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Abstract: This paper proposes a novel self-supervised based Cut-and-Paste GAN to perform fore-
ground object segmentation and generate realistic composite images without manual annotations.
We accomplish this goal by a simple yet effective self-supervised approach coupled with the U-Net
discriminator. The proposed method extends the ability of the standard discriminators to learn not
only the global data representations via classification (real/fake) but also learn semantic and struc-
tural information through pseudo labels created using the self-supervised task. The proposed method
empowers the generator to create meaningful masks by forcing it to learn informative per-pixel and
global image feedback from the discriminator. Our experiments demonstrate that our proposed
method significantly outperforms the state-of-the-art methods on the standard benchmark datasets.
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1. Introduction

Generative adversarial networks (GANs) [1] have become a popular class of image
synthesis methods due to their demonstrated ability to create high-dimensional samples
with desired data distribution. The primary objective of GANs is to generate diverse,
high-quality images while also ensuring the stability of GAN training [2,3]. GAN consists
of generator and discriminator networks trained in an adversarial manner. The generator
attempts to synthesize the real data distribution to fool the discriminator, whereas the
discriminator’s goal is to distinguish between the generator’s real and fake data. In image
segmentation, several compositional generative models have been proposed [4–9], where
the generator creates a synthesized composite image by copying the object from one
image and pasting it in another to fool the discriminator into thinking the synthesized
composite image is real. However, the generator may not perform any segmentation, and
the background may look realistic. Therefore, for effective training, the discriminator must
provide the generator with informative learning signals by learning relevant semantics and
structures of the data that may result in more effective generators. However, the current
state-of-the-art GANs [9–13] employ discriminators based on the classification network,
which learn only a single discriminative signal such as the difference between real and fake
images. In such a non-stationary environment, the generator becomes prone to catastrophic
forgetting and may lead to training instability or mode collapse [14].

To address the issues above, additional discriminatory signals are required to guide
the training mechanism and assist the generator in producing high-quality images. This
can be accomplished by increasing the capacity of the discriminator with auxiliary tasks
and signals. These auxiliary tasks on the labeled datasets resist the forgetting issues and
improve the training stability of GANs, but they suffer with unlabeled datasets. Recently,
self-supervised learning has been explored on numerous GANs methods [14–17]. The
self-supervised tasks provide the learning environment with additional guidance to the
standard training mechanism. Most of the recent self-supervision methods on GANs use
auxiliary tasks on transformation. For example, SS-GAN developed by Chen et al. [14] uses
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rotation prediction as an auxiliary task. In FX-GAN, Huang et al. [16] use the pretext task
of prediction on corrupted real images, and in LT-GAN [15], the authors use distinguishing
GAN-induced transformation as a pretext task. However, the goals of these self-supervised
transformation tasks need to be consistent with the GAN’s goal of mimicking the real data
distribution. Moreover, this problem amplifies when the generator’s task is to construct
segmentation masks from the foreground images.

Recent self-supervised learning methods have demonstrated remarkable promise in
global tasks such as image classification by training simple classifiers on features learned
through instance discrimination. However, the pre-text tasks of these global feature-
learning approaches do not explicitly retain spatial information, making them unsuitable
for object segmentation [18–21]. To maintain an enriched real data representation and
improve the quality of generated segmentation masks, we propose a Self-Supervised Cut-
and-Paste GAN(SS-CPGAN) using U-net architecture [22], which unifies cut-and-paste
adversarial training with a self-supervised task. It allows the discriminator to learn local
and global differences between real and fake data. In contrast to the existing transformation
self-supervision methods, our self-supervision learning method creates pseudo labels using
unsupervised segmentation methods. Then, it simultaneously forces the discriminator to
provide the generator with global feedback (real or fake) and the per-pixel feedback of the
synthesized images with the help of pseudo labels.

To sum up, the contributions of this paper are as follows:

• This paper proposes a novel Self-Supervised Cut-and-Paste GAN (SS-CPGAN), which
unifies cut-and-paste adversarial training with a segmentation self-supervised task.
SS-CPGAN leverages unlabeled data to maximize segmentation performance and
generates highly realistic composite images.

• The proposed self-supervised task in SS-CPGAN improves the discriminator’s rep-
resentation ability by enhancing structure learning with global and local feedback.
This enables the generator with additional discriminatory signals to achieve superior
results and stabilize the training process.

