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Abstract
Applications of industrial robotic manipulators such as cobots can require efficient online motion planning in
environments that have a combination of static and non-static obstacles. Existing general purpose planning methods
often produce poor quality solutions when available computation time is restricted, or fail to produce a solution entirely.
We propose a new motion planning framework designed to operate in a user-defined task space, as opposed to the
robot’s workspace, that intentionally trades off workspace generality for planning and execution time efficiency. Our
framework automatically constructs trajectory libraries that are queried online, similar to previous methods that exploit
offline computation. Importantly, our method also offers bounded suboptimality guarantees on trajectory length. The
key idea is to establish approximate isometries known as ε-Gromov-Hausdorff approximations such that points that are
close by in task space are also close in configuration space. These bounding relations further imply that trajectories can
be smoothly concatenated, which enables our framework to address batch-query scenarios where the objective is to find
a minimum length sequence of trajectories that visit an unordered set of goals. We evaluate our framework in simulation
with several kinematic configurations, including a manipulator mounted to a mobile base. Results demonstrate that our
method achieves feasible real-time performance for practical applications and suggest interesting opportunities for
extending its capabilities.
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1 Introduction

Motion planning for emerging applications of robotic manip-
ulators must support a greater degree of autonomy than
has traditionally been necessary. Industrial robotic manip-
ulators such as cobots (collaborative robots), for example,
are designed for advanced manufacturing applications where
they should operate safely in dynamic work environments
shared with humans and should be able to adapt quickly
to perform a variety of tasks. These applications share a
need for agility and rapid deployment that differs substan-
tially from traditional applications of industrial manipula-
tors, which are typically characterised by repetitive motions
in highly structured environments with planning performed
offline. Although existing motion planning algorithms have
desirable computational properties such as probabilistic
completeness, they are often limited in their ability to reli-
ably produce feasible trajectories online in high-tempo tasks
in practice.

We are interested in developing efficient algorithms for
certain practical situations that require repeated, rapid,
and reliable planning, including cobots and advanced
manufacturing applications. A common example is a
manipulator that must grasp objects from shelves and
cabinets in a domestic or warehouse environment (Srinivasa
et al. 2012; Dogar et al. 2013; Morrison et al. 2018). The
shelves are static and their dimensions can be measured
beforehand; however, the objects on the shelves might not
be known and their locations can change. More precisely,

we consider operational scenarios where a series of motion
plans with differing goal configurations must be computed
for a given environment. The environment consists of static
elements such as fixtures and equipment plus potentially
unknown objects that must be perceived online.

Classical approaches such as the probabilistic road
map (PRM) (Kavraki et al. 1996) aim to gain efficiency
through computational reuse; a computationally costly
offline process generates a data structure that can then be
repeatedly queried efficiently by a low-cost online process.
However, this approach can become unwieldy in practice for
robotic manipulators, which often have six or more degrees
of freedom (DOF) and a configuration space of equivalent
dimension. It is necessary to resolve the tradeoff between
the size of the precomputed data structure, which grows
naively with the complexity of the manipulator kinematics
and environment, and the speed of online queries, whose
complexity grows proportionally. Kinematic redundancy of
robotic manipulators also introduces ambiguity in goal
configuration when goals are specified only in terms of end-
effector pose.
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(a) Naive planner moving from first to second
position

(b) Naive planner moving from second to third
position

(c) Naive planner moving from third to fourth
position

(d) HAP moving from first to third position (e) HAP moving from third to second position (f) HAP moving from second to fourth position

Figure 1. A two-DOF robotic manipulator tasked with moving its end effector to four unordered positions on a table-top
environment with a box obstacle (dark grey). Positions are shown as coloured dots. The end-effector trajectory is drawn with
direction of movement indicated by the arrowhead. Green and blue regions are subspaces within which end-effector motion does
not require large changes in configuration. Overlap is shown in dark green. (a)-(c) show a sequence of trajectories produced by a
naive planner. (d)-(f) show the sequence produced by our HAP method. HAP’s choice of sequencing exploits short within-subspace
trajectories in (d) and (f), whereas the naive planner’s choice of initial position and configuration results in long trajectories to satisfy
kinematic constraints.

One way to limit the expanse of roadmap-like data
structures, and thus improve query time, is through the notion
of task space. Unlike configuration space and work space,
which are defined by the physical design of the robot system,
task space is defined by the user according to the tasks at
hand (Yu 2018). An intuitive example is to define a planar
task space for operations on a flat surface such as sanding or
polishing. For pick-and-place operations, the task space can
be naturally expressed as the set of end-effector poses that
correspond to possible object locations. A set of trajectories
can be generated that correspond to common start-goal
locations, for example, and reused online (Ellekilde and
Petersen 2013; Lee et al. 2014). Unfortunately, this approach
requires substantial effort from the user since the set of
precomputed trajectories must be designed for each set of
tasks. It would be preferable to automate this process to allow
the robot system to be redeployed quickly for new tasks
and changes in the configuration of the environment, and
to design the library of trajectories in a way that facilitates
predictable execution online over long task horizons.

A desirable property of motion planning in task space is
that, for any two tasks close to each other in task space,
one expects a smooth, short trajectory to exist between
them. The key idea we propose in this paper is to construct
trajectory libraries that satisfy this property by establishing
a bounding relation between distances in task space and
corresponding distances in configuration space, defined as
a mapping between metric spaces known as an ε-Gromov-
Hausdorff approximation (ε-GHA). The aim is to ensure that
a short path in task space implies a short path in configuration
space, which additionally encourages smoothness.

We present the Hausdorff approximation planner (HAP)
based on the key idea of constructing trajectory libraries
with ε-GHAs. HAP builds a set of precomputed trajectories
that resemble roadmap methods in that trajectories can be
concatenated to satisfy a sequence of queries as described
in our motivating scenario. To allow concatenation, the
trajectories are indexed by a set of maps from the task space
(end-effector poses) to the configuration space (joint angles)
that disambiguate kinematic redundancy. The maps are
designed to be ε-GHAs, which are approximate isometries
that, as we show, ensure that the trajectories are efficient
in combination. The task space is thus divided into smaller
subspaces of similar manipulator configurations where, for
any two poses close to each other in a given subspace, there
exists a short trajectory between resulting configurations
according to the map. As a result, each trajectory is efficient
individually as well as in combination.

Given a user-defined task space, HAP automatically
computes a subspace decomposition and generates a set
of trajectories that span it. These trajectories are stored
in a library that can be modified to adapt to changes
in the environment or to the task-space definition. A
simple illustration of two overlapping task subspaces that
map to two disjoint configuration subspaces for a 2-DOF
manipulator is shown in Fig. 1. As can be seen in the
figure, a naive approach results in unnecessary wasted
motion as opposed to our method which utilises the subspace
knowledge. In higher dimensions, subspaces for 6-DOF or
7-DOF arms might differ in shoulder-in versus shoulder-out
configurations, for example. Because only the task space
itself is user-defined, this aspect of the algorithm’s design
facilitates rapid deployment in practice.
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We evaluate the behaviour of HAP in a single-query
setting and then in a batch-query setting that requires it
to find a minimum concatenated path through a set of
unordered end-effector poses. The batch-query model could
be used to take observations from a set of viewpoints with
an eye-in-hand sensor, for example. To highlight HAP’s
applicability to a variety of manipulator platforms and task-
space definitions, we perform experiments in simulation with
6-DOF and 7-DOF manipulators, and with a manipulator
mounted to a mobile base. Planning time performance is
favourable overall, which shows that the HAP algorithm
is effective in choosing precomputed trajectories for rapid
online planning even in the presence of physical constraints,
such as problematic singularities and joint limits, that
otherwise would lead to unnecessarily long or awkward
trajectories. Single-query results show a decrease in planning
time of at least 50% versus baseline methods. Batch query
results show a similar decrease in planning time and also
a near perfect success rate with low jerk, whereas baseline
methods failed to find a plan within the allocated time budget
in at least 10% of problem instances.

The main significance of this work is to improve
the practical utility of autonomous robotic manipulators,
particularly for non-experts. Automatically generating
smooth, short trajectories online directly from a user-defined
task space with reasonable performance guarantees is a step
beyond current general purpose motion planning methods,
which generally require expertise to design implementations
that perform well in practice. Our HAP implementation is
made available as supplementary material.

2 Related work

2.1 Trajectory libraries
A variety of methods have been proposed that precompute
a library of trajectories and adapt them online. For
example, Lin and Berenson (2016) utilise a trajectory library
alongside a discrete planner for planning complex humanoid
motions with palm contacts. Combining a trajectory library
with a discrete planner is shown to improve planning success,
particularly if the search space has a high branching factor.

A similar idea was explored by Lee et al. (2014) and Ellek-
ilde and Petersen (2013) for robotic manipulators where a
library of trajectories is precomputed over a roadmap of
representative end-effector poses. These methods achieve
lower online planning times, but exhibit inconsistent suc-
cess rates and trajectory costs. This is partly because the
online adaption does not consider collision avoidance. More
importantly, these methods tend to ignore trajectory cost
optimisation during library construction, which can lead to
arbitrary performance when adapted online.

Our previous work (Sukkar et al. 2019; You et al. 2020)
introduced a planning framework that builds on the ideas
of Lee et al. (2014) and Ellekilde and Petersen (2013) and
allows for non-static obstacles when adapting the library
trajectories online. Library construction was designed to
cover the entire task space with a single subspace, however,
and we observed that this led to inconsistent performance
that varied based on manipulator kinematics. Experiments
with non-redundant 6-DOF manipulators were markedly less
successful than with redundant 7-DOF manipulators, for

example. We showed that coverage of the task space with
a single subspace mapping was not possible and resulted in
poorly biased trajectories for tasks outside of the mapped
subspace.

