝐶𝑗𝑚) =  𝛼1 + 𝛼2𝑆𝑗𝑚 + 𝛼3𝑙𝑛(𝐿𝑎𝑛𝑑𝑗𝑚) + 𝜏𝑗𝑚 + 𝐷𝑚 + 𝜇𝑗𝑚      (1) 

where 𝐶𝑗𝑚 is the direct cost of building and land damage estimated by the insurance payment 

for property j in MB m. 𝑆𝑗𝑚 is a vector of building structure variables that include log floor area, 

number of stories, building age, garaging, and building materials6. 𝐿𝑎𝑛𝑑𝑗𝑚 is the property’s 

assessed land value prior to the earthquake, obtained from the government valuation.7 𝜏𝑗𝑚 is the 

building vintage effect. 𝐷𝑚 is the MB fixed effect, which measures the earthquake loss with 

certainty since it is identified with post-quake claims data. 𝜇𝑗𝑚 is the error term, which could 

be correlated within each MB and is heteroskedastic across MBs.8 See Panel A of Table 1 for 

summary statistics of the main variables used in equation (1). 

𝑙𝑛(𝐿𝑎𝑛𝑑𝑗𝑚) is included as an independent variable in the above equation to account for land 

attributes and surrounding amenities on claims. Land attributes could include the site size, view, 

contour, shape, soil type, retaining walls, path/driveway, and street location. Surrounding 

                                               
5 Meshblocks are the smallest regional statistical units used in the census by Statistics New Zealand.  
6 Building materials are further classified into brick, concrete, roughcast, stone, and weatherboard for walls and 

concrete, iron, tile, wood, and mixed material for roofs. 
7 Under New Zealand legislation, local councils are required to value all properties for rating purposes no more 

than every 3 years. In Christchurch the latest available rating valuations before the quake were carried out in 

2007/08. Although rating valuations were subject to scrutiny by homeowners, assessment results were 

uniformly assessed and had to meet the statistical compliance requirements in effect at the time of valuation, 

which is set by the Valuer-General in line with standards of the International Association of Assessing Officers 

(IAAO). See Shi, Young, and Hargreaves (2009) for more discussion of New Zealand’s rating system and the 

quality of overall general assessments.  
8 Heteroskedasticity across MBs and correlation within a MB error terms have been taken into account while 

calculating the standard errors of the estimators. 
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amenities may include schools, parks, hospitals, valleys, lakes, rivers, hills/mountains, and 

road/bridge infrastructure. The assumption is that both land attributes and neighborhood 

amenities are capitalized into a property’s land value. By including land value in the damage 

claims regression, we control for potential repair/rebuild costs due to damage to amenities and 

land attributes.  

MB fixed effect 𝐷𝑚  captures the average cost of damage to property in neighborhood m 

caused by the earthquake. A typical MB in our sample has a population of 120 and an area of 

around 180 meters by 420 meters. The advantage of using MB fixed effects for location-

specific loss is that this substantially reduces measurement errors in estimating earthquake 

damages. This is because earthquake impacts, such as liquefaction effects, can be highly 

differentiated even within the same street. Thus, loss measures based on small disaggregated 

geographic units such as MBs will be more efficient for capturing variation in damages than 

measures based on large geographically based hazard zones (Naoi, Seko & Sumita, 2009). In 

turn, this will facilitate identification of the impact of perceived risk on house prices. Regarding 

the use of 𝐷𝑚  as a proxy of a neighborhood’s objective earthquake risk (certain loss), we make 

the following assumption:  

Assumption 1: Potential loss (𝐷𝑚) is unchanged before and after the earthquake. 

This assumption is valid, in that potential loss is mainly determined by an MB’s geographic 

features rather than by factors that could be changed by the earthquake, such as amenities, 

which we control for by using land value.   

3.2.  Estimation of risk perception 
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Following the literature (e.g., Beron, Murdoch, Thayer & Vijverberg, 1997), the perceived 

risk (of certain loss) is defined as the perceived probability of certain earthquake loss. 

Mathematically, perceived risk is defined as follows:  

𝑃𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑 𝑟𝑖𝑠𝑘𝑖 = 𝑃𝑟𝑖 (𝑒𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒) × 𝑃𝑟𝑖 (𝑑𝑎𝑚𝑎𝑔𝑒|𝑒𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒)    (2) 

where, 𝑃𝑟𝑖(𝑒𝑣𝑒𝑛𝑡) denotes the perceived probability of an event for household i. For the same 

event, due to differences in cognitive ability and information availability, households may 

perceive its probability quite differently. 

We will use a revealed preference method to estimate households' perceived risks attached 

to their location choices. As demonstrated by MacDonald, Murdoch and White (1987) and Bin 

and Landry (2013), the marginal implicit hedonic price for a change in a risk factor will reflect 

the consumer’s assessment of the probability of loss and marginal insurance cost. Thus we can 

estimate risk perception by examining the effect of certain loss (measured by MB fixed effect 

𝐷𝑚  in Section 3.1) on house prices. Specifically, we run an Ordinary Least Squares (OLS) 

regression as follows,  

ln(𝑆𝑃𝑗𝑚𝑡) =  𝛽1 + 𝛽2(𝐷̂𝑚) + 𝛽3(𝐸𝑄𝑡) + 𝛽4(𝐷̂𝑚 × 𝐸𝑄𝑡) + 𝛽5𝑙𝑛(𝐿𝑎𝑛𝑑𝑗𝑚𝑡) + 𝛽6 (𝐷̂𝑚 × ln(𝐿𝑎𝑛𝑑𝑗𝑚𝑡)) +

 𝛽7 (𝐷̂𝑚 × 𝐸𝑄𝑡 × ln(𝐿𝑎𝑛𝑑𝑗𝑚𝑡)) + 𝑆𝑗𝑚𝑡𝛾 + 𝛽8(ln (𝐷𝑖𝑠𝑚)) + 𝜏𝑗𝑡 + 𝜃𝑗𝑡 + 𝐴𝑟𝑒𝑎𝑗𝑡 + 𝜇𝑗𝑚𝑡   (3) 

where 𝑆𝑃𝑗𝑚𝑡 is the jth property’s sale price in MB m at time t; 𝐷̂𝑚 is the estimated certain loss 

to MB m obtained from the location insurance claims in equation (1); and 𝐸𝑄𝑡  is an earthquake 

event dummy that equals 1 for sales that occurred after 22 February 2011 and 0 

otherwise.  𝐿𝑎𝑛𝑑𝑗𝑚𝑡  is the property’s pre-quake land value obtained from the government 

valuation; 𝑆𝑗𝑚𝑡 is a vector of building structural attributes, including log of floor area, number 

of bedrooms, multi-storey building, log building age, and building materials ;  𝐷𝑖𝑠𝑚  is the 

geographic distance in kilometers of the MB m to the city’s CBD;  𝜏𝑗𝑡 is the building vintage 
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effect; 𝜃𝑗𝑡 is a calendar quarter dummy to account for time effects; 𝐴𝑟𝑒𝑎𝑗𝑡 is the area-unit (a 

statistical unit defined by Statistics New Zealand that is equivalent to a suburb in urban areas) 

fixed effect to account for additional location effects;  and 𝜇𝑗𝑡 is the error term.9 See Panel B of 

Table 1 for summary statistics of the main variables used in equation (3). 

