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ABSTRACT This paper introduces recently developed Aquila Optimization Algorithm specifically
configured for Multi-Robot space exploration. The proposed hybrid framework ““Coordinated Multi-Robot
Exploration Aquila Optimizer” (CME-AO) is a unique combination of both deterministic Coordinated
Multi-robot Exploration (CME) and a swarm based methodology, known as Aquila Optimizer (AO). A novel
parallel communication protocol is also embedded to improve multi-robot space exploration process while
simultaneously minimizing both the computation complexity and time. This ensures acquisition of a optimal
collision-free path in a barrier-filled environment via generating a finite map. The architecture starts by
determining the cost and utility values of neighbouring cells around the robot using deterministic CME.
Aquila Optimization technique is then incorporated to increase the overall solution accuracy. Numerous
simulations under different environmental conditions were then performed to validate the effectiveness of
the proposed algorithm. Algorithm consistency aspects in achieving the expected results (area explored
rate and time) is demonstrated through statistical means. A perspective analysis is then performed by
comparing the performance of the CME-AO algorithm with latest state of art contemporary algorithms
namely conventional CME and CME-WO (CME Whale Optimizer). The comparison duly accommodates
all pertinent aspects such as % area explored, number of failed runs, and time taken for map exploration
for different environments. Results indicate that the proposed algorithm presents two distinct advantages
over the other conventional state of the art CME based techniques a) enhanced map exploration in cluttered
environment and b) significantly reduced computation complexity and execution time, with almost no fail
runs. This makes the suggested methodology particularly suitable for on-board utilization in an obstacle-
cluttered environment, where other techniques either fails (stuck locally) or takes longer exploration time.

INDEX TERMS Robotics, multiple agent system, space exploration, artificial intelligence, optimization

algorithms, autonomous systems.

I. INTRODUCTION

We investigate the issue of using an autonomous robot to
explore two-dimensional (2D) regions that are unknown
to it beforehand. Such an issue continues to be difficult

The associate editor coordinating the review of this manuscript and

approving it for publication was Mouloud Denai

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

since it has to deal with concurrently performing two tasks:
1) online representation update to keep track of the regions
that have been investigated, and 2) looking through the
representation for a continuous path that can be followed
to direct the investigation. Whenever the environment is
significant, architecturally intricate, and 3D, and the issue
computations get more difficult, and assuring complete
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environment exploration might get difficult. Furthermore, the
study deals with the challenge of exploring an unfamiliar
area with a finite number of obstacles and bounded perimeter
using a group robots. Teams of autonomous mobile robots
can perform information-gathering activities including explo-
ration, surveillance, and inspection with increased efficiency,
dependability, and robustness, among other benefits [1].
These benefits are attained by utilising some kind of team
coordination, which is frequently built assuming the ability
to interact without boundaries [2], [3], [4], [5]. However,
dealing with communication-challenged circumstances is a
common requirement for operations in the real world. Robots
in these environments can only communicate with colleagues
nearby (locally), depending on their transmission capabilities
and the environment itself (e.g., obstructions or disruptions
occupancy). It may be difficult to achieve a good degree of
coordination as a result.

One of the most difficult challenges in a multi-robot system
is determining the best collision-free route for each unit in
order to increase system efficiency while adhering to a set of
limitations [6], [7]. One of the traditional methods is to take
the robotic out to explore its surroundings in order to locate
landmarks that can be utilized in trajectory tracking. The
robot relies heavily on its sensors, map creation, and location
updates in this circumstance. Moreover, the ecosystem
lacks information, and mapping approaches need large
storage and time and are ineffective in generating the ideal
path.

The primary goal of mobile robots automation is to
create a physical architecture that can offer independence
to robots for persistent trajectory tracking in a congested
predictable environment without the involvement of human
controllers [8]. Robot routing determines the objective site
by avoiding obstacles in its way from the origin place
while fulfilling limitations such as distance, energy, and
time [9], [10], [11]. This procedure is divided into four
distinct configurations: (1) perception: the robot gathers the
information needed utilizing sensors. (2) Localization: the
robot identifies where it wants to go in the surroundings.
(3) Path planning: the robot determines its guiding path in
order to reach the desired place while avoiding obstacles.
(4) motion control: change the movement to create the
path’s needed direction [4], [4], [12], [13], [14], [15], [16],
[17]. The topic of multi-robot path planning is concerned
with computing pathways for robotic systems in such a
way that each device has an optimal route, but the full
path of all the merged devices is optimal. This is a more
sophisticated work than single-robot path planning, where
the factor of coordination among the numerous robots is
not appropriate, and the single robot may calculate the path
using its methods. The motion planning challenge might be
controlled or distributed. A planner simultaneously plans all
of the robots in centralized planning, generally considering all
of the intricate interactions that they may have. Consequently,
an extremely complicated design space is generated, across
which the searching has to be done. On the other hand,
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decentralized planning assigns a separate planner to each
robot. Each robot is designed individually in its configuration
area, which simplifies planning. Then, attempts may be taken
to avoid collisions between the different machines. Compared
to decentralized planning, centralized planning requires more
time but is more effective.

Optimization-based search is one of the most common
artificial intelligence methods used to introduce functions
such as human learning [2], [3], [5], [18], [19], UAV path
planning [15], [20], [21], [22], [23], [24], [25], [26], [27],
[28], [29], [30], [31], [32]. Because optimization methods
produce good outcomes, they play a key role in tackling
complex problems [33], [34], [35], [36].

Therefore, the goal is to develop a technique which
utilized primitive algorithm such as deterministic method and
integrating it with bio-inspired algorithms.

A. MOTIVATION

According to the literature study and cited publications,
hybridized algorithms are the most recent trend with a wide
range of applications and utility [37]. Different algorithms
are combined to create competing hybrid algorithms that
produce the greatest outcomes with the least amount of work
and time. The evolution of new hybrid algorithms/techniques
is all geared at catering for the limits observed in earlier
algorithms, and to improve the optimization parameters while
exploring diverse complexity environments, as evidenced
by the listed articles. As a result, there is a pressing need
to develop novel hybrid tactics that combine bio-inspired
methodologies with the CME framework while also meeting
spatial restrictions.

In our proposed algorithm, we made sure that different
workspace regions are investigated at roughly the same rate,
preventing certain areas from being searched considerably
later than others. Further we incorporated a novel parallel
communication protocol to enhance performance by reducing
the search time and increased exploration rates with almost
no fail run. Both these aspects are critically desirable
for many exploration applications, such as search and
rescue.

B. RESEARCH CONTRIBUTIONS

The paper presents, the implementation of of recently
developed Aquila Optimization Algorithm specifically which
is specifically configured for Multi-Robot space exploration
in an unknown environment. In our proposed algorithm,
we made sure that different workspace regions are inves-
tigated at roughly the same rate, preventing certain areas
from being searched considerably later than others. A novel
parallel communication strategy is added for effective
communication between agents. The result demonstrates that
the proposed algorithm explores the unknown environment
in an efficient way in a lesser amount of time. Finally, the
performance of the proposed Aquila Optimizer has been
demonstrated via the simulation. Different workspace regions
are investigated for algorithm efficiency. The results acquired
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are analyzed and compared with other state of the art methods
published in the literature.

C. PAPER ORGANIZATION

The rest sections in this paper are organized as in
Section II; the related works are worthy of being mentioned.
In Section III, the motivation of this research is given.
Section IV presents the main procedure of the Aquila
Optimizer, which is used to solve the robot path planning
problem. In Section V, the definition and mathematical
notations of the integrated CME-AO exploration problem
are given. Detailed experiments and results are discussed in
Section VI. In section VII, perspective analysis to compare
the performance of the proposed CME-AO with contem-
porary algorithms namely conventional CME and CME
augmented Whale optimizer (CME-WO) is performed. The
conclusion and future work are presented in Section VIIIL.