The HAP framework we propose here resolves observed
limitations of trajectory library methods by introducing the
notion of organising task space as a set of multiple subspaces,
and by providing bounded suboptimality guarantees through
ε-GHAs. In doing so, it allows for consistent performance
across a variety of manipulator types, including non-
redundant systems and mobile bases.

2.2 Trajectory optimisation
Trajectory optimisation generally refers to the process of
making incremental changes to an initial trajectory until an
optimal or near-optimal solution is found. The initial seed
trajectory can be chosen randomly or heuristically. Existing
methods can generate trajectories that avoid obstacles while
maintaining smoothness (Kalakrishnan et al. 2011; Park et al.
2012; Zucker et al. 2013b; Schulman et al. 2014; Mukadam
et al. 2018), and have been shown to be computationally
efficient for high-dimensional systems (Toussaint 2009;
Zucker et al. 2013a; Feng et al. 2015).

The major limitation of trajectory optimisation methods
is susceptibility to local minima, which leads to sensitivity
to choice of initial trajectory. Initialisation has been shown
to have a significant impact on convergence speed and
success rate, and there is no guarantee of finding a collision-
free solution as the collision avoidance constraints in the
optimisation problem are non-convex (Schulman et al. 2014).

A simple initialisation strategy is to draw a straight-line
path between start and goal configurations in configuration
space, ignoring obstacles. Others include attempts to
learn classifiers that predict the effectiveness of random
perturbations of a given seed trajectory (Tallavajhula et al.
2016; Pan et al. 2014; Dey et al. 2013). A recent
learning-based approach (Natarajan 2021) uses long short-
term memory (LSTM) neural networks, and exhibits better
performance than straight-line initialisation.

The trajectory libraries constructed by HAP can be viewed
as sets of high-quality seed trajectories that are precomputed
based on manipulator kinematics and a priori knowledge of
the environment. HAP uses trajectory optimisers to adapt
these trajectories online.

2.3 Motion planning
General motion planning algorithms are the topic of
decades of research. Good overviews can be found in text-
books (LaValle 2006; Choset 2005) and surveys (Elbanhawi
and Simic 2014; Gammell and Strub 2020).

Sampling-based planners choose sample points from
configuration space and connect them to build paths (Kuffner
and LaValle 2000; Kavraki et al. 1996). Many variants have
been proposed with a focus on probabilistic completeness
and asymptotic optimality properties (Karaman and Frazzoli
2011; Arslan and Tsiotras 2013; Gammell et al. 2014;
Janson et al. 2015). Batch Informed Trees (BIT*) (Gammell
et al. 2015; Strub and Gammell 2020) is a sampling-
based algorithm that uses incremental search techniques to
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incorporate new samples. BIT* has been shown to perform
well, in particular, for high-dimensional problems.

Recently, Luna et al. (2020) proposed the XXL planner
that computes high-quality trajectories for high-dimensional
robots. XXL suffers from similar limitations as other
sampling-based methods, however, and is probabilistically
complete but offers no optimality guarantees.

Approaches for motion planning in task space, as we
explore in this paper, are less common. Shkolnik and
Tedrake (2009) proposed the TS-RRT algorithm, which is a
modification of the RRT algorithm where samples are drawn
from task space but connected in configuration space using
techniques from task-space control. A benefit of this idea
is that it avoids some of the challenges of sampling-based
planning in high-dimensional configuration space, since task
space is typically of lower dimension. For manipulators, this
can also avoid the challenges of kinematic redundancy since
paths in task space defined by end-effector pose are unique.

In order to satisfy the robot’s kinematic constraints,
however, a path must still be found in configuration
space. Short paths in task space are not necessarily so in
configuration space, and so the challenge remains of how to
mitigate the potentially large changes in joint configurations
when attempting to connect the task-space samples. The
work we present addresses this issue by establishing ε-GHAs
between the two spaces.

2.4 Task and motion planning
Task and motion planning (TAMP) problems extend motion
planning to include high-level symbolic goals in a discrete
action space (Driess et al. 2020) and thus are different in
character from the problems we address here. However,
TAMP methods are related in their consideration of
sequences of motion planning tasks. This consideration
arises because a sequence of actions in the discrete layer
must map to a sequence of motion plans in configuration
space. Most TAMP approaches focus on feasibility of the
task sequence as opposed to efficiency of the resulting
concatenated trajectories (Hauser and Latombe 2009;
Srivastava et al. 2014; Toussaint 2015; Garrett et al. 2018).

Work that considers properties of concatenated trajectories
includes methods for task sequencing (Alatartsev et al.
2013; Kovács 2013; Kolakowska et al. 2014; Kovács 2016)
and multi-goal path planning (Wurll and Henrich 2001;
Faigl et al. 2011). Related methods often formulate the
problem as a variant of the well-known travelling salesman
problem (TSP) (Alatartsev et al. 2015). Unfortunately, these
approaches are generally too computationally expensive for
online use and require full knowledge in order for plans to be
computed offline.

For online planning, it can be beneficial to use heuristics
that accurately estimate true trajectory costs yet are efficient
to compute within the process of solving the underlying
TSP. Finding such a heuristic is difficult, however, without
incurring computational cost equivalent to solving the
original motion planning problem (Hauer and Tsiotras 2017).

Heuristics for manipulators typically approximate trajec-
tory costs by using Euclidean distance between start and goal
points in the workspace (Silwal et al. 2017; Bac et al. 2017).
This type of approximation can dramatically underestimate
the true cost of the executed trajectory due to the nonlinearity

of high-dimensional manipulators (Sukkar 2018), especially
in environments with obstacles.

The trajectory libraries proposed here provide accurate
costs that take into consideration the kinematic redundancy
and nonlinear motion model of high-dimensional manipu-
lators, and allow trajectories to be smoothly concatenated.
Therefore, they can be used as efficient heuristics for task
sequencing, as we demonstrate.

3 Problem formulation and approach

3.1 Notation
C represents the configuration space of the arm. The
workspace, W , is the 3D Euclidean workspace, W = R3.
Given a configuration q ∈ C, A(q) ⊂W denotes the space
occupied by the robot model at configuration q. m ⊂ R3 is
an approximate model of the environmental obstacles. We
assume access to a collision checking process that reports
whether the arm is in collision with m or with itself. The
obstacle region is defined as Cobs = {q ∈ C | A(q) ∩m 6=
∅}, from which we obtain the free space region Cfree = C \
Cobs. A task t typically has a set of inverse kinematics (IK)
solutionsQ(t). Then, the task space T ⊂ SE(3) is the set of
poses of the robot’s end effector for which valid IK solutions,
Q(t) ⊂ Q(t) exist. An IK solution q is considered valid if
A(q) ∈ Cfree. T̂ is a discrete approximation of the subset of
T where the robot is expected to operate frequently.

3.2 Motion planning in task space:
single-query problems

The manipulator is given a task modelled as a 6D pose
t ⊂ T chosen from the task space. To complete the task,
the manipulator must position its end effector at pose t
while avoiding collision. The environment is not entirely
known in advance, but a general model m is available
that approximates what is expected. For example, m might
represent a general bookshelf structure including the shelves
and case (see Fig. 2). However, m need not include all
objects within the bookshelf, as these details may be
unknown a priori and discovered later.

The manipulator’s trajectory is modelled as a discrete
sequence of configurations π = {π[1], . . . , π[N ] | π[i] ∈
Cfree}. We measure the length of a trajectory using a metric
on the configuration space,

dC(π) =

N−1∑
n=1

dC(π[n], π[n+ 1]). (1)

We are interested in finding a minimum cost trajectory
in Cfree that completes task t. It is convenient to consider
the starting pose of the end effector to be the goal pose of
the previous task. We are therefore interested in the set of
trajectories between task tj and tl, Π(tj , tl) = {π | π[1] ∈
Q(tj), π[N ] ∈ Q(tl)}, leading to the following problem
definition.

Problem 1. Motion planning in task space [single query].
Find the shortest collision-free path π∗ in configuration
space between two tasks tj and tl in T such that

π∗(tj , tl) = arg min
π∈Π(tj ,tl)

dC(π). (2)
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3.3 Motion planning with multiple tasks:
batch-query problems

The operational scenarios that motivate this work often
involve more than one task. The manipulator is given an
unordered set ofM tasks T = {ti}Mi=1 ⊂ T . This set of tasks
can be viewed as a batch-query scenario where all tasks must
be achieved while minimising total cost. Thus it is necessary
to choose a sequence of tasks, imposing a total ordering over
T , in addition to repeatedly solving Problem 1. The batch-
query problem can thus be formulated as follows.

Problem 2. Motion planning in task space [batch query].
Find a permutation of the tasks σ ∈ SM that minimizes the
total trajectory cost:

min
σ∈SM

M−1∑
n=1

dC(π∗(tσ[n], tσ[n+1])), (3)

such that the configuration at the end of π∗(tσ[n], tσ[n+1])
and the start of π∗(tσ[n+1], tσ[n+2]) are equal for all n ∈
[1,M − 2].

It is challenging to approach this case directly. For
each task pose tj ∈ T to be visited, there can be multiple
valid configurations in set Q(tj). A direct solution requires
simultaneously choosing the optimal configuration from
Q(tj) and sequencing the tasks. In other words, this case
contains an instance of set-TSP, which is more difficult than
the standard TSP (Noon and Bean 1993) and potentially too
computationally expensive for real-time planning since the
number of possible sequences is O(|Q(tj)|M ×M !), where
|Q(tj)| is the cardinality of the largest set of IK solutions for
any task tj ∈ T .

Mapping each task tj to a single IK solution qtj ∈ Q(tj)
transforms the set-TSP to a classical TSP, which is easier to
solve. However, intelligent selection of a single IK solution
from the possibly infinite set is also challenging.

