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Vital Sign Monitoring in Dynamic Environment
via mmWave Radar and Camera Fusion

Yingqi Wang, Student Member, IEEE, Zhongqin Wang, J. Andrew Zhang, Senior Member, IEEE , Haimin
Zhang, and Min Xu, Member, IEEE

Abstract—Contact-free vital sign monitoring, which uses wireless signals for recognizing human vital signs (i.e, breath and heartbeat),
is an attractive solution to health and security. However, the subject’s body movement and the change in actual environments can result
in inaccurate frequency estimation of heartbeat and respiratory. In this paper, we propose a robust mmWave radar and camera fusion
system for monitoring vital signs, which can perform consistently well in dynamic scenarios, e.g., when some people move around the
subject to be tracked, or a subject waves his/her arms and marches on the spot. Three major processing modules are developed in the
system, to enable robust sensing. Firstly, we utilize a camera to assist a mmWave radar to accurately localize the subjects of interest.
Secondly, we exploit the calculated subject position to form transmitting and receiving beamformers, which can improve the reflected
power from the targets and weaken the impact of dynamic interference. Thirdly, we propose a weighted multi-channel Variational Mode
Decomposition (WMC-VMD) algorithm to separate the weak vital sign signals from the dynamic ones due to subject’s body movement.
Experimental results show that, the 90th percentile errors in respiration rate (RR) and heartbeat rate (HR) are less than 0.5 RPM
(respirations per minute) and 6 BPM (beats per minute), respectively.

Index Terms—Contact-free Sensing, Millimeter Wave Radar, Computer Vision, Vital Signs Monitoring.

✦

1 INTRODUCTION

R ECENT years have witnessed the rapid development
of vital sign monitoring. Under the COVID-19 crisis,

the demand for vital sign monitoring systems for tracking
patients’ health conditions becomes more urgent. Tradi-
tional vital sign measurements based on PPG and ECG
sensors require wearing electrodes or chest bands, which are
uncomfortable and inconvenient for some users like infants
or burned patients. In this case, the technology of contact-
free vital sign monitoring has been indispensable for today’s
healthcare systems.

Currently, Radio frequency (RF) based sensing methods
have been widely investigated in contact-free vital sign
monitoring [1], [2], [3], [4]. It is achieved by capturing
the tiny shift from the chest caused by heartbeat and res-
piratory movements. (1) WiFi. WiFi-based monitoring has
been explored due to its easy availability and cost-saving
infrastructures [5], [6]. Some works [7], [8], [9], [10] apply the
channel state information (CSI) to sense the chest movement
since the CSI contains the phase information, which could
provide a much higher sensing resolution than the received
signal strength (RSS). However, most commercial off-the-
shelf (COTS) WiFi devices cannot provide high enough
bandwidth to separate multi-path noise in different range
dimensions. Also, the transmitter and receiver are required
to be deployed separately. (2) Portable COTS mmWave radar.
Currently, the COTS mmWave radars [11] have also received
increasing attention. They are typically developed based on
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the FMCW technique and can achieve higher range and
velocity resolutions. Furthermore, they enable us to locate
and distinguish different targets of interest. In this case, it
is becoming the mainstream choice in the field of multi-
target vital sign detection. However, most of the existing
works [12], [13], [14] ignore the multipath and dynamic in-
terference caused by the environment and moving persons
in actual deployments and setup in an ideal environment. In
fact, daily life sensing scenarios could be more complicated.
For example, for indoor healthcare, the users may stay at
a spot such as sofa, desk or table for a long time and
perform activities such as computer work, exercise and
entertainment, while other family members may walk past
them in the room from time to time. Such complicated
environment brings three challenges in contact-free vital
sign monitoring, which have not been thoroughly addressed
yet in the literature.

1) Accurate localization of static person of interest in
dynamic scenarios is challenging. In practice, there are var-
ious static objects in different places. All of these will reflect
the signals generated by RF device, causing the multipath
effect. The multipath signal will result in a fake person
object. It is very challenging to identify which one is the
real target without any prior knowledge. Consequently, the
range-bin data from the COTS mmWave radars may be
wrongly chosen for vital sign recognition.

2) The movements of nearby people in space can cause
interference. When other persons near to the person to be
monitored are moving, they can cause strong reflections to
disturb the localization of the target and bury the slight
movement of breathing and heartbeat. The conventional
range-doppler [15] highlights dynamic objects via the veloc-
ity. But it could become less efficient for separating location-
fixed targets from static background objects, as both have
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near zero doppler frequencies. We call it as range overlap-
ping phenomenon in this paper. Estimating vital signs from
this condition is challenging.

3) The motion of the target may severely interfere with
the vital sign estimation. In an actual environment, even if a
subject is located on the same spots or sits on a chair, he/she
cannot keep entirely static [16], [17]. The target might move
the body parts such as arms, torsos and limbs at any time.
The COTS mmWave radar cannot provide a high enough
angle resolution, so it is difficult to identify the precise
position of the chest for recognition. As a result, the vital
sign signals will be blocked by these body-motion noise.

In this paper, we propose a hybrid multi-objective vi-
tal sign monitoring scheme, called Vision-assisted radar
Vital Sign Monitor (VaR-VSM). This scheme is capable of
monitoring vital signs for the location-fixed human target
stably in the presence of interferences from both body
movements of the target and the movement of other peo-
ple. In other words, our scheme can achieve reliable vital
sign detection for location-fixed target in a multi-people
environment, where the target may have body parts move-
ment and people not being monitored can move around. It
firstly fuses a camera and COTS mmWave radar to localize
the person of interest. Once the positions of targets are
identified, the beamforming techniques are simultaneously
performed on Tx and Rx antennas to improve the signal-
to-noise ratio (SNR) of received echoes from the targets. To
suppress the effect of the subject’s body motion, we propose
weighted-multi-channel Variational Mode Decomposition
(WMC-VMD) which is an enhanced version of VMD [18].
Although our scheme is designed and optimized primarily
for sensing location-fixed targets, it is also capable of sensing
moving targets and can still work in partially blocked trans-
mission (with light obstacles between radar and targets).
Our main contributions are summarized below:

1) We introduce a method using the object detection
algorithm in computer vision to detect all people and locate
the target in the scenario. We then use the COTS mmWave
radar to generate the angle-of-arrival (AoA) heatmap in the
range and angle dimensions. On this basis, we map the
detected image objects to the AoA heatmap for accurate
target localization. Compared to the pure mmWave localiza-
tion methods [11], [19], the proposed fusion scheme could
significantly reduce the false positive error.

2) We propose to use real-time transmit and receive
beamforming to enhance the energy of the radar echoes
from the targets and reduce the interference from interfering
objects. Leveraging the calculated position information, we
apply the Transmitting beamforming (Tx-BF) and Receiving
beamforming (Rx-BF) and control the main lobe of the
transmitting antennas toward certain directions. We also
calculate the position-based beamforming weights to further
suppress the effect of noise in unwanted directions. By com-
bining the two beamforming methods, we can effectively
improve the SNR and reduce the interference from nearby
persons.