Il. RELATED WORK

Autonomous exploration is a challenge that has been
approached from many directions. The strategy outlined in
this work is based on significant information theory findings,
frontier-based exploration, topological exploration, and a few
random sampling-based techniques that are briefly covered
in this section. The most related works that can support this
research are worthy of mentioning, as follows.

Using information theory to solve the exploration problem
is a common strategy. The techniques maximise the infor-
mation gained throughout the following few actions [38],
[39]. These techniques are also extended for multi-robot
exploration system. However, the bulk of these approaches
are based on greedy tactics, and their efficiency is constrained
by their narrow focus. The appropriate way out could have
been prioritizing long-term exploration path rather than
just maximizing rapid reward functions [40], [41]. The
problem can be formulated using borders (frontiers), or the
line separating mapped and unmapped territories. When
exploring, the vehicle continues to move toward frontiers,
extending the marked regions’ boundaries until the entire
environment has been studied [42], [43], [44]. Faigl and
Kulich’s technique [45], in contrast to most of these methods,
solves a special case of the “art gallery issue” to discover
the lowest collection of perspectives necessary to cover the
borders.

Fang et al. [46] employed the behavior-based technique
known as social potential fields to determine the robots’
trajectory and drive them toward uncharted territory. They
then adjusted each robot’s tilt and speed to enhance the
system. The simulation demonstrated that a multi-robot
system with robot speeds between 0.7 and 1.0 m/s and angles
between 0.2 and 0.2 rad would provide the best coverage of an
uncharted space. When compared to current trends, this kind
of deterministic optimization has little impact and ignores the
other needs of the robot system.

A typical path planning technique for multi-robot devices
is provided in [47]. By assessing a different cost function, the
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additional coverage from the motion control is maximized.
Then, a goal determination mechanism is built to promote
collaborative exploration for a multi-robot system. The
suggested path planning method is tested on several unknown
and difficult environment maps. The simulation outcomes
and quality assurance show that the proposed joint path
planning method is successful. The work produced a new
method for determining the ideal path route for multi-robots
in a congested scenario by combining enhanced particle
swarm optimization (IPSO) with the dynamically perturbed
velocity (DV) method [48]. The algorithm aims to reduce the
maximum path distance, which equates to minimizing the
estimated time of arrival of all robotics in the ecosystem to
their different locations. However, other factors such as map
exploration rate were not reported.

A centralized analytical system for tackling multi-robot
route planning issues in generic, two-dimensional, continu-
ous settings is described in [49] to reduce job completion
worldwide. The system achieves a high level of performance
by combining an ideal discretization of the constant surround-
ings with a quick, near-optimal resolution of the resulting
discrete planning issue. The strategy can tackle difficulties
with hundreds of robots that constantly take up more than
30% of the available area. However, real time application
aspects which requires analyzing the exploration time was not
reported.

Pugi et al. [50] introduces a multi-robot design exploration
method based on an optimization algorithm and K-Means
cluster analysis to ensure the balanced and sustained explo-
ration of large workspaces. Both properties are demonstrated
by comparing the proposed method to several state-of-the-art
algorithms. The algorithm although reduces the variance of
the average waiting time on certain locations, but samples the
work space areas at different rates, which causes certain areas
from being searched considerably later than others. They only
applied the deterministic global optimization for CME. Simi-
larly Gul et al. [51], utilized Whale optimization algorithm for
the purpose of space exploration in an unknown environment
by coordinating multiple robots. The research presents a
search method for performing search exploration that mimics
whale hunting behavior by combining deterministic Coor-
dinated Multi-Robot Exploration (CME), and metaheuristic
phase enhanced Whale Optimization Algorithm (WOA)
approaches. The frequency is continuously modified using a
probabilistic objective function to optimize exploitation and
exploration technicians. Although the proposed algorithm
showed improvements in results, yet the optimization time
and exploration area needed significant improvement for
actual on board utilization.

The optimum multi-robot path planning is investigated by
Yu et al. [52], on graphs using four minimization goals: the
makespan, the total arrival time, and the total distance. A new
solution matching is built between multi-robot route planning
and a unique form of the multi-flow channel to achieve this
purpose. Novel and comprehensive methods are created to
maximize several criteria based on this equality and integer
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linear programming. The use of integer linear programming
design algorithms and heuristics proved its quite productive.

Mathew et al. [53] research focuses on a collaborative
team of cars making autonomous deliveries in urban contexts.
The collaborating team consists of two vehicles with
complementing functionality: a truck limited to movement
across a road system and a quadrotor micro-aerial device with
capacities, which can be launched from the vehicle to execute
deliveries. The simulations evaluated the efficiency of the
provided methods and showed instances of delivery route
calculations across real metropolitan street maps. However,
sensors integrating issues were not explicitly discussed.

Das et al. [54] presents a novel approach for determining
the optimal path for multi-robots in a constrained environ-
ment. The proposed method combined enhanced classical
Q-learning based on four fundamental values with enhanced
particle swarm optimization (IPSO) by changing variables
and the preferentially perturbed velocity (DV) technique for
improving convergence. The improved classical Q-learning
stores the Q-value of the state’s optimal action, saving data
storage. However, area complexity factors were not analyzed
to determine algorithm complexity in varying conditions.

lll. AQUILA OPTIMIZER FRAMEWORK FORMULATION
Abualigah et al. [55] suggested Aquila Optimizer, a new
swarm intelligence algorithm, in the year 2021. Aquila has
four main hunting behaviours for different types of prey.
Aquila can switch hunting techniques quickly for different
prey and then attack with its fast speed and strong feet and
claws. The following is a brief summary of the mathematical
model.

Step 1 (Expanded Exploration): In this strategy, the Aquila
soars high above the ground and thoroughly surveys the
search zone, then diving vertically once the Aquila has
determined the prey’s location. This behavior’s mathematical
representation is as follows:

Xi(t + 1) = Xpest(1) x (1 — %) + (X ()

_Xbest(t) X }"l) (1)
1 K

Xp(0) = = > Xi(0) )
j=1

where Xp.g(t) is the best position so far and Xj,(¢) is the
average position of all Aquila’s in the current iteration. The
current iteration and the maximum number of iterations are
represented by t and T, respectively. N is total population size,
and rl is a random number between 0 and 1.

Step 2 (Narrowed Exploration): For Aquila, this is the
most usual technique of hunting. After descending within
the designated area and flying around the prey, it uses short
gliding to assault the prey. The formula for updating the
position is as follows:

Xo(141)=Xpest (1) X LE(D)+XR(1) = (y —x) x 12 (3)

where Xp(#) denotes a random Aquila location, D is the
dimension size, and r2 denotes a random integer inside the
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dimension [0, 1]. The Levy flight function, abbreviated as
LF(D), is presented as follows:

LF(D) =5 x -2 “

v P

u and v are random numbers between 0 and 1, whereas s
and B are constant values of 0.01 and 1.5, respectively. The
spiral shape in the search is represented by y and x, which are
determined as follows:

L(1 + B) x sine(%L)
(uney
UMy x g x 2( )
x = r x sin(9) (6)
y =r x cos(f) @)
r = r3 4 0.00565 ®)
3xm
0 = —wx D + ©)

2

where 13 is the number of search cycles between [1,20], D
is an integer array from 1 to the dimension size (D), and w is
0.005.

Step 3 (Expanded Exploitation): When the region of prey
is roughly determined in the third way, the Aquila descends
vertically to launch a preliminary attack. AO uses the chosen
region to go close to the target and attack it. This behaviour
is presented as follows:

X3t + 1) = Xpest (1) — Xp (1)) X ¢ — rd
T (wb—1b)x rd+ 1) x 8  (10)

where Xpes:(#) signifies the best position so far, and Xy, (¢)
denotes the current position’s average value. The exploitation
adjustment parameters a and d are set to 0.1, ub and b are the
problem’s upper and lower bounds, and r4 is random number
within the problem [0, 1].