Ideally, this transformation should accommodate efficient
solution of Problem 1 with smooth, short trajectories
between tasks. Therefore, we assume the availability of a
mapping from each task tj to a suitable unique IK solution
θ(tj) ∈ Q(tj). Finding such a mapping thus arises as an
important subproblem in our approach to solving Problem 2
and is defined as follows.

Problem 2.1. Mapping from task space to configuration
space. Find map θ : T̂ → C that assigns each task a unique
IK solution that guarantees paths between tasks are short,
smooth and collision-free in both task and configuration
space.

The kinematics of a robotic manipulator working in
the task space may not necessarily admit a single map θ
with the guarantee above. For example, in Fig. 1a there is
no single θ that allows the arm to travel the short task-
space distance required without taking a long path through
configuration space. To handle such cases, we propose a
further subproblem crucial to solving the problems presented
above.

Problem 2.2. Finding regions of short travel in both task and
configuration space. Find K subspaces {T̂ i}Ki=1 of task
space such that within each subspace a map θi : T̂ i → Ci
that satisfies the requirements in Problem 2.1 can be found.

3.4 Approach overview
To ensure that the map θ : T̂ → C solves Problem 2.1,
it is chosen to be an approximate isometry. Intuitively,
an approximate isometry enforces that two tasks close
in task space remain close in configuration space after
mapping. Where a single approximate isometry does not
exist, Problem 2.2 is solved by finding K approximate
isometries. This decomposes the task space into subspaces
that may overlap, leading to cases where a single task is
assigned multiple IK solutions. Then, to solve Problem 2
we find solutions within each subspace independently after
disambiguating which IK solution to use in overlapping
subspace regions.

We construct the map(s) {θ}Ki=1 offline during the process
of building a library of pre-computed trajectories tailored to
the given task space. This library is made available to online
algorithms designed to solve both types of query problems.
Together, the offline and online algorithms form the HAP
algorithmic framework.

4 Online motion planning with task
subspaces

In this section, we present online algorithms to solve
Problems 1 and 2. We first describe methods to retrieve,
modify, and adapt trajectories drawn from the library in
the single-query case. Then, we describe several additional
steps necessary to address the batch-query case through task
sequencing.

4.1 Trajectory retrieval and adaptation for
single-query problems

Given a task drawn from the task space T , we must first
identify matching tasks in the trajectory library constructed
from a discrete set of anticipatory tasks T̂ and retrieve
corresponding trajectories. Examples of T̂ and online tasks
T are shown in Fig. 2. A retrieved trajectory is then modified
such that its start and endpoints coincide with the current
end-effector pose and that of the given task. These processes
are summarised in Alg. 1 and detailed below.

4.1.1 Trajectory library matching Here we describe the
library retrieval process where a single map θ is sufficient
to solve Problem 2. Additional steps taken for the multiple
map case are given in the next subsection. The trajectory
library can be queried to retrieve a trajectory that connects
a given pair of tasks drawn from the task space. We refer to
endpoints of all such trajectories as library tasks, i.e., tasks
stored within the library. Throughout this work, we assume
that the task space is defined over the set of end-effector

Algorithm 1 Online Planner: Single Query

1: Given an online environment and task, retrieve matching
library trajectories (Sec. 4.1.1)

2: Disambiguate IK solution (Sec. 4.1.2)
3: Augment chosen trajectory by appending start and goal

configurations (Sec. 4.1.3)
4: Adapt trajectories to online environment (Sec. 4.2)
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(a) (b)

Figure 2. Example environment and task space next to an
anticipated online scenario: (a) shows the discretised task
space T̂ (blue poses) and inflated environment m, (b) is an
example online scenario with the arm in its home configuration.
Online, HAP is robust against objects in (b) that are unmodelled
in m and tasks can differ to those in T̂ .

poses and thus the term task can be assumed to refer to one
such pose.

The library allows for retrieval of trajectories whose start
and endpoints lie close to a given pair of online tasks. We
now describe the process of evaluating such trajectories to
choose the best match.

Given an online task t, we query the library to find a set
of library tasks near t. We select the k-closest {t̂n}kn=1 ⊂
T̂ to t according to task-space distance. The task-space
distance metric is user defined; here we use Euclidean
distance between position components. To facilitate search,
the library builds a KD-tree over task positions using this
metric.

For the set of k-closest candidates, we retrieve their IK
solutions assigned by θ, {θ(t̂n)}kn=1, and compare them
pairwise to all possible IK solutions qt ∈ Q(t) for task t
using a suitable similarity metric in configuration space. We
use the L2-norm in this work. The pair of online/library
task configurations (q∗t , θ(t̂∗)) that minimises this metric is
selected as a match.

HAP’s matching process is different from previous
work in that it depends on both task and configuration-
space distances, rather than configuration-space distance
alone (Lee et al. 2014; Ellekilde and Petersen 2013).
Whereas configuration-space distance favours IK solutions
that result in the least joint movement, task-space distance
restricts the matching process to reflect the workspace
geometry. To elucidate this claim, consider the bookshelf
environment in Fig. 2. If matching is performed to minimise
configuration-space distance only, an online task located in
the middle shelf may be matched with a library task in the top
shelf due to the small configuration change between them.
Then, appending the online task to any retrieved trajectory
corresponding to the top shelf library task would result in
collision. On the other hand, if matching is performed to
minimise task-space distance only, a matched library task
is more likely to lie in the middle section of the bookshelf
since shelf geometry is taken into account yet may result

in inefficient, jerky trajectories due to potentially large
differences in configuration space.

4.1.2 Subspace assignment During construction of the
library, all tasks t̂ ∈ T̂ are mapped to an IK solution by
finding approximate isometry or isometries {θ}Ki=1. It is
possible for these mappings to overlap, resulting in multiple
IK solutions for a given task (one per map). Examples of the
benefit of multiple mappings are given in Appendix B.1.

To handle the case where a library query results in multiple
IK solutions due to overlapping mappings, it is necessary to
define a process to choose one of them. It suffices to compare
candidate IK solutions to the current robot configuration
using the similarity metric discussed above (e.g., the L2-
norm in configuration space) and select the minimum. For
computational efficiency, we select the first candidate whose
similarity value falls below a given threshold.

The final special case to consider is one where the start and
goal poses lie in disjoint mappings, and thus no trajectory
exists in the library that connects them. To handle this case,
a home configuration for the robot is defined in the library.
The home configuration is chosen by the library construction
procedure such that all subspaces may be reached via a
straight-line trajectory in configuration space. Thus the home
configuration acts as an intermediate point connecting all
pairs of subspaces, and can be used to connect start and goal
poses in disjoint mappings by simply joining the straight line
trajectories to and from it.

4.1.3 Trajectory modification The matching trajectory
chosen from the library will not align exactly with the start
and goal poses of the robot in practical use. In general it is
necessary for the library to be compact relative to task space
in order to limit required storage to an acceptable level.

For start and goal poses (tj , tl), the corresponding IK
solutions q∗tj and q∗tl are appended to the ends of the retrieved
library trajectory. This results in a modified trajectory
π∗(tj , tl) which connects tj and tl.

4.2 Online adaptation
The final algorithmic step before a trajectory can be executed
by the robot is to perform post-processing to ensure that
it is time-continuous safe, i.e., that it lies entirely within
Cfree. Although the library is constructed such that its
trajectories avoid known obstacles, this step is crucial for
robustness against obstacles that were unknown during
library generation. We refer to this post-processing as
adaptation.

There are a number of existing trajectory optimisation
algorithms that are designed for similar purposes. In general,
these algorithms require an initial seed trajectory as input,
which they attempt to adapt to satisfy given constraints and
maximise/minimise a given objective. In this work we use the
TrajOpt (Schulman et al. 2014) algorithm with the modified
library trajectory used as the seed trajectory.

Unfortunately, TrajOpt and similar trajectory optimisation
approaches are not guaranteed to succeed in finding
a solution and depend heavily on the choice of seed
trajectory. The modified library trajectory already accounts
for obstacles known at the time of library construction and
is preferable to less informed choices, such as a straight
line trajectory in configuration space. However, a fallback
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Algorithm 2 Online Planner: Batch Query

1: Given an online environment and set of tasks, group
tasks by subspace

2: Append home configuration to each group
3: Execute Lines 1–3 of Alg. 1 for each pair of tasks within

each group
4: Construct weighted adjacency matrix for each group,

using computed trajectory costs as weights
5: Compute optimal sequence for each group using TSP

solver with associated weight matrix and start/end
constrained to home configuration

6: Concatenate sequences
7: Execute Line 4 of Alg. 1 for each successive pair of tasks

in the concatenated sequence

method remains necessary in case of failure due to obstacles
discovered at execution time. The fallback method should
be guaranteed to find a solution, since it is a method
of last resort. HAP uses BIT* (Gammell et al. 2015), a
well-known probabilistically complete planner, with the IK
solution defined in the modified library trajectory used as its
goal configuration input. Like all probabilistically complete
methods, BIT* may fail to find a solution in a reasonable
amount of time. HAP enforces a user-defined threshold and
terminates execution if exceeded. This is the only condition
in which HAP fails to produce an executable trajectory.

4.3 Additional operations for task sequencing
in batch-query problems

The batch-query case is addressed by introducing several
additional steps in Alg. 2. Given a set of online tasks T , we
group tasks by subspace and describe how the single-query
processes just described are used to find a minimal sequence
of trajectories between them.

Each task t ∈ T is assigned to one of the subspace
mappings θi by querying the library. The tasks are
partitioned into groups of equivalent subspace assignment,
and the home configuration is appended to each group.
The single-query process is then executed for all pairs of
tasks within each group. The trajectory costs returned are
stored as a weighted adjacency matrix. Thus each task group
has an associated matrix where the weights correspond to
the trajectory cost for each pair of tasks within the group,
including the home configuration. These matrices are used as
input to a TSP solver, which returns a task sequence for each
group independently. The TSP solver is constrained such that
each sequence begins and ends at the home configuration.