3) We propose the WMC-VMD method to reduce the
effect of the body motion of the target. The method can
adaptively leverage the information of multiple channels
from range bins to improve the decomposition efficiency
and suppress the motion impact caused by body motion. A

strategy to accelerate the computation of WMC-VMD is also
proposed to fulfill real-time application.

4) We build a prototype to validate the proposed sys-
tem VMVSM. Experimental results show that in the actual
interference environment, the 90th percentile errors in respi-
ratory and heartbeat rates are less than 0.5 RPM and 6 BPM,
respectively. The estimation accuracy is much higher than
what can be achieved by state-of-the-art technologies.

2 RELATED WORK

Some existing works have been conducted to tackle the
above-mentioned challenges. The work [20] employs differ-
ent radar layouts to detect breath during sleeping scenarios
when body motion happens. Nonetheless, it requires to
manually adjust the sensor position according to different
gestures. Another work [21] based on the rotation of Rx and
Tx antennas can detect posture change whereas the extra
mechanical rotator is required. Vital-Radio [22] considers
that the limb motion pattern is aperiodic and uses this
property to filter the vital sign signal. WiSpiro [23] trains
a neural network to recognize the body motion to navigate
the radar to move to the front of the target. But it requires a
large rail to place the system.

Despite that no work has fully resolved the second
challenge, there are still some inspiring works that have
demonstrated the potential. Independent component anal-
ysis (ICA) based algorithms have been investigated in the
works [24], [25], which are capable of separating different vi-
tal signs from the targets. However, ICA requires the dimen-
sion of observation to be equal to or higher than the number
of sources, which is not always available for radars. Beam
sensing-based methods are investigated in mmVital [26]. In
this work, reflection loss is calculated to localize and direct
the antennas to point toward the target. Similarly, Vimo
[27] leverages 2-D antenna scanning to localize the object
and applies smoothing spline and dynamic programming
(DP) to get RR and HR. Its disadvantage is that scanning
the beam over the whole space will cost extra time, which
will adversely affect real-time performance. Beamforming of
MIMO radar has also been found to be effective to enhance
the signal from the targets [19], [28], [29], but these works
do not provide experiments to validate the efficiency in the
circumstances of moving interference sources.

Recently, many data-driven deep learning models [30],
[31] are proposed to filter out the original heartbeat and
breath waveform. RF-SCG [32] applies a convolutional neu-
ral network (CNN) to reconstruct accurate seismocardiog-
raphy and effectively overcome the impact of the dynamic
environment. MoVi-Fi [33] and MoRe-Fi [34] respectively
exploit multiple layer Multilayer perceptron (MLP) and
Variational Encoder-decoder network (VAE) to eliminate the
body part motion interference and refine heart and breath
waveform. However, these methods always require a large
amount of well-labeled training data collected in the RF
fields, which is a very time-consuming process.
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Fig. 1: Signal propagation in practical environment

3 SIGNAL MODELS IN DYNAMIC ENVIRONMENT

3.1 Ideal Signal Models in COTS MmWave Radar Sys-
tems

The operation of a mmWave radar has been investigated
in detail in previous works [19], [35]. An FMCW radar pe-
riodically transmits a series of linearly-increasing frequency
signals, called chirps. The period of transmission is T , called
pulse repetition interval (PRI). Each chirp lasts the time
duration Tc. During each chirp, the frequency starts from
fc and increases by the bandwidth B. Then the transmitted
signal is given by

xT (t) = AT e
j2π(fct+

B
2Tc

t2+φ0). (1)

where AT is the transmitted amplitude and φ0 is the initial
phase which is a constant. For a static target located at radial
range R, after the round-trip delay τ = 2R

c (c is speed of
light), the received signal due to the reflected factor β is
described as

y(t) = βAT e
j2π(fc(t−τ)+ B

2Tc
(t−τ)2+φ0). (2)

After I/Q demodulation and range correlation, we can
omit the constant phase value φ0 and B

2Tc
τ2 (small in

practice) and then obtain

y(t) = ARe
j2π(αRt+ 2R

λ ), (3)

where α = 2B
cTc

, λ is the wavelength of the transmitted
signal, Ak is the amplitude of response of the received
signal.

In the case of MIMO mmWave radar with a uniform lin-
ear array (ULA), the interval between neighboring antennas
is d. If the target is located at the angle of θ with respect to
the radar, the signal received by the kth antenna is expressed
as:

yk(t) = Ake
j2π(αRt+ 2R

λ + kdsinθ
λ ). (4)

3.2 Our Model for Vital Sign Monitoring in Dynamic
Scenario

As shown in Fig. 1, the above-mentioned model cannot
work well in practice due to the static multipath, the body

motion of the target and the dynamic environment (when
another person passes by). In this case, we rebuild the signal
model by adding the following three interference factors:
static objects, target of monitoring and other moving people.

1) Static Objects. Assuming that there are L static objects
in space and the l-th is located at the range Rl and angle
θl. The total received signal received by the kth antenna is
expressed as:

yst(t, k) =

L−1∑
l=0

Al,ke
j2π(αRlt+

2Rl
λ + kdsinθ

λ ), (5)

where Al,k is the amplitude of the signal reflected by the lth

object and received by the kth antenna.
2) Monitored Target. The signal model that includes the

target is more complicated. Since the chest movement and
body motion will cause small range variation, even though
the target is at the same position, the signal propagation
distance R will vary over time. Therefore, we re-write the
range as

R(t) = Rtar(t) +△Rtar(t), (6)

where △Rtar(t) represents the small time-varying shift
caused by the body movement. Here Rtar(t) denotes the
nominal range at t. For a monitored target who stays in
the same spot, the nominal range is constant. Thus, the
received signal of the target person at the kth antenna can
be represented as:

ytar(t, k) = Atar,ke
j2π(αRtart+

2Rtar+2△Rtar(t)
λ +

kdsinθtar
λ ).

(7)
3) Other Moving People. For other people walking in

space, the signal models not only contain the body motion
△Rp(t), with a similar expression to that for the target, but
also includes the changes on nominal range Rp(t), angle
θp(t) and reflected factor. Assuming that there are P people
(in addition to the target person) moving in space, the
received signal is expressed by:

ym(t, k) =

P−1∑
p=0

Ap,k(t)e
j2π(αRp(t)t+

2Rp(t)+2△Rp(t)

λ +
kdsinθp(t)

λ ).

(8)
4) Signal Model after Sampling. The signal is sampled

and discretized by an Analog/Digital Converter(ADC) after
I/Q demodulation. Hence, let

t = nTf +mTc (9)

be the time of the nth sample in the mth chirp and Tf

denotes the sample interval during a chirp. Then the signal
can be represented by the fast time n, slow time m and
antenna k in three dimensions. After simplification, the
signal in the dynamic scenario is finally expressed by:

ydy(n,m, k) = yst(n,m, k) + ytar(n,m, k) + ym(n,m, k),
(10)
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where

yst(n,m, k) =

L−1∑
l=0

Al,ke
j2π(αRln+

2Rl
λ +

kdsinθl
λ ),

ytar(n,m, k)

= Atar,ke
j2π(αRtarn+

2Rtar+2△Rtar(m)
λ +

kdsinθtar
λ ),

ym(n,m, k)

=

P−1∑
p=0

Ap,k(m)ej2π(αRp(m)n+
2Rp(m)+2△Rp(m)

λ +
kdsinθp(m)

λ ).