The variable (𝐷̂𝑚) estimates the property’s earthquake risk at MB level. The coefficient (𝛽2) 

indicates how households capitalize the location’s earthquake risk into the property sale price. 

This coefficient measures two items: risk perception and risk preference. Households with the 

same risk preference may perceive different probabilities that certain loss will occur, and so 

house transaction prices will differ. Similarly, differences in risk preference will also result in 

different prices even if the perceived risks are the same. With the current model specification, 

we cannot identify perception from preference. The following assumption is necessary for the 

identification of changes in risk perception.  

Assumption 2: Households are consistent in their risk preference before and after the 

earthquake. 

The variable (𝐿𝑎𝑛𝑑𝑗𝑚𝑡) represents the land component of the property’s sale price. The 

inclusion of land value is important, given any likely omission of a common factor related to 

amenities in our model specification (Bin, Kruse & Landry, 2008; Bin & Landry, 2013; Singh, 

2019). More importantly, the land value can also capture idiosyncratic location values of 

specific properties. Value from land attributes (such as size, shape, contour, views, soils, etc.) 

varies across properties, while value from surrounding amenities is invariant across properties 

                                               
9
 Property type is excluded in the above equation, since our samples are restricted to single-family homes. 

Because people do not rely on a normalised home price per square meter in property transactions, in the above 

equation we use the log of total property sales, controlling for the log of property floor area and number of 

bedrooms.  
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in the same MB. For MBs with higher potential losses, land attributes become more important 

because they may significantly reduce the impact of potential losses to the specific property.  

The interaction term (𝐷̂𝑚 × 𝐸𝑄𝑡) measures changes in risk perception in response to the 

earthquake. Such changes could occur because households update their perceived probability 

of earthquake and consequent quake damages as a result of the change in quake information 

and physical conditions attributed to the earthquake (Bin & Landry, 2013).  

The interaction term (𝐷̂𝑚 × ln(𝐿𝑎𝑛𝑑𝑗𝑚𝑡)) measures the moderation effects of earthquake risk 

on the dependence of property sale prices on land values. For households in a quake zone, land 

can be used as a shock absorber to reduce the quake risk, because land itself is physically 

‘indestructible’ and its economic value is often preserved in urban development even after 

being exposed to earthquake. This is particularly true for properties in regions with high quake 

risk, since the earthquake can easily damage the value of houses but not the land; thus land 

plays a more important role in determining property prices in a region with high risk of 

earthquake. Therefore, the variation in land attributes will contribute to significant variation in 

property price, and this contribution will increase with the risk of earthquake. The coefficient 

of this interaction term is expected to be positive. 

The interaction term (𝐷̂𝑚 × 𝐸𝑄𝑡 × ln(𝐿𝑎𝑛𝑑𝑗𝑚𝑡)) measures difference in the moderation effect 

of MB potential losses on the correlation between land values and property price, before and 

after earthquake. Since potential losses are more perceivable after the earthquake, and land 

attributes contribute more to property sale price, we expect the coefficients of this triple-

interaction term to be positive. 

3.3.  The impact of neighborhood characteristics on perceived earthquake risk 
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Although we cannot disentangle risk preference from risk perception in equation (3), we 

can partially parameterize risk preference as a function of its key determinants and then 

examine the impact of the key determinants of risk preference on changes in risk perception. 

Kasperson et al. (1988) show that hazards interact with psychological, social, institutional, and 

cultural processes in ways that may amplify or weaken public responses to the risk. Our study 

shows that the moderator effects of various preference determinants on changes in risk 

perception and so suggest how house prices in neighborhoods with different potential damage 

and demographic characteristics will change in response to earthquakes.   

Specifically, we introduced MB demographic characteristics in equation (3) and have the 

following modified OLS equation: 

ln(𝑆𝑃𝑗𝑚𝑡) =  𝛽1 + 𝛽2(𝐷̂𝑚) + 𝛽3(𝐸𝑄𝑡) + 𝛽4(𝐷̂𝑚 × 𝐸𝑄𝑡) + 𝛽5𝑙𝑛(𝐿𝑎𝑛𝑑𝑗𝑚𝑡) + 𝛽6 (𝐷̂𝑚 × ln(𝐿𝑎𝑛𝑑𝑗𝑚𝑡)) +

𝛽7 (𝐷̂𝑚 × 𝐸𝑄𝑡 × ln(𝐿𝑎𝑛𝑑𝑗𝑚𝑡)) +  𝛽8(𝐷̂𝑚 × 𝑁𝐵𝑚) + 𝛽9(𝐷̂𝑚 × 𝐸𝑄𝑡 × 𝑁𝐵𝑚) + 𝑆𝑗𝑚𝑡𝛾 + 𝛽8(ln (𝐷𝑖𝑠𝑚)) + 𝜏𝑗𝑡 +

𝜃𝑗𝑡 + 𝐴𝑟𝑒𝑎𝑗𝑡 + 𝜇𝑗𝑚𝑡          (4) 

where 𝑁𝐵𝑗𝑚 is a vector of MB characteristics obtained from 2006 census data that potentially 

determine households’ risk preference: neighborhood population, income, years of education, 

marriage status, housing tenure choices, and ethnicity. Except for population, all other variables 

are MB average, reflecting MB features. For example, average marital status reflects the 

percentage of married households in the MB. See Panel C of Table 1 for summary statistics of 

the demographic variables used in the above equation. All other variables are the same as in 

model (3). 

The vector of interaction terms (𝐷̂𝑚 × 𝑁𝐵𝑚) measures how MB characteristics (e.g., income) 

moderate how potential losses are factored into house price. Correspondingly, the vector of the 
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triple-interaction term (𝐷̂𝑚 × 𝐸𝑄𝑡 × 𝑁𝐵𝑚) shows how such characteristics moderate changes in 

households’ risk perception after the earthquake.   