The sequences are concatenated in arbitrary order. This
concatenation is always possible by construction of the
sequences, which all start and end at the home configuration.
Finally, the online adaptation process is executed for each
pair of tasks in the concatenated sequence and the result is
returned.

5 Trajectory library construction

In this section we detail how the maps {θi}Ki=1 and trajectory
library are computed given a robotic manipulator, anticipated

environment, and task space. Additionally, practical con-
siderations are given that describe implementation specific
details useful when applying HAP.

5.1 Algorithm overview
To construct the trajectory library, we are given an
anticipated environment m and set of tasks T̂ that are
representative of online scenarios. An undirected graph G is
created with nodes corresponding to tasks t ∈ T̂ and edges
formed via a maximum connection radius (see Sec. 5.3.7).
Figure 3 shows an example G constructed over the m and T̂
in Fig. 2(a). The trajectory library is then generated from G
according to Alg. 3.

Algorithm 3 is initialised by assigning all nodes to T̂open.
A node stays in T̂open until a unique IK solution is assigned.
While T̂open is not empty, θ is found via a generate map
algorithm procedure (Alg. 4). Algorithm 4 searches for a θ
that minimizes the objective cost, the sum of all minimum
cost paths π∗(t0,−) from a root node t0 ∈ G to all other
nodes. That is,

J(θ, t0) =
∑

t∈G\t0

g(π∗(t0, t); θ), (4)

where the cost of any path π(t0, tN−1) =
{θ(t0), . . . , θ(tN−1)} of N nodes is defined as

g(π(t0, tN−1); θ) =

N−2∑
n=0

dC(θ(tn), θ(tn+1)). (5)

To ensure that trajectories have bounded lengths and
do not involve large, unnecessary arm movements, θ is
additionally constrained such that it is an approximate
isometry, or an ε-Gromov-Hausdorff approximation (ε-
GHA), defined below.

Definition 1. The map θ : (T̂ , dT )→ (C, dC) is an ε-
Gromov-Hausdorff approximation if ∀tj , tl ∈ T̂

|dT (tj , tl)− dC(θ(tj), θ(tl))| < ε (6)

for some ε > 0.

Depending on the value of ε, topology of m and robot
kinematic structure, some nodes may still have undefined
mappings after a single iteration of the algorithm. It may
then be necessary to search for multiple ε-GHAs, {θi}Ki=1,
that map a covering set of subspaces {T̂ i}Ki=1 ⊂ T̂ to a set of
disjoint subspaces {Ci}Ki=1 ⊂ C. After the ε-GHA(s) is (are)
found, we use the Dijkstra’s algorithm to find minimum cost
paths π∗(tj , tl) pairwise between all tasks tj , tl ∈ G using
the fixed, unique IK solutions assigned by θ or {θi}Ki=1. The
minimum cost paths are then stored in the trajectory library.

5.2 IK solution selection
The generate map algorithm as outlined in Alg. 4 is based
on Dijkstra’s algorithm and attempts to find a unique IK
solution for each task in T̂ such that the objective cost in (4)
is minimised. It begins by assigning an undefined mapping to
all nodes except for the root node which is mapped arbitrarily
to one of its IK solutions. The rest of the procedure is carried
out as in the original Dijkstra’s algorithm with a priority
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Figure 3. An undirected graph G constructed over discretised
task space T̂ , where nodes are tasks in T̂ . Subspaces are
searched for by traversing the graph and assigning an unique IK
solution to each node such that all connected neighbours are
close in configuration space.

queue Q (Barbehenn 1998), with modifications to the node
expansion step where we compute the unique IK solution
mapping. Here, the set of neighbouring nodes of t, Nt, is
run through the functions shown in Algs. 5 and 6.

In get mapping, if a node u ∈ Nt has already been
assigned an IK solution qu, this solution and the edge cost,

l(u, t) = dC(θ(u), θ(t)), (7)

are returned and the ε-GHA θ is not updated. Otherwise, the
IK solution that gives the minimum l(u, t) while satisfying
the ε-GHA constraint in (6) is returned. The returned qu
and l(u, t) are passed as a candidate to update. In update,
if the candidate path cost from root node to u ∈ Nt is less
than the current cost then qu and the path cost are updated.
Additionally, if u is not in Q, it is added.

The above process is repeated for all IK solutions of the
root node. If required, the algorithm is run K times to find
multiple ε-GHAs. The resulting one or more ε-GHA(s) that
minimise J(θi, t0) are returned. All nodes are assigned an
IK solution before being placed in the queue. It is also
important to note that these assignments do not change
during an iteration of the routine, as this could result in
unstable behaviour and violation of the ε-GHA condition
due to changing edge costs. However, path costs may change
after finding shorter paths through G.

In contrast to the original Dijkstra’s algorithm, all nodes
are initialised with a non-infinite path cost cmax. This way, a
candidate IK assignment is only accepted if it does not lead to
high cost. Additionally, ε-GHAs with greater coverage will
be favoured, particularly in earlier iterations.

5.3 Practical considerations
5.3.1 Encouraging exploration. While searching for ε-
GHA(s), it is beneficial to bias the search toward the
unexplored region of the task space. To encourage subspace
exploration in subsequent iterations of the routine, a penalty

Algorithm 3 Search for ε-GHA maps and generate library

Input: environmentm and poses T̂
Output: trajectory library π̂

1: function GENERATETRAJECTORYLIBRARY(m, T̂ )
2: G← gen edges(T̂ )
3: T̂open ← T̂
4: i← 0
5: while T̂open 6= ∅ do
6: T̂root ← sample(T̂open)

7: J(θi, T̂root)←∞
8: for each t0 in T̂root do
9: J(θ′, t0), θ′ ← GENERATEMAP(G, t0)

10: if J(θ′, t0) < J(θi, T̂root) then
11: J(θi, T̂root)← J(θ′, t0)
12: θi ← θ′

13: end if
14: end for
15: for each t in G | θi(t) not UNDEFINED do
16: T̂open ← T̂open \ {t}
17: π̂i(t,−)← Dijkstra’s(G, t, θi)
18: end for
19: i← i+ 1
20: end while
21: return π̂
22: end function

Algorithm 4 Search for candidate ε-GHA map
Input: graphG, root node t0
Output: minimum sum of path costs J(θ′, t0) and

corresponding mapping θ′

1: function GENERATEMAP(G, t0)
2: J(θ′, t0)←∞
3: for each q in Q(t0) do
4: for each t in G do
5: θ(t)← q if t = t0, else UNDEFINED
6: g(π(t0, t0); θ)← 0 if t = t0, else cmax
7: end for
8: while Q 6= ∅ do
9: t← argmint′∈Qg(π(t0, t

′); θ)
10: qt ← θ(t)
11: for each u in Nt do
12: if θ(u) UNDEFINED then
13: qu, l(u, t)← GETMAPPING(u, qt)
14: else
15: qu ← θ(u)
16: l(u, t)← dC(qt, θ(u))
17: end if
18: g(π(t0, u); θ), θ ← UPDATE(Q, qu, u, t)
19: end for
20: end while
21: J(θ, t0) =

∑
t∈G\t0 g(π(t0, t); θ)

22: if J(θ, t0) < J(θ′, t0) then
23: J(θ′, t0)← J(θ, t0)
24: θ′ ← θ
25: end if
26: end for
27: return J(θ′, t0), θ′

28: end function
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Algorithm 5 Get candidate mapping for neighbour node u
Input: Neighbouring node u and expanded node

mapping qt
Output: candidate mapping qu and resulting edge cost

l(u, t)

1: function GETMAPPING(u, qt)
2: l(u, t)←∞
3: for each p in Q(u) | dC(qt, p) < ε+ dT (u, t) do
4: if dC(qt, p) < l(u, t) then
5: qu ← p
6: l(u, t)← dC(qt, qu)
7: end if
8: end for
9: return qu, l(u, t)

10: end function

Algorithm 6 Update neighbour path cost and node mapping
Input: Queue Q, candidate mapping qu, neighbour node

u and expanded node t
Output: updated path cost g(π(t0, u);θ) and updated

IK assignment θ(u)
1: function UPDATE(Q, qu, l(u, t))
2: if l(u, t) + g(π(t0, t); θ) < g(π(t0, u); θ) then
3: θ(u)← qu
4: g(π(t0, u); θ)← l(u, t) + g(π(t0, t); θ)
5: Q← Q ∪ {u}
6: end if
7: return g(π(t0, u); θ), θ(u)
8: end function

ρ · ω(t) may be added to all edge costs passing through a
node, where ω(t) is a count of how many times a node
is assigned an IK solution, and ρ is a tunable parameter.
As the penalties ρ · ω(t) accumulate, previously mapped
portions of the graph are not considered in later iterations
of the algorithm as their path costs may exceed cmax. The
algorithm then focuses on previously unmapped nodes to
increase coverage of T̂ .

5.3.2 Adding a task-based cost. In the problem formu-
lation we defined the motion planning and task sequencing
objective in terms of trajectory length according to dC , a
metric on the configuration space. We thus assigned IK
solutions to nodes in G via the generate map algorithm in
Alg. 4, using edge costs as in (7). However, edge costs in
G are not limited to this form. In fact, one can add a task-
specific component c(θ(u), θ(t)) to (7) while maintaining
bounded trajectory lengths. For example, a task-specific
component may be introduced to penalise configurations
near joint limits. Then, the ε-GHA found will ensure both a
bounded trajectory length and that task-specific requirements
are met. It is important to note that while the edge costs may
be different to dC the ε-GHA condition is still checked using
the original dC metric.