(11)
Our model reveals that in order to obtain vital signs,

we need to first estimate the target’s location (range Rtar

and angle θtar) of the target and then extract the phase
(△Rtar). Specifically, moving people and static objects are
major hurdles for locating the target. Their signal ampli-
tudes could be larger than the target’s and be time-varying
(moving people). Also, the moving people will cause noise
superimposed on the phase of the target when they walk
close to the target.

Furthermore, △Rtar contains four major components:
(a) heartbeat, (b) respiratory, (c) vibration caused by body
part movement, (d) noise caused by moving people nearby.
It is noticed that the four components of the received signal
could overlap in the frequency domain, which reveals that a
classical filter cannot separate vital signs from other compo-
nents. In the following, we aim to propose a novel scheme
to achieve accurate localization and adaptive refinement of
vital signs.

4 SYSTEM OVERVIEW

This work presents a fusion system VaR-VSM that enables
dynamic vital sign monitoring using a camera and a MIMO
mmWave radar. Our scheme is developed by referring to the
COTS mmWave device TI AWR1843. It contains 3 transmit-
ting antennas and 4 receiving antennas. A camera (Kinect
V2) is mounted closely with the radar, which works with the
radar synchronously. Although Kinect can provide depth
+ RGB, but only RGB is used in our scheme. There is no
difference between Kinect and a conventional RGB camera
when Kinect only outputs RGB images. Fig. 2 illustrates the
workflow of our system. The function of each major pro-
cessing module is summarized below and will be discussed
in detail later.

1) Camera and mmWave Radar Fusion Localization.
The COTS mmWave radar performs the 1D range FFT on
the raw RadarCube in the fast time dimension. This step
is directly completed in the radar hardware layer. We use
the 1D FFT data output for AoA estimation and obtain
the range-angle heatmap. Meanwhile, the camera captures
the image stream and we perform a deep-learning based
object detection framework on the images. Thus, we fuse
the range-angle heatmap and contours of detected persons
for accurate localization. The details will be described in
Section 4.

2) Location-based Noise Suppression. Once the position
of each target is identified, beamforming techniques are
adopted to improve the SNR of the signal reflected by the

target and mitigate the interference from other people. This
consists of Tx-BF and Rx-BF. Tx-BF is implemented by shift-
ing the phase of each transmitter. The main beam formed by
Tx-BF can point towards the target. Rx-BF determines a set
of weights that form a receive beam pointing to target too. It
enables the received signal to yield maximum powerin this
direction. This part will be presented in detail in Section 5.

3) Motion-tolerant Vital Sign Estimation. To reduce the
impact of motion interference, we propose a vital signal
reconstruction method by optimizing the variance of the
signal phase over successive range bins. Further, we propose
the approaches of signal mode estimation and PSE (Power
Spectral Entropy) evaluation to automatically measure the
mode number of the signal and accelerate the computation.
Based on this, heart rate and respiratory rate are calculated
by performing FFT over the reconstructed vital sign wave-
form. The details will be presented in Section 6.

5 CAMERA AND MMWAVE RADAR FUSION LOCAL-
IZATION

Radar-Camera fusion has been investigated in the field of
autonomous driving, for tracking or obtaining the high-
resolution position of targets [36], [37]. It mainly exploits
the high angular resolution of camera and high depth res-
olution of radar to locate the targets of interest. Inspired
by this, we introduce camera to radar sensing to separate
location-fixed targets and moving interferers, by leveraging
the object detection frame in the angular domain. Different
from these works which focus on fusing radar points and
camera, fusing range-angle heatmap and camera is pro-
posed in this work. Even when two persons are close to each
other, camera can still separate them by the higher angular
resolution, which is hardly achievable by mmWave radar
with a limited number of antennas. With the assistance of
camera, the radar can perform further noise suppression
and lower-interference sensing. However, unlike in existing
radar-camera fusion, we face new challenges of (1) how to
select the static human objects from all the detected objects
including moving individuals and static furniture and (2)
how to obtain the depth (distance) of the target of interest.
This section describes a method to pinpoint the subjects of
interest by fusing the target contour from images and the
range-angle heatmap from the mmWave data.

5.1 Target Contour Acquisition from Camera

The image stream is captured by a camera mounted on
the radar (shown in Fig. 3). The resolution of the image
is 1920 × 1080 pixels. The frame rate is set to 30 FPS. We
manually calibrate the orientation and height of the camera
lens to align the Field of View (FOV) of the camera with
that of the mmWave radar. Once an image is collected, we
apply an object detector YOLO V5 [38] to detect all targets
of interest, each of which is bounded with a rectangle box
on the image. Since the YOLO detector enables to classify
as many as 80 classes, there exist many redundant and
undesirable bounding boxes containing non-human objects.
Hence, those bounding boxes only including the person are
automatically selected by reprogramming YOLO. Further,
there still exist many similar bounding boxes around each
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Fig. 2: System workflow

Fig. 3: Mmwave radar and camera

person target. To eliminate the ambiguity of the target of
interest, we utilize the non-maximum suppression (NMS)
[38] algorithm to remove those redundant boxes and obtain
the optimal one.

5.2 Range-angle Heatmap from MmWave Radar

As shown in Fig. 4, the heatmap is generated by stacking the
AoA spectrum over all range bins. Firstly, the radar receives
the reflected signal and performs I/Q demodulation. The
output of this step is called intermediate-frequency (IF)
signal. As described in Section 2, the spectrum of range can
be estimated by performing FFT on IF signal of all channels
over the fast time dimension. In this paper, the RadarCube
is defined as the output of this step. The spatial FFT method
is commonly used to obtain the AoA spectrum. However,
there only exists a small number of receiving elements
in the COTS mmWave radar, evenwhen the virtual-array
technique is used. For example, the mmWave radar used

fast time
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Fig. 4: Heatmap generation flow

in our system has a total of 8 virtual receiving antennas in
the azimuth direction. The FFT method could not provide a
high enough AoA resolution. Although the method of zero-
padding is often utilized in FFT, there exists serious spectral
leakage and is incapable of separating those closely located
objects. Instead, we introduce the minimum variance dis-
tortionless response (MVDR) [39] algorithm to obtain fine-
grained AoA spectrum.

5.3 Stationary Person Localization

Once the range-angle heatmap is acquired, the 2D position
of the monitored target could be estimated by fusing the
contour and peaks in the heatmap. At first, the angular field
of view (AFOV) of the camera ranges from -60 degrees to
+60 degrees, which is set by the manufacturer. The AFOV of
the mmWave radar can cover the range of -90 degrees to +90
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degrees. However, the main lobe of the radar transmitter
used in the experiment only focuses within the range of
about ±60 degrees. The beam gain in other directions is
much less than the main lobe’s, which makes the radar hard
to accurately sense the objects. In this case, the searching
range of AoA in the MVDR algorithm is set to ±60 degrees,
thereby achieving the AFOV matching between the camera
and mmWave radar.