Step 4 (Narrowed Exploitation): The Aquila pursues the
prey’s escape path and then attacks it on the ground. This
behaviour is mathematically represented as:

Xa(t + 1) = OF X Xpest (1) — (G1 x X(2)
xr5)— Gy x LFD)+r5x Gy (11)

where X(t) denotes the current position and QF(t) is the value
of the quality function, which was utilized to balance the
search strategy. G is the Aquila’s tracking prey movement
parameter, which is a random number between [-1,1]. When
chasing prey, G, symbolizes the flying slope, which falls
linearly from 2 to 0. 15 is random value ranging from O to 1.

A. PERFORMANCE EVALUATION
The results of Aquila are then compared to benchmark
functions (as referred in Table 2, 3 and 4 in [55]). Finding
acceptable points that satisfy the stated condition from a set
of potential candidate outcomes associated to fmin is the
primary goal.

The performance of the aquila algorithm is evaluated using
the unimodal function F1 (spherical function) as defined in
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FIGURE 1. Aquila test on sphere function (a), for iteration 1 (b), for
iteration 18 (c). for iteration 20, (d). The leader aquila path for the search
of the optimal solution. Population = 10. The leader aquila cost in
iteration 1 is 3.3558, iteration 4 is 0.030726, and iteration 20 is
0.00025721. The runtime of 20 iterations is 1653.9 seconds.

Table 2 in [55]. In the first run, a quick convergence rate is
observed, as shown in Figure 1, with a total execution time of
1653.903269 seconds. With 5x 5 boundaries, the 2D space
is chosen. It took 10 population sizes and 20 iterations to
get the best answer. Figure 1 depicts the optimization drift
subfigure (d). The main advantages of aquila were found to
be (a) rapid convergence, (b) lower memory requirements
and ease of implementation, (c) avoidance of local, and
(d) fewer parameter tweaking. Despite the algorithm’s early
rapid convergence, it had an intrinsic limitation of gradually
slowing down due to the diversity problem.

IV. INCORPORATION OF PARALLEL STRATEGY

Parallel strategies, such as Data Mining [56] and Deep
Learning [57], are commonly utilized to fasten the processing
speed and to solve complex and complicated problems [57].
Genetic Algorithm (GA) is one of the most well-known and
primitive names in the world of intelligent algorithms [58].
Experiments have shown that using a parallel technique
allows for multipoint parallel search in space, which improves
performance and communication among population. The
search speed is enhanced due to the utilization of multiple
CPUs. As a result, the parallel strategy method performs
better than the original algorithm [59], [60]. With the growing
amount of data, a single communication method is often
insufficient. Roddick [61] split the single communication
method into three and applied them to PSO. Experiments
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FIGURE 2. Parallel transmitting strategy.

have shown that the three communication options improved
PSO’s efficiency.

The parallel approach was then improved by several
researchers based on Chang’s hypothesis. Yang et al. [62]
and Zhu et al. [63] proposed a parallel strategy including
various groups and techniques. According to its unique
communication plan, each population will be updated. When
a particular number of iterations have been completed, the
populations communicate and share information. Their final
update techniques are the identical, with one group’s ideal
value being used instead of another group’s worst value.
Nasrabadi et al. [64] used a parallel approach in which
numerous groups of the same method worked together. Each
group utilized the same technique to evolve separately at first.
i.e., after a given number of repetitions, populations begin to
share knowledge.

As demonstrated in Figure 2, we added randomization to
the communications strategy and employ multiple tactics in
local and global search which assist groups to completely
communicate. For the local, two groups are randomly chosen,
and every T iteration, one group of particles with the best
fitness is substituted for the other group of particles with
the lowest fitness. Every two iterations, the global best
particle replaces the worst particle in the group. The goal
of implementing these two strategies is to improve the
algorithm’s randomness, strengthen communication between
populations, and avoid premature convergence, all while
improving the algorithm’s robustness.

A. EXPLORATION

Exploration of an unknown environment is a key topic
in autonomous mobile robots, which involves exploring
uncharted locations while developing a map of the envi-
ronment. Traditionally, humans plan the environment ahead
of time, and the robot uses that map to navigate the
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TABLE 1. Aquila test on unimodal function to determine cost and time.

Iteration No Run Time (sec) Cost

1 5.8 3.3558

15 1219.108188 0.0013166
18 1419.78 0.00074476
20 1653.9 0.0002572

environment later while avoiding impediments. Exploration
has the potential to cut the human out of the map-making
process in an unknown environment. Exploration algorithms
have a wide range of applications in domains such as space
robotics, sensor deployment, and defensive robots, among
others.

Brian Yamauchi introduced a consistent and clear tech-
nique in the field of autonomous exploration in 1997 [38],
[65], which is the foundation for most of the current
exploration algorithms. The basic question in exploration is:
Given our current understanding of the world, where should
we move the robot to gather the most data?. The concept of
frontiers can provide an answer to this. The terminologies
utilized for space exploration are elaborated below:

o The zone not yet covered by the robot’s sensors is
referred to as the Unknown Region.

o The Known Region is the area that the robot’s sensors
have already surveyed.

o Open-Space is a well-known area that is devoid of
obstacles.

o Occupied-Space is a well-known area with an impedi-
ment.

o Occupancy Grid is a representation of the surroundings
in a grid format. Each cell has a probability that indicates
whether or not it is occupied.

e The Frontier is the line that divides known and
unknown regions. A frontier is a collection of unknown
points with at least one open-space neighbour.

V. FORMULATION OF INTEGRATED CME-AO ALGORITHM
Multi-robot coordination Exploration entails a search process
aided by a multi-robot team. They go all over the place
surfing. The information they gather during exploration
is used to create a map of a specific area. Different
communication algorithms are also available for robots.
There are two methods of exploration available: centralized
and decentralized exploration. The former uses a single map,
whereas the later uses a unique map for each robot [66].
Our paper focuses on a centralized application that considers
the distance travelled locally by each robot, as well as the
cost. The most crucial task when exploring unfamiliar places
in an environment is to have knowledge of Frontier cells.
It’s described as a cell that has been investigated and is
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directly adjacent to an unexplored cell. Each cell’s price is
proportionate to the distance between the robot’s starting
point and the cell. The map is divided into evidence grids
that span the length of it. The evidence grids are made out
of Cartesian grids with cells. A probability value is assigned
to each cell, indicating whether the region is inhabited or not.
The sensor model refreshes the grid when a sensor reading is
acquired in real time.

Kx’y = ml.}’l{KxJ,_Ax’yJ,_Ay —+ \/ sz + Ay2

P(occxyax,y + Ay)} (12)

where, Ax, Ay € [-1,0,1] A Ploccxynx,y +
AY)E[0, occpmay] and occygy, 1s the maximum probability
value of the grid cell.

Each cell has a numerical value, thus if a cell has been
investigated previously, the cost of that cell is added to the
new cost and the cell is marked as a Frontier cell, as shown
in Equation 13. To reduce the temporal complexity, the
condition must be met.

Kyy= min{,/ Ax? + Ay2 P(occyinx,y + Ay)} (13)

If the sensor beam has previously passed through the cell,
it is labelled as a frontier cell, and the cost is added backwards
in the previous step. The probability values of unknown cells,
non-occupied cells, and occupied cells are 0.5, 0 and 1. When
the sensor beam contacts the cell from a given distance, the
likelihood value lowers. Refer to [38] Equation 2.