5.3.3 Ensuring smooth transitions between subspaces.
As previously mentioned, when moving between subspaces
the arm first moves back to a fixed home configuration.
Based on a given home pose, the corresponding IK solution
that minimises the distance to the average configuration q0

avg

of the first found subspace C0 is chosen. Explicity, q0
avg is

defined as
q0

avg =
1

|C0|
∑
q∈C0

q. (8)

Note that the home configuration can be computed online
allowing for flexible home pose choice. To avoid large
changes in configuration while returning to home, the
subspaces are biased to be close to one other.

For i ≥ 1 in Alg. 3 an additional penalty ρs · |θi(u)− q0
avg|

with user-defined weighting ρs is added to the edge cost
in (7). This way, chosen IK solutions are biased to be close
in configuration space to q0

avg. In addition, one can optionally
enforce that the IK solution assignment for the root node t0
is within some distance threshold, i.e., |θi(t0)− q0

avg| < ζ.

5.3.4 Balancing the number of subspaces. If many
undefined node mappings remain after an iteration of Alg. 4,
the trajectory library may not cover large regions of the task
space. This may occur due to a failure to meet the ε-GHA
condition, prioritisation of task-specific costs as in Sec. 7.5
or poor flexibility admitted by the robotic manipulator’s
natural kinematic configurations (demonstrated in Fig. B.1).
This can have adverse impact on online planning if IK
solutions of online tasks are far from trajectory library
configurations, leading to failures or jerky trajectories. As
such, Alg. 3 terminates only when T̂open = ∅ and a complete
set of subspaces that fully cover the task space are found.
Note that this condition may never be met. For example, a
region requiring large configuration changes to switch to may
have undefined mapping if a conservative ζ is chosen.

In practice a large number of subspaces is undesirable
as it can slow trajectory library matching during online
planning. Furthermore, frequent subspace switching can add
cumbersome overhead to online execution. Thus, to balance
a trade-off between coverage and planning/execution time
the main loop in Alg. 3 can be terminated once a user-defined
maximum number of subspaces have been found or until the
ζ threshold cannot be satisfied. Alternatively, the loop can be
terminated once a certain task-space coverage percentage has
been achieved or when the size of the subspace found in an
iteration falls below a set threshold.

5.3.5 Modifications for mobile bases. Greater coverage
of the task space with fewer ε-GHAs can potentially be
achieved by allowing the arm to be mobile. Having multiple
ε-GHAs synergises well with a mobile manipulator. Instead
of allocating an arbitrary number of ε-GHAs, one can choose
a discrete number of base poses and assign ε-GHAs to each
base pose.

When building the trajectory library for a mobile base,
the generate map algorithm in Alg. 4 is run for all base
poses in each iteration in Alg. 3. The pose that yields the
lowest objective cost is allocated a ε-GHA. This base pose
is then removed as a candidate in the subsequent iterations.
This is repeated until all base poses have been assigned a
subspace or until T̂open = ∅. All base poses are considered
before allocating any mappings in order to find the base
poses that give greater coverage early and lower objective
costs. This way, base poses better suited for difficult to reach
regions of the task space are reserved for later iterations.

For mobile base online execution, the subspace switching
action consists of moving back to the home configuration
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before moving the base. Furthermore, when sequencing for
the mobile base case we ignore the base movement cost
when switching between subspaces. However, if this were
important then sequencing the group execution order could
be solved using another TSP with the base movement costs.

5.3.6 Environment design. An environment representa-
tion m can be given at trajectory library construction time
to inform ε-GHA computation. Obstacles can be represented
as a union of basic 3D shape primitives. For example, a
bookshelf can be represented as a union of boxes. The shape
and size is chosen such that a bounded volume is formed
around static parts of the scene. In Fig. 2 an example of
a bookshelf environment is modeled. In a real scenario the
geometry of this model should remain roughly the same with
only new objects appearing on shelves. To account for sensor
noise, modelling inaccuracy and/or localisation error in the
online scenario the bookshelf is inflated slightly. Inflation
additionally encourages library trajectories to have greater
clearance from the obstacles, increasing robustness to new
unseen obstacles.

In this paper,m is defined manually for a range of obstacle
configurations; however, a strategy could be developed to
create these procedurally. Furthermore, although not in
the scope of this paper, one could implement a learning
algorithm to choose a trajectory library based on the obstacle
configuration given in an online setting. Similar strategies
have been used in previous work (Tallavajhula et al. 2016;
Pan et al. 2014; Dey et al. 2013).

5.3.7 Task-space graph construction. An example of an
undirected graph on T̂ is visualised in Fig. 3, where nodes
are tasks in T̂ and edges are connections between tasks. The
construction strategy of such a graph is flexible, however
there are a few important considerations to highlight. Firstly,
greater edge connection density allows for more diverse
paths and greater node density increases the probability of
time continuous safety being met by the trajectory library.
Additionally, edges connect nodes in task space and hence
a local connection strategy needs to be devised to ensure
they are feasible in the configuration space. The connection
strategy used in this paper is to connect nodes within a ball
of specified radius in the workspace. To ensure feasibility, it
is required that an IK solution in Cfree exists for a discrete set
of points along the edge connecting two nodes.

The T̂ upon which the graph is built is a discretisation
of the user-defined task space. In the context of this work
it represents approximate poses that the arm is expected to
plan to. An example discretisation strategy is visualised in
Fig. 2(a). Poses here could represent abstract tasks such as
pre-grasp points or camera viewpoints for active perception.
The orientation of the poses in T̂ should align roughly with
the expected tasks. For example, in Fig. 2(a) all poses point
forward into the bookshelf, a suitable construction for tasks
such as grasping and scene reconstruction. Notice in the
online scenario in Fig. 2(b) the task poses need not lie exactly
on T̂ . However, performance may decrease the greater
this discrepancy is. The poses in Fig. 2(a) are generated
procedurally by defining a uniform graph of nodes across a
volume bounding the bookshelf, however there exists many
possible methods for generating these poses. For example,
the manipulator could be teleoperated to various poses or

the manipulator could be moved kinesthetically. That is,
the human operator could move the end effector directly
and store the poses. The requirement is the operator must
generate poses such that no islands are formed in the graph.
For example, in the bookshelf scenario in Fig. 2 there is a
plane of poses in front of the bookshelf to ensure that there
is connectivity between poses within the shelves. However,
this could potentially be resolved in a post-processing step
automatically, relieving the burden on the operator.

6 Analysis
In this section, we show that the trajectories found by
Alg. 3 have bounded lengths dC , and are hence efficient
and free of jerky motion. This is because, as we show, ε-
GHAs approximately preserve shortest paths between metric
spaces, in our case the task and configuration spaces. We first
verify that the map θ found by Alg. 3 is indeed an ε-GHA.

Theorem 1. θ is an ε-GHA. θ found by Alg. 4 is an ε-GHA.

Proof. Pick any t ∈ T̂ . Then ∀u1 ∈ Nt, by construction, we
have

|dC(θ(t), θ(u1))− dT (t, u1)| < ε,

for some ε > 0. Then, ∀u2 ∈ Nu1
, i.e. the next-nearest

neighbours of t, we again have by construction

|dC(θ(u1), θ(u2))− dT (u1, u2)| < ε.

Similarly for all (N − 1)th and N th nearest neighbours of t,

|dC(θ(uN−1), θ(uN ))− dT (uN−1, uN )| < ε.

Then, using the triangle inequality we get

|dC(θ(t), θ(uN ))− dT (t, uN )|
≤ |dC(θ(t), θ(u1))− dT (t, u1)|+∑N−1
n=1 |dC(θ(un), θ(un+1))− dT (un, un+1)|

< ε+ (N − 1)ε
= Nε.

As ε is arbitrary, taking ε to be Nε gives the required result.
�

Furthermore, θ maps shortest paths in the workspace to
paths in configuration space that are of bounded length. That
is, minimising geodesics are approximately preserved under
the mapping. Intuitively, minimising geodesics (referred to
henceforth as geodesics for brevity) are a generalisation of
“straight lines”, or shortest paths, in Euclidean space to more
general spaces, defined below.

A metric space (X, dX) is a set X equipped with
a metric, or “distance function”, dX : X ×X → R that
satisfies the axioms of positiveness, symmetry, and triangular
inequality (Burago et al. 2001). Drawing upon concepts from
metric geometry, we characterise geodesics on metric spaces
as paths whose segment lengths sum to that of the whole path
length. Formally,

Definition 2. Geodesics. Given a metric space (X, dX)
with intrinsic metric dX , a path γ : [0, 1]→ X is a geodesic
iff:

dX(γ(0), γ(1)) =
∑
n

d(γ(sn), γ(sn+1)), (9)

for any {sn} ⊂ [0, 1].
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We now show that an ε-GHA, and thus θ found by HAP,
preserves geodesics approximately.

Theorem 2. ε-GHAs preserve geodesics. Let (X, dX) and
(Y, dY ) be two metric spaces, and θ : X → Y an ε-GHA.
Then, for any geodesic γ on X , we have

|dY (θ(γ(0)), θ(γ(1)))−
∑
n

dY (θ(γ(sn)), θ(γ(sn+1)))|

≤ (N + 1)ε.

(10)

In other words, the path θ(γ(s)) : [0, 1]→ Y is (N + 1)ε
away from being a geodesic in the configuration space.

Proof. Applying the ε-GHA condition to the end-points of
γ, we have

|dY (g(γ(0)), g(γ(1)))− dX(γ(0), γ(1))| ≤ ε. (11)

Because γ is a geodesic, we can replace the
dX(γ(0), γ(1)) term in (11) with the sum of lengths
along any test points {s1, ..., sN},

|dY (g(γ(0)), g(γ(1)))−
∑
n

dX(γ(sn), γ(sn+1))| ≤ ε.

