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If food and feed production are to keep up with world demand in the face of

climate change, continued progress in understanding and utilizing both genetic

and epigenetic sources of crop variation is necessary. Progress in plant breeding

has traditionally been thought to be due to selection for spontaneous DNA

sequence mutations that impart desirable phenotypes. These spontaneous

mutations can expand phenotypic diversity, from which breeders can select

agronomically useful traits. However, it has become clear that phenotypic

diversity can be generated even when the genome sequence is unaltered.

Epigenetic gene regulation is a mechanism by which genome expression is

regulated without altering the DNA sequence. With the development of high

throughput DNA sequencers, it has become possible to analyze the epigenetic

state of the whole genome, which is termed the epigenome. These techniques

enable us to identify spontaneous epigenetic mutations (epimutations) with high

throughput and identify the epimutations that lead to increased phenotypic

diversity. These epimutations can create new phenotypes and the causative

epimutations can be inherited over generations. There is evidence of selected

agronomic traits being conditioned by heritable epimutations, and breeders may

have historically selected for epiallele-conditioned agronomic traits. These

results imply that not only DNA sequence diversity, but the diversity of

epigenetic states can contribute to increased phenotypic diversity. However,

since the modes of induction and transmission of epialleles and their stability

differ from that of genetic alleles, the importance of inheritance as classically

defined also differs. For example, there may be a difference between the types of

epigenetic inheritance important to crop breeding and crop production. The

former may depend more on longer-term inheritance whereas the latter may

simply take advantage of shorter-term phenomena. With the advances in our

understanding of epigenetics, epigenetics may bring new perspectives for crop

improvement, such as the use of epigenetic variation or epigenome editing in

breeding. In this review, we will introduce the role of epigenetic variation in plant

breeding, largely focusing on DNA methylation, and conclude by asking to what

extent new knowledge of epigenetics in crop breeding has led to documented

cases of its successful use.
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Introduction

DNAmethylation refers to an addition of a methyl group at

the fifth carbon position of a cytosine ring and is one epigenetic

mechanism. In plants, DNA methylation is observed in the

symmetric CG and CHG contexts as well as the asymmetric

CHH context (where H is A, C, or T). DNA methylation states

are stably inherited and play a role in transcriptional regulation

not only of protein coding genes but also of transposable

elements (TEs) (Fujimoto et al., 2012; Kawakatsu and Ecker,

2019). Intraspecific variation of DNA methylation states

indicates the occurrence of spontaneous changes in DNA

methylation. Three classes of epigenetic variation have been

defined (Richards, 2006). “Obligatory” epigenetic variation is

completely dependent on DNA sequence change; an example

of this is transposon-associated epigenetic change. “Facilitated”

epigenetic variation is caused by stochastic variation in

epigenetic states and change of DNA methylation state in

hypomethylated mutants is an example. “Pure” epigenetic

variation is generated stochastically and is completely

independent of DNA sequence (Richards, 2006). In the

genus Arabidopsis, there is a variation in the number of

tandem repeats in the promoter region of FLOWERING

WAGENINGEN (FWA) between related species, and DNA

methylated regions are enlarged by the generation of tandem

repeats. Therefore, this falls under “obligatory” epigenetic

variation (Figure 1) (Fujimoto et al., 2008). In Arabidopsis

thaliana, the promoter region of FWA is highly methylated and

FWA expression is silenced, while in the hypomethylated

mutants, there is no DNA methylation in the promoter

region and FWA is expressed causing delayed flowering

(Soppe et al., 2000). The late flowering phenotype and

hypomethylated state in the promoter region were stably

inherited to the next generation (Kakutani, 1997), and this

epigenetic variation falls under “facilitated” epigenetic

variation (Figure 1). There is a natural variation of DNA

methylation states without DNA sequence polymorphism

between accessions of the same species and this epigenetic
Frontiers in Plant Science 02
variation falls under the “pure” epigenetic variation (Figure 1)

(Fujimoto et al., 2008; Fujimoto et al., 2011).

Studies using mutants of genes with DNA methylation or

demethylation functions have revealed various biological roles of

DNAmethylation (Fujimoto et al., 2012; Kumar andMohapatra,

2021). In hypomethylated mutants of A. thaliana ,

developmental abnormalities and transposition of transposons

were observed. Some developmental abnormalities in A.

thaliana were due to the loss of function by insertion of

endogenous transposons in genes or their regulatory regions

(Miura et al., 2001; Mirouze et al., 2009; Tsukahara et al., 2009),

and some were due to a change of gene expression caused by

changes in epigenetic states resulting from transposable

insertion in a nearby gene (Saze and Kakutani, 2007; Fujimoto

et al., 2008). Loss-of-function mutants of genes orthologous to

those in A. thaliana involved in DNA methylation have been

analyzed in crops. The effects are generally similar to those in A.

thaliana, but phenotypic changes or defects can be seen for some

mutants of crops that do not show any phenotypic changes in

the orthologous mutant of A. thaliana (Moritoh et al., 2012; Hu

et al., 2014; Li et al., 2014; Yamauchi et al., 2014; Cheng et al.,

2015; Tan et al., 2016; Corem et al., 2018; Grover et al., 2018; Xu

et al., 2020a; Zhang et al., 2020).

It has become possible to examine DNA methylation states

at single base pair resolution; differences in DNA methylation

between accessions, tissue specificity of DNA methylation,

frequency of change of DNA methylation, and heritability of

altered DNA methylation have been observed (Kawakatsu and

Ecker, 2019; Kumar and Mohapatra, 2021). These studies have

shown that a change of DNA methylation can cause changes in

plant traits, and some traits caused by change of DNA

methylation are heritable over generations (Kawakatsu and

Ecker, 2019; Kumar and Mohapatra, 2021). Whole-genome

bisulfite sequencing (WGBS) is commonly used for the

identification of DNA methylation states, and this method

needs a reference genome. Sequencing innovations have led to

determining the whole-genome sequence in many crops,

increasing the number of crops that can be analyzed by
FIGURE 1

Three classes of epigenetic variation. Variation of DNA methylation results in the formation of tandem repeats (“Obligatory”). Demethylation is
observed in hypomethylated mutants such as ddm1 (“Facilitated”). Natural variations in DNA methylation levels even without any DNA sequence
differences between lines (“Pure”).
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WGBS. Even when whole-genome sequence information is not

available, alternative methods such as methylation-sensitive

amplified polymorphism (MSAP) or bisulfite-converted

restriction site-associated DNA sequencing (BsRADseq) enable

us to examine the DNA methylation state (Trucchi et al., 2016).