• This paper comprehensively analyzes the benchmark datasets and compares the
proposed method with the baseline methods.

2. Related Works
2.1. Unsupervised Object Segmentation via GANs

Unsupervised segmentation using GANs is an important topic in research. Several
works [4–7] investigate the use of compositional generative models to obtain high-quality
segmentation masks. Copy-pasting GAN [7] performs unsupervised object discovery by ex-
tracting foreground objects and then copying and pasting them onto different backgrounds.
Similarly, PerturbGAN [5] generates a foreground mask along with a background and
foreground image in an adversarial manner. Recently, Abdal et al. (2021) [6] proposed the
use of an alpha network that includes two pre-trained generators and a discriminator on
the StyleGAN to generate high-quality masks. These methods learn object segmentation
without needing to use annotations. However, they are prone to degenerate solutions or
other trivial cases. For example, the generator may not perform any segmentation, and
the background looks realistic, or the generator may segment foreground masks consist-
ing of all-ones. To avoid such problems, special care must be taken while training the
compositional generative models. Copy-pasting GAN uses anti-shortcut, border-zeroing,
blur, and grounded fakes to prevent trivial solutions [7]. PerturbGAN avoids such so-
lutions by randomly shifting object segments relative to the background [5]. However,
Abdal et al. (2021) [6] make several changes to the original StyleGAN and use a truncation
trick along with regularization to avoid degenerate solutions. While these methods achieve
object segmentation of foreground objects [23], the generated segmentation masks are often
inferior in quality. Furthermore, due to such non-trivial procedures, the training of GANs
becomes very challenging and complex [24].
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2.2. Self-Supervised Learning

Self-supervised learning belongs to unsupervised learning, which learns useful feature
representations from unlabeled data with the help of pretext tasks. It helps reduce the
enormous data collection and annotation cost [25,26]. The traditional way to do this is to
give the model some pretext tasks to solve. In this way, the networks learn good feature rep-
resentations with the help of pseudo labels created by the pretext tasks [27]. Recently, many
pretext tasks, and adversarial training, have been introduced [14–16,28,29]. The motivation
for using self-supervised learning in GANs is to (1) prevent discriminator forgetting [30];
(2) improve training stability [31]; (3) and ensure the high quality of image generated [32].
The self-supervision techniques rely on pretext tasks on geometric transformations (e.g., pre-
diction on rotated images[14], corrupted images [16], GAN-induced transformations [15],
clustering representations [28], or a deshuffling task that predicts the shuffled orders [29])
to increase the discriminator’s representation power. These self-supervised tasks may not
work well for segmentation due to the inherent differences between the classification and
segmentation tasks. In addition to this, image generation for segmentation requires GANs
to capture contextual information between the foreground object and the background,
which can be complicated in the absence of relevant visual representations. Unlike the
aforementioned methods, we incorporate segmentation using self-supervised learning
coupled with the Cut-and-Paste GAN to obtain high-quality segmentation masks. Most
importantly, with our self-supervised approach, no extra care is needed to deal with the
trivial solutions prevalent in compositional generative models.

3. Method

In this section, we first present the standard terminology of adversarial training and
the encoder–decoder discriminator. We then introduce our SS-CPGAN method built upon
the cut-and-paste adversarial training. The unified framework with the segmentation using
self-supervised task encourages the generator to emphasize local and global structures
while synthesizing masks.

3.1. Adversarial Training

We build a generative model in which the generator takes the foreground image as
the input and generates a composite image using a combination of the predicted mask, the
source foreground image, and the background image to fool the discriminator. Formally,
we define the input foreground source image as I f ∈ Pdata and the background image as
Ib ∈ Pdata, where Pdata denotes the set of input images. Now, we define a generator (G)
that is trained in an adversarial manner against the discriminator (D). During the training
process, the generator predicts a segmentation mask defined by mg(I f ) ∈ [0, 1]. Then, using
the predicted mask: mg(I f ); the foreground source image: I f ; and the resized background
image: Ib, we define the composite image as follows:

IC = mg(I f )I f + (1−mg(I f ))Ib (1)

The discriminator’s objective is to classify the composite image as real or fake. As
a result, the standard objective of the discriminator and the generator of the CPGAN is
defined as follows:

LD = E
[
log D(I f ) + log(1− D(IC))