In real environments, there may exist multiple persons.
We leverage the camera data to filter out the stationary
targets of interest for vital sign recognition. Note that only
the locations of these targets are required to be unchanged,
while their body parts may still have some movement.
The output of the image-based YOLO detector includes the
coordinate of the start point (x, y), width w and height h of
all people contours. When a person is moving, its start point
and width may change over time. For the target person
these values are almost constant. In this case, we can set
two thresholds to remove those bounding boxes of moving
targets. If the change in the start points (or widths) of the
bounding boxes corresponding to a person is larger than the
predefined threshold, we consider him/her as the moving
target and thereby ignore the bounding box. After that, we
can map the pixels of the stationary persons in the image
into the angle bins on the heatmap. The optimal AoA of each
target can be obtained by searching the maximum values
within the width of the corresponding bounding box. This
can be expressed by:

Rtar, θtar = argmax
R∈[0,10]

θ∈ Pang
Pimg

[x,x+w]

Hm(R, θ), (12)

where Hm denotes the range-angle heatmap estimated by
MVDR (0 to 10 represents the corresponding range values
on the heatmap and θ is obtained by remapping the image
pixels to the heatmap). Pang and Pimg respectively represent
the numbers of angle bins of range-angle heatmap and
pixels of the image.

6 LOCATION-BASED NOISE SUPPRESSION

In this section, we exploit the location-based beamforming
technique to suppress the impact of range bin overlap-
ping caused by moving persons. They may have the same
distance from a static person to the mmWave radar but
in different directions. Tx-BF and Rx-BF are combined to
handle this issue.

6.1 Beamforming at Transmitter

Tx-BF can physically control the transmitter beam to form
the desired beam pattern. The main beam lobe can be
changed to steer towards the direction of interest by con-
trolling the phase of the transmitting signal on each antenna
(shown in Fig. 6a).

The COTS mmWave radar used in our system has three
Tx antennas spaced by d. As described above, the position
of each stationary target to be tracked is calculated. To steer
the beam towards the target direction θtar , we firstly define
the phase-shift beamforming weights vector,

wtx = [1, ej2π
d
λ sinθtar , ej2π

2d
λ sinθtar ]. (13)

Then we multiply the original transmitting signal xT (t) by
the beamforming weight wtx to obtain

xT,0(t) = AT e
j2π(fct+

B
2Tc

t2+φ0)

xT,1(t) = AT e
j2π(fct+

B
2Tc

t2+ d
λ sinθtar+φ0)

xT,2(t) = AT e
j2π(fct+

B
2Tc

t2+ 2d
λ sinθtar+φ0)

. (14)

In this case, the radar can transmit the main beam in a
specific direction θtar. It can enhance the signal strength of
the stationary person in a certain direction and attenuate the
reflected signals of moving persons in other directions.

Unfortunately, if the spacing between two adjacent an-
tennas is larger than half a wavelength, the modified radia-
tion pattern has multiple main beams. Fig. 6b illustrates the
antenna layout of the radar in our experiment. The distance
between each transmitter is λ, the wavelength of the carrier
signal. The radar generates two main lobes, shown in Fig. 6c.
The desired direction is 30 degrees while there is an extra
beam pointing towards -30 degrees. In this case, if there
is an undesired object located at -30 degrees, the signal
will still be interfered since there is no attenuation on the
beam response from that angle. In the following, we will use
the receiving beamforming in the digital domain to further
suppress the interference from other undesired directions.

6.2 Beamforming at Receiver

Rx-BF is performed over the receiving antennas. It aims to
use a set of weights to maximize the power from the specific
direction in digital domain.

To maximize the received signal power for each target,
we can use the estimated AoA θ to compute the beamform-
ing weights wrx, i.e.,

wrx = [1, ej2π
dr
λ sinθ, ..., ej2π

(L−1)dr
λ sinθ], (15)

where L and dr denote the number and distance of receiving
antennas, respectively.
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Fig. 6: Beamforming in AWR1843

Finally, we use the above RX weights to combine all
received signals and then obtain

ȳ(t) =

L−1∑
l=0

w∗
rx(l)xl(t) = wH

rxx(t), (16)

where the symbols ∗ and H denote the conjugate and
conjugate transpose operations, respectively. Fig. 6d shows
the extra lobe is eliminated by Rx-BF and the overall beam
concentrates the direction of 30 degree.

7 MOTION-TOLERANT VITAL SIGN ESTIMATION

This section describes the proposed weighted multi-channel
variational mode decomposition (WMC-VMD) and uses it
to estimate vital signs. The optimization weights calcula-
tion, parameter selection and acceleration methods are also
introduced in this section.

7.1 Vital Sign Estimation by Weighted Multi-channel
Variational Mode Decomposition
To estimate vital signs, we need to extract phase from the
target’s range bin by phase demodulation and compensa-
tion [28], [40]. However, there are at least 4 components
contained in extracted phase sequence: heartbeat, respira-
tory, body movement and range overlapping. Although the
target has been separated by beamforming, there are still
two issues.

Firstly, the short-term body motion of the target may
cause interference signals with frequencies close to those of
the respiratory and heartbeat signals. Therefore, traditional
filters, such as Butterworth filter, cannot accurately extract
vital signs. The VMD algorithm [18] has the potential to
address this issue. It aims to estimate the Intrinsic Mode
Functions (IMFs) with the assumption that each mode of
the signal is around a central frequency with a narrow
bandwidth. Then It leverages Alternating Direction Method
of Multipliers (ADMM) to concurrently calculate the central
frequency and mode function.

However, another issue is that the slight body motion
may result in the change of the predefined range bin cal-
culated in Section 5. It is hard to predict which range bin
the person will be located at in each sampling time. The

only prior knowledge is that the nominal position of the
target is roughly unchanged. Therefore, it is necessary to
fuse the phase sequence from the adjacent range bins of
the target. In this case, the VMD becomes ineffective since
it only supports the decomposition of the single-dimension
signal. The improved MS-VMD [17] is capable of dealing
with the high-dimension signals by equally adding up each
dimension in the optimization procedure. But this operation
cannot pinpoint the signal from the true range bin the target
is located in.

In this work, we propose weighted multi-channel VMD
(WMC-VMD), which is capable of adaptively combining
the phase sequence from multiple range bins to estimate
the IMFs. In WMC-VMD, we introduce a set of adaptive
weights wl (the notation l denotes the lth range bin) to
sum up the phase sequence from different range bins. These
weights can eliminate the offsets among different range bins
and remap the phase sequence in the same scale. Since the
phase sequence from each range bin contains the vital sign,
each sequence is optimized individually.