The goal of cost reduction is to discover the lowest value
from all of the neighbouring cells, which determines the
robot’s next best position. Finding cost for a single robot
is simple compared to a multi-robot system that requires
constant integration. For this reason, the CME method
proposed the utility arrangement for robot-related tasks. The
basic goal is to reduce the cost of surrounding cells in order
to identify the robot’s ideal next best position.

A. INTEGRATED STOCHASTIC OPTIMIZER

Maximizing utility values is defined as: it is assumed that all
evidence grid cells in the map have the same utility value at
the start. Refer to Equation 14 to see how these values change
when the robot(s) traverse the map. In order to explore new
positions on the map, the robot(s) are interested in exploring
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those cells with high utility values.

RUJ&gc = RUJfg_C1 — ZP( occf:’y — occ" D (14)

X,y

The state of earlier modification Ugcj— 1 is represented by
the cell utility value Ugcj. During the exploration phase, the
value changes, and the robot’s current position is subtracted
from a value equal to the probability occupancy of the
selected cell. Equation 15 is used to get the ideal value.

(, g¢) = max(UF* = Vy ) (15)

The following is the problem statement: Robot motion
with sensor coverage is used to explore an unknown area.
Static sensors have largely been noticed in the literature
being utilized for area coverage or surfing an unknown
environment [67]. The proposed method begins with the
creation of a map of an environment with the help of robots(s).
Aquila optimizer Algorithm is the optimization methodology
applied in this case. It assists in the generation of positions
that alter the order. The optimizer is a deterministic
exploration approach that assists the robot in selection of new
position.

Algorithm 1 Integrated Stochastic Optimization Framework

1: Set nRbt, SR (sensor range), iteration, initial point

2: Set utility of unknown space = 1

3: while iter is not over do

4 for all nRbt do

5: Initialize coordinates of K.
6: Determine cost of Kg¢
7
8
9

Subtract RU/! and K,
Utilize X1, X2, X3 and X4,
Update the X(iter+1) position using Eq. 1, 3, 10

& 11
10: Re-select the robot position
11 Reduce RUfC on X(t+1)

12:  end for

13:  Determine G1, G2 & QF
14: end while

15: return obtained solution

The proposed CME-AO exploration is elucidated by the
Algorithm 1. The utility has a maximum value of 1. The robot
sensory cell is divided into 8 vector cells, Vi, each of which is
madeupof V1, ,, V2, y...... , V8 y. The cells are regarded
as viable contenders for the posts. Equations (1-11) are used
in the suggested technique to update the X(iter+1) position.
Using Equation 15, the algorithm then evaluates the cost
and subtracts the utilities from the cost for the eight vector
cells.

After evaluating those legitimate candidates with priority,
the suggested optimizer computes the four utility value
for the leading optimizer. Due to G1, G2 and QF (refer
to step 11 to 44 of Algorithm 1 and the occupancy
probability values of the dominated cells), the priorities
have been swapped. The dynamic parametric characterization
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t < (% % T) is used to choose between exploration and
exploitation phases. To swap the phases, a random number
r1 is used. When the entire environment is surfed in the
proposed approach, G1, G2 and Quality Function tries to
converge.

Xi(t 4+ 1) = Pagif0ccusanyian) x (1= 2+ (X (0)
— Pi(occxtax,y+ay) X 1) (16)
Xo(t + 1) = Pag,i(0cCxtAx.y+ay) X LF(D)
+ PY, (0cCei axysay) — (v — x) X rand()
(17)
X3(t + 1) = Pyg i(occrtaxy+ay) — Xmu (@) X o
—rand() + ((ub — Ib) x rand() + Ib) x §
(18)
X4t + 1) = OF X Pyg i(ocCxyax,y+ay) — (Gi
X Pi(ocCyiAx,y+ay) X rand()) — Gy X LF(D)
+rand() x Gy (19)

The important point to notice is that we did not take in
account the mean value from Equation 1 & 10. Because
it is related to the natural behavior of aquila that utilizes
the intelligence dominance agent. Finding the average robot
placements among the different agents of aquila’s is not
necessary in the target selection problem. Therefore, the
robot(s) does not require to extract mean value information
at every instance.

The best aquila operator is automatically fed the robot’s
next best position X(t+1), and the largest value is assigned
to that operator. As a result, Equation 14 reduces the
utility values of neighbouring cells. The G1, G2 and QF
generates new random values for the next iteration and slowly
converges the algorithm.

During each iteration, the hybrid CME-AO updates the
next optimal aquila operator value. The expenses and
benefits of grid cells surrounding a robot provide data.
The best operator is chosen by the G1, G2 and QF. The
robot is therefore forced to plan maneuverability using the
best cell value, which is calculated using the occupancy
probability. CME-AO is employed for the robot’s next move.
When compared to investigated cells/areas, unexplored
cells/areas have a higher utility value. When the cost of
examined cells is removed from the utility value, the cells
with higher utility values become more appealing to the
robot.

When the utilities of the unexplored cells are removed
from the costs with least values, the maximal values become
appealing targets for the future robot positions. For both
ways, this principle is true. The suggested hybrid stochastic
technique, on the other hand, has four optimum alternatives
for changing the hierarchical order based on stochastic
parameters. It means that, unlike the CME, the highest value
may have been stored in expanded exploration or expanded
exploitation phase, rather than just narrowed exploration or
narrowed exploitation.

126877



IEEE Access

F. Gul et al.: Centralized Strategy for Multi-Agent Exploration

Iteration = 3
»

N
10 N

~
5 -
\)\
0

— 5
Y [meters] ) X [meters]

(a)
Heration = 49

FIGURE 3. Simulation of CME-AO exploration algorithm.

VI. SIMULATION RESULTS AND DISCUSSIONS

The findings of the proposed multi-coordinated exploration
using aquila technique is shown in this section. To test
the practicality of the suggested approach, the map’s
complexity is modified. The number of barriers are varied
for modification purpose. Map size is kept as 20m width and
height. The entire area is 20mx20m, with a ray length of
1.5m. For the map generation, the robotics toolbox was used.
The black region formed represents the barrier-infested area,
while the rest of the area represents the open space that must
be explored.

As elaborated in Figure 3, the robots complete the first
iteration by commencing their search by scanning the path
with the help of sensors. This aids in the spatial divergence
process, which lowers the utility of the chosen target. Despite
the fact that the algorithm depicted a high exploration rate,
parametric variables setting was further improved. The cost
value is initially lowered, and if an equal cost value is found,
the last cost is saved. Another aspect to be taken care was that
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if the cost and utility values are the same, the robot might get
stuck at a certain point. As a result, a proper solution for entire
area surfing is essential to avoid this occurrence.

In order to find the total explored cells area, following
Equation 20 was further utilized.

Unsurfed area — Surfed area

TotalArea = (20)

Surfed area
This parameter was used to evaluate the area that the
multi-robot will be surfing. It can reach a maximum value
of 1, indicating that 100% of the area has been explored, or
0 indicating that no area has been surfed. After the simulation,
the value obtained from Total area is utilized to make a
comparison.

The framework validation was then performed utilizing
two different scenarios denoted by Map 1 and Map 2 respec-
tively. Sensor range, map size, number of obstacles, iteration,
and initial robot location are among the most noticeable
map characteristics. The exploration process achieved is
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TABLE 2. Statistical analysis to determine average exploration rate and time by CME-Aquila optimizer.

Maps Exploration Rate Average Exploration Exploration Time (sec) Average Exploration
rate Time (sec)

Runl= 97.87% 97.0780% Runl= 31.0 31.0440
Mapl Run2= 97.12% Run2= 31.87

Run3= 96.97% Run3= 30.45

Rund= 97.14% Run4= 31.6

Run5= 96.29% Run5= 30.30

Runl= 93.93% 96.1520% Runl= 32.0 32.290
Map 2 Run2= 95.45% Run2= 32.58

Run3= 95.62% Run3= 31.90

Rund= 96.12% Run4= 31.98

Run5= 96.99% Run5= 32.99

Iteration = 100
N

Y [meters]

0 g X [meters]

FIGURE 4. Map 1: Simulation of CME-Aquila Optimizer exploration
algorithm.