 

4. Data 

Residential property sales data for Christchurch before and after the 2010/11 Canterbury 

earthquakes (January 2008 to July 2013) were obtained from Quotable Value New Zealand 

(QVNZ)10. This period covers 2 years before and 2 years after the earthquakes of September 

2010 and February 2011. The property sales database was tagged with property ID, total sale 

price, sale date, property valuation, structural characteristics, land attributes, census MB 

number, and area unit ID. The sample was restricted to single-family homes located within 30 

km of the Christchurch CBD, with commercial buildings and farm use excluded. We further 

excluded outliers: those with a sale price over NZ$2 million or below NZ$20,000 or buildings 

with a floor area below 30 m2 or over 500 m2. This left a balanced sample of 28,681 home sales.  

The home earthquake damage database was obtained from the EQC. Each claim includes 

a detailed property description and claim assessment information. Property information 

includes property ID, building floor area, building site area, building wall, roof material, and 

rated capital value. Claim assessments were split into three types: land only, building only, and 

land and building. Claims associated with MB number were derived from GIS11 based on each 

property’s latitude and longitude coordinates (rounded to approximately 70 m to protect 

privacy). We further excluded claims for a repair cost less than NZ$100 or building floor area 

                                               
10 QVNZ is a state-owned enterprise established primarily for rating valuations and is the official database for 

all property transactions in New Zealand.  
11 Geographic Information Systems. Every property’s X and Y coordinates are placed on a GIS map to identify 

the associated neighborhood’s characteristics. 
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more than 1,000 m2. This left a balanced sample of 62,462 insurance claims. The home 

insurance claims are used to calculate MB earthquake losses in model (1). 

The pre-quake MB database of neighborhood demographic characteristics from the 2006 

census was obtained from Statistics New Zealand. The census data include variables at MB 

level, such as median income, population, average years of education, percentage of houses 

privately owned, percentage of married households, ethnic ratios, and smoking rates. We used 

neighborhood smoking rates as a proxy for the neighborhood’s risk-seeking attitude; this proxy 

has been established in prior research (Viscusi, 1990; Viscusi & Hersch, 2001; Anderson & 

Mellor, 2008; Harrison, Lau & Rutstrӧm, 2010; Adams, Bose & Rustichini, 2014). We then 

adopted propensity matching score methodology to test whether risk preference affects 

neighborhood sorting and in turn leads to changes in the neighborhood’s aggregate risk 

preference after the earthquake. 

These neighborhood data are matched to property sale data using the MB number obtained 

in the dataset to study the moderating effects of key demographic characteristics such as 

income and education. In total, we obtain 2,271 matched MBs with balanced data in the census, 

property sales, and earthquake claims databases. Summary statistics of the main variables for 

property earthquake damage claims, home sales, and MB characteristics are shown in Table 1.  

< Insert Table 1 about here> 

 

5. Empirical results 

5.1.  Earthquake damage and neighborhood earthquake risk 
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Table 2 presents estimation results of damage model (1) based on EQC earthquake claim 

payments, controlling for the property’s pre-quake land values, building characteristics, and 

MB fixed effects12. The coefficients for building floor area, number of stories, age of building, 

and dummy for external or internal garage were positive and statistically significant. For 

example, a 1% increase in building floor area, number of building stories and building age 

increased building damage in terms of insurance claims by 0.793%, 0.147%, and 0.143%, 

respectively. These findings are in line with our expectation that damage depends on building 

characteristics. Higher 13 , larger, and older buildings incur higher losses. Moreover, the 

coefficient of land was positive (0.026) and statistically significant, suggesting that houses in 

more expensive land areas incurred greater claims once they had been exposed to earthquake. 

Since data were not available on soil type or foundation type for individual claims, controlling 

for pre-quake land features and amenities using land value is important for generating an 

unbiased earthquake measure in this study. 

<Insert Table 2 about here> 

Figure 2 shows the histogram of estimated MB losses14. MB earthquake damage (𝐷̂𝑚) was 

obtained from estimates of MB fixed effects in equation (1). The estimates reflect inherent 

seismic losses for all houses in the same MB, compared with the benchmark MB loss in the 

city, which is independent of any losses due to damage to unobservable land features and local 

amenities by model specification. In total, there are 2,737 MBs in the city with mean damage 

                                               
12 Payments were classified according to combined land and building claims, building claims, land claims, and 

just building claims, separately. ‘Building claims’ are claims for buildings either with or without land claims. 

‘Just building’ claims are those with no associated land claims. ‘Land claims’ are those claims for land either 

with or without building claims. There were not enough ‘Land only’ claims (145) for a robust statistical 

analysis. Since the combined claims would better represent total quake damage, we then used total property 

repair cost in the regression analysis. 
13 The relationship of quake risk to building height is complex and depends on quake wave amplitude and 

frequency and how these interact with building characteristics.  
14 MB fixed effects data are available on request from the first author. 
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of -0.111. Figure 2 shows that the estimated losses were right-skewed (skewness = 0.21), which 

suggests that the distribution of losses was concentrated to the left of the benchmark MB loss.  

<Insert Figure 2 about here> 

5.2.  Perceived earthquake risk in housing purchases 

Table 3 presents the results of estimation of model (3). The coefficient of MB losses (D̂m) 

was positive (0.093) and statistically insignificant, implying that households did not factor in 

location earthquake risk in house prices. Post-earthquake, the magnitude of the MB coefficient 

(𝐷̂𝑚 × 𝐸𝑄𝑡) was negative (-0.366) and statistically significant, implying that the earthquakes 

serve as information shocks and significantly enhance households' perception of seismic risks. 

A 1-percentage-point increase in MB earthquake risk decreased property sale price by 0.366% 

in the post-quake period. Also, other than the indirect effect through enhanced risk perception, 

earthquakes per se (𝐸𝑄
𝑡
) directly discount property values by 4.1%. Therefore, our findings are 

in line with previous research, whereby households discount their property value by the 

assessed subjective risk level when quake-related information is more fully revealed (Schlenker, 

Haemann & Fisher, 2005; Michael, 2007; Butsic, Hanak & Valletta, 2011).  

Land value was found to be positively and significantly related to property sale prices. For 

the benchmark MB (with potential loss standardized to zero), our results show that changes in 

land value will not be fully factored into the property price: A 1% change in land value will 

lead to a 0.36% change in property price only. The coefficient of the interaction term between 

land value and potential loss (𝐷̂𝑚 × ln(𝐿𝑎𝑛𝑑𝑗𝑚𝑡)) is statistically insignificant, which suggests 

that households failed to account for location earthquake risk in land value before the quake. 

In contrast, the coefficient of the triple-interaction term, (𝐷̂𝑚 × 𝐸𝑄𝑡 × ln(𝐿𝑎𝑛𝑑𝑗𝑚𝑡)) was positive 

(0.023) and statistically significant, suggesting that households linked the property’s land value 
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to the location’s seismic risk after the quake. In other words, households tended to use land as 

a risk absorber in seismic risk reduction. They pay more for houses in MBs with higher 

potential losses and higher land values when such risks are better perceived. For a 1% increase 

in land value or potential risk the property sale price increased by 0.023%. These results support 

the findings of Yu and Shi (2021), who show that the 2010/2011 Christchurch earthquake 

removed barriers to urban development in Christchurch, especially in inner high-value land 

areas. 