The proposed algorithm WMC-VMD will be detailed in
Algorithm 1, consisting of the following steps: 1) applying
Hilbert transform in phase sequence to obtain the analytic
signal, 2) for each mode uk, mixing it with a complex
exponential of the center frequency to shift its spectrum
to the baseband, 3) different with VMD-based methods,
the baseband of uk is estimated by squared l2-norm of the
gradient with the operation of weighted summation on each
phase sequence from multi-range bins. Specifically, WMC-
VMD is modeled as:

min
uk,wk

K∑
k=1

L∑
l=1

∥∥∥∥∂t[(δ(t) + j

πt
) ∗ uk(t)]e

−jωkt

∥∥∥∥2
2

s.t.

K∑
k=1

uk(t) = wlsl(t),

(17)

where K and L respectively represent the number of modes
and channels, wl denotes the adaptive weight (the calcula-
tion will be introduced in Section 7.2), and sl(t) represents
the phase sequence of the lth range bin. The augmented
Lagrangian function is formed to solve this problem. With
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the constraints of weighted multiple linear equations, it
becomes:

L =

K∑
k=1

L∑
l=1

∥∥∥∥∂t[(δ(t) + j

πt
) ∗ uk(t)]e

−jωkt

∥∥∥∥2
2

+

L∑
l=1

∥∥∥∥∥wlsl(t)−
K∑

k=1

uk(t)

∥∥∥∥∥
2

2

+

L∑
l=1

⟨λl(t), wlsl(t)−
K∑

k=1

uk(t)⟩.

(18)
This task is divided into updating the IMF and cen-

ter frequency of each mode. Based on Parseval/Plancherel
Fourier isometry under the l2-norm, we can convert this
optimization problem from the time domain to frequency
domain and perform iterative sub-optimization by ADMM,
the final updating results of IMF and center frequency can
be obtained as

ûn+1
k (ω) =

∑L
l=1[wlSl(ω)−

∑
i ̸=k û

n+1
i (ω) +

λ̂n
l (ω)
2 ]

L+ 2(ω − ωk
n)2

, (19)

and

ω̂n+1
k =

∫∞
0

ω
∣∣ûn+1

k (ω)
∣∣2 dω∫∞

0

∣∣ûn+1
k (ω)

∣∣2 dω . (20)

7.2 Weights Calculation
In the above section, a set of adaptive weights are in-
troduced to fuse the phase sequences from range bins.
Specifically, when a target is staying stationary, the range
bins around the target all contain the vital signs but with
different amplitudes. If there is a small range shift, other
range bins will have stronger vital signs. Since this process
could occur at any time, the phase sequence from one range
bin could be suppressed for a moment while others are on
the contrary. Based on this, we propose a method that aims
to identify a set of weights w to minimize the variance of
signal from multiple channels. By multiplying these weights
in WMC-VMD, the variability of phase sequence from all
range bins will be normalized to the same scale to improve
the decomposition results. To calculate the weights, we
define the following optimization problem:

min
w

wTssTw

s.t.

L−1∑
l=0

wl = 1,
(21)

where s ∈ RL×N is N phase samples extracted from L
continuous range bins.

To solve this constrained optimization problem, we ap-
ply the Lagrange multipliers to obtain the weight w,

w =
(ssT )−1I

IT (ssT )−1I
, (22)

where I is a vector with a size of 1× L and each element is
1.

7.3 Parameter Selection
In the existing VMD-based algorithm, the number of modes
K needs to be identified as a prior. The selection of K will
significantly impact on the decomposition and optimization.
Intuitively, K is supposed to be 4 (heartbeat, respiratory,
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Fig. 7: PSE Analysis

body movement and passenger’s range overlapping) based
on the empirical assumption for the number of signal
sources. However, this cannot work efficiently in this work
because in the real environment, when the target moves
the body parts, the mode number cannot be guaranteed
to remain unchanged. For instance, the target may move
the arms together with the legs (even the torso). Since the
movements caused by arms and legs are much more salient
than heartbeat and breath, K needs to be at least 5 instead
of 4. If K were still set to 4, the decomposition results would
only contain the IMFs of arms, legs, range overlapping and
respiratory but miss heartbeat.

In WMC-VMD, we leverage singular spectrum analysis
(SSA) to automatically select K . At first, the Hankel matrix
is constructed by reforming the weighted phase sequence
signal:

X =


s1 s2 s3 · · · sn
s2 s3 s4 · · · sn+1

...
...

...
. . .

...
sm sm+1 sm+2 · · · sN

 , (23)

where N is the total number of samples, n = N − m + 1
and M is the window length. After that, the singular value
decomposition (SVD) is applied on H = XXT , and we can
obtain

H = UΣV T , (24)

where Σ is the singular value matrix which is rectangular
diagonal and the elements are sorted in the decreasing order.
We choose the mode number K as the number of the largest
values having 70+percentile power out of the total singular
values.

7.4 Computation Acceleration

In WMC-VMD, the optimization is performed in the fre-
quency domain, which requires the Fourier Transform oper-
ation over the whole snapshots of samples. From Eqs. 18 and
19, we can observe that in each iteration, the entire spectral
components are used to calculate and update the new IMF
and central frequency. Although this process can obtain
precise decomposition results, it is time-consuming and
storage-costly. Fortunately, the spectrum of the extracted
phase sequence is very similar to the tail distribution (shown
in Fig. 7a), which implies that the main information is
gathered in the low-frequency domain. Therefore, to accel-
erate the optimization and save computation resources, the
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power spectral entropy (PSE) is introduced to show that the
subset of the original spectrum is capable of reconstructing
IMF and estimating central frequency effectively. The PSE
of a signal is always utilized to measure the information
containing in its spectrum based on Shannon entropy [41].
The steps are shown below:

1) Calculate the power spectral density (PSD) of the
whole signal and then normalize it:

P (ωi) =
1

N
|X(ωi)|2 (25)

where N is the total number of frequency bins.
2) Normalize the PSD to get the probability density:

pi =
P (ωi)∑
i P (ωi)

(26)

3) Calculate the PSE:

PSE = −
N∑
i=1

pilnpi (27)

Fig. 7b illustrates the PSE of extracted phase sequence.
When the size of the subspace is chosen to be 1000, cor-
responding to the entire spectrum, the PSE reaches the
highest. On the other hand, the PSE for size 100 is very
close to that for the whole spectrum. This reveals that we
can choose the first 100 components, which is only 1/10 of
the whole spectral sequence, to replace the entire spectral
components used in (18) and (19), thereby the computation
time and resources are dramatically reduced.