(12)
Using the ε-GHA condition on summands individually, we

have∑
n

dY (g(γ(sn)), g(γ(sn+1)))− (N + 1)ε

≤ dY (g(γ(0)), g(γ(1)))

≤
∑
n

dY (g(γ(sn)), g(γ(sn+1))) + (N + 1)ε.

(13)

N + 1 arises because there are N epsilons inside the sum
and one outside. �

7 Experiments
This section presents several sets of experimental results that
demonstrate and evaluate HAP’s performance in simulation
using high-quality kinematic models of robot manipulators.
For comparison, we also present results obtained using
alternative methods

We consider both single-query and batch-query problems
with a typical fixed-base 7-DOF manipulator model. Further,
we extend the evaluation in two ways. The first extension
is to show that the HAP framework is not limited to fixed
manipulators and can also be used for mobile manipulators,
i.e., a manipulator mounted to a mobile base. The second
extension is to show the robustness of HAP trajectories to
small perturbations in goal pose by adding a task-space
control step, where the end effector must achieve a given
approach pose and then perform visual-servoing to arrive at
the given goal pose.

We begin by describing the experimental setup, including
environment models, robot models, and comparison meth-
ods. Implementation details are also provided. We then
present single-query and batch-query experiments for fixed
and mobile bases, followed by task-space control/visual
servoing experiments for a mobile base.

Variant Sequencer Planner
(batch query)
HAP Naive TrajOpt Seed BIT*

HAP Naive
HAP-Full X X X

Hybrid-Full X X X
Naive-Full X X X
HAP-Opt X X
Naive-Opt X X

Table 1. Planner variants used for experiments with the
fixed-based manipulator model.

Variant Base ε-GHAs
Disabled Single Multiple N/A

HAP-Mobile X
HAP-Multi X X
HAP-Single X X

Naive-Mobile X
Naive-Static X X

Table 2. Planner variants used for experiments with the
mobile-base manipulator model.

Variant
Planning
time (s)

Execution
time (s)

Success
rate (%)

Fixed base

HAP-Full 0.46± 0.62 1.62± 0.79 94.00

Naive-Full 0.92± 0.97 1.49± 1.22 79.60

Mobile base

HAP-Multi 0.44± 0.42 1.58± 1.02 89.40

Naive-Static 1.13± 0.98 1.40± 1.45 72.60

Mobile base (subset)

HAP-Multi 0.20± 0.14 0.61± 0.28 100.00

Naive-Static 0.91± 0.97 1.16± 1.59 87.25

Table 3. Results for single-query experiments with the
fixed-base model, the mobile-base model, and a subset of
mobile-base trials where start and goal poses occupy the same
subspace. Times are reported as the average and standard
deviation computed over the set of trials. HAP consistently
achieved superior planning time and success rate.

7.1 Experimental setup
Experiments consist of sets of randomised trials where
a planning method is repeatedly executed with a given
environment and robot model. Tasks are sampled uniformly
at random from the environment’s task space. To discourage
dense sampling, we discard task samples that lie within a
threshold of 0.15 m from a previous sample.

We perform 500 trials for each planning method in single-
query problems, and 50 trials in batch-query problems with
a batch size of 10. The following metrics are evaluated:

• Planning success rate refers to the percentage of tasks
for which the motion planner succeeded in finding a
trajectory in Cfree.
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• Planning time refers to the computation time taken for
the motion planners to compute a plan for a task.

• Execution time refers to the time taken for a successful
trajectory execution, assuming the arms are operating
at their maximum joint velocities.

• Maximum trajectory jerk refers to the maximum joint
jerk norm of an executed trajectory. This is computed
numerically using the finite difference method.

• Sequencing time (batch-query only) refers to the time
taken to match library trajectories, modify them and
then compute a sequence, including the IK solution
computation for each task for both the naive and HAP
planning methods.

7.1.1 Robot models. The 7-DOF fixed-base manipulator
is a model of the Sawyer robot originally produced by
Rethink Robotics. The mobile-base manipulator is a model
of Universal Robots’ UR5 collaborative robot arm fixed to a
base that can translate in the plane.

7.1.2 Comparison methods: fixed base. The set of
comparison methods for experiments with the fixed-based
model consists of the following five variants: HAP-Full,
Hybrid-Full, Naive-Full, HAP-Opt, and Naive-Opt. Their
properties are summarised in Table 1.

There are two sequencing method options for batch-
query problems, labelled HAP and Naive. HAP refers to the
method proposed in this work. The Naive method sequences
tasks according to task-space distance only and ignores
configuration space.

There are also two options for planning methods,
labelled TrajOpt Seed and BIT*. These options refer to
the online adaptation step in both single-query and batch-
query problems. The TrajOpt (Schulman and the Robot
Learning Lab 2013) algorithm is executed initially in all
variants, as proposed in the HAP framework, although the
seed trajectory provided to TrajOpt is varied. The HAP seed
suboption is the retrieved library trajectory; the Naive seed
suboption is the straight-line trajectory between start and
goal configurations. If TrajOpt fails to find a plan, variants
with the BIT* (Kavraki Lab 2017) option (suffixed with -
Full) subsequently execute the BIT* algorithm, as proposed,
with a time limit of two seconds.

7.1.3 Comparison methods: Mobile base. Comparison
methods for experiments with the mobile-base model
are: HAP-Mobile, HAP-Multi, HAP-Single, Naive-Mobile,
Naive-Static. HAP-Mobile, HAP-Multi, and HAP-Single use
the same options as HAP-Full in Table 1. Likewise, Naive-
Mobile and Naive-Static use the same options as Naive-Full.

The variants differ in that the mobile base can be
enabled (allowed to move) or disabled (static). They also
differ in whether single or multiple ε-GHAs are generated
during trajectory library construction. These properties are
summarised in Table 2. The computed subspaces for HAP-
Multi and HAP-Mobile are shown in Figs. B.2 and B.3.

The Naive-Mobile variant further differs in how tasks are
allocated to base positions for experimental trials. Without
HAP’s automatic subspace generation and allocation for
mobile bases (see Sec. 5.3.5), tasks are manually organised
into three different divisions as shown in Fig. D.1 and D.2.

7.1.4 Environments and trajectory library construction.
All single-query and batch-query experiments use the
bookshelf environment shown in Fig. 2(b). For all
experiments with the fixed-base model, a single ε-GHA is
defined in the library. The home configuration is the home
pose IK solution closest to the average configuration of
this ε-GHA. Experiments with the mobile-base use single
or multiple ε-GHAs as defined by the comparison method.
The home configuration is defined similarly except with the
average configuration of the first found ε-GHA.

7.2 Implementation details

In implementing Alg. 3, the number of root nodes T̂root =
10. For all multiple ε-GHA experiments the algorithm is
terminated once i = 5. In implementing Algs. 4-6, all nodes
are initialised with path cost cmax = 5.0. The subspace
exploration penalty ρ = 2.0. The subspace distance biasing
penalty ρs = 0.02. Experiments with the mobile-base model
use ε = 0.35, and those with the fixed-base model use ε =
0.85. Distance dC is defined as L∞, and dT as L2.

For the online planner (Alg. 1), the number of closest
neighbours used when matching library tasks is k = 10. The
thresholds used for terminating the search over mappings
when matching a library configuration are L2 distance 0.7
for the bookshelf environment and 0.5 radians for task-
space control experiments. Google’s or-tools (Google 2017)
package is used as the TSP-solver in (3).

The home pose used is shown in Fig. 2(b). In mobile-
base experiments, a discrete set of possible base positions is
defined uniformly along the y-axis, parallel to the bookshelf.

7.3 Single-query results

Results for single-query experiments are provided in Table 3.
This set of experiments compares HAP’s performance to one
of the naive variants. To more closely examine performance
with the mobile-base model, we report results for a subset of
trials in addition to the full set. This subset corresponds to
trials where the start and goal poses lie in the same subspace,
a condition which occurred in approximately 30% of trials in
the full set.

HAP outperformed the naive baseline in planning time
and success rate. Although HAP’s average execution time is
slightly worse, the lower standard deviation indicates better
consistency across tasks.

The percentage of tasks in which HAP failed to produce
a trajectory is explained by the presence of obstacles
introduced after library construction or its sparseness.
This behaviour is expected because we intentionally chose
parameters that would reveal the algorithm’s limits. In
practice, success rate can be improved by increasing the size
of the trajectory library or by increasing the maximum time
allocated to the fallback planner (here, BIT*).

Further, our expectation of the benefit of identifying
subspaces is confirmed. When isolating results to the subset
of trials that lie within a single subspace we see that HAP’s
success rate is 100% with a large (over 2×) speedup in
planning and execution times.
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7.4 Batch-query results

7.4.1 Fixed base. Results for batch-query experiments
with the fixed-based model are provided in Fig. 4 for all
algorithm variants. The box-and-whisker plots in Fig. 4a
show that HAP achieved a favourable success rate relative to
baseline methods, as expected. Planning and execution times
shown in Fig. 4b are for the entire batch of 10 tasks. Although
these results appear to indicate superior performance for
HAP-opt and Naive-opt, these data describe successful
trials only and should be interpreted in conjunction with
corresponding planning success rates. Sequencing times are

consistent, as expected, since the same TSP-solver is used by
all variants.

Performance differences among variants are more distinct
in the trajectory quality comparison provided in Table 4,
which reports maximum jerk. HAP variants (HAP-Full and
HAP-Opt) achieved roughly 50% lower average maximum
jerk values than the naive variants.