Iteration = 100

T2

~—
Y [meters] 1l X [meters)

FIGURE 5. Map 2: Simulation of CME-Aquila exploration algorithm.

pictorially depicted by Figures 4 & 5 respectively for the two
cases. Results indicate that a total of 97.87% and 96.667%
of the total were explored efficiently within a short time
of just 31 and 32 sec respectively. It remains to mention
that performance characteristics could be further increased
by increasing the number of iterations. The results clearly
demonstrated the effectivity of the proposed algorithm,
as not only a significant portion of the area was explored,
but at the same time both the computational complexity
and exploration times were significantly lowered. CME-AO
therefore successfully exhibited that map exploration was
achieved efficiently and effectively.

The performance evaluation of CME-AO was further
ascertained through statistical means. The analysis is carried
out by performing multiple simulations for two different

VOLUME 10, 2022

environmental conditions as demonstrated in Figure 4 and
5 respectively. The analysis was performed with an aim to
determine algorithm efficiency in terms of the average (%)
area explored and total time taken in multiple simulation
runs. The results obtained for two environmental conditions
denoted by Map 1 and Map 2 respectively, during multiple
runs are depicted in Table 2. As elaborated in the table, pro-
posed CME-AOQ, depicts a consistent high area exploration
rate with average rate of exploration for map 1 and map
2 being 97.0780% & 96.1520%. Similarly, the average time
consumed by CME-AQO is just 31.0440 sec & 32.290 sec for
the two map configurations. This clearly demonstrates that
proposed methodology not only efficiently explores different
configuration maps but also consistently shows the same high
rates on multiple runs. This consistency in producing the
expected results makes the suggested methodology specially
suitable for near real time applications where traditional
techniques such as CME either fails (stuck locally) or takes
longer exploration time.

VIl. COMPARISON OF CME-AO WITH CONTEMPORARY
CME AND CME-WO ALGORITHMS
After performing extended simulations under different envi-
ronmental conditions to evaluate the the performance of
our proposed CME-AO, now we further extend our results.
In this section, we will perform a detailed study and do a
comprehensive analysis by comparing the results achieved
from CME-AO with contemporary CME and CME-WO
(whale optimizer) algorithms. The analysis will carried
out under setting with a higher level of intricacy and
introducing complex situation loaded with various obstacles
in random order. We will investigate the performance in
three different environmental conditions denoted by Map 1,
Map 2 and Map 3 respectively. These maps have varying
degree of complexity with different orientation, number and
length of obstacles. The comparison duly accommodates
all pertinent aspects such as % area explored, number of
failed runs, and time taken for map exploration for different
environments.

Map 1: Figure 6 represents the implementation of
coordinated multi-robot exploration implemented with our
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FIGURE 6. Map 1: Simulation results for CME, CME-WO, & CME-AO
exploration algorithm.

proposed CME-AO, conventional CME and whale optimizer
algorithms under ware-house 2D map. The simulation result
shows that in case of the conventional CME algorithm
(Figure 6(a)), the robot got stuck due to its incapability to
explore the path in correct direction. The entire simulation
is therefore required to be re-run. It is important to mention
that re-running of the simulation wont change results as CME
is incapable to generating random solutions which is why
if robot got stuck at any point or in map, the entire map
needs to be changed. In case of CME-WO algorithm, the
map was explored in a sub-optimal way with map coverage
of approx 84.65% (Figure 6(b)) with exploration time of
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Iteration = 100
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FIGURE 7. Map 2: Simulation results for CME, CME-WO & CME-AO
exploration algorithm.

approx 91.34 sec. In case of CME-Aquila Figure(6(c)), it can
be evidently seen that the entire map is explored efficiently
with an exploration rate of approx 97.931%. The map was
explored in almost 300% lesser time i-e just in approx
31.3 sec. Furthermore, the number of failed simulations
were zero in case of CME-AO against the non-zero failed
simulation numbers of CME and CME-WO. This clearly
demonstrates the superior performance (exploration rate,
exploration time and Failed simulation runs) of proposed
CME-AO algorithm in comparison with both the latest
contemporary algorithms. It is also apprised that during
MATLAB simulation runs, we captured the cases and
generated warnings when the neighbouring cell is occupied
by obstacle or hit by another robot (refer Figure 6 (a)).

VOLUME 10, 2022



F. Gul et al.: Centralized Strategy for Multi-Agent Exploration

IEEE Access

TABLE 3. Summary of simulation runs required for successful implementation of all algorithms.

Map No CME-Aquila CME CME-Whale CME-Arithmetic
% Explore  Failed Simula- Execution % Explore Pailed Simulation Execution Time Y Explore Failed Simulation Execution Time 7 Explore  Failed Simulation Execution Time
tion Run Time (sec) Run (sec) Run (sec) Run (sec)
Mapl  93.7931% 0 265555 0% NA NA 81.65% 2 76.90 90.21% 1 84.56
Map2  9895% 0 255083 86.79% 2 80.9 92.80% 1 M8 91.35% 1 8132
Map3  98.724% 0 JLIA65LT 814G 2 95.368 87.63% 2 9734 92.63% 1 8.63

Map 2: The performance of CME, CME-WO and
CME-AO was again compared in a different condition
environment. As evident in Figure 7, map exploration of
about 86.7% and 92.9% with exploration time of about 81 sec
and 54.87 sec were achieved through CME and CME-WO
respectively. CME-AQ because of its unique feature of inbuilt
parallel strategy and efficient computation logic, exhibited
superior performance with map exploration rate of about
98.95% in just about 34 sec.

Map 3: Figures 8, represents performance comparison
of the three algorithms in another environmental condition.
It is evident that CME alone did not produced satisfactory
performance (81% map exploration, 95 sec exploration time,
02 Fail runs). This is mainly due to the inherent limitation of
utilization of deterministic methods, which forces the robot
to follow the same route every time when the simulation
begins. Similar nature performance is achieved by CME-WO
(87.65% map exploration, 97.34 sec exploration time, 02 Fail
runs), who also did not entirely explore the area (the grey
area shows the unexplored area efficiently). A comparatively
superior performance was exhibited by CME-AQO, with map
exploration of about 98.72% in just about 37.15 sec with zero
fail runs.

It is important to mention that during the entire validation
process, the orientation, size and quantity of obstacles were
maintained the same for a fair comparison.

A. SUMMARY OF RESULTS

The entire results of Section VII are summarized in
Table 3 for speedy reference and readers’ convenience.
The referenced table depicts the results achieved both
the proposed CME-Aquila (CME-AO) and the referenced
CME and CME-Whale (CME-WO) algorithms. The results
revealed that the proposed CME-AO methodology satisfac-
torily achieves the primary objective of space exploration in
fewer simulation runs and produce consistent results. The
conventional CME % CME-Whale algorithm apart from
exploring the maps inefficiently, also requires additional
runs/time for exploration. We achieved the enhanced results
by incorporating a unique parallel strategy embedded in
the standard Aquila algorithm. This significantly increased
the particle communication, thereby reducing the execution
time significantly. Results also indicate that the proposed
methodology significantly improved system’s robustness and
produces a major improvement over the original algorithm.
As depicted in referenced Table 3, the execution time
is reduced by a factor of 200%-300% in all the tested
map configurations. To summarize, through simulations
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FIGURE 8. Map 3: Simulation results for CME, CME-WO & CME-AO
exploration algorithm.

we have demonstrated two salient benefits (a) Enhanced
system robustness aspects as the algorithm successfully
explore areas where other algorithms fail (b) significantly
reduced execution time (worst case improvement factor
of almost 200 %). This makes the proposed CME-Aquila
(CME-AO) algorithm a prominent choice for on-board
practical utilization.
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B. LIMITATIONS

On basic or ordinary maps, the technique performs similarly
to CME, however when taking into account the complexity
of the map, the proposed method performs exceptionally
well considering the simulations and iteration number. For
CME, it is valuable to understand that if the method
is ineffective in certain conditions, there is no way to
explore the ideal solution given the map conditions. Besides
occasionally changing the map circumstances, which is
not always possible. Moreover, the proposed optimization
strategy technique may be implemented on hardware for
actual world applications.