Moreover, we controlled for MB distance to the Christchurch CBD, area-unit (suburb) 

fixed effects, and calendar year-quarter fixed effects in the regressions to address concern about 

possible omitted spatial variables and time effects. The results show that distance to CBD is 

positive (0.028) and significantly correlated with the property’s sale price: A 1% increase in 

distance to CBD increased the property sale price by 0.028%. These results are not surprising, 

since the earthquake hit the Christchurch CBD and quake damage (both buildings and 

infrastructure) was mainly in the central area. Property-specific attributes and building 

materials are also accounted for, and show that house prices were positively related to building 

floor area, number of bedrooms, and number of building stories but negatively related to 

building age.  

<Insert Table 3 about here> 

5.3.  Risk perception and neighborhood characteristics 

The estimation results for perceived risk and neighborhood characteristics in model (4) are 

presented in the second column of Table 3. We focus our analysis on estimates in addition to 

model (3), since the coefficients of common variables in model (3) and model (4) are similar. 

They show that the household’s income, education, tenure, and marital status did not affect 
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pre-quake house prices in terms of location seismic risk. Meanwhile, we found that households 

in high-density areas had taken on more seismic risk (the estimated coefficient is 0.012) before 

the quake. These findings contradict the natural disaster literature, which posits that an 

individual’s risk-taking behaviors are mostly affected by income, education, and age (Atreya, 

Ferreira & Michel-Kerjan, 2015; Guiso, Jappelli & Terlizzese, 1996; Mulwanda, 1992; 

Vaughan & Nordenstam, 1991). Our results suggest that lack of prior quake-related 

information could be one of the main reasons that households failed to factor location seismic 

risk into their house purchase. There is evidence that pre-quake information on property-

specific seismic risk was rather limited in Christchurch, and prior quake hazard maps have also 

been deemed inadequate in terms of both the areas they covered and the quality of information 

they provided (Brackley, 2012; Stein, Geller, & Liu, 2012).  

Interestingly, the results regarding ethnic variables suggest that both Asians and Europeans 

were either more risk averse or more aware of risks (estimated coefficients are -0.103 for Asian 

and -0.050 for European) before the earthquake; however, they became less sensitive to 

potential losses after the earthquake (the estimated coefficient is 0.253 for Asian and 0.099 for 

European), which suggests that they downgraded their risk perception after the earthquake, 

when damage was more fully revealed. All of these suggest that when quake-related 

information is limited, personal experience and cultural and cognitive factors can be the major 

determinants of households’ risk perception (Asgary & Willis, 1997; Wachinger, Renn, Begg 

& Kuhlicke, 2013). In this instance, it appears that Asians and Europeans were more alert to 

seismic risk than other ethnicities. 

Overall, our findings suggest that the Canterbury quake sequence served mainly as 

information shocks. Although the 2010/2011 earthquake increased households’ awareness of 

earthquake risk, in addition to continuing personal discomfort, mistrust of authorities, and 



19 

 

nonmonetary costs, in the aftermath it will take time to manifest in neighborhood sorting. Our 

results highlight the importance of quake-related information on perceived location seismic 

risk. 

5.4.  Robustness checks 

5.4.1. Damaged or repaired house sales 

Households may choose to sell their damaged or repaired houses after the earthquake. To 

address the influence of ‘damaged or repaired’ house sales in the post-quake period, we further 

exclude damaged property sales from the analysis. Damaged property sales were identified by 

matching the QVNZ sale data set to the EQC claims data set via property ID.15 Given a high 

percentage (95%) of insurance coverage in Christchurch prior to the earthquake (Nguyen & 

Noy, 2020b), matching would largely remove any quake-damaged or -repaired property sales 

in our analysis. Note that quake-damaged properties without repairs were difficult to sell, since 

most insurance policies were not transferrable to new owners, and thus a prudent homeowner 

would wait for an insurance settlement before listing the property for sale. Due to the lengthy 

insurance settlement process, we would assume that most of those identified quake-damaged 

properties in our sale analysis within the first 2 years after the quake were classified as minor 

damage and then as repaired sales. The results of Table 4 in Appendix 1 show that the 

coefficients of the price model, excluding damaged or repaired property sales, were very close 

to the results obtained using all sales. Overall, our results are robust to damaged or repaired 

sales in the analysis. 

5.4.2. Changes in aggregate risk preference 

                                               
15 Due to privacy reasons, we don’t have property address or information on the seller or 

buyer in the sales and claims databases. 
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Assumption 2 is crucial in the prior analysis to identify changes in risk perception. We test 

the robustness of our results given that households’ risk preference may change over time by 

applying a propensity score matching (PSM) method, as described in Appendix 2. Ideally, we 

should be able to drop relocated households and repeat our revealed preference analysis with 

balanced data. However, individual relocation information is unavailable. Therefore, we can 

only use MB aggregate data to perform PSM, dropping areas with quite different risk 

preferences. We categorize all MBs into two types, high-potential-loss and low-potential-loss 

groups,16 using the median of the MB potential loss distribution as the cutoff for variable 

definition. Applying PSM using MB smoking rate as a proxy for households’ risk attitudes, we 

can select MBs without a significant location sorting endogeneity problem for our revealed 

preference analysis. The results of PSM analysis are presented in Table 5 of Appendix 2, which 

shows that the PSM results remain very close to the results obtained in Table 3. Therefore, our 

results support the second assumption, that individual risk preferences are stable over time 

(Stigler & Becker, 1977). 

5.4.3. Measuring changes in risk perception over time 

To measure how new post-quake information (such as disruption to business and social 

activities, the rising burden of building maintenance and compliance, the loss of memorabilia, 

death and injury, or loss of historical/environmental assets, insurance claims and settlements, 

and uncertainty about the government’s relief efforts and plans for rebuilding) affects 

households’ perceived risk, we replace the interaction of earthquake damage and earthquake 

dummy (𝐷̂𝑚 × 𝐸𝑄𝑡) with an interaction of earthquake damage and calendar quarters (𝐷̂𝑚 × 𝜃𝑗𝑡) in 

Equation (3) and graph the dynamic effect of perceived earthquake damage on residential 

                                               
16 This dichotomy is artificial because location choices are continuous. We thus have to sacrifice information on 

continuous variation in location choice for the purpose of correcting selection bias in this study.     
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housing prices over time in Figure 3.17 The results show that the price discount on the quake-

related risk factor was small and insignificant before the first and second quakes, but increased 

dramatically after the quakes. A 1-percentage-point increase in MB earthquake losses would 

decrease house prices by 0.05% in 2011, 0.10% in 2012, and 0.25% in 2013. Thus, the results 

support our previous findings that households did not consider location seismic risk before the 

quake due to limited quake-related information. When a big earthquake hits, people assess new 

quake-related information to update their perceived earthquake risk. A possible explanation is 

that the unusually extended aftershock sequence reinforced pessimism about the likelihood of 

future quake damage. There was also increasing awareness of the difficulty of repairs and slow 

processing of insurance claims. The slow pace of the general Christchurch infrastructure 

rebuild may thus have increased pessimism over time. All of these physical and psychological 

factors may cause interested property buyers to become increasingly hesitant. 