]
(2)

LG = −E[log D(IC)] (3)

The discriminator works as a classification network restricted to learning only through
the discriminative differences between the real and fake samples. Thus, the discrimi-
nator fails to provide any useful information to the generator. Therefore, we use an en-
coder–decoder discriminator network with self-supervised learning to mitigate this problem.
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3.2. Encoder–Decoder Discriminator

In this work, we replace the standard classification discriminator with the U-net based
discriminator. The U-net is an encoder–decoder architecture that consists of a network
of convolutional layers, and skip connections for semantic segmentation [33–35]. It was
initially proposed for biomedical image segmentation, which achieved precise segmentation
results with few training images. Further, it demonstrates good results in other applications,
including geo-sciences [36], remote sensing [37], and others. Its architecture (see Figure 1)
is symmetric and consists of two paths: an encoder that extracts spatial features from the
input image (downscaling process), and a decoder that constructs the segmentation map
from the extracted feature maps (upscaling process). The use of U-net architecture in the
proposed model adds major advantages: (1) it enables the simultaneous use of the global
location and context while predicting masks; (2) it retains the full context of the input
images, which is a significant advantage over patch segmentation approaches [38].

We use the encoder part of the U-net as the standard classification discriminator that
performs the binary decision on real/fake composite images. Additionally, the decoder part
of the U-net architecture is utilized by the self-supervised task to give per-pixel feedback
on the synthesized images with the help of pseudo labels. This allows the discriminator to
learn relevant local and global differences between real and fake images.

Figure 1. An overview of U-net architecture. The different arrows denote the different operations
used in the encoder–decoder architecture.

3.3. Self-Supervised Cut-and-Paste GAN (SS-CPGAN)

To improve the representation learning ability of the CPGAN, the discriminator must
learn semantic and structural information from the synthesized images. Therefore, we use
self-supervised learning to build comprehensive representations for the CPGAN. In this
work, we employ a segmentation self-supervised task to enable the discriminator with
enhanced learned features that ultimately empower the generator to create consistent and
structurally coherent masks. The pseudo segmentation masks mUS(I f ) ∈ [0, 1] are created
using a graph unsupervised segmentation algorithm [39]. These masks obtained by the
GrabCut technique act as a suitable prior for the U-net discriminator (see, Figure 2 (top)).
Here, the discriminator performs two important tasks, i.e., (1) classification of real/fake
compositing images; and (2) performing per-pixel classification on I f ∈ Pdata to generate
segmentation masks. Given the self-supervised pseudo labels, we train the discriminator
for accurate pixel-level prediction. Integrating self-supervisory signals empowers the
discriminator by enhancing its localization ability and forces it to learn useful semantic
representations. This mechanism enables the generator to achieve optimized results and
makes the training process more stabilized.
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Figure 2. The proposed self-supervised cut-and-paste GAN (SS-CPGAN).

Formally, we define I f ∈ Pdata as the source image containing the foreground object,
and Pdata denotes the set of input images. Further, we create a pseudo label denoted
by mUS(I f ) ∈ [0, 1], using an unsupervised segmentation algorithm. Then, we define
mw(IC) ∈ [0, 1] as the pixel-wise segmentation mask produced by the decoder of the
discriminator. Hereafter, we optimize the overall discriminator loss function (Equation (5))
by augmenting a new self-supervision loss (Equation (4))

Lsel f−supervised = L
(

mw(IC), 1−mUS(I f )
)

(4)

L′D = LD + λLsel f−supervised (5)

where L is the cross-entropy loss, and λ denotes the loss weight for the self-supervision
loss. This hyperparameter is updated according to the comparison between mUS(I f ) and
mw(IC), using intersection-over-union (IoU). The details of the hyperparameter chosen are
explained in the implementation details section. The framework of self-supervised learning
is shown in Figure 2 (bottom).

4. Experimentation

This section discusses the implementation details of the proposed method and an
extensive set of experiments on various datasets.

4.1. Datasets

We utilize five different datasets for the foreground and background set to train our
SS-CPGAN as described below:

• Caltech-UCSD Birds (CUB) 200-2011 is a frequently used benchmark for unsupervised
image segmentation. It consists of 11,788 images from 200 bird species.