Algorithm 1 Vital Sign Decomposition based on WMC-
VMD

w = (ssT )−1I
IT (ssT )−1I

sc(t) = Hilbert(s(t))
S(ω) = FFT (sc(t))
Ŝ(ω)← choose main components of S(ω)
K ← Singular Spectrum Analysis
Initialize

{
û1
i

}
,
{
ω̂1
i

}
, λ̂1, q ← 0

while n← n+ 1 do
for k = 1 : K do

Update ûk for all ω ≥ 0:
ûn+1
k (ω)←∑L
l=1[wlŜl(ω)−

∑
i<k û

n+1
i (ω)−

∑
i>k û

n
i (ω)+

λ̂n
l (ω)

2 ]

1+2α(ω−ωk
n)2

Update ωk:

ω̂n+1
k ←

∫∞
0

ω
∣∣ûn+1

k (ω)
∣∣2 dω∫∞

0

∣∣ûn+1
k (ω)

∣∣2 dω
end for
for l = 1 : L do

Dual ascent for all ω ≥ 0:
λ̂n+1
l (ω)← λ̂n

l (ω) + η(wlŜl(ω)−
∑

k û
n+1
i (ω))

end for
if Convergence:

∥ûn+1
k −ûn

k∥2
2

∥ûn
k∥2

2 < ϵ then

break;
end if

end while
ũ(ω)← zero padding û(ω) to original length
ũ(t) = IFFT (ũ(ω))

0 1 2 3
0

0.2

0.4

0.6

0.8

1

C
D

F

(a) Respiration

0 5 10 15
0

0.2

0.4

0.6

0.8

1

C
D

F

(b) Heart
Fig. 8: Overall Performance

8 IMPLEMENTATION AND EVALUATION

In this section, we will conduct a series of experiments to
validate our scheme.

8.1 Implementation
System Setup. The device and experimental setup are
shown in Fig. 3. The TI 1843 mmWave radar and the
webcam are mounted together. The center of Rx and Tx
pairs is aligned at the camera lens vertically. Both of them
are fixed on a tripod at a height of 1.3 m.

Experiment Environment. The system is deployed in
our office shown in Fig. 14c, containing multiple chairs,
desks, computers, etc. The environment can induce serious
multipath interference. Other testing environments include
a meeting room and kitchen, shown in Fig. 13c.

Evaluation. A target to be tracked sits on a chair or
stands. The target is allowed to move the body in a period,
which generates motion interference. At the same time,
multiple persons walk around the office and induce dy-
namic interference. The target person is located in a different
position in each experiment. Five volunteers are recruited as
the target person and moving interference in turn.

Baselines. We compare our scheme with two state-of-
the-art works based on SVD+ICA [25] and long-short-term-
memory (LSTM) [42]. Specifically, the work [25] applies SVD
subspace decomposition to improve the localization and
ICA to obtain vital signs. And the work [42] utilizes LSTM-
based deep neural network to estimate heart and breath
rates in dynamic scenarios.

Ground Truth. The ground truth of the respiration rate
and heartbeat rate are captured using a sport watch.

Metric. The error is defined as the absolute value of the
difference between the estimated heartbeat rate (HR) and
respiration rate (RR) Re and their corresponding ground
truth rate Rg , i.e., |Re − Rg|. The measurement units for
breath and heartbeat rate are the respirations per minute
(RPM) and beats per minute (BPM), respectively.

Computation Platform. The system is implemented in
Python 3.7 and C and runs on a desktop with Intel(R) Core
CPU i7-7700 3.6 GHz A4 and 32G memory.

8.2 Overall Performance and Comparison
We test our system by conducting a series of experiments
under different ranges between the target and radar, body
motion types, number of moving disruptors, and different
environments (i.e., office, meeting room and kitchen). We
use an empirical Cumulative Distribution Function (CDF)
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TABLE 1: Comparison of overall estimation errors
Methods RR (RPM) HR (BPM)

SVD + ICA [25] 1.5 3
LSTM [42] 3.22 2.86
This work 0.19 2.29

TABLE 2: Estimation errors under different distances

Methods RR (RPM) HR (BPM)
2m 3m 2m 3m

SVD + ICA [25] 1.52 1.55 3.54 3.43
LSTM [42] 5.27 4.44 2.93 1.93
This work 0.22 0.45 1.91 2.49

of the absolute error to evaluate the overall system per-
formance, shown in Fig.9. We can see that 90 percent of
respiration experiments yield less than 0.5 RPM error. And
80 percent of heartbeat experiments can achieve less than 5
BPM errors. The median errors in respiration rate (RR) and
heartbeat rate (HR) estimation are 0.19 RPM and 2.29 BPM,
respectively.

Next, we compare our work with two state-of-the-art
works based on SVD+ICA [25] and deep learning based
LSTM [42]. In fairness to these two works, the comparison
is under the same range and body motion type. Table 1
indicates the overall error rates of the three works. It can be
observed that our work achieves the lowest RR error rate,
which is nearly 8 times less than that of SVD+ICA and 17
times less than that of the LSTM based works, respectively.
Also, the HR error rate of our work is 25 percent and 31
percent less than those of SVD+ICA and LSTM based works.

Furthermore, we conduct two fine-grained comparison
experiments.

(1) We conduct comparisons at the same distances be-
tween our work and SVD+ICA [25] and LSTM [42]. Ac-
cording to Table 2, our method achieves over 7 times and
3 times improvements on RR errors at 2 and 3 meters
respectively, compared with SVD + ICA. For HR our method
outperforms SVD+ICA by approximately 1.9 and 1.4 times.
Our method achieves comparable performance with deep
learning based LSTM (about 0.5 BPM higher in 3m/HR but
30 percent less in 2m/HR and 10 times less in RR). It should
be pointed out that the maximum working range of our
work is about 7m, as will be detailed in Section 8.7, and the
SVD+ICA fails when the range is over 3.5m.

(2) We further compare the performance using the same
body motions with those for SVD+ICA [25] and LSTM [42].
As shown in Table 3, Our method still achieves nearly half of
the error rates in RR estimation for both motion types com-
pared with LSTM. In terms of HR, even though our method
does not perform better than LSTM for random motion, it
still achieves a 10 percent lower error rate for periodical
movement. The observation indicates that LSTM can be
more effective for random noise suppression since the deep
learning based algorithm is more efficient in learning and
fitting specific patterns from pseudo random observations.
In contrast, our proposed VMD based methods perform

TABLE 3: Estimation errors for different motions

Methods RR (RPM) HR (BPM)
Periodical Random Periodical Random

SVD + ICA [25] >5 >5 - -
LSTM [42] 3.56 2.17 7.36 4.62
This work 1.44 1.17 6.61 5.5
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Fig. 10: Impact of Beamforming

better in estimating patterns from periodical signals. It is
noted that LSTM requires a large amount of data for prior
training while our method does not.

In addition, SVD+ICA fails in HR sensing when the tar-
get has body motion even if the distance between target and
radar is very small. This indicates that ICA based methods
are more fragile when the signal contains interference from
different (body parts) sources due to the limited observation
dimensions. In contrast, our proposed WMC-VMD is more
effective in handling such interference.

8.3 Impact of Beamforming
In order to validate the effect of beamforming, we design
an experiment to evaluate whether the signal from the
target can be extracted validly under dynamic interference.
In this experiment, two people are in front of the radar.
In Fig. 9a, one is the target person who keeps still, while
another person keeps moving near the target and plays the
role of an interferer. Both of them are located at the same
distance (2 m) but at different angles. The AoAs of the target
and interferer are in the directions of 30◦ and 60◦ from
the mmWave radar, respectively. Besides, the target person
breathes normally while the disruptor shakes the arms at a
high speed to disturb the target.
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Fig. 9b illustrates the filtered and normalized signal from
these two persons using Tx and Rx beamforming. The blue
line is the vital sign signal from the static person who
is breathing stably. It can be observed that the waveform
is periodic and superimposed by heartbeat. Another line
shows the received signal collected from the interferer. Its
frequency is higher while the signal amplitude is much
weaker than the static target. This is contributed by Tx
and Rx beamforming, which can amplify the signal from
the direction of the target and attenuate the noise from
the interferer. In practice, the signal amplitude caused by
arm shaking should be much larger than the vital sign
signal since the chest motion is very small. The result is
in accordance with our expectations shown in Fig. 6d.