VIIl. CONCLUSION

The study formulates the integration of a deterministic CME
method with a stochastic aquila strategy for multi-robot
exploration. The robot maneuverability is determined by the
data collected from sensors in order to set the waypoints.
After that, a stochastic method is used to refine the result
even further. By fine-tuning the parameters, the hybrid
technique aids in a powerful performance. The results were
further optimized by incorporating a unique parallel strategy
embedded in the proposed architecture. This significantly
increased the particle communication, thereby reducing the
execution time significantly. As shown in section VII,
the proposed algorithm presents two distinct advantages
of enhanced map exploration in cluttered environment
and significantly decreased execution time. Besides this,
algorithm consistency in producing the desired results in
different configuration maps and multiple simulations was
also demonstrated. The suggested hybrid methodology’s
intrinsic advantage makes it particularly ideal for a wide
range of operations, such as search and rescue missions,
disaster management, reconnaissance, and so on, where the
search space is congested and constrained. This study is
expected to pave the way for academics to develop hybrid
tactics for multi-robot space exploration.

REFERENCES

[11 A.Farinelli, L. Iocchi, and D. Nardi, “Multirobot systems: A classification
focused on coordination,” IEEE Trans. Syst., Man, Cybern., B, Cybern.,
vol. 34, no. 5, pp. 2015-2028, Sep. 2004.

[2] F. Gul, I. Mir, D. Alarabiat, H. M. Alabool, L. Abualigah, and S.
Mir, “Implementation of bio-inspired hybrid algorithm with mutation
operator for robotic path planning,” J. Parallel Distrib. Comput., vol. 169,
pp. 171-184, Nov. 2022.

[3] I. Mir, E. Gul, S. Mir, M. A. Khan, N. Saeed, L. Abualigah, B. Abuhaija,
and A. H. Gandomi, “A survey of trajectory planning techniques for
autonomous systems,” Electronics, vol. 11, no. 18, p. 2801, Sep. 2022.

[4] F. Gul, S. S. N. Alhady, and W. Rahiman, “A review of controller
approach for autonomous guided vehicle system,” Indonesian J. Electr.
Eng. Comput. Sci., vol. 20, no. 1, pp. 552-562, 2020.

[5S] A. E U. Din, I. Mir, F. Gul, S. Mir, S. S. N. Alhady, M. R. Al Nasar,
H. A. Alkhazaleh, and L. Abualigah, “Robust flight control system design
of a fixed wing UAV using optimal dynamic programming,” Soft Comput.,
vol. 1, pp. 1-12, Sep. 2022.

[6] F. Gul, S. Mir, and I. Mir, “Coordinated multi-robot exploration: Hybrid
stochastic optimization approach,” in Proc. AIAA SCITECH Forum, 2022,
p. 1414.

[7]1 F. Gul, S. Mir, and I. Mir, “Multi robot space exploration: A modified
frequency whale optimization approach,” in Proc. AIAA SCITECH Forum,
2022, p. 1416.

126882

[8]

[9]

(10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

[24]

(25]

(26]

(27]

(28]

[29]

(30]

F. Gul, I. Mir, L. Abualigah, P. Sumari, and A. Forestiero, “A consol-
idated review of path planning and optimization techniques: Technical
perspectives and future directions,” Electronics, vol. 10, no. 18, p. 2250,
Sep. 2021.

1. Duleba and J. Z. Sasiadek, ‘“Nonholonomic motion planning based on
Newton algorithm with energy optimization,” IEEE Trans. Control Syst.
Technol., vol. 11, no. 3, pp. 355-363, May 2003.

R. Szczepanski, A. Bereit, and T. Tarczewski, “Efficient local path
planning algorithm using artificial potential field supported by augmented
reality,” Energies, vol. 14, no. 20, p. 6642, Oct. 2021.

R. Szczepanski, T. Tarczewski, and L. M. Grzesiak, “Adaptive state
feedback speed controller for PMSM based on artificial bee colony
algorithm,” Appl. Soft Comput., vol. 83, Oct. 2019, Art. no. 105644.

A. A. Ali, A. T. Rashid, M. Frasca, and L. Fortuna, “An algorithm for
multi-robot collision-free navigation based on shortest distance,” Robot.
Auto. Syst., vol. 75, pp. 119-128, Jan. 2016.

K. G. Shin and Q. Zheng, “Minimum-time collision-free trajectory
planning for dual-robot systems,” IEEE Trans. Robot. Autom., vol. 8, no. 5,
pp. 641-644, Oct. 1992.

F. Gul and W. Rahiman, ‘“Mathematical modeling of self balancing robot
and hardware implementation,” in Proc. 11th Int. Conf. Robot., Vis., Signal
Process. Power Appl. Cham, Switzerland: Springer, 2022, pp. 20-26.

F. Gul, W. Rahiman, and S. S. N. Alhady, “A comprehensive study
for robot navigation techniques,” Cogent Eng., vol. 6, no. 1, Jan. 2019,
Art. no. 1632046.

F. Gul and W. Rahiman, “An integrated approach for path planning for
mobile robot using Bi-RRT,” in IOP Conf. Mater. Sci. Eng., vol. 697, no. 1,
2019, Art. no. 012022.

L. Abualigah, M. A. Elaziz, N. Khodadadi, A. Forestiero, H. Jia, and
A. H. Gandomi, ‘“‘Aquila optimizer based PSO swarm intelligence for IoT
task scheduling application in cloud computing,” in Integrating Meta-
Heuristics and Machine Learning for Real-World Optimization Problems.
Cham, Switzerland: Springer, 2022, pp. 481-497.

L. Abualigah, A. Diabat, S. Mirjalili, M. Abd Elaziz, and A. H. Gandomi,
“The arithmetic optimization algorithm,” Comput. Methods Appl. Mech.
Eng., vol. 376, Apr. 2021, Art. no. 113609.

L. Abualigah, M. A. Elaziz, P. Sumari, Z. W. Geem, and A. H.
Gandomi, “Reptile search algorithm (RSA): A nature-inspired meta-
heuristic optimizer,” Exp. Syst. Appl., vol. 191, Apr. 2022, Art. no. 116158.
1. Mir, H. Taha, S. A. Eisa, and A. Magsood, “A controllability perspective
of dynamic soaring,” Nonlinear Dyn., vol. 94, no. 4, pp. 2347-2362,
Dec. 2018.

I. Mir, A. Magsood, S. A. Eisa, H. Taha, and S. Akhtar, “Optimal
morphing—Augmented dynamic soaring maneuvers for unmanned air
vehicle capable of span and sweep morphologies,” Aerosp. Sci. Technol.,
vol. 79, pp. 17-36, Aug. 2018.

I. Mir, A. Magsood, and S. Akhtar, “Optimization of dynamic soaring
maneuvers to enhance endurance of a versatile UAV,” in IOP Conf. Mater.
Sci. Eng., vol. 211, Jun. 2017, Art. no. 012010.

I. Mir, A. Magsood, and S. Akhtar, “Optimization of dynamic soaring
maneuvers for a morphing capable UAV,” in Proc. AIAA Inf. Syst. Infotech
Aerosp., Jan. 2017, p. 0678.