A heritable change of epigenetic state that produces new

epigenetic alleles (epialleles) is an epimutation, and a heritable

phenotypic change caused by epimutations/epialleles is called an

epimutant. Inheritance of epigenetic alterations in natural

populations or breeding populations needs to be evaluated to

understand how epimutants contribute to evolution or crop

domestication (Richards, 2008). The importance of

epimutations/epialleles in crop breeding depends on whether

the epimutations/epialleles are the cause of the phenotypic

variation and whether these epimutations/epialleles and their

associated traits are stably inherited over generations. Increasing

knowledge about heritable epigenetic changes associated with

phenotypic variations foreshadows the importance of

epimutations/epialleles in crop breeding. While care must be

taken to properly identify and document what is or isn’t a truly

heritable epimutation that is independent of cryptic DNA

sequence changes, or of maternal effects, there is evidence of

selected agronomic traits being caused by heritable epimutations

in the absence of DNA sequence change or maternal effects.

With that said, it is possible that breeders have historically

selected for agronomical ly useful traits caused by

epimutations. In this review, we describe the possibility of

epimutations/epialleles contributing to phenotypic variation

and discuss the potential applications of epigenetic changes in

crop breeding. Since both the modes of induction and

transmission of epialleles, and their stability differ greatly from

that of genetic alleles, the importance of “inheritance” as

classically viewed also differs. For example, there may be a

difference in the types or duration of epigenetic inheritance

important to crop breeding versus crop production. The former

may depend more heavily on longer-term forms of epigenetic

inheritance whereas the latter may simply take advantage of

frequently observed shorter-term epigenetic phenomena.
Epigenetics and crop breeding

Basic mechanism of epigenetic
gene regulation

A great deal of progress has been made in studying the

molecular mechanisms underlying the induction, maintenance,

and transmission of epigenetic variation in the model plant A.

thaliana. Its relatively small genome size, relatively simple

genome structure, and ease of use for research purposes makes

it an excellent model species and the knowledge gained in studies

of A. thaliana is largely translatable to crops. While the genomes

of most crops are much larger and more complex than that of A.
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thaliana, the genic complements of all higher plant species are

relatively similar and the molecular biology of epigenetics is

largely conserved across A. thaliana and cultivated crops.

However, there are important differences (Springer et al.,

2016). These largely relate to the role of epigenetics in dealing

with the effects of TEs in the genome duplication events that

have led to the large genome sizes of crops. So, while any review

of epigenetics will be of necessity to include discussion of results

from studies of A. thaliana, we will also endeavor to review those

aspects of epigenetics studied in detail in crops, or studies of

aspects of epigenetics that are clearly important to crops. These

include studies of paramutation in maize (Zea mays L.) and

other crop species, and studies of inter- and transgenerational

inheritance that is often important for short-term response or

adaptation to environmental changes and stress in crop plants.

DNA methylation is the best-known epigenetic modification

important for transcriptional regulation. There are two types of

this modification: maintenance of DNA methylation and de

novo DNA methylation. In maintenance of DNA methylation,

during replication, methylated DNA strands are separated, and a

new unmethylated daughter strand is synthesized. Hemi-

methylated DNA is recognized by maintenance DNA

methyltransferases that methylate the unmethylated cytosine

(Kawakatsu and Ecker, 2019). De novo DNA methylation is

mediated by RNA-directed DNA methylation (RdDM)

coordinating with 24 nucleotide small interfering RNA (24nt-

siRNA). DNA sequences complementary to the 24nt-siRNA that

have been generated are methylated (Matzke and Mosher, 2014).

Many players involved in DNA methylation have been

identified, especially by identifying the causative genes for the

hypomethylated mutants of A. thaliana. Loss-of-function

mu t an t s o f METHYLTRANSFERASE 1 (MET1) ,

CHROMOMETHYLASE 3 (CMT3), and CMT2 have been

shown to be predominantly responsible for maintaining DNA

methylation of CG, CHG, and CHH contexts, respectively, and

DOMAINS REARRANGEDMETHYLASE 2 (DRM2) in RdDM

(Kawakatsu and Ecker, 2019). In addition to DNA

methyltransferases, a methyl-cytosine binding protein such as

VARIANT IN METHYLATION 1 (VIM1), histone

methyl t ransferases such as KRYPTONITE (KYP)/

SUPPRESSOR OF VARIEGATION 3-9 HOMOLOG 4

(SUVH4), his tone deacety lases such as HISTONE

DEACETYLASE 6 (HDA6), and chromatin remodelers such

as Decrease in DNA methylation 1 (DDM1) play a role in DNA

methylation. Active DNA demethylation is mediated by the

protein family having bifunctional glycosylase/lyase activity

such as DEMETER (DME), DEMETER-LIKE 1/REPRESSOR

OF SILENCING 1 (DML1/ROS1), DML2, and DML3 in A.

thaliana (Zhang et al., 2018a; Kawakatsu and Ecker, 2019).

Histone modification is another epigenetic modification.

Histone octamers consist of two of each of the core histones

H2A, H2B, H3, and H4, around which wraps ~146bp of DNA,

forming a nucleosome that is a basic unit of chromatin.
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Chromatin structure dictates transcriptional activity and

inactivity, and post translational histone modifications

including methylation, acetylation, phosphorylation, and

ubiquitination of the N-terminal tails of the core histones are

involved in alteration of chromatin structure. Generally, adding

an acetyl group to a lysine residue of histones by histone

acetyltransferase (HAT) is associated with transcriptional

activation, while removal of the acetyl group by histone

deacetylase (HDAC) is associated with transcriptional

repression. In the case of histone methylation, lysine residues

are methylated and the number of methyl groups (e.g., mono-,

di-, or tri-methylation) is typically associated with

transcriptional activation or repression. These changes are

catalyzed by the histone lysine methyltransferase (HKMTase)

and histone demethylases (HDMases). For example,

trimethylation of lysine 4 of histone H3 (H3K4me3) and

H3K36me3 are often associated with transcriptional activation,

while H3K9me2 and H3K27me3 are associated with

transcriptional repression (He et al., 2011; Quadrana and

Colot, 2016; Talbert and Henikoff, 2021).
Comparison of classical vs.
epigenetic breeding

The basic concept of breeding is the selection of superior

individuals from a population. Selected superior traits should be

inherited in a stable manner from one generation to the next.

Genetic study has identified many causative genes for

agriculturally important traits that have been selected, and

many of them are due to differences of nucleotide sequences

such as nonsense mutations (Meyer and Purugganan, 2013).

Heritable phenotypic variation is caused by genetic diversity, but

it is also caused by epigenetic factors including DNA

methylation. For example, a change of flower structure from

fundamental symmetry to radial symmetry (peloric) in Linaria

vulgaris is due to transcriptional repression of the Lcyc gene by

DNA methylation in its genic region (Cubas et al., 1999).