<Insert Figure 3 about here> 

5.4.4. Additional controls for location heterogeneities and time trends 

To account for the different time trends across various locations in Christchurch, we further 

group Christchurch city into two zones (inner and outer areas) based on their geographic 

distance to the Christchurch CBD. Fu and Shi (2021) show that urban spatial development 

patterns could differ in central and non-central neighborhoods. Following Fu and Shi (2021), 

we classified an inner zone as being within 5 km of the CBD and an outer zone as between 5 

and 30 km from the CBD. We thus include zone fixed effects, year fixed effects, zone*year 

fixed effects, and seasonal (quarter) fixed effects in Table 3 to carry out additional robustness 

                                               
17 Estimation results are available from the corresponding author on request. 
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checks. The results are consistent with our main findings and are presented in Table 6 of 

Appendix 3.18   

 

6. Conclusion 

In this study, we analyze the effect of perceived location earthquake risk on the housing 

price in Christchurch, New Zealand, paying close attention to how this perceived risk 

manifested before and after the 2010/11 Canterbury earthquake. To capture perceived 

earthquake risk, we employ a measure developed by MacDonald, Murdoch and White (1987) 

and Bin and Landry (2013) whereby the marginal implicit hedonic price for a change in 

potential earthquake loss will reflect the consumer’s assessment of the probability of loss and 

marginal insurance cost. Using quake-related building insurance claims as a proxy for location 

seismic risk, we confirm that households didn’t incorporate location seismic risk in their 

housing purchases before the quake, but readjusted their risk assessment in the post-quake 

period (Schlenker, Haemann & Fisher, 2005; Michael, 2007; Butsic, Hanak & Valletta, 2011). 

Our results are robust to controlling for damaged or repaired property sales, changes in 

households’ risk perception, location heterogeneities, and time trends.  

To investigate the degree to which perceived earthquake risk differs among different 

neighborhoods, we rely on the hazard interaction theory of Kasperson et al. (1988) to show the 

moderator effects of household characteristics on perceived location seismic risk. We find 

strong evidence that Asian and European households are more alert to location seismic risk, 

which suggests that with limited prior quake information, personal experience, culture, and 

                                               
18 Due to the large number of variables and interaction terms, location fixed effects and time trends cannot be 

estimated at a conventional unit-area (suburb) level. 
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race can be major determinant factors in perceived earthquake risk (Asgary & Willis, 1997; 

Wachinger, Renn, Begg & Kuhlicke, 2013). By using a risk proxy based on smoking rates prior 

to the quake, we show that individuals’ risk preferences do not change our conclusions.  

As discussed, it is well established that people are not good at making decisions that involve 

rare risks; specifically, given the high level of uncertainty associated with earthquake 

prediction. Both informational and heuristic obstacles influence people’s risk perceptions and 

their willingness to participate in environmental risk management. Christchurch was officially 

regarded as a low-risk area and, as a result, households were insensitive to location seismic risk 

in the pre-quake period. The 2010/11 earthquake served as an information shock and 

households substantially re-evaluated their risk perceptions in the post-quake period when 

suburb-based earthquake damage information became available.  

Our findings have important policy implications for seismic risk management. The New 

Zealand government-run single (unity-risk) premium insurance program was based on three 

broad regions at the time of the quake, with Canterbury in the low-risk zone, which may have 

reduced information clarity. This noncorrelation between risk and premiums is common in 

public natural disaster insurance schemes, but can potentially bias households' perception of 

location seismic risk. Nguyen and Noy (2020a) compare the insurance cost of a public unity-

risk scheme in New Zealand with varying-risk premium insurance programs in California and 

Japan. They find that providing a public insurance system was much costlier (about 3.8-8.8 

times higher than operating a private varying-risk premium insurance program for a similar-

sized disaster), although varying-risk premium insurance may discourage people from 

purchasing adequate insurance coverage. Timar, Grimes, and Fabling (2018) found that the 

locational liquefaction risk discount disappeared in Hutt City, New Zealand, within 4 years of 

the 2010/11 Canterbury earthquake. Our empirical findings suggest that a varying-risk 
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insurance premium may serve as a proxy for location seismic risk, which is the key factor in 

influencing households’ risk perception in seismic risk management. 
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Table 1: Summary statistics of the main variables 

   Mean  Median  Maximum  Minimum  Std. Dev. 

 

Observations 

  Panel A: Post-quake insurance claims       

Claims on land and buildings (NZD) 66,486 41,986 1,440,566 101 60,791 62,462 

Building floor area (sqm) 154.41 130.00 718.00 30.00 65.75 62,462 

Number of building storey 1.13 1.00 6.00 1.00 0.28 62,462 

Age of building (year) 45.48 46.00 141.00 0.00 28.40 62,462 

Land value (NZD) 212,002 185,000 3,770,000 3,000 152,666 62,462 

External garage (dummy) 0.35 0.00 1.00 0.00 0.48 62,462 

Internal garage (dummy) 0.15 0.00 1.00 0.00 0.36 62,462 

       

 Panel B: Home sales (Jan. 2008 - Jul. 2013)    
Sale price (NZD) 397,255 356,000 1,995,000 47,500 170,389 28,681 

Land value (NZD) 187,012 171,000 1,790,000 24,700 91,340 28,681 

Building floor area (sqm) 153.21 133.00 500.00 30.00 61.68 28,681 

Number of bedrooms 3.21 3.00 6.00 1.00 0.73 28,681 

Number of building storey 1.21 1.00 4.00 1.00 0.43 28,681 

Age of building (year) 44.10 42.00 134.00 1.00 29.04 28,681 

Earthquake dummy 0.41 0.00 1.00 0.00 0.49 28,681 

       

 Panel C: Meshblock characteristics (2006 census)   
Median income (NZD) 24,693 23,800 53,300 3,800 6,691 2,271 