I. Mir, S. A. Eisa, H. Taha, A. Magsood, S. Akhtar, and T. U. Islam,
“A stability perspective of bio-inspired UAVs performing dynamic soaring
optimally,” Bioinspiration Biomimetics, vol. 1, pp. 1-31, Jul. 2021.

1. Mir, S. Akhtar, S. A. Eisa, and A. Magsood, “Guidance and control of
standoff air-to-surface carrier vehicle,” Aeronaut. J., vol. 123, no. 1261,
pp. 283-309, Mar. 2019.

I. Mir, A. Magsood, H. E. Taha, and S. A. Eisa, “Soaring energetics for
a nature inspired unmanned aerial vehicle,” in Proc. AIAA Scitech Forum,
Jan. 2019, p. 1622.

1. Mir, S. A. Eisa, and A. Magsood, “‘Review of dynamic soaring: Technical
aspects, nonlinear modeling perspectives and future directions,” Nonlinear
Dyn., vol. 94, no. 4, pp. 3117-3144, 2018.

1. Mir, A. Magsood, and S. Akhtar, “Biologically inspired dynamic soaring
maneuvers for an unmanned air vehicle capable of sweep morphing,” Int.
J. Aeronaut. Space Sci., vol. 19, no. 4, pp. 1006-1016, Dec. 2018.

I. Mir, A. Magsood, and S. Akhtar, “Dynamic modeling & stability
analysis of a generic UAV in glide phase,” in Proc. MATEC Web Conf.,
vol. 114. Les Ulis, France: EDP Sciences, 2017, p. 01007.

I. Mir, S. A. Eisa, H. Taha, A. Magsood, S. Akhtar, and T. U. Islam,
“A stability perspective of bioinspired unmanned aerial vehicles perform-
ing optimal dynamic soaring,” Bioinspiration Biomimetics, vol. 16, no. 6,
Nov. 2021, Art. no. 066010.

VOLUME 10, 2022



F. Gul et al.: Centralized Strategy for Multi-Agent Exploration

IEEE Access

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

1. Mir, S. Eisa, H. E. Taha, and F. Gul, ““On the stability of dynamic soaring:
Floquet-based investigation,” in Proc. AIAA SCITECH Forum, Jan. 2022,
p- 0882.

1. Mir, S. Eisa, A. Magsood, and F. Gul, “Contraction analysis of dynamic
soaring,” in Proc. AIAA SCITECH Forum, Jan. 2022, p. 0881.

R. Kala, “Multi-robot path planning using co-evolutionary genetic
programming,” Exp. Syst. Appl., vol. 39, no. 3, pp. 3817-3831, Feb. 2012.
S. Fatima, M. Abbas, I. Mir, E. Gul, S. Mir, N. Saeed, A. Alotaibi,
T. Althobaiti, and L. Abualigah, “Data driven model estimation for aerial
vehicles: A perspective analysis,” Processes, vol. 10, no. 7, p. 1236,
Jun. 2022.

A. F. U. Din, S. Akhtar, A. Magsood, M. Habib, and I. Mir, “Modified
model free dynamic programming : An augmented approach for unmanned
aerial vehicle,” Int. J. Speech Technol., vol. 1, pp. 1-21, May 2022.

A. F. U. Din, I. Mir, F. Gul, M. R. Al Nasar, and L. Abualigah,
“Reinforced learning-based robust control design for unmanned aerial
vehicle,” Arabian J. Sci. Eng., pp. 1-16, Mar. 2022.

F. H. Ajeil, I. K. Ibraheem, M. A. Sahib, and A. J. Humaidi,
“Multi-objective path planning of an autonomous mobile robot using
hybrid PSO-MFB optimization algorithm,” Appl. Soft Comput., vol. 89,
Apr. 2020, Art. no. 106076.

W. Burgard, M. Moors, C. Stachniss, and F. E. Schneider, “Coordinated
multi-robot exploration,” IEEE Trans. Robot., vol. 21, no. 3, pp. 376-386,
Jun. 2005.

S.Bai, J. Wang, F. Chen, and B. Englot, “Information-theoretic exploration
with Bayesian optimization,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst. (IROS), Oct. 2016, pp. 1816-1822.

C. Nieto-Granda, J. G. Rogers, and H. I. Christensen, “Coordination
strategies for multi-robot exploration and mapping,” Int. J. Robot. Res.,
vol. 33, no. 4, pp. 519-533, Apr. 2014.

M. Corah and N. Michael, “Efficient online multi-robot exploration via
distributed sequential greedy assignment,” Robot., Sci. Syst., vol. 13,
pp. 1-9, Jul. 2017.

D. Holz, N. Basilico, F. Amigoni, and S. Behnke, ‘“Evaluating the
efficiency of frontier-based exploration strategies,” in Proc. 41st Int. Symp.
Robot. (ISR), 6th German Conf. Robot., (ROBOTIK). Offenbach, Germany:
VDE, 2010, pp. 1-8.

M. Kulich, J. Faigl, and L. Preucil, “On distance utility in the exploration
task,” in Proc. IEEE Int. Conf. Robot. Autom., May 2011, pp. 4455-4460.
C. Dornhege and A. Kleiner, “A frontier-void-based approach for
autonomous exploration in 3D,” Adv. Robot., vol. 27, no. 6, pp. 459-468,
2013.

J. Faigl and M. Kulich, “On determination of goal candidates in frontier-
based multi-robot exploration,” in Proc. Eur. Conf. Mobile Robots,
Sep. 2013, pp. 210-215.

G. Fang, G. Dissanayake, and H. Lau, “A behaviour-based optimisation
strategy for multi-robot exploration,” in Proc. IEEE Conf. Robot., Automat.
Mechatron., vol. 2, Dec. 2004, pp. 875-879.

H.-Y. Lin and Y.-C. Huang, ““Collaborative complete coverage and path
planning for multi-robot exploration,” Sensors, vol. 21, no. 11, p. 3709,
May 2021.

P. K. Das, H. S. Behera, S. Das, H. K. Tripathy, B. K. Panigrahi, and
S. K. Pradhan, “A hybrid improved PSO-DV algorithm for multi-robot
path planning in a clutter environment,” Neurocomputing, vol. 207, no. 1,
pp. 735-753, 2016.

F. Gul, I. Mir, L. Abualigah, S. Mir, and M. Altalhi, “Cooperative multi-
function approach: A new strategy for autonomous ground robotics,”
Future Gener. Comput. Syst., vol. 134, pp. 361-373, 2022.

D. Puig, M. A. Garcia, and L. Wu, “A new global optimization strategy
for coordinated multi-robot exploration: Development and comparative
evaluation,” Robot. Auton. Syst., vol. 59, no. 9, pp. 635-653, 2011.

F. Gul, I. Mir, W. Rahiman, and T. U. Islam, “Novel implementation of
multi-robot space exploration utilizing coordinated multi-robot exploration
and frequency modified whale optimization algorithm,” IEEE Access,
vol. 9, pp. 22774-22787, 2021.

J. Yu and S. M. LaValle, “Optimal multirobot path planning on graphs:
Complete algorithms and effective heuristics,” IEEE Trans. Robot., vol. 32,
no. 5, pp. 1163-1177, Oct. 2016.

N. Mathew, S. L. Smith, and S. L. Waslander, “Optimal path planning
in cooperative heterogeneous multi-robot delivery systems,” in Algorith-
mic Foundations of Robotics XI. Cham, Switzerland: Springer, 2015,
pp. 407-423.

P. K. Das, H. S. Behera, and B. K. Panigrahi, ““Intelligent-based multi-robot
path planning inspired by improved classical Q-learning and improved
particle swarm optimization with perturbed velocity,” Eng. Sci. Technol.,
Int. J., vol. 19, no. 1, pp. 651-669, Mar. 2016.