Another example is the colorless non-ripening (cnr) mutant in

tomato (Solanum lycopersicum L.). Non-ripening of tomato fruit

is due to the silencing of the LeSPL-CNR gene caused by high

levels of DNA methylation in its promoter region (Manning

et al., 2006). In these two cases, there is no sequence

polymorphism in causative genes between the wild type and

mutants, indicating that spontaneous epimutation causes

heritable phenotypic change (Cubas et al., 1999; Manning

et al., 2006).

In addition to the two examples of single-gene, qualitative

traits mentioned above, the involvement of an epigenetic

component has also been documented for quantitative traits.

Selection of energy use efficiency (EUE), which is an important

factor in determining canola (Brassica napus L.) yield, is solely

based on epigenetic components, as a genetically identical canola
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population was used for selection. The epigenetic EUE

component was stably inherited, which allowed for selection

(Hauben et al., 2009). This initial work with canola was followed

up with a similar approach in rice (Oryza sativa L.); recurrent

selection for EUE resulted in enhanced yield in field trials which

again was due to heritable epigenetic change (Schmidt

et al., 2018).

A second example of an approach to breeding for enhanced

yield that takes advantage of epigenetics involves silencing of

MutS HOMOLOG1 (MSH1) via RNA interference (RNAi)

(Yang et al., 2015; Yang et al., 2020). Silencing of MSH1

induces heritable epigenomic changes, termed “methylation

repatterning”, a process that requires siRNA and the RdDM

pathway. This repatterning increases phenotypic plasticity.

Following removal of the RNAi suppression via outcrossing

and selection of transgene-null segregants, lines with stably

enhanced growth and vigor can be identified. This has been

documented in tomato (Yang et al., 2015), soybean [Glycine max

L. (Merr)] (Raju et al., 2018), and sorghum (Sorghum bicolor L.

Moench) (Ketumile et al., 2022). These results indicate that some

epimutations/epialleles and epigenomic states that condition

agriculturally-important traits are heritable and it is

conceivable that they have played a wider role in crop

breeding than previously known.

The development of the WGBS method that enables the

detection of DNA methylation at single base pair resolution has

increased the accuracy of epimutation detection (Kawakatsu and

Ecker, 2019). Comparison of DNA methylation states between

more than 1,000 A. thaliana accessions determined 78% of

methylated cytosines were differentially methylated across

accessions. DNA methylation is correlated with place of origin

and its climate, suggesting it plays a role in plant adaptation

(Kawakatsu et al., 2016a). Differences in DNAmethylation states

between accessions have been identified in maize, rice, soybean,

etc. (He et al., 2010; Shen et al., 2018; Xu et al., 2020b). A

comparison of DNA methylation states between parental lines

and their progenies generated from single seed descent over 30

generations showed that the rate of spontaneous changes of

DNA methylation (4x10-4 methylation polymorphisms per CG

site per generation) is four to five orders of magnitude higher

than the rate of spontaneous genetic mutations (7x10-9 base

substitutions per site per generation) (Ossowski et al., 2010;

Schmitz et al., 2011).

The extent to which epimutation can play an important role

in crop breeding depends on the heritability of epimutations and

their ability to produce new phenotypic change. Using two

recombinant inbred lines from two different A. thaliana

accessions, five generations of selection produced variations in

flowering time and plant architecture within a population, and

changed phenotypes were stably inherited for two to three

generations. These variations resulted in altered DNA

methylation because of the presence of a small number of

single nucleotide polymorphisms (SNPs) between selected
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individuals and their original plants (Schmid et al., 2018). In

maize, using 263 inbred genotypes, the association between

phenotypic diversity of metabolic traits and differentially

methylated regions not including any SNPs, suggested that

DNA methylation can cause phenotypic variation (Xu et al.,

2019). Unlike DNA sequence, trans acting DNA methylation

change was identified in F1 hybrids derived from crossing

between two different accessions of A. thaliana, though cis

acting DNA methylation was the majority (Greaves et al.,

2012a; Zhang et al., 2016). Two mechanisms causing

nonadditive DNA methylation states in F1 hybrids were

proposed; trans-chromosomal methylation (TCM) that is due

to an increase in DNA methylation at a locus with a previously

low methylation allele gaining methylation to resemble the more

heavi ly methylated al le le , and trans-chromosomal

demethylation (TCdM) that is due to loss of DNA methylation

at one of the methylated genomic segments (Greaves et al.,

2012a; Greaves et al., 2012b; Fujimoto et al., 2018). siRNAs have

the ability to modify epigenetic marks in trans; siRNA derived

from one parental allele can modify the DNA methylation state

in the other parental allele (Groszmann et al., 2013; Greaves

et al., 2015). Indeed, RdDM is involved in nonadditive DNA

methylation states in F1 hybrids (Zhang et al., 2016). Some

nonadditive DNA methylation states were heritable in the F2
generation, though there were variations of DNA methylation

levels among individual F2 plants (Greaves et al., 2016). These

results suggest that in crossbreeding populations there will be

greater variation in DNA methylation states than DNA

sequences, and this may generate phenotypic diversity.
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The strong indication that epigenetics is involved in

heritable phenotypic change is shown by studies using

epigenetic recombinant inbred lines (epi-RILs). Epi-RILs were

generated by crossing between wild type and hypomethylated

mutants, followed by repeated self-pollination of individual

plants creating homozygosity of epigenetic states of each allele

(Johannes et al., 2009; Reinders et al., 2009). Epi-RIL populations

vary in DNA methylation states with minor DNA sequence

variation. Phenotypic variation was identified in epi-RIL

populations including some heritable traits such as flowering

time and plant height (Figure 2A; Johannes et al., 2009; Zhang

et al., 2013). Phenotypic variation was also found in quantitative

traits, suggesting that epigenetic variation is involved in creating

heritable phenotypic variation in quantitative traits (Johannes

et al., 2009; Reinders et al., 2009; Cortijo et al., 2014). Epigenetic

markers, which can detect the heritable differences in DNA

methylation, can be applied to construct linkage maps and to

identify epigenetic quantitative trait loci (QTLs) such as

flowering time, primary root length, and clubroot resistance

(Figure 2A; Cortijo et al., 2014; Liégard et al., 2019). The

magnitude and stability of heritable phenotypic variation in

epi-RILs is similar to that in RILs derived from two different

accessions and natural accessions (Zhang et al., 2018b). The

findings from epi-RILs suggest that epigenetic variation may also

be involved in the phenotypic variation of agriculturally

important traits. Furthermore, A. thaliana F1 plants generated

by crossing between epi-RIL and wild type parents showed

enhanced vegetative growth (Dapp et al., 2015; Lauss et al.,

2018). DNA methylation repatterning caused by msh1 resulted
A B

C

FIGURE 2

Epigenetic changes lead to phenotypic diversity. (A) Epi-RILs shows phenotypic changes in agronomic traits such as early flowering, increased plant
growth, root length, and clubroot resistance. (B) Naturally occurring epialleles have given phenotypic diversity in crops. The state of the OsSPL14
epiallele leads to differences in grain yield between rice varieties (upper). Cultivated cotton has acquired a trait of photoperiodic flowering by epigenetic
change on COL2D during the domestication process (lower). (C) Paramutation of the b1 locus is established by the trans-acting epigenetic effect from a
paramutagenic allele (B’) to a paramutable allele (B-I) and contributes to the phenotypic change in their progenies.
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in enhanced growth in the F4 generation of crosses between