Population 128 120 570 30 56 2,271 

Education (year) 9.55 9.54 15.11 2.56 1.35 2,271 

Owning 0.52 0.56 0.90 0.00 0.18 2,271 

Married 0.43 0.43 0.86 0.00 0.15 2,271 

European 0.74 0.75 1.00 0.29 0.10 2,271 

Asian 0.07 0.05 0.60 0.00 0.08 2,271 

Smoking 0.18 0.17 0.56 0.00 0.10 2,271 



32 

 

Table 2: Damage analysis based on EQC earthquake claim payments  

Variable     

Dependent variable: Ln(Damage claims, 𝐶𝑗𝑚)   
Ln(building floor area) 0.793 *** 

 (0.018)  
Ln(No. of storeys) 0.147 *** 

 (0.024)  
Ln(building age) 0.143 *** 

 (0.027)  
Ln(land value) 0.026 ** 

 (0.013)  
External garage 0.223 *** 

 (0.011)  
Internal garage 0.183 *** 

 (0.013)  
Constant 5.844 *** 

 (0.189)  
Wall materials yes  
Roof materials yes  
Vintage effects (𝜏𝑗𝑚) yes  
Meshblock fixed effects (𝐷𝑚) yes  
Number of meshblock 2,737  
Obs 62,462  
AdjRsq 0.429   

Note: The damage analysis model is: ln(𝐶𝑗𝑚) =  𝛼1 + 𝛼2𝑆𝑗𝑚 + 𝛼3𝑙𝑛(𝐿𝑎𝑛𝑑𝑗𝑚) + 𝜏𝑗𝑚 + 𝐷𝑚 + 𝜇𝑗𝑚 , 

where 𝐶𝑗𝑚 is the cost of building and land damage estimated by the insurance payment for 

property j in meshblock m. 𝑆𝑗𝑚 is a vector of building structure variables that include log floor 

area, number of stories, building age, garaging, and building materials. Building materials are 

further classified as brick, concrete, roughcast, stone, and weatherboard for walls and concrete, 

and iron, tile, wood, and mixed material for roofs.  𝐿𝑎𝑛𝑑𝑗𝑚 is property assessed land value prior 

to the earthquake obtained from the government valuation. 𝜏𝑗𝑚 is the building vintage effect, 

𝐷𝑚 is meshblock fixed effects, and 𝜇𝑗𝑚 is the error term. Standard errors of estimates based on 

white cross-section are in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table 3: Home sale prices and perceived locational earthquake risk 

Variable (1)   (2)   

Dependent variable: ln(SPjmt)     

MB earthquake damage (D̂m) 0.093  0.077  

 (0.069)  (0.109)  

Earthquake dummy (EQt) -0.041 *** -0.034 ** 

 (0.013)  (0.014)  

D̂m*EQt -0.366 *** -0.026  

 (0.109)  (0.208)  

Ln(Landjmt) 0.360 *** 0.357 *** 

 (0.006)  (0.006)  

Ln(Landjmt)*D̂m -0.005  0.002  

 (0.006)  (0.007)  

Ln(Landjmt)*D̂m*EQt 0.023 ** 0.000  

 (0.009)  (0.010)  

Ln(Incomem)*D̂m   -0.004  

   (0.008)  

Ln(Populationm)*D̂m   0.012 *** 

   (0.004)  

Ln(Educationm)*D̂m   -0.017  

   (0.018)  

Owningm*D̂m   -0.001  

   (0.020)  

Marriedm*D̂m   -0.028  

   (0.024)  

Europeanm*D̂m   -0.050 * 

   (0.027)  

Asianm*D̂m   -0.103 *** 

   (0.034)  

Ln(Incomem)*D̂m*EQt   -0.025  

   (0.015)  

Ln(Populationm)*D̂m*EQt   -0.003  

   (0.008)  

Ln(Educationm)*D̂m*EQt   0.051  

   (0.032)  

Owningm*D̂m*EQt   -0.056  

   (0.040)  

Marriedm*D̂m*EQt   0.036  

   (0.051)  
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Europeanm*D̂m*EQt   0.099 ** 

   (0.048)  

Asianm*D̂m*EQt   0.253 *** 

   (0.053)  

Constant 6.783 *** 6.860 *** 

 (0.065)  (0.074)  

Ln(Building floor areajmt) 0.309 *** 0.297 *** 

 (0.006)  (0.007)  

Number of bedroomsjmt 0.038 *** 0.040 *** 

 (0.002)  (0.002)  

Ln(Building storeyjmt) 0.066 *** 0.065 *** 

 (0.004)  (0.005)  

Ln(Building agejmt) -0.018 *** -0.020 *** 

 (0.006)  (0.007)  

Ln(Dism) 0.028 *** 0.038 *** 

 (0.011)  (0.012)  

Building materials yes  yes  

Vintage effects yes  yes  

Area-unit fixed effects yes  yes  

Calendar quarter effects yes  yes  

Obs 28,478  23,750  

AdjRsq 0.828   0.823   

Note: The estimation equation is ln(𝑆𝑃𝑗𝑚𝑡) =  𝛽1 + 𝛽2(𝐷̂𝑚) + 𝛽3(𝐸𝑄𝑡) + 𝛽4(𝐷̂𝑚 × 𝐸𝑄𝑡 ) +

𝛽5𝑙𝑛(𝐿𝑎𝑛𝑑𝑗𝑚𝑡) + 𝛽6 (𝐷̂𝑚 × ln(𝐿𝑎𝑛𝑑𝑗𝑚𝑡)) + 𝛽7 (𝐷̂𝑚 × 𝐸𝑄𝑡 × ln(𝐿𝑎𝑛𝑑𝑗𝑚𝑡)) + 𝛽8(𝐷̂𝑚 × 𝑁𝐵𝑚) +  𝛽9(𝐷̂𝑚 ×

𝐸𝑄𝑡 × 𝑁𝐵𝑚) + 𝑆𝑗𝑚𝑡𝛾 + 𝛽10(ln (𝐷𝑖𝑠𝑚)) + 𝜏𝑗𝑡 + 𝐴𝑟𝑒𝑎𝑗𝑡𝜏𝑗𝑡 + 𝜃𝑗𝑡 + 𝜇𝑗𝑡  where 𝑆𝑃𝑗𝑚𝑡  is the jth property’s 

sale price in meshblock m at time t; 𝐷̂𝑚 is the estimated certain loss to meshblock m; and 𝐸𝑄𝑡  is 

an earthquake dummy that equals 1 for sales that occurred after the 22 February 2011 

earthquake, and 0 otherwise. 𝐿𝑎𝑛𝑑𝑗𝑚𝑡 is the property’s pre-quake land value. 𝑁𝐵𝑗𝑚 is a vector of 

meshblock characteristics: neighborhood population, income, years of education, marital status, 

housing tenure choices, and different ethnicities, which potentially determine households’ risk 

preference. Except for population, all other variables are meshblock average, which reflects 

meshblock features. For example, the average marital status reflects the percentage of married 

households in the meshblock. 𝑆𝑗𝑚𝑡 is a vector of building structural attributes: log of floor area, 

number of bedrooms, multi-storey building, log building age, and building materials. 𝐷𝑖𝑠𝑚 is 

the geographic distance of meshblock m to the city’s CBD; 𝜏𝑗𝑡 is the building vintage effect; 𝜃𝑗𝑡 

is a calendar quarter dummy; 𝐴𝑟𝑒𝑎𝑗𝑡 is the area-unit (suburb) fixed effect, and 𝜇𝑗𝑡 is the error 

term. Standard errors of estimates based on white cross-section are in parentheses. *** p<0.01, 
** p<0.05, * p<0.1 
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Figure 1: Spatial distribution of earthquake damage-to-value ratios in Christchurch (Sep.2010 - Feb.2011) 