• Oxford 102 Flowers consists of 8189 images from 102 flower classes.
• FGVC Aircraft (Airplanes) contains 102 different aircraft model variants with 100 images

of each. This dataset was used initially for fine-grained visual categorization.
• MIT Places2 is a scene-centric dataset with more than 10 million images consisting of

over 400 unique scene classes. However, in the experiments, we use the classes rain-
forest, forest, sky, and swamp as a background set for the Caltech-UCSD Birds dataset,
and in the Oxford 102 Flowers, we use the class: herb garden as a background set.
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• Singapore Whole-sky IMaging CATegories (SWIMCAT)contains 784 images of five
categories: patterned clouds, clear sky, thick dark clouds, veil clouds, and thick white
clouds. We use the SWIMCAT dataset as a background set for the FGCV dataset.

We chose background datasets similar to the background of the images from the
foreground dataset. For the foreground datasets, we use Caltech-UCSD Birds (CUB) 200-
2011 [40], Oxford 102 Flowers [41], and FGCV Aircraft (Airplanes) [42]. During the training,
we do not utilize the masks available with datasets, Caltech-UCSD Birds, and Flowers-102.
For the background datasets, we use MIT Places2 [43], and SWIMCAT [44].

4.2. Experimental Setings

Our implementation used the PyTorch framework. For training our models, we deploy
a batch size of 16 and the Adam optimizer with an initial learning rate of 2× 10−4. The
training images are reshaped to 64× 64, 128× 128, and 256× 256. For the self-supervision
task, we use the GrabCut technique [39] as the unsupervised segmentation algorithm.

4.3. Hyper-Parameter Range

SS-CPGAN presents a new self-supervised loss, i.e., Lsel f−supervised, which needs to be
validated. As shown in Table 1, we present Structural similarity (SSIM) scores according to
different values of λ. The SSIM scores vary between the range of [0,1], with lower values
indicating the lower quality of generated images. During the experiments, we find that the
optimal values of the hyper-parameter can vary depending on the intersection-over-union
(IoU) score between the pseudo label (mask) and the predicted mask by the discriminator.
Initially, when IoU < 0.2, the hyperparameter value is set to 0.5 to boost the model’s ability
to learn useful representations from the pseudo label. When the 0.2 < IoU < 0.8, we refine
the predicted mask using the hyperparameter value λ of 0.1. To avoid the pseudo labels
compromising the predicted masks, we restrict the value λ to 0 when the IoU > 0.8.

Table 1. Validation of hyper-parameter choices for λ in the self-supervised loss.

SSIM ↑
lambda 0.1 0.5 1 10 100

SSIM 0.657 0.834 0.450 0.421 0.125

4.4. Results

We utilized the Fréchet inception distance (FID) score and mean Intersection over
Union (mIoU) metric for the quantitative evaluation of our methods. In this work, we
use the FID score on the datasets CUB2011, Oxford 102 Flowers, and FGCV Aircraft (see
Table 2) to compare the SS-CPGAN model with the CPGAN model images spatially scaled
to 64× 64, 128× 128, and 256× 256. For the datasets with available ground truth masks,
including CUB2011, and Oxford 102 Flowers, we use the mIoU metric as shown in Table 3.

Table 2. FID comparison of the proposed method with the baseline CPGAN model.

FID ↓

Methods Image Size
Caltech

UCSD-Bird 200
FGCV-
Aircraft

Oxford
102 Flowers

CPGAN
64 × 64 26.724 43.353 81.724

128 × 128 23.002 39.674 44.825
256 × 256 21.346 44.825 51.218

SS-CPGAN
64 × 64 22.342 39.578 63.343

128 × 128 15.634 37.756 54.982
256 × 256 13.113 33.149 49.181
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Table 3. mIOU comparison of the proposed method with the baseline CPGAN model.