msh1 and wild type in A. thaliana (Virdi et al., 2015), and a

similar phenomenon was observed in sorghum (Ketumile et al.,

2022). These findings suggest epigenetic variation can

potentially become sources for breeding high yielding crops.
Crop phenotypes regulated
by epigenetics

Epigenetic marks related to
plant phenotypes

Epigenetic states vary between plant organs and tissues, and

this variation is related to specific-cell fate, normal plant growth

and development. Some changes in the epigenetic state have

been associated with developmental differences (Table 1) . For

example, in A. thaliana, hypermethylation in the CHH

methylation pattern is observed in columella relative to other

root cell types, perhaps reinforcing silencing in neighboring stem

cells (Kawakatsu et al., 2016b). CHH methylation changes

dynamically during embryogenesis and germination, and this

change of DNA methylation may affect seed dormancy

(Kawakatsu et al., 2017). In the shoot apical meristem of both

A. thaliana and rice, increasing CHG and CHH methylation

levels are observed after phase transition from the vegetative to

reproductive phase, and this change contributes to genome

protection from harmful TEs in stem cells (Gutzat et al., 2020;

Higo et al., 2020). A recent study has reported that significant

differences of DNA methylation in the CHH context in several

tissues can be attributed to the specific expression of CLASSY

(CLSY) genes, which encode chromatin remodelers (Zhou et al.,

2022). These results suggest that DNA methylation is altered

during development, with specific patterns being required for

normal development and for regulation of complex phenotypes,

including agricultural traits.

A prominent case of an epigenetic trait important to a crop is

the role of Karma in the “mantled trait” in oil palm (Ong-

Abdullah et al., 2015). The mantled trait is a somaclonal variant

arising from tissue culture that greatly reduces yield and has

impeded efforts to clone elite hybrids for use in oil production.

Ong-Abdullah et al. (2015) demonstrated that this trait resulted

from hypomethylation of a Karma transposon insertion in the

homeotic gene DEFICIENS. Hypermethylation of this insertion

results in normal fruit set and high yields. Understanding the

epigenetic basis of this trait will allow the oil palm industry to

predict and cull mantling at an early stage of production,

facilitating production of high-performing clones.

The fruit ripening process in tomato is controlled by DNA

methylation. During fruit development, the expression of the

DNA demethylase SlDML2 increases, and results in reduced

global DNA methylation (Liu et al., 2015; Lang et al., 2017). The
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demethylation activates various ripening-related genes such as

CNR and Vitamin E 3 (VTE3) genes (Manning et al., 2006;

Zhong et al., 2013; Quadrana et al., 2014). These genes are

naturally hypermethylated in their promoter regions in

immature fruit and non-fruit tissues (Zhong et al., 2013; Liu

et al., 2015; Lang et al., 2017). Similarly, comprehensive

demethylation is observed together with a reduction of RdDM

activity during ripening of strawberry fruit (Cheng et al., 2018).

In contrast, a fruit ripening process of sweet orange shows an

increase in global DNA methylation levels caused by decreasing

expression of the DNA demethylase gene (Huang et al., 2019). In

rice, global DNA demethylation is also involved in controlling

endosperm development. Two transcription factors, rice seed b-

Zipper (RISBZ1) and rice prolamin box binding factor (RPBF)

genes, repress aleurone formation (Kawakatsu et al., 2009). Rice

DNA demethylase OsROS1a removes DNA methylation on the

promoter regions, activating them during endosperm

development, and restricting the aleurone layer. In contrast, a

weak mutation of OsROS1a causes DNAmethylation levels to be

maintained in the RISBZ1 and RPBF genes, increasing the

number of aleurone cell layers and improving nutritional value

of rice grains (Liu et al., 2018).

Sex determination in plants leads to the formation of

unisexual flowers, with either pistils or stamens, enhances

outcrossing and increases genetic diversity. In melon and some

persimmon species, sexual forms are regulated by DNA

methylation (Martin et al., 2009; Akagi et al., 2016). In melon

(Cucumis melo L.), the expression of the 1-aminocyclopropane-1-

carboxylic synthase (CmACS-7) gene encodes an ethylene

biosynthesis enzyme that represses stamen development in

female flowers. In male flowers, wound inducible protein 1

(CmWIP1), a zinc-finger transcription factor, indirectly

represses the expression of CmACS-7 and, consequently,

aborts carpel development and results in the development of

unisexual male flowers. In addition, a DNA methylation change

in the DNA transposon inserted into the CmWIP1 promotor

causes CmWIP1 silencing, and the conversion from male to

female flowers (Martin et al., 2009). In diploid persimmon

(Diospyros lotus L.), an individual plant has either male or

female flowers , and a pair of genes encoding the

homeodomain transcription factors, Male Growth Inhibitor

(MeGI) and the Y-chromosome encoded pseudogene

Oppressor of MeGI (OGI), governs sex determination (Akagi

et al., 2014). MeGI represses anther development, and OGI

produces 21-nt s iRNAs that s i l ences MeGI post -

transcriptionally, leading to stamen development. In contrast,

hexaploid persimmon, D. kaki, is a monoecious species in which

an individual plant has both male and female flowers. Flexible

regulation ofMeGI expression determines the formation of male

or female flowers, resulting from OGI silencing by

retrotransposon insertion in promoter regions. MeGI

expression is repressed in male flowers by DNA methylation
frontiersin.org

https://doi.org/10.3389/fpls.2022.958350
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Tonosaki et al. 10.3389/fpls.2022.958350
TABLE 1 Summary of the epigenetic mechanism leading to various phenotypes in different plant species.