To further demonstrate the efficiency of beamforming,
we compare the performance between enabling and dis-
abling Tx- and Rx beamforming. One person is asked to
walk around the target to induce interference. Moving closer
to the target person is allowed. As shown in Fig. 10, when BF
is enabled, both the heart and respiration rates can achieve
much lower errors. The RR error is 0.17 RPM with beam-
forming but it reaches 0.76 RPM without beamforming. For
HR estimation, the error without BF is 5.21 BPM, over 5
times higher than the beamforming-enabled mode.

8.4 Impact of Body Motion

To investigate the impact of different motion gestures, we
ask the tracked person to perform five types of daily mo-
tions at the range of 3 m to the mmWave radar: shaking
arm, shaking leg, march, phone interaction and typewriting.
Specifically, the person waves their arms and shakes leg
and this lasts in the first two motion types. Both arms
and legs move periodically over the whole sampling period
in march. In the gesture of phone interaction, the person
uses the cellphone to do their intended interaction, such as
typing messages, browsing information and playing games.
This motion mainly contains the finger motion. Finally, the
person adjusts their body gesture during typewriting. This
gesture includes the random motion of fingers, arms and
torso.

The result is shown in Fig. 11. The trends of respiration
and heart rates error are similar. When the target person per-
forms phone interaction, both HR and RR reach the lowest
error (0.11 RPM and 0.68 BPM). Shaking leg contributes to
the highest error rates (0.2 RPM and 2.81 BPM). The error
rates are similar in the rest of the gestures but they can still
adversely affect the accuracy.

From the results, we have the following observations:
1) Phone interaction. Since interacting with cellphone only
contains the motion of fingers and the extent is much
smaller than other types of motions, it has the lowest impact
on the estimation accuracy. 2) Shaking leg. The frequency
of the shaking leg is very close to the heartbeat, which
interferes with estimation of heart rate. 3) Typewriting.
Typewriting affects more in respiration rate because there
could be arm and torso motion with a close frequency to res-
piration rate. 4) Shaking arm. Shaking arm is of the greatest
extent. This contributes to both large errors in RR and HR. 5)
Marching. On the contrary, marching is performed over the
sample period and the frequency is close to the heartbeat.

This leads to a higher error rate in heart rate estimation but
has less impact on respiration rate estimation.

8.5 Impact of Moving People
To study the impact of dynamic interference, four volunteers
are asked to move in space. Fig. 12d shows the testing sce-
narios with one to four moving persons. In each experiment,
each person is asked to walk past the target by turns.

Fig. 12a and 12b show the impact of moving people.
The figures demonstrate that the error coarsely increases
with increased moving individuals. We can see that the
heart rate is easier to be interfered by moving people while
respiration rate estimation is less affected. Our system can
achieve the lowest error when there is one moving person
(0.195 RPM for respiration rate and 0.52 BPM for heart rate).
The respiration error reaches the highest (i.e., 0.42 RPM)
in the three-people scenario. The highest error of heartbeat
estimation is 4.35 BPM in the four-people scenario.

8.6 Impact of Environment
We also conducted the experiment in a meeting room and
restaurant (shown in Fig. 13c) to evaluate the impact of the
environment. In both two scenarios, the different individ-
uals are allowed to enter and leave the room at any time.
Also, the testing target is asked to randomly perform the
intended gestures, such as typewriting in the meeting room
and eating or drinking in the kitchen.

As shown in Fig. 13a, 13b, the accuracy of heart and
respiration rates in the kitchen is always higher in compar-
ison to the meeting room. This could be related to the size
of these two places. The meeting room is more crowded.
It implies that more interfering signals from passengers’
movement are superimposed on the vital sign signal due
to the short distance during walking.

8.7 Impact of Range
This experiment verifies the accuracy of the heart and respi-
ration rate estimated at different distances to the mmWave
radar, i.e., 1m, 3m, 5m and 7m (shown in Fig. 14c). In each
experiment, the target person repeats the same gestures
and the interfering persons along the same routine. The
experiment results are shown in Fig: 14a and 14b.

For the respiration rate, the accuracy goes down when
the range increases. The minimum and maximum errors
appear at the range of 1m and 7m, respectively. The error
at 7 m is 0.26 RPM which is nearly double as the error (0.14
RPM) at 1 m. The heart rate is more sensitive to the variation
of range. The maximum error is 3.6 BPM, which is more than
three times the minimum error rate (1.08 BPM) at 3 m. The
results reveal that when the range increases, the signal will
be intensively attenuated. In this case, the weaker vital sign
signal is more sensitive to interferences.

8.8 Impact of Acceleration scheme
We also evaluate the performance of our proposed accel-
eration strategy. Specifically, we choose the first 100 com-
ponents on the whole spectrum to estimate the RR and
HR. And we compare the error and time consumption be-
tween the application and nonapplication of the acceleration
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TABLE 4: Acceleration and Without Acceleration
performance
RR (RPM) HR (BPM) Time (ms)

Without Acceleration 0.33 5.02 25.35
With Acceleration 0.29 3.06 8.56

scheme. As shown in Table 4, when the acceleration scheme
is applied, the average computation time is 8.56 ms, which
is approximately 1/3 of the one without acceleration (25.25
ms).

It is surprising to see that the error of RR and HR (0.29
RPM and 3.06 BPM) with acceleration are both smaller
than those in non-acceleration case (0.33 RPM and 5.02
BPM). The possible reason is as follow. The respiration and
heartbeat signals are both low-frequency. When we choose
all components in the spectrum, those high-frequency com-
ponents often contribute as noise and adversely affect the
decomposition. When we only choose the low-frequency
components, those high-frequency noises are eliminated,
which improves the decomposition accuracy.

8.9 Impact of Obstacles/Non Line of Sights
It is also interesting to know how our scheme performs
when there are some obstacles between target and radar.
To evaluate the performance, we carry out two experiments
for semi-sheltered and fully-sheltered obstacles respectively.
In semi-sheltered case (shown in Fig. 15c Left), a large-sized
plastic tank is placed in front of the radar and the target is
seated behind the tank. In the second case, the target is in
the position behind a large and solid white board (shown in
Fig. 15c Right). The board is capable of covering the whole
upper body. In the second case the target location is known
in prior since the camera cannot capture the object in fully
NLoS . But the Tx-Rx beamforming and WMC-VMD are still
working to enhance the target’s signal and suppress noise

and alleviate body motions. The results are shown in Fig.
15a and 15b.