VOLUME 10, 2022

[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

L. Abualigah, D. Yousri, M. Abd Elaziz, A. A. Ewees, M. A. A.
Al-ganess, and A. H. Gandomi, “Aquila optimizer: A novel meta-
heuristic optimization algorithm,” Comput. Ind. Eng., vol. 157, Jul. 2021,
Art. no. 107250.

W. Gan, J. C. W. Lin, P. Fournier-Viger, H. C. Chao, and P. S. Yu, ““A survey
of parallel sequential pattern mining,” ACM Trans. Knowl. Discovery
Data, vol. 13, no. 3, pp. 1-34, 2019.

S. Pumma, M. Si, W.-C. Feng, and P. Balaji, ““Parallel I/O optimizations
for scalable deep learning,” in Proc. IEEE 23rd Int. Conf. Parallel Distrib.
Syst. (ICPADS), Dec. 2017, pp. 720-729.

J. Abela, “A parallel genetic algorithm for solving the school timetabling
problem,” in Division of Information Technology. Princeton, NJ, USA:
Citeseer, 1991.

Q.-W. Chai, S.-C. Chu, J.-S. Pan, P. Hu, and W.-M. Zheng, “A parallel
WOA with two communication strategies applied in DV-Hop localization
method,” EURASIP J. Wireless Commun. Netw., vol. 2020, no. 1, pp. 1-10,
Dec. 2020.

P.-W. Tsai, J.-S. Pan, S.-M. Chen, B.-Y. Liao, and S.-P. Hao, “‘Parallel cat
swarm optimization,” in Proc. Int. Conf. Mach. Learn. Cybern., Jul. 2008,
pp. 3328-3333.

S.-C. Chu, J. F. Roddick, and J.-S. Pan, “A parallel particle swarm
optimization algorithm with communication strategies,” J. Inf. Sci. Eng.,
vol. 21, no. 4, p. 9, 2005.

Q. Yang, S.-C. Chu, J.-S. Pan, and C.-M. Chen, “Sine cosine algorithm
with multigroup and multistrategy for solving CVRP,” Math. Problems
Eng., vol. 2020, pp. 1-10, Mar. 2020.

M. Zhu, S.-C. Chu, Q. Yang, W. Li, and J.-S. Pan, “Compact sine
cosine algorithm with multigroup and multistrategy for dispatching
system of public transit vehicles,” J. Adv. Transp., vol. 2021, pp. 1-16,
Mar. 2021.

M. S. Nasrabadi, Y. Sharafi, and M. Tayari, “‘A parallel grey wolf optimizer
combined with opposition based learning,” in Proc. 1st Conf. Swarm Intell.
Evol. Comput. (CSIEC), Mar. 2016, pp. 18-23.

B. Yamauchi, “A frontier-based approach for autonomous exploration,” in
Proc. IEEE Int. Symp. Comput. Intell. Robot. Autom. CIRA. Towards New
Comput. Princ. Robot. Autom., Jul. 1997, pp. 146-151.

H. P. Moravec, ‘““Sensor fusion in certainty grids for mobile robots,” in Sen-
sor Devices and Systems for Robotics. Berlin, Germany: Springer, 1989,
pp. 253-276.

Z. Manchester and M. Peck, “‘Stochastic space exploration with microscale
spacecraft,” in Proc. AIAA Guid., Navigat., Control Conf., Aug. 2011,
p. 6648.

FAIZA GUL is currently pursuing the master’s
degree with the Department of Electrical Engi-
neering, Air University, Aerospace and Aviation
Campus Kamra. Her research interests include
development of LIDAR systems, development of
computational algorithms for autonomous guided
vehicles, soft computing techniques, and mobile
motion control and its application solutions.

ADNAN MIR received the bachelor’s degree from
the University of Peshawar and the master’s degree
from Leeds University, U.K. He has over ten years
of experience in teaching at various prominent
institutes. He is currently an Associated with the
University of Technology Sydney, Australia.

126883



IEEE Access

F. Gul et al.: Centralized Strategy for Multi-Agent Exploration

IMRAN MIR received the bachelor’s degree in
avionics engineering from the College of Aero-
nautical Engineering (CAE), National University
of Sciences and Technology (NUST), Pakistan,
the master’s degree in avionics (controls) from
Air University, Islamabad, in 2011, and the Ph.D.
degree in computational sciences and engineering
from the Research Center for Modeling and
Simulation (RCMS), NUST, in 2018. He is
currently an Aeronautical Officer serving in PAF
and also serving as an Assistant Professor with the Department of Avionics
Engineering, Air University, Aerospace and Aviation Campus KAMRA. His
Ph.D. broadly relates to the development of robust computational algorithms
in the field of flight dynamics and control.

SULEMAN MIR (Member, IEEE) received the
B.S. degree in telecommunication engineering
from the National University of Computer and
Emerging Sciences, Peshawar, Pakistan, in 2007,
and the M.S. degree in electrical engineering from
the University of Leeds, Leeds, U.K., in 2012.
He is currently pursuing the Ph.D. degree in
electrical engineering with the National University
of Computer and Emerging Sciences. His exper-
tise are in microwave backhaul communication
system, link planning, installing and commissioning links, and system
trouble shooting. Since 2012, he has been working as an Assistant Professor
with the National University of Computer and Emerging Sciences. His
research interests include waveform design, spectrum sharing, cooperative
communication, and cognitive radio networks.

TAUQEER UL ISLAAM received the Ph.D. degree
from Beihang University, China. He is currently
an Aeronautical Officer serving in PAF. He is also
an Associate Professor with the Department of
Aerospace Engineering and an Associated Dean
with Air University, Aerospace and Aviation Cam-
pus Kamra. He is currently serving as a Dean with
the College of Aeronautical Engineering (CAE).
His research interests include aerodynamics and
multidisciplinary design optimization.

126884

LAITH ABUALIGAH received the degree in
computer information system and the master’s
degree in computer science from Al al-Bayt
University, Jordan, in 2011 and 2014, respectively,
and the Ph.D. degree from the School of Com-
puter Science, Universiti Sains Malaysia (USM),
Malaysia, in 2018. He is currently an Assistant
Professor with the Department of Computer Sci-
ence, Amman Arab University, Jordan. He is also
a Distinguished Researcher with the School of
Computer Science, USM. According to the report published by Stanford
University, in 2020. He is one of the 2% influential scholars, which
depicts the 100,000 top scientists in the world. He has published more
than 80 journal articles and books, which collectively have been cited
more than 3100 times (H-index = 27). His main research interests include
on arithmetic optimization algorithm (AOA), bio-inspired computing,
nature-inspired computing, swarm intelligence, artificial intelligence, meta-
heuristic modeling, optimization algorithms, evolutionary computations,
information retrieval, text clustering, feature selection, combinatorial
problems, optimization, advanced machine learning, big data, and natural
language processing. He currently serves as an Associate Editor for the
journal of Cluster Computing (Springer) and the journal of Soft Computing
(Springer).

AGOSTINO FORESTIERO received the Laurea and Ph.D. degrees in
computer engineering from the University of Calabria, Cosenza, Italy, in
2002 and 2006, respectively. He is currently a Researcher with the Institute
for High Performance Computing and Networking of the CNR, Rende, Italy.
He published more than 90 scientific papers on international conferences
and journals among which IEEE/ACM TRANSACTIONS ON NETWORKING
(TON), IEEE TransacTions oN Evorutionary ComputatioNn (TEVC), IEEE
TrANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING (TGCN), the IEEE
INTERNET OF THINGS JOURNAL, Information Sciences, FGCS, and ACM TAAS.
His research interests include the Internet of Things, cyber-physical systems,
pervasive computing, cloud, fog, and edge computing, social mining,
artificial intelligence, and cyber security. He serves as a PC member of
several conferences and journal.

VOLUME 10, 2022