Species Target
gene or
loci

Target phenotype Epigenetic mechanism Reference

Arabidopsis
thaliana

FWA Late flowering Hypomethylation in the promoter region leading to
higher expression

Soppe et al., 2000

DWF4 Lack of elongation in shoots and petioles Insertion of CACTA family transposon that is activated
by hypomethylation

Miura et al., 2001

BNS Short, compact inflorescence, reduced plant height Hypermethylation in the entire gene Saze and Kakutani,
2007

FASCIATA1 Abnormal flower development Insertion of gypsy class retrotransposon that is activated
by hypomethylation

Tsukahara et al., 2009

QTLs Enhanced growth De novo epigenetic variation resulting from the use of
MSH1 silencing line

Virdi et al., 2015

QTLs Flowering time, plant height, fruit number, biomass,
root:shoot ratio

Variation of DNA methylation resulting from the use of
epigenetic inbred lines

Johannes et al., 2009;
Reinders et al., 2009;

Canola QTLs Variation of energy use efficiency (EUE) Epigenetic variation within the population Hauben et al., 2009

Cotton COL2D Photoperiodicity Hypomethylation on the 5’ region Song et al., 2017

Linaria
vulgaris

Lcyc Radial symmetry (peloric) flower DNA methylated and transcriptionally silent Cubas et al., 1999

Maize B1, R1, Pl1, P Anthocyanin pathway pigmentation of various shoot
tissues

Paramutation Hollick, 2017

low phytic
acid 1

Reduced seed phytic acid, elevated seed inorganic P Paramutation Pilu et al., 2009

Melon CmWIP1 Sex deteminaton Hypermethylation on promotor leading formation of
female flower

Martin et al., 2009

Oil palm Karma Mantled trait from somaclonal variant Hypomethylation on karma Ong-Abdullah et al.,
2015

Orange ripening-
related genes

Ripening process Hypermethylation during fruit-repening Huang et al., 2019

Persimmon MeGI Sex deteminaton Hypermethylation on the promoter region leading male
flower, hypomethylation leads female flower

Akagi et al., 2016

Rice QTLs Energy use efficiency (EUE), enhanced seed yield Epigenetic variation within the population Schmidt et al., 2018

RIZBZ1,
RPBF

Aleurone layer formation Demethylation by OsROS1a during grain maturation Liu et al., 2018

D1 Dwarfing Hypermethylation and repressive histone mark on the
promoter region

Miura et al., 2009

OsFIE1 Dwarfing, flower developement Hypomethylation and H3K9me2 depleation on the 5’
region

Zhang et al., 2012

RAV6 Leaf angle Hypomethylation on the promoter region Zhang et al., 2015

OsAK1 Chlorophyll formation Hypermethylation on the promoter region Wei et al., 2017

OsSPL14 Grain yield Hypomethylation on upstream 2.6-kb region Miura et al., 2010

Sorghum QTLs Grain yield, tiller number, plant height, flowering
time

De novo epigenetic variation resulting from the use of
MSH1 silencing line

Ketumile et al., 2022

Soybean QTLs Reduced growth rate, male sterility, enhanced
branching and altered leaf and floral morphology

De novo epigenetic variation resulting from the use of
MSH1 silencing line

Raju et al., 2018

Strawberry ripening-
related genes

Ripening process Demethylation during fruit-repening Cheng et al., 2018

Tomato SLTAB2 SULFUREA Paramutation Gouil et al., 2016

QTLs Leaf morphology, variegation, dwarfing, male sterility,
flower development, and flower timing

De novo epigenetic variation resulting from the use of
MSH1 silencing line

Yang et al., 2015

LeSPL-CNR Abnormal ripening, colorless fruit Silencing of expression by increased DNA methylaiton
in the promoter region

Manning et al., 2006

CNR, VTE3 Ripening process Demethylation by SlDML2 during fruit-repening Liu et al., 2018
Frontiers in P
lant Science
 07
 frontiersin.org

https://doi.org/10.3389/fpls.2022.958350
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Tonosaki et al. 10.3389/fpls.2022.958350
at the MeGI locus, and demethylation at this locus forms female

flowers (Akagi et al., 2016).

Some repressive histone marks also play a critical role in

suppressing gene expression and regulating plant development.

One example is H3K27me3, which is maintained by the widely

conserved Polycomb repressive complex 2 (PRC2). Although

DNA methylation levels often differ between lines within a

species, H3K27me3 patterns are mostly conserved between

different lines or varieties in the same species (He et al., 2010;

Makarevitch et al., 2013; Akter et al., 2019). However, the

distribution of H3K27me3 is very different between tissues

(Makarevitch et al., 2013), suggesting that PRC2 and

H3K27me3 play an essential role in determining cell fate and

normal plant development. In A. thaliana, PRC2 forms three

complexes that control distinct developmental transitions

(Mozgova et al., 2015); EMBRYONIC FLOWER (EMF) and

VERNALIZATION (VRN) class PRC2 proteins controls

sporophyte development and the developmental transition of

flowering, while FERTILIZATION-INDEPENDENT SEED

(FIS) class PRC2 regulates female gametophyte and early seed

formation via the regulation of genomic imprinting (described

in the next section). Although the characteristics of PRC2

complexes have not been fully understood in crops, some rice

studies reported the roles of PRC2 (Tonosaki and Kinoshita,

2015). The rice flowering transition responds to day-length and

is also regulated by PRC2 -containing OsEMF2b with a

chromatin remodeling factor VIN3-LIKE 2 (OsVIL2) (Luo

et al., 2009; Yang et al., 2013). Two recent studies have

revealed that OsEMF2a-containing PRC2 regulates female

gametogenesis and early endosperm development, similar to

the A. thaliana FIS-class PRC2 (Cheng et al., 2021; Tonosaki

et al., 2021), although FIS-class PRC2 is only conserved in

Brassicaceae species (Luo et al., 2009). Phenotypes and the

contributing epigenetic mechanism for each species have been

summarized in Table 1. In crop plants, developmental processes

influence crop yield and efficiency of breeding; further

investigation of the epigenetic mechanisms of plant

phenotypes affecting crop yield and efficiency of breeding

is necessary.
Naturally occurring epialleles for
phenotypic diversity

Phenotypic diversity between plants can arise from either

genetic mutations or stable non-genetic changes in the form of

epimutations. Although reports of spontaneous epialleles that

confer phenotypes are rare, some studies have demonstrated that

naturally occurring epialleles have been involved in phenotypes

in various crops (Samantara et al., 2021). For example, naturally

occurring epialleles of the VTE3 gene in tomato, mediated by

differential methylation of a SINE retrotransposon inserted in
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the promoter, determine nutritionally important vitamin E

levels in tomato fruit (Quadrana et al., 2014).