 

Note: Blank areas denote commercial, industrial, and public space, which are excluded from the EQC dataset. Darker colors show more damage. 
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Figure 2: Frequency distribution of meshblock losses 

 

This figure depicts the distribution of meshblock earthquake damage in the 2010/2011 

Canterbury earthquake, compared with the benchmark meshblock in Christchurch. 

Meshblock earthquake damage (𝐷̂𝑚) is obtained from estimates of meshblock fixed effects in 
equation (1). In total, there are 2,737 meshblocks with a mean damage of -0.111. 
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Figure 3: Effect of changes in perceived earthquake risk on housing prices 
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This figure plots the relationship between households’ perceived location seimic risk and 

housing prices before and after the earthquake. The dotted line represents the price discount 

for a 1% change in perceived meshblock earthquake damage over the sample period. These 

values are calculated by replacing the interaction of earthquake damage and earthquake dummy 

( 𝐷̂𝑚 × 𝐸𝑄𝑡 ) with an interaction of earthquake damage and calendar quarters ( 𝐷̂𝑚 × 𝜃𝑗𝑡 ) in 

Equation (3). 
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Appendix 1 

 

Table 4: Price model excluding post-quake damaged or repaired sales 

Variable (1)   (2)   

Dependent variable: ln(SPjmt)     

MB earthquake damage (D̂m) 0.081  0.093  

 (0.068)  (0.109)  

Earthquake dummy (EQt) -0.039 *** -0.029 * 

 (0.015)  (0.017)  

D̂m*EQt -0.361 *** -0.302  

 (0.133)  (0.274)  

Ln(Landjmt) 0.359 *** 0.354 *** 

 (0.006)  (0.007)  

Ln(Landjmt)*D̂m -0.005  0.000  

 (0.006)  (0.007)  

Ln(Landjmt)*D̂m*EQt 0.023 ** 0.000  

 (0.011)  (0.013)  

Ln(Incomem)*D̂m   -0.006  

   (0.008)  

Ln(Populationm)*D̂m   0.013 *** 

   (0.004)  

Ln(Educationm)*D̂m   -0.013  

   (0.018)  

Owningm*D̂m   0.004  

   (0.020)  

Marriedm*D̂m   -0.017  

   (0.024)  

Europeanm*D̂m   -0.050 * 

   (0.028)  

Asianm*D̂m   -0.110 *** 

   (0.034)  

Ln(Incomem)*D̂m*EQt   -0.015  

   (0.022)  

Ln(Populationm)*D̂m*EQt   0.004  

   (0.011)  

Ln(Educationm)*D̂m*EQt   0.090 * 

   (0.048)  

Owningm*D̂m*EQt   -0.060  

   (0.053)  
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Marriedm*D̂m*EQt   -0.021  

   (0.067)  

Europeanm*D̂m*EQt   0.214 *** 

   (0.067)  

Asianm*D̂m*EQt   0.372 *** 

   (0.074)  

Constant 6.789 *** 6.885 *** 

 (0.069)  (0.080)  

Ln(Building floor areajmt) 0.316 *** 0.304 *** 

 (0.010)  (0.011)  

Number of bedroomsjmt 0.037 *** 0.039 *** 

 (0.002)  (0.003)  

Ln(Building storeyjmt) 0.070 *** 0.068 *** 

 (0.005)  (0.006)  

Ln(Building agejmt) -0.024 *** -0.026 *** 

 (0.006)  (0.007)  

Ln(Distance to CBD) 0.032 *** 0.046 *** 

 (0.012)  (0.013)  

Building materials yes  yes  

Vintage effects yes  yes  

Area fixed effects yes  yes  

Calendar quarter effects yes  yes  

Obs 22,875  18,937  

AdjRsq 0.842   0.835   

Note: This table presents additional robustness checks for Table 3 in the main text excluding 

post-quake damaged or repaired sales from the analysis. Column (1) shows results for the 

effects of perceived earthquake risk on housing purchases, and column (2) shows results for 

the effects of risk perception and neighborhood characteristics.  
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Appendix 2: Propensity score matching 

We use propensity score matching (PSM) following four steps, as follows.  

First, we choose the covariates that predict households' locational choices. Since most 

households made this choice before earthquake, we use meshblock demographic characteristics 

and smoking rates before the earthquake as matching variables. We categorize all meshblocks 

into two types: high-potential-loss blocks (HD = 1) and low-potential-loss blocks (HD = 0), 

using the median of 𝐷̂ as the cut-off value to define this binary variable, i.e., HD = 1 if 𝐷̂ >

𝐷̂𝑚𝑒𝑑𝑖𝑎𝑛 and HD = 0 otherwise.  

Second, we employ a logistic model to investigate the impact of these covariates on 

households' locational choices. Logit results show that most coefficients are statistically 

significant, which suggests that these covariates will affect households’ locational choices.19 

Then, we calculate the propensity score (log (
𝑝

1−𝑝
)) using the predicted probability of choosing 

a high-potential-loss location.  

Third, we conduct a nearest-neighbor search. For each meshblock in the high-potential-loss 

group, we choose a corresponding meshblock in the low-potential-loss group whose propensity 

score is closest to that of the high-potential-loss meshblock. In this way, we select a group of 

control meshblocks to serve as the comparison group for our analysis. We undertake the 

following balance test, as suggested by Garnefeld, Eggert, Husemann-Kopetzky, and Böhm 

(2019) to verify that covariates are balanced across different types in the matched sample: We 

(1) test whether the difference in matching covariates between different types of meshblocks 

is still statistically significant after matching and (2) calculate Rosenbaum and Rubin’s (1983) 

“percentage reduction in bias” statistic for each match variable. The results of the nearest 

neighbor search show that for most matching variables, except for smoking rate, the difference 

in matching variables is statistically significant between high-potential-loss meshblocks and 

unmatched low-potential-loss meshblocks, but it becomes insignificant after matching, which 

suggests that PSM will generate a comparison group with characteristics similar to those of 

high-potential-loss meshblocks.20 The matching rule for smoking rate is exactly opposite to 

other variables. The difference in smoking rate is insignificant between the unmatched group 

(with low potential loss) and the high-potential-loss group, while it is significant between the 

                                               
19 For brevity, we do not report results from the logit model, but they are available upon request. 
20 For brevity, we do not report results from the nearest neighbor search, but they are available upon request. 
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matched group and the high-potential-loss group. Since the smoking rate is a proxy for risk 

preference, these unusual results for smoking rates actually suggest that our matching is 

efficient for selecting groups with similar risk preference. Furthermore, PSM significantly 

reduces selection bias.  