7.4.2 Mobile base. Corresponding results for the mobile-
base model are provided in Fig. 5. In these experiments,
trajectories involve motion of the manipulator’s base in
addition to its joints. Performance is consistent with previous

0 20 40 60 80 100
Success (%)

Naive-opt

HAP-opt

Naive-full

Hybrid-full

HAP-full

Planning success rates

(a) Planning success rates

0 5 10 15 20
Time (s)

Naive-opt

HAP-opt

Naive-full

Hybrid-full

HAP-full

Time Performance Metrics

Sequencing Time Planning Time Execution Time

(b) Time performance metrics

Figure 4. Planning success rate (a) and time (b) for batch-query experiments with the fixed-base model. Mean and standard
deviation for sequencing, planning, and execution time refers to a batch size of 10. HAP variants achieved higher planning success
rate and faster plan times compared to the baseline naive variants while achieving similar or better execution times.
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Naive-static

Naive-mobile

HAP-single

HAP-multi

HAP-mobile

Planning success rates

(a) Planning success rates

0 5 10 15 20 25
Time (s)
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HAP-single

HAP-multi

HAP-mobile

Time Performance Metrics

Sequencing Time Planning Time Execution Time

(b) Time performance metrics

Figure 5. Planning success rate (a) and time (b) for batch-query experiments with the mobile-base model. Results are consistent
with fixed-base experiments shown in Fig. 4.

HAP-Full 189.84± 70.84

Hybrid-Full 182.75± 74.61

Naive-Full 412.53± 283.26

HAP-Opt 191.39± 71.15

Naive-Opt 368.46± 256.03

Table 4. Maximum trajectory jerk values (rad · s−3) for
batch-query experiments with the fixed-base model. Mean and
standard deviation are computed over all successful
trajectories. HAP variants consistently produced smoother
(lower maximum jerk) trajectories.

HAP-Mobile 500.91± 167.08

HAP-Multi 610.33± 168.80

HAP-Single 380.30± 211.30

Naive-Mobile 524.19± 508.40

Naive-Static 787.13± 699.05

Table 5. Maximum trajectory jerk values (rad · s−3) for
batch-query experiments with the mobile-base model. Results
are consistent with the fixed-base model reported in Table. 4.
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Environment Instance 1 (original) 2 3 4 5 6

Batch-query, fixed base, HAP-Full

Success rate (%) 97.09± 5.59 97.09± 5.87 97.09± 5.59 95.27± 6.36 94.55± 9.09 95.64± 6.36

Plan times (s) 0.29± 0.16 0.30± 0.15 0.33± 0.16 0.37± 0.20 0.42± 0.21 0.38± 0.20

Execution times (s) 1.01± 0.15 0.98± 0.15 1.02± 0.20 1.02± 0.17 1.05± 0.19 1.07± 0.23

Sequence times (s) 1.01± 0.06 1.01± 0.06 1.01± 0.08 1.01± 0.09 1.06± 0.08 1.02± 0.08

Batch-query, mobile base, HAP-Mobile

Success rate (%) 95.20± 6.68 94.57± 5.55 93.46± 6.56 93.86± 5.98 93.04± 5.40 94.76± 4.96

Plan times (s) 0.37± 0.16 0.42± 0.18 0.43± 0.19 0.43± 0.18 0.43± 0.19 0.37± 0.13

Execution times (s) 0.84± 0.15 0.87± 0.19 0.85± 0.19 0.88± 0.15 0.86± 0.20 0.81± 0.13

Sequence times (s) 0.68± 0.09 0.70± 0.09 0.70± 0.10 0.72± 0.08 0.71± 0.09 0.69± 0.08

Table 6. HAP validation results in six instances of the bookshelf environments where object locations are randomly perturbed.
Performance is consistent across all environment instances.

(a) Task-space control experiment
scenario

(b) Mobile-base model at approach
pose

(c) Mobile-base model at target pose
after servoing

Figure 6. Task-space control experiments: (a) shows the experimental setup and an instance of tasks, (b) shows the arm at the
approach pose (blue vector) facing the initial estimate of target position (red dot), (b) shows the trajectory produced by the PBVS
controller.
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Figure 7. Control failure rates for task-space control
experiments. HAP-Mobile and HAP-Multi achieved higher
success rates than baseline methods.

experiments, despite this increase in complexity. Notably,
total time is increased in variants where base motion is
disabled (HAP-Multi, HAP-Single, Naive-Static). This trend
indicates that HAP is able to exploit base motion to generate
shorter overall trajectories. Sequencing time is increased in
variants that use multiple subspace maps, as expected.

Path quality statistics shown in Table 5 are also consistent
with previous experiments. The availability of base motion is
evident in HAP-Mobile and Naive-Mobile, which achieved
lower maximum jerk values.

Effects related to the use of multiple subspace mappings
are also examined in this set of experiments. HAP-Mobile
and HAP-Multi use libraries constructed to allow multiple
subspaces, whereas HAP-Single is limited to one subspace.

Concatenated trajectories pass through the home position
when moving between subspaces. HAP-Mobile generated
this behaviour 2.74 times per batch on average. The average
is 2.88 for HAP-Multi, and 1.66 for Naive-Mobile. HAP-
Single uses a single subspace and thus produced no subspace
transitions. Planning success rate is generally inversely
proportional, confirming our expectation that multiple
subspaces are beneficial. Further, this pattern supports our
expectation that automatically generated subspaces are more
effective than the manually generated divisions used by
Naive-Mobile.

7.4.3 Varied obstacle configurations. Having compared
HAP’s performance to alternative methods within a
given environment, we now report results that evaluate
performance across a number of different environments. We
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(a) σNaive[0 : 1] (b) σNaive[3 : 4]

(c) σNaive[6 : 8] (d) σNaive[8 : 9]

Figure 8. Example subset of a Naive-Full trajectory sequence
for Sawyer bookshelf experiment. The trajectories for the tasks
shown exhibit long and jerky trajectories. (c) skips a task in the
sequence since it failed to plan to task 7 (bottom right shelf row).

randomly perturbed the arrangement of objects (obstacles) in
the bookshelf environment used previously to generate five
additional instances of this environment.

Table 6 reports results for the batch-query case using the
fixed-based model and HAP-Full, and for the batch-query
case using the mobile-base model and HAP-Mobile. The
original bookshelf environment is labelled as Environment
Instance 1, and the other instances are arbitrarily enumerated.
Performance is consistent across these environments as
expected.

7.5 Task-space control
The third set of experiments extends our evaluation of HAP
towards a typical application scenario where the planned
trajectory positions the end effector in order to perform
Position-Based Visual Servoing (PBVS) in task space. The
goal pose input to HAP is an approach pose that lies at a
fixed offset from the target. After the resulting trajectory is
executed, a task-space control procedure is used to move
the end effector in a linear motion towards the target. These
experiments illustrate how task-based cost can be used to
position the end effector in a way that facilitates subsequent
control behaviour.

The experimental environment is shown in Fig. 6.
The T̂ used for the trajectory library generation and
subspace allocations for the experiments are shown in
Appendices C.1 and C.2. T̂ is constructed by computing
approach poses from expected target positions.

(a) σHAP [0 : 1] (b) σHAP [1 : 2] (c) σHAP [2 : 3]

(d) σHAP [3 : 4] (e) σHAP [4 : 5] (f) σHAP [5 : 6]

(g) σHAP [6 : 7] (h) σHAP [7 : 8] (i) σHAP [8 : 9]

(j) σHAP [9 : 10] (k) σHAP [10 : 0]

Figure 9. Example HAP-Full trajectory sequence for fixed-base
model bookshelf experiment. All tasks are successfully planned
and trajectories appear to be consistently short and smooth.

PBVS is implemented by computing desired linear and
angular task-space velocities and then mapping these to joint
velocities via the pseudo-inverse of the Jacobian. Task-based
cost (Sec. 5.3.2) is defined as the weight sum

c(θ(u), θ(t)) = ξlim
1

P

P∑
n=1

tanh

(
2

∣∣∣∣θ(u)n − qlower
n

qupper
n − qlower

n

− 1

2

∣∣∣∣)
+ ξmanipκ(J),

(14)
where κ(J) is the condition number of the manipulator’s
Jacobian, J. The first term penalises configurations near
the joint limits where qlower

n and qupper
n are the lower and

upper limits of the n-th manipulator joint. The second
term encourages configurations with higher manipulability.
We penalise the condition number κ(J) because singularity
occurs when κ(J) approaches ∞ (Klein and Blaho 1987).
Weight ξlim is set to 0.5 and ξmanip to 0.1.

To perform PBVS in simulation, we add Gaussian noise
to the target’s position and orientation that decreases linearly
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(a) σNaive[1 : 3]

(b) σNaive[3 : 5]

Figure 10. Example subset of a Naive-Mobile trajectory
sequence for mobile-base model bookshelf experiment. The
trajectories for the tasks shown exhibit long jerky trajectories.
Both (a) and (b) skip a task in the sequence since they failed to
plan to two tasks in the middle and lower shelf rows.

as the end effector approaches the target. Tasks are generated
such that both the target pose and approach pose have at least
one valid IK solution.

We performed 50 trials with a batch size of 10 using the
same set of comparison methods used in previous batch-
query experiments for the mobile-base model. Two failure
conditions are of interest. The first is referred to as joint limit
failure and occurs when any joint reaches a threshold of 0.01
radians from its limit. The second is manipulability failure
and is defined by the condition 1/κ(J) < 0.015, indicating
that the arm is approaching a singularity.

Results are plotted in Fig. 7. HAP-Multi and HAP-
Mobile achieved low failure rates. Naive-Mobile, Naive-
Static, and HAP-Single produced high rates of task-space
control failures in particular. This pattern is consistent with
the other results for the mobile-base model where multiple
subspaces contributed to greater planning success.