Several epialleles associated with agronomic traits have been

found in rice. An epiallele of the DWARF1 (D1) gene encoding

the GTP-binding protein, Epi-d1, shows a metastable dwarf

phenotype (Miura et al., 2009). This phenotype is caused by

hypermethylation and association with a repressive histone

mark on the promoter region of the D1 gene, but there is no

change in DNA sequence. Epi-df also shows a dwarf phenotype

with various floral abnormalities inherited in a dominant

manner (Zhang et al., 2012). In Epi-df, DNA methylation and

H3K9me2 marks are reduced on the 5 ’ region of

FERTILIZATION-INDEPENDENT ENDOSPERM1 (FIE1) gene

encoding a component of the rice PRC2. This change causes

ectopic expression of FIE1, decreasing H3K27me3 and activating

the PRC2-mediated genes. Likewise, change in DNA

methylation levels on other rice epialleles, Epi-rav6 and Epi-

ak1, alters leaf angle by modulating brassinosteroid homeostasis,

and photosynthetic capacity, respectively (Zhang et al., 2015;

Wei et al., 2017). These naturally occurring epialleles are often

stably inherited and independent of genetic variation and may be

valuable material for altering agronomic traits for

crop improvement.

Stable epiallele phenotypes observed in the above examples

and A. thaliana epi-RILs may be rare, suggesting that latent

epialleles are lost during sexual reproduction. The re-

programming mechanism during gametogenesis is thought to

rapidly reset the epigenetic states from the vegetative

development phase (Tao et al., 2017). This may impede

inheritance of most naturally occurring epimutations from the

parental plant. In addition, the state of an epiallele is occasionally

bidirectionally mutable, from active to repressed and from

repressed to active, resulting in revertant phenotypes in a few

progeny (Manning et al., 2006; Miura et al., 2009; Zhang et al.,

2012; Zhang et al., 2015). DNA methylation can be inherited to

the progeny, but this may depend on environmental conditions

such as biotic and abiotic stresses (Tricker, 2015). The reversion

of an epiallele and variability of DNA methylation carry the risk

of losing the selected phenotype or not being able to fix the

epiallele through breeding programs. However, vegetatively

propagated plants without any reproductive phase may allow

reliable and stably maintained inheritance of epialleles that are

useful for breeding programs.

Some studies have indeed reported that epialleles related to

important traits have been stably maintained during

improvement and domestication (Figure 2B). The rice

epiallele, OsSPL14, is involved in rice grain yield. Higher

expression of OsSPL14 promotes panicle branching and the

number of grains per panicle, but this expression is suppressed

in a typical japonica rice variety by high DNAmethylation in the

upstream region of OsSPL14 (Miura et al., 2010). Since

expression of OsSPL14 and DNA methylation levels of the
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locus are associated with rice grain yield, this epimutation may

determine the yield phenotype between different rice varieties. In

cotton, comprehensive epigenomic analysis between

domesticated cottons and their relatives found that some

differentially methylated genes contribute to domestication

traits, including flowering time and seed dormancy (Song

et al., 2017). The photoperiodicity-related gene, CONSTANS-

LIKE 2D (COL2D), is highly methylated in wild cotton; however,

COL2D in domesticated cottons is hypomethylated and

activated; perhaps resulting in photoperiod dependent

flowering in domesticated cotton. Similarly, a large number of

DMRs contribute phenotypic variation between maize and

teosinte and show signals of selection during domestication

(Xu et al., 2020b). These epimutations may have produced

domesticated phenotypes in crops with epigenetic marks being

maintained during domestication.
Paramutation
Naturally occurring epialleles can lead to the epigenetic

phenomenon referred to as “paramutation” (Pilu, 2015). The

non-Mendelian pattern of inheritance typical of paramutation

was first observed in studies of the genetics of “rouges” in

cultivated peas (Pisum sativum L.; Bateson and Pellew, 1915).

and subsequently in studies of the inheritance of pigmentation

phenotypes associated with the anthocyanin pathways in

maize (Brink, 1956), and in studies of inheritance at the

sulfurea locus in tomato (Hagemann, 1958; Hagemann and

Berg, 1978). The power of the anthocyanin pigment pathway

as a model for genetic studies in maize, perhaps combined

with the importance of maize as a major food crop, has led to

advances in understanding the biology and molecular genetics

of paramutation in this species (Hollick, 2017; Springer and

Schmitz, 2017). While the basic biology of paramutation is

mostly similar across plant species there are important

differences, as illustrated by differences between maize and

tomato (Gouil et al., 2016). A fuller understanding of the

similarities and differences between species will allow

development of a more accurate general model of the

biology of paramutation, than would studies of maize alone

(Gouil et al., 2016). This remains an active field of research,

with recent progress ranging from studies of the original

model, the rogue phenotype in pea (Pereira and Leitão,

2021), to studies in tomato (Martinho et al., 2022), A.

thaliana (Bente et al., 2021), and continuing studies in

maize (Deans et al., 2020). The studies in cultivated species

like pea, tomato, and maize illustrate that paramutation is not

just an interesting epigenetic phenomenon but has substantial

economic and cul tura l importance . For example ,

paramutation occurs at the maize low phytic acid 1 gene, a

gene of some significance to the nutritional quality of seed

crops when used either for animal feeds or human foods

(Pilu et al., 2009).
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In paramutation, a trans-acting regulation can convert a

paramutable allele to a paramutagenic allele on the same locus

(Chandler, 2010). A well-defined example is the maize b1 locus

that encodes a transcription factor involved in anthocyanin

biosynthesis (Coe, 1959). The B’ allele at the b1 locus has a

low expression level and produces light (or pale) pigmentation in

the whole plant body, while the Booster-Intense (B-I) allele is

highly transcribed and provides dark pigmentation. When the B-

I allele is exposed to B’ alleles, B-I is converted to B’ and

pigmentation changes from dark to light in all F1 plants

(Figure 2C); this change in the state of the paramutable B-I

allele is stably inherited even after the loss of the paramutagenic

B’ allele during segregation. The B-I and B’ alleles are epialleles;

both have identical DNA sequences, but there is a distinct

difference in DNA methylation and chromatin structure at

multiple tandem repeats that act as a long-range enhancer

element (Stam et al., 2002a; Stam et al., 2002b; Louwers et al.,

2009; Haring et al., 2010). However, studies of sulfurea

paramutation in tomato illustrate that neither tandem repeats

nor their function as a long-distance enhancer acting on a gene’s

promoter are essential: sulfurea paramutation occurs via

hypermethylation of the transcription start site of the target

gene (SLTB2) and doesn’t involve tandem repeats (Gouil et al.,

2016). What is common between paramutation at maize b1 and

tomato SLTB2 is the role of the RdDM pathway.