Fourth, we conduct revealed preference analysis using the matched sample. The number of 

unmatched meshblocks is 26, which we drop while doing the revealed preference analysis. 

Finally, we obtain 2,173 meshblocks and 23,457 households' sale records. Estimation results 

based on PSM for our revealed preference analysis are reported in Table 5 below. 

Table 5: Estimation results based on PSM 

Variable     

Dependent variable: ln(SPjmt)   
MB earthquake damage (D̂m) 0.113  

 (0.110)  

Earthquake dummy (EQt) -0.032 ** 

 (0.014)  

D̂m*EQt -0.043  

 (0.212)  

Ln(landjmt) 0.356 *** 

 (0.006)  

Ln(landjmt)*D̂m 0.000  

 (0.007)  

Ln(landjmt)*D̂m*EQt 0.002  

 (0.010)  

Ln(Incomem)*D̂m -0.006  

 (0.008)  
Ln(Populationm)*D̂m 0.014 *** 

 (0.004)  

Ln(Educationm)*D̂m -0.020  

 (0.018)  
Owningm*D̂m -0.005  

 (0.020)  
Marriedm*D̂m -0.013  

 (0.024)  
Europeanm*D̂m -0.047 * 

 (0.027)  

Asianm*D̂m -0.117 *** 

 (0.035)  

Ln(Incomem)*D̂m*EQt -0.028 * 
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 (0.016)  

Ln(Populationm)*D̂m*EQt -0.004  

 (0.008)  

Ln(Educationm)*D̂m*EQt 0.065 * 

 (0.034)  

Owningm*D̂m*EQt -0.048  

 (0.040)  

Marriedm*D̂m*EQt 0.022  

 (0.052)  

Europeanm*D̂m*EQt 0.102 ** 

 (0.049)  

Asianm*D̂m*EQt 0.257 *** 

 (0.057)  
Constant yes  

Building structure (Sjmt) yes  

Ln(Dism) Yes  
Building materials yes  

Vintage effects yes  
Area fixed effect yes  

Calendar quarter effects yes  
Obs 23,457  

AdjRsq 0.822   

Note: This table presents results of the PSM robustness check for column (2) of Table 3 in the 

main text. All variables are the same as in Model (3) in the main text. Standard errors of 

estimates based on white cross-section are in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Appendix 3 

 

Table 6: Controls for location heterogeneities and time trends 

Variable (1)   (2)   (3)   (4)   

Dependent variable: ln(SPjmt)         
MB earthquake damage (D̂m) 0.087  0.083  0.078  0.093  

 (0.070)  (0.070)  (0.110)  (0.110)  

Earthquake dummy (EQt) -0.016 ** -0.019 ** -0.012  -0.016 ** 

 (0.007)  (0.008)  (0.007)  (0.008)  

D̂m*EQt -0.350 *** -0.344 *** -0.016  -0.059  

 (0.110)  (0.110)  (0.209)  (0.209)  

Ln(Landjmt) 0.359 *** 0.358 *** 0.355 *** 0.355 *** 

 (0.006)  (0.006)  (0.006)  (0.006)  

Ln(Landjmt)*D̂m -0.005  -0.005  0.002  0.002  

 (0.006)  (0.006)  (0.007)  (0.007)  

Ln(Landjmt)*D̂m*EQt 0.021 ** 0.020 *** -0.001  0.000  

 (0.009)  (0.009)  (0.011)  (0.011)  

Ln(Incomem)*D̂m     -0.005  -0.006  

     (0.008)  (0.008)  
Ln(Populationm)*D̂m     0.014 *** 0.014 *** 

     (0.004)  (0.004)  

Ln(Educationm)*D̂m     -0.012  -0.015  

     (0.018)  (0.018)  
Owningm*D̂m     0.003  0.002  

     (0.021)  (0.021)  
Marriedm*D̂m     -0.029  -0.021  

     (0.025)  (0.025)  
Europeanm*D̂m     -0.057 ** -0.061 ** 

     (0.028)  (0.028)  

Asianm*D̂m     -0.110 *** -0.105 *** 

     (0.034)  (0.034)  

Ln(Incomem)*D̂m*EQt     -0.022  -0.022  

     (0.015)  (0.015)  

Ln(Populationm)*D̂m*EQt     -0.005  -0.005  

     (0.008)  (0.008)  

Ln(Educationm)*D̂m*EQt     0.043  0.057  

     (0.033)  (0.033)  

Owningm*D̂m*EQt     -0.057  -0.056  

     (0.041)  (0.040)  

Marriedm*D̂m*EQt     0.036  0.013  

     (0.051)  (0.051)  

Europeanm*D̂m*EQt     0.107 ** 0.112 ** 
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     (0.048)  (0.048)  

Asianm*D̂m*EQt     0.258 *** 0.250 *** 

     (0.054)  (0.054)  

Building characteristics yes  yes  yes  yes  

Distance to CBD yes  yes  yes  yes  
Vintage effects yes  yes  yes  yes  
Area unit fixed effects yes  yes  yes  yes  
Zone fixed effects yes  yes  yes  yes  
Year fixed effects yes  yes  yes  yes  
Zone * year fixed effects no  yes  no  yes  
Seasonal (quarter) fixed effects no  yes  no  yes  
Obs 28,478  28,478  23,750  23,750  
AdjRsq 0.824   0.824   0.818   0.819   

Note: This table presents additional controls for location heterogeneities and time trends. The 

models are estimated using ordinary least squares. Properties are classified into two zones, 

inner (less than 5 km) and outer (more than 5 km) based on their geographic distance from the 

CBD. Location heterogeneities and time trends were controlled for by the Zone fixed effect, 

year fixed effect, and zone*year fixed effect. We also added quarterly dummies to control for 

the seasonal effect. Other variables were the same as in Model (3) in the main text. Standard 

errors of estimates based on white cross-section are in parentheses. *** p<0.01, ** p<0.05, * 

p<0.1 
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