(a) σHAP [0 : 1], θ0 (b) σHAP [1 : 2], θ0 (c) σHAP [2 : 3], θ0

(d) σHAP [3 : 0], θ0 (e) σHAP [0 : 4], θ1 (f) σHAP [4 : 5], θ1

(g) σHAP [5 : 6], θ1 (h) σHAP [6 : 0], θ1 (i) σHAP [0 : 7], θ3

(j) σHAP [7 : 8], θ3 (k) σHAP [8 : 9], θ3 (l) σHAP [9 : 0], θ3

(m) σHAP [0 : 10], θ4 (n) σHAP [10 : 0], θ4

Figure 11. Example HAP-Mobile trajectory sequence for
mobile-base model bookshelf experiment. The assigned ε-GHA
indexes for each task pair are shown to highlight when
subspace switching occurs. All tasks are successfully planned
and trajectories appear to be consistently short and smooth.

8 Discussion
This section discusses properties of trajectories generated by
HAP in relation to baseline methods. We provide examples
that illustrate the benefits of our choice of seed trajectories
for online adaptation and of our method for generating
subspace mappings in batch-query problems.

Naive heuristics for planning, such as Euclidean distance
in workspace, do not account for the nonlinear motion
of high-DOF robotic manipulators. The ε-GHAs computed
by HAP account for this nonlinearity by considering prior
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(a) Naive trajectory seed (b) HAP trajectory seed

Figure 12. Side view of bookshelf environment showing
comparison of (a) naive planner’s initial trajectory seed and (b)
HAP’s. Since HAP has prior knowledge of the environment it
seeds with a trajectory that moves away from the shelves before
moving into another row.

knowledge such as the kinematic structure and environment
obstacles. As a result, HAP achieves improved performance,
exemplified in Fig. 9 (Extension 1) where HAP begins tasks
in the middle shelf and sequences tasks according to shelf
rows. In contrast, the naive planner executes an inefficient
sequence depicted in Fig. 8 (Extension 1), beginning in the
top shelf, continuing tasks in other shelves and returning to
the top shelf to complete the sequence.

Furthermore, naive trajectories can exhibit excessive
jerk as the arm approaches awkward goal configurations
along the sequence. In comparison, HAP maintains smooth
trajectories over the entire sequence by biasing trajectories to
the mapped subspaces. In Fig. 8(c), the naive planner failed
in one of the tasks in the lower shelf.

The mobile base scenario shown in Figs. 10 and 11
(Extension 2) further demonstrates the benefit of our
proposed approach. HAP allocates tasks on the lower shelf
to a base pose that allows for more space for the arm to move
(Fig. 11(j)) while still efficiently grouping tasks in the other
rows. Notably, the naive method fails to plan to one such task
on the lower shelf.

Interestingly, the trajectory in Fig. 11(k) required a large
rotation about the wrist joint. This is due to the pot object
in the top shelf row, which was not known during trajectory
library construction. This example indicates that splitting or
merging of subspaces may be a direction of future work that
could improve the robustness of the framework.

Another key advantage of our approach over naive
methods is the utilisation of trajectory initialisation that is
informed by an a priori model of the environment. As
illustrated in Fig. 12(a), the naive straight line trajectory
initialisation passes through both the bookshelf and objects
on the shelves. This is a poor initialisation for trajectory
optimisation as can lead to local minima where links are in
collision with multiple objects, or where multiple links have
inconsistent gradient directions (Schulman et al. 2014). As a
consequence, this example failed during TrajOpt execution.

The initialisation computed by HAP, shown in Fig. 12(b),
allows the arm to move away from the shelves. This
initialisation facilitates execution of TrajOpt, even though it

may initially be in collision with other unseen objects on the
bookshelf.

9 Conclusion and future work

We have presented a new motion planning framework for
robotic manipulators that is designed to perform efficiently
in practice given a user-defined task space. The framework
automatically constructs a library of trajectories that move
the manipulator’s end effector from one pose to another
within this task space, and uses this library to quickly
produce motion plans online. The library is constructed
by finding a set of subspaces with associated ε-Gromov-
Hausdorff approximations that guarantee short trajectories of
bounded length which also can be concatenated smoothly. A
distinctive feature of our method is its usefulness in batch-
query scenarios where an unordered set of goal poses is
provided and the algorithm is free to choose a favourable
sequence of minimum total cost. Because all precomputation
is performed automatically, our work helps to enable rapid
deployment of manipulators for various applications based
on the task-space definition.

We have evaluated our framework in several experimental
scenarios with 6-DOF and 7-DOF manipulators on fixed
and mobile bases, including point-to-point motions and
long sequences in a bookshelf environment. Results showed
notable performance improvement over baseline methods
in planning time, planning success rate, and smoothness
measured by jerk. Experiments with manipulators mounted
to a mobile base demonstrate the generality of our method
for a variety of hardware configurations.

Our results motivate several important avenues of future
work. It would be interesting to explore methods that would
adapt the subspaces online in response to changes in the
environment, potentially using online domain adaptation
techniques developed for modelling laser scans (Tompkins
et al. 2020) to handle changes in environment topology.
A related idea would be to learn a distribution of library
trajectories conditioned on the environment, akin to work
that predicts pedestrian trajectories by learning a conditional
multi-modal distribution (Zhi et al. 2021). The ε-GHAs could
be used to inform choice of alternative local planners or
controllers such as RMPflow (Cheng et al. 2021), which
would benefit from knowledge of which regions of the task
space are approximate isomorphisms to configuration space.

Finally, we are specifically interested in applying our
work to cobot systems by investigating alternative metrics
for trajectory cost. For example, a range of metrics have
been proposed that aim to generate natural, human-like
motion (Liarokapis et al. 2017; Gulletta et al. 2020;
Gäbert et al. 2021). Other work aims to mimic human
posture (Jaquier et al. 2021) by learning a manipulability
matrix representation constrained to the space of symmetric
positive definite (SPD) matrices. In the context of a
manipulator, SPD matrices can be parameterised via a
convex cone manifold embedded in R6. HAP could be
used in a similar way to find ε-GHA mappings that
potentially capture more complex geometric structures than
SPD matrices which could then be used to bias trajectories
towards more natural human behaviour.
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Appendix A: Index to multimedia
extensions

Table of Multimedia Extensions

1 Video Batch-query experiment with fixed-based manipulator
2 Video Batch-query experiment with mobile-base manipulator
3 Video Task-space control experiment
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Appendix B: HAP task-space subspace allocations for bookshelf experiments
Here, illustrations of HAP’s subspace allocation process are shown. In Fig. B.1, a visualisation of the fixed-base model’s
naturally extended task-space coverage compared to the mobile-base model is shown. This increased task-space coverage is
due to the kinematic configuration of the 7-DOF arm.

In Figs. B.2(a)-(e) each visualisation shows a new subspace found in an iteration of Alg. 4 for the mobile-base model
with base mobility disabled. With each iteration, the overall coverage of T̂ is increased. Overlap between subspaces in task
space is beneficial as it provides additional IK solutions to choose from during online planning. Subspaces found for the
mobile-base model in the bookshelf environment and base mobility now enabled are visualised in Figs. B.3(a)-(e) in the
order they are generated by HAP. Subspace boundaries are not always obvious and would be difficult to generate manually.

(a) T̂ 0 for fixed-base model (b) T̂ 0 for mobile-base model

Figure B.1. Comparison of first subspaces generated for (a) the 7-DOF fixed-base model and (b) the 6-DOF mobile-base model.
Green poses indicate areas of task space that lie within the defined subspace; blue poses indicate the remaining unmapped areas.
The fixed-base model is capable of almost full task-space coverage with a single subspace, in contrast to the mobile-base model,
due to its kinematic redundancy.

(a) T̂ 0 (b) T̂ 1 (c) T̂ 2 (d) T̂ 3 (e) T̂ 4

Figure B.2. Visualisation of task-space subspaces for HAP-Multi. Green and blue poses are defined as in the previous figure.
Subspaces are sorted by order in which they were found by Alg. 3. Subspaces in (a) and (b) achieve large and diverse coverage,
while the subspace in (c) is similar to (b). Subspaces in (d) and (e) cover only small isolated regions of the task space in the left
bottom and middle shelf rows, respectively.

(a) T̂ 0 (b) T̂ 1 (c) T̂ 2 (d) T̂ 3 (e) T̂ 4

Figure B.3. Visualisation of task-space subspaces for HAP-Mobile. Note the base pose changes for each subspace. Subspaces
are sorted by order in which they were found by Alg. 3. Subspaces exhibit large and diverse coverage for all base positions.
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Appendix C: Subspaces in task-space control experiments
Computed subspaces for HAP-Multi and HAP-Mobile are shown in Figures C.1 and C.2, respectively. Allocated subspaces
are highlighted in green and their assigned base positions are shown. Unallocated poses in Fig. C.1 are either unreachable
from the static base position or have path costs that exceed cmax.

(a) T̂ 0 (b) T̂ 1

Figure C.1. Subspaces computed for HAP-Multi in the task-space control experiments. The subspace in (a) provides coverage of
the back plane of poses while (a) covers the front plane.

(a) T̂ 0 (b) T̂ 1 (c) T̂ 2

(d) T̂ 3 (e) T̂ 4

Figure C.2. Subspaces computed for HAP-Mobile. The five subspaces generated have unique base positions and collectively
achieve near-complete coverage of the task space.
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Appendix D: Manually generated subspaces and base positions used in baseline methods
Manually defined subspaces for the Naive-Mobile baseline are shown in Fig. D.1 for single- and batch-query experiments
and in Fig. D.2 for task-space control experiments. Subspaces areas are indicated in green and their assigned base positions
are shown.

(a) Naive allocation 1 (b) Naive allocation 2 (c) Naive allocation 3

Figure D.1. Subspaces and base positions (manually defined) for Naive-Mobile in single- and batch-query experiments. The task
space is divided into three regions with the intent of reducing the reach distance from each of the base positions.

(a) Naive allocation 1 (b) Naive allocation 2 (c) Naive allocation 3

Figure D.2. Subspaces and base positions (manually defined) for the Naive-Mobile method in task-space control experiments.
Design intention as in previous figure.
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