Genetic analyses have identified several genes that are

necessary for establishment and/or maintenance of the

paramutation and involve the production of small RNAs and

function of the RdDM pathway (Hollick, 2017). RdDM is

causative for gene silencing by guided de novo DNA

methylation via small RNAs (Matzke and Mosher, 2014). The

tandem repeat region of B-I to B’ alleles generates small RNAs,

and overexpression of siRNAs derived from the tandem repeat

can induce paramutation in trans (Arteaga-Vazquez et al., 2010),

while the absence of the RdDM-induced trigger resulted in loss

of paramutation (Arteaga-Vazquez et al., 2010). This result

suggests that the RdDM pathway and small RNAs are

important to mechanisms underlying paramutation but cannot

fully explain these mechanisms. Paramutation-like phenomena

in maize and other plant species appear to be controlled by

similar epigenetic regulation involving the interaction of small

RNAs (Pilu, 2015; Hollick, 2017). The trans-acting epigenetic

effects of paramutation can be stably and transgenerationally

inherited and are expected to contribute to the generation of the

phenotypic diversity without any genomic change. However,

inheritance of paramutation deviates from Mendelian

segregation and may make the selection of important

traits difficult.

Advances in the study of the molecular biology of

paramutation in maize was facilitated by the isolation of

stable, genetic mutations of genes that are functionally critical

to this phenomenon, yet the genetics of paramutation is not fully

elucidated. While the first case of paramutation, the rouge
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phenotypes in pea, was documented over 100 years ago, no such

genetic studies had been reported until the recent work of

Pereira and Leitão (2021). These authors developed a “non-

rogue” pea line harboring a “neutral” (in terms of paramutation)

allele, analogous to similar mutations in maize, isolated from a

chemically-mutagenized population. Interestingly, the

penetrance of the non-rouge mutation was not complete and

paramutation could still be observed in some exceptional cases,

indicating that the paramutation system in pea may differ in part

from that in maize. Additional examples of continuing genetics

progress also demonstrated inter-species functional

conservation (Deans et al., 2020; Martinho et al., 2022). Deans

et al. (2020) demonstrated that the maize ortholog of the A.

thaliana PICKLE-like helicase DNA-binding 3 protein, CHD3,

plays a role in the maintenance of the purple plant 1 (pl1)

paramutant alleles, and also in supporting both normal somatic

development and gametophyte function, via the maintenance of

hypermethylated “off” states of given alleles. Furthermore, since

they both function to maintain “off” states, CHDs and the RNA

polymerase II catalytic subunit RPD1, which plays a role in

generating the small RNAs important to paramutation, are

mechanistically linked. Martinho et al. (2022) demonstrated

that the sulfurea paramutation in the tomato is dependent on

the function of the tomato ortholog of A. thaliana’s KYP and

CMT3. Furthermore, this result indicates that models of

paramutation should include CMT3/KYP and its role in

changing the chromatin structure, in addition to mechanisms

that involve small RNAs and the RdDM pathways, and that

these models should accommodate both locus-specific and

species-specific mechanisms.

While paramutation was initially studied at a limited

number of loci in maize, subsequent studies have found that it

represents a more common, genome-wide phenomenon. A

study of “expression quantitative trait loci” (e-QTLs) in maize

found that 145 genes displayed patterns of non-Mendelian e-

QTL inheritance that was paramutation-like: where all the

segregating progeny from a cross had expression levels for a

given gene similar to either one or the other of the two parents

(Li et al., 2013). Genome-wide mapping of cytosine methylation

in two maize inbreds revealed widespread paramutation-like

“switches” guided by small RNAs (Regulski et al., 2013). Similar

genome-wide, multi-locus paramutation-like phenomena have

also been documented in A. thaliana (Greaves et al., 2014) and

in tomato (Gouil and Baulcombe, 2018). Clearly paramutation-

like non-Mendelian inheritance that is commonplace and

genome-wide could greatly impact crop breeding efforts that

are designed based on Mendelian principles of inheritance.

The epigenetic phenomena of inter- and transgenerational

inheritance or memory of responses to stress or environmental

change experienced by parents and transmitted to offspring

(Section 5), has been documented to impact paramutation

(Mikula, 1967; Bente et al., 2021). In a study of paramutation
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at the R locus in maize (Mikula, 1967), testcross scores reflecting

paramutation were increased when plants used as males in

testcrosses were grown in the greenhouse under a 12 hr light/

12 hr dark photoperiod rather than a 24 hr light photoperiod.

Since the differentially treated plants were used as males in the

testcrosses to plants that were not grown under the different

photoperiods, any effects must have been transmitted through

the pollen. The paramutant phenotype was then observed in the

next generation. Therefore, this inheritance could not be

attributed to a maternal effect and thus is properly referred to

as “transgenerational inheritance” rather than “intergenerational

inheritance” (for an explanation of this important distinction,

see Section 5). More recently, Bente et al. (2021) demonstrated

that temperature differences during the growth of A. thaliana

hybrids harboring a paramutable reporter transgene played a

role in the degree and timing of its interaction with the

paramutagenic allele.

Genomic imprinting
Genomic imprinting is an inherently epigenetic

phenomenon that shows a parent-of-origin dependence and

involves preferential expression from one parental allele.

Imprinted genes are found predominantly in the endosperm

tissue of angiosperms but are rare in embryos. A gene could be

preferentially expressed from the maternal allele when it is

classified as a maternally expressed gene (MEG) or from the

paternal allele, a paternally expressed gene (PEG). Based

on studies mostly in A. thaliana, preferential expression

of imprinted genes is explained by strict epigenetic

reprogramming during gametogenesis. In the central cell of a

female gamete, the DNA methylation level is widely reduced by

the action of DNA demethylase (Park et al., 2016). However,

DNA methylation in a sperm cell is maintained and reinforced

possibly via the siRNA pathway derived from the vegetative cell

(Martinez et al., 2016; Kim et al., 2019). The different DNA

methylation state between gametes leads to the maternal

expression of MEGs. In contrast, H3K27me3 is reduced in

sperm cells by erasers such as H3K27me3 demethylase but

maintained in the central cell by the PRC2 (Mozgova and

Hennig, 2015; Borg et al., 2020), resulting in the paternal

expression of PEGs. In addition, a recent study has revealed

that preferential expression in almost all PEGs is strengthened

by multiple repressive regulation on the maternal allele

(Moreno-Romero et al., 2019). These asymmetric epigenetic

regulations between parental gamete are natural epialleles and

establish genomic imprinting in the endosperm.

Numerous imprinted genes have been found in many plant

species, including crop plants. Loss-of-function of imprinted

genes can often result in crucial developmental defects, such as

seed abortion (Luo et al., 2000; Tonosaki et al., 2021). The most

accepted explanation for the biological significance of imprinted

genes is the parental-conflict hypothesis for allocating limited
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maternal resources to offspring (Haig and Westoby, 1989).