As expected, the lowest error rates (0.365 RPM for RR
and 1.96 for HR) appear when there is no obstacle. It can be
observed that the error rates are still acceptable in the semi-
sheltered case, and the RR error and HR error are still less
than 0.5 RPM and 2 BPM. This implies that the radio signal
could bypass the obstacle if its size is not too large or radar
signal could penetrate the obstacle. In fully-sheltered case,
despite of the low RR error rate (2.38 RPM), the HR error
is beyond 10 BPM, which shows the scheme cannot work
in fully-sheltered scenarios for HR monitoring but is still
able to deal with RR monitoring. This is because the signal
variation due to heart beating, which is much smaller than
the variation of breathing, becomes too weak to be observed.

8.10 Impact of Target Orientation
In this part, we evaluate the impact of target’s orientation
with respect to the radar. In the test the target’s chest is
towards different orientations: ±90◦, ±60◦, ±30◦ and 0◦,
but target self is in same distance (shown in Fig. 16c). During
the test, the target is allowed to move their body parts.
As shown in Fig. 16a and 16b, with the absolute degree
of orientation going up, both RR and HR errors will grow.
At nearly ±90◦, the radar receives little reflections directly
from the chest, and the system fails to detect vital signs.
The results reveal that in ideal case (0◦) the target chest is
directly facing the radar and the doppler caused by vital
signs is totally radical and most salient thereby it leads to the
lowest errors. Conversely, when the angle starts increasing
till 90◦, the radical components of doppler will decline and
finally become 0 at 90◦ (the radical motion is converted to
tangential motion). Consequently, vital signs doppler is no
longer captured and the SNR is always 0.
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Fig. 13: Impact of Environments

8.11 Moving Targets Evaluation and Comparison

Although our scheme is designed and optimized for lo-
cation fixed targets, it is also capable of sensing moving
targets at a medium accuracy, primarily credited to the noise
suppression and motion-tolerant techniques as presented in
Section 6 and 7. To demonstrate the capability, we perform
two experiments: (1) one location-fixed target + one moving
target and (2) Two moving targets (shown in Fig. 17c). In
the experiments, the targets are walking from one side to
another in the room and repeating this process. It should
be mentioned that during target walking the orientation of
targets’ chest is within the range from −60 degree to +60
degree towards the radar.

The results are presented in Fig. 17a and 17b, which indi-
cates that our scheme still achieve medium sensing accuracy,
which is only slightly degraded compared to the case of
a location-fixed target. Overall, the errors in Experiment 1
are better than Experiment 2. For the location-fixed target,
the sensing has the lowest RR and HR errors (less than 0.4
RPM and 2 BPM). This reveals that the proposed scheme is
capable of separating the location-fixed and moving targets
and suppressing the noise from moving one. In Experiment
1, although the target is moving, the median errors for RR
and HR are still below 1.5 RPM and 5 BPM. This indicates
that the proposed scheme can suppress the interference
of position varying and body part motion induced by a
moving target. And it is efficient in estimating vital rates
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Fig. 15: Impact of Obstacles/NLoS

for both targets.

In another experiment, when all targets are moving,
the errors (highest errors: 1.95 RPM and 8.04 BPM, lowest
errors: 0.78 RPM and 6.5 BPM) are higher than those in
Experiment 1. A larger error is observed to often happen
when the two targets move closely to each other. In this case,
beamforming becomes less efficient in separating signals
from the two users, which causes larger interferences to each
other.

We also compare our scheme with two state-of-the-arts
for sensing moving target’s respiration: BreathCatcher [43]
and heartbeat monitoring [44]. As shown in Table 5, al-
though BreathCatcher [43] achieves less than 1

3 error of ours,
this data-driven scheme requires over 80 hours respiration
data to train the deep learning model and reconstruct the
fine-grained breath waveform in prior.

More importantly, our scheme is primarily developed for
sensing location-fixed targets thereby no processing or opti-
mization is made for object-tracking and moving dynamics.
On the contrary, in both [43] and [44] the object tracking
algorithm of Kalman filter (KF) is leveraged to obtain more
accurate target position. Another important difference is
that both [43] and [44] use two radars while only one radar
used in our scheme.

TABLE 5: Overall comparison of moving target errors
Methods RR (RPM) HR (BPM) Data-driven

[43] 0.4 - Yes
[44] - 8 No

This work 1.32 5.88 No

8.12 Multiple Targets Evaluation and Comparison

To further evaluate the performance in sensing multiple
location-fixed targets, three participants are asked to stand
or sit in front of the radar at different angles and distances
(shown in Fig. 18c). All the individuals are allowed to move
their body parts freely and randomly. From the results, it
can be observed that all median errors are similar and do
not vary too much. The lowest RR and HR median errors
are respectively 0.26 RPM and 2.92 BPM, which are close to
the single target results. The highest errors reach 0.84 RPM
for RR and 4.33 for HR.

We also compare our results with another two state-of-
the-arts [28] [45] for sensing multiple location-fixed targets.
In [28], the phased-MIMO is employed to perform beam-
forming for RR and HR estimation and [45] utilizes adapted
wavelet for HR estimation. The overall error comparisons
are shown in Table 6. It can be observed that our proposed
scheme achieves the lowest RR error (0.21 RPM), supporting
the sensing of three users. Despite that the work [45] has a
higher accuracy in HR estimation, the radar sensor applied
in [45] contains 192 channels, which can provide over 20
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TABLE 6: Overall comparison of multi-target errors
Methods RR HR N of tars Motion-tolerant

[28] 1.06 4.34 2 No
[45] - 2 3 No

This work 0.21 3.62 3 Yes

times higher resolution than ours (4 channels) and [28] (8
channels). Such high-resolution radar sensor can provide
more powerful beamforming than ours but its price of this
device is over 6 times higher. More importantly, both [28]
and [45] are not motion-tolerant as their algorithms are
aimed to estimate the fixed bandwidth frequency.

9 CONCLUSION

This paper introduces a reliable contact-free vital sign mon-
itoring system for heartbeat and breathing frequency es-
timation in the presence of static reflectors, target body
motion and moving people. The key designs of the system
are fusing a video camera and mmWave radar to identify
the target, using beamforming to suppress interference and
separating the vital sign from multiple range bins, and
introducing novel algorithms for extracting weak vital-sign
signals. The novel algorithm of WMC-VMD and its acceler-
ation strategy are proposed to achieve high-precision and
real-time monitoring. Our system works in different and
practical scenarios without any environment-specific train-
ing. Considering the potential privacy issue with the use of

a camera, our scheme is mainly suitable for such as health
monitoring in nursing homes, in-home elder healthcare and
inmates-care in prison, where the privacy is secured. For
more privacy-focused scenarios, our scheme can be readily
adapted to the case when infrared or low-resolution camera
is used.

Our future work is to monitor the vital signs of dynamic
targets. Object tracking methods are required to accurately
locate the targets. Once the accurate target positions are ob-
tained, advanced learnable algorithms can be further used
to achieve vital sign recognition, by suppressing the impact
of large body movement. In addition, the usage of camera
in our current scheme limits the applications to visually
LoS sensing; it is also an important future task to extend
the scheme to achieve NLoS sensing with a pure radar
solution. This will be based on innovative radar techniques
for picking up targets of interest in the presence of both
moving interferers and background clutter.
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