mIoU ↑

Methods Image Size
Caltech

UCSD-Bird 200
Oxford

102 Flowers

w/o Self-Supervision
64 × 64 0.537 0.632

128 × 128 0.492 0.674
256 × 256 0.484 0.779

Self-Supervision 64 × 64 0.571 0.625
128 × 128 0.543 0.719
256 × 256 0.518 0.791

In Figure 3, we report the FID scores over the training iterations. We show that our
method stabilizes GAN training across all of the datasets by allowing GAN training to
converge faster and consistently improve performance throughout the training. According
to Figure 3, our method, SS-CPGAN, utilizing self-supervision outperforms the baseline
method, CPGAN, on each dataset used. Furthermore, as shown in Figure 4, the generated
masks and composite images of our proposed SS-CPGAN are of superior quality. The
standard classification discriminator of CPGAN does not provide effective guidance to the
generator. During the training, the standard discriminator is not encouraged to learn more
robust data representation. The classification task learns only the representation based
on the discriminative differences between real/fake images and fails to give information
on why the synthesized image looks fake. Notably, our self-supervision task assigned to
the U-net discriminator provides the generator with global feedback (real or fake) and
per-pixel feedback of the masks with the help of pseudo labels. The self-supervisory signals
prevent the two scenarios for the generator, which the standard discriminator fails to do,
i.e., creating constant masks of only all-zeros pixel values or all-ones pixel values. The
enhanced discriminator of SS-CPGAN influences the generator to create high quality masks
that are devoid of any such anomalies. As shown in Figure 4, the qualitative analysis of
the proposed SS-CPGAN shows that the generated masks and composite images are of
superior quality.

Figure 3. FID training curves for CPGAN and SS-CPGAN on the datasets: CUB2011, Flowers 102,
and FGCV).
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Figure 4. Visualization results with the proposed SS-CPGAN on the datasets: Oxford 102 Flowers
(left), FGVC Aircraft (center), and Caltech-UCSD Birds (CUB) 200-2011 (right).

4.5. Comparison with the State-of-the-Art

We compare our self-supervision-based Cut-and-Paste GAN (SS-CPGAN) with state-
of-the-art. As shown in Table 4, we report and compare the FID score on the Caltech
UCSD-Bird 200 dataset. Specifically, the FID scores of StackGANv2 [45], OneGAN [46], LR-
GAN [47], ELGAN [48], and FineGAN [49] are listed. The results in Table 4 show that our
method delivers better performance and outperforms the existing methods. LR-GAN [47]
performed the worst, followed by the other methods. The low performance of layer-wise
GANs [47,48] is attributed to the fact that these methods are prone to degenerate during the
training phase, with all the pixels being assigned as one component. In Table 5, we compare
the performance of our method to the recent methods using the mIoU metric on Caltech
UCSD-Bird 200 and Oxford flowers-102 respectively. In comparison to PerturbGAN [5],
ContraCAM [50], ReDO [4], UISB [51], and IIC-seg [52], our method outperforms by a large
margin on the Caltech UCSD-Bird 200 dataset. On the Oxford flowers-102 dataset, we
perform better than the methods ReDO [4], Kyriazi et. al [53] and Voynov et. al. [54]. Here,
ReDO and Kyriazi et. al (2021) are unsupervised approaches, whereas Voynov et. al (2021)
is a weakly supervised approach to create segmentation maps. The ability to leverage
pseudo labels in the training of Cut-and-Paste GAN assists in creating foreground masks of
superior quality.

Table 4. FID comparison of our proposed method SS-CPGAN with the state-of-art on Caltech
UCSD-Bird 200 dataset.

Method FID

StackGANv2 21.4
FineGAN 23.0
OneGAN 20.5
LR-GAN 34.91
ELGAN 15.7

SS-CPGAN 13.11
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Table 5. Quantitative comparison of the segmentation performance of our method SS-CPGAN with
the state-of-art.

Dataset Method mIoU

Caltech UCSD-Bird 200

PerturbGAN 0.380
ContraCAM 0.460

ReDO 0.426
UISB 0.442

IIC-seg 0.365
SS-CPGAN 0.571

Oxford 102 flowers

ReDO 0.764
Kyriazi et. al. 0.541
Voynov et al. 0.540
SS-CPGAN 0.791

5. Conclusions

In this work, we proposed a novel Self-Supervised Cut-and-Paste GAN method to
learn object segmentation. Specifically, we unified the cut-and-paste adversarial train-
ing with the proposed segmentation based self-supervision learning. Unlike the existing
transformation self-supervised methods, our method improves the discriminator’s rep-
resentation ability by enhancing structure learning with global and local feedback from
the synthesized masks. Furthermore, SS-CPGAN overcomes the issue of unwanted trivial
solutions (generating constant masks of only all-zeros or all-ones pixel values) that plagues
the generator. The experimental results show that our approach generates superior quality
images and achieves promising results on the benchmark datasets.
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