Several crop studies showed evidence that some imprinted

genes function to control nutrient allocation. In maize, Meg1

is a maternally imprinted gene and involves establishing and

differentiating endosperm nutrient transfer tissue (Costa et al.,

2012). Bi-allelic expression of Meg1 causes more significant

expansion of the transfer tissue and leads to providing

disproportional maternal resources to the endosperm; the

dosage regulation of imprinted genes is critical for a balanced

distribution of maternal nutrients to seeds (Costa et al., 2012). In

maize, some MEGs are also involved in nutrient accumulation

and allocation in the endosperm (Xin et al., 2013). In rice, the

knockout of OsEMF2a, a MEG encoding a component of rice

PRC2, induces autonomous endosperm development without

fertilization (Tonosaki et al., 2021). Rice autonomous

endosperm can produce storage compounds, starch granules

and protein bodies, while endosperm cell structure is not

acquired (Tonosaki et al., 2021). This result suggests that an

imprinted OsEMF2a regulates the downstream pathway to

determine the nutrient allocation to the endosperm. In

addition, a recent study has reported that a maternally

imprinted long-noncoding RNA, MISSEN , prevents

H3K27me3 modification after pollination that is essential and

quantitatively regulates the size of the rice endosperm (Zhou

et al., 2021). Although endosperm is a tissue that is eventually

terminated and the epigenetic state is not transmitted to the

progeny, epigenetic variation leads to variation of genomic

imprinting and generates a novel gene expression pattern in

seeds (Pignatta et al., 2014). It is possible that the crop grain

quality and quantity can be improved using epialleles or by

modification of the epigenetic state.

Imprinting of genes has a remarkable role in the

hybridization barrier, preventing the introgression of genes

from other species during interspecific and interploidy

crossing. The fusion of the two genomes from different

species or disturbing the parental genomic ratio in the

endosperm leads to a parent-of-origin seed abortion

phenotype (Kradolfer et al., 2013; Wolff et al., 2015;

Tonosaki et al., 2016). The seed abortion phenotypes are

associated with mis-regulation of expression of imprinted

genes and seed viability can be recovered by rescuing the

expression of imprinted genes (Kradolfer et al., 2013;

Schatlowski et al., 2014; Wolff et al., 2015; Erdmann et al.,

2017; Huang et al., 2017; Martinez et al., 2018; Wang et al.,

2018). These results indicate that the preferential expression

pattern of imprinted genes is critical for endosperm

development. Because imprinted genes are sensitive to

changes in parental genome dosage, the adjustment of

genome dosage between parental species leads to recovering

preferential expression pattern of imprinted genes and

overcomes the hybridization barrier in interspecific crosses

(Lafon-Placette et al., 2017; Tonosaki et al., 2018).
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Technologies to modify
the epigenome

More agricultural traits are being found to be regulated by

epigenetics, and fast integration of the epialleles into the desired

cultivar is important for breeding. Natural epigenome

modifications have been acquired through evolution

and traditional breeding based on trait and genetic

characterization. Artificial induction of epigenome

modification is expected to increase the phenotypic diversity

including agronomically useful traits. Broadly, there are two

methods for epigenome modification, random and targeted.

“Random” epigenome modification induces epigenome

changes randomly into the genome, whereas “targeted” allows

epigenome modification of specific regions of the genome.
Random epigenome modification

Tissue culture
Tissue culture is a commonly used technique to establish and

regenerate plants from tissue explants by aseptically placing the

tissue on plant growth medium. The initial medium contains

phytohormones adjusted to induce undifferentiated cells growth

(callus). The explant is then placed on media to induce shoot and

root formation. The phytohormone concentration required for

each developmental stage can depend on the plant species and

regeneration of plants from callus can take weeks or even

months depending on the plant species. Regenerated plants

from the same tissue are clones harboring the same genome,

but has phenotypic variation, named somaclonal variation.

Somaclonal variation is known to be caused by both genetic

and epigenetic changes of the genome that occur during the

tissue culture. DNA methylation levels are reported to increase

with the 2,4-dichlorophenoxyacetic acid (2,4-D) concentration

that is used for callus induction and increases with kinetin

concentration that induces shoot formation (Azizi et al., 2020).

Tissue culture induced heritable DNA hypomethylation has

been observed in oil palm (Ong-Abdullah et al., 2015), maize

(Stelpflug et al., 2014), rice (Stroud et al., 2013), and A. thaliana

(Tanurdzic et al., 2008). Establishment of plant regeneration by

optimizing tissue culture conditions can be challenging, but the

use of this technique can induce phenotypic varieties that may be

useful for breeding (Figure 3A), especially applicable for plants

that already have an established tissue culture system.

Chemical induced DNA methylation changes
DNA methylation inhibitors have been frequently used to

modify the natural DNA methylation that occurs within the

genome. Namely, 5’-aza-2’-deoxycytidine (5-azadC) and

zebularine are cytosine analogs that are randomly incorporated
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into the genome during DNA replication, replacing cytosine. In

the case of 5-azadC, the azacytosine-guanidine dinucleotides are

recognized and bound by DNA methyltransferase but cannot

accept the transfer of the methyl group and become trapped as

an adduct ultimately leading to the inhibition of DNA

methylation (Figure 3A). Zebularine has a similar mechanism

involving the formation of a covalent adduct with DNA

methyltransferase (Cheng et al., 2003; Champion et al., 2010).

Use of zebularine on wheat (Triticum aestium L.) created a line

with a heritable increase of spikelet number possibly caused by

epigenetic modification (Finnegan et al., 2018). However, care is

needed for the interpretation of 5-azadC and zebularine

epimutagenesis because it is known to also induce genetic

mutations (Jackson-Grusby et al., 1997). As a random

epigenome modifier, RNA polymerase II (PolII) inhibitors also

can function as DNA methylation inhibitors (Thieme et al.,

2017) because PolII is required for RdDM establishment of some

loci (Gao et al., 2010). Seedlings treated with a PolII inhibitor,

alpha-amanitin, decreased PolII activity and led to global DNA

hypomethylation and phenotypic variability (Thieme et al.,

2017). The effects of the chemicals are usually transient and
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the epigenome of many loci is restored once the chemical is

removed (Baubec et al., 2009).

DNA hypomethylation can result in the activation of mobile

TEs that can translocate within the genome by a cut-paste (DNA

transposons) or copy-paste (retrotransposons). The transposing

TEs may land in a position that will disrupt gene function,

leading to heritable genetic changes. These mutations can induce

useful agronomical traits. Epigenetic breeding can result in

genetic changes and is important to understand the underlying

mechanism of the phenotypic change in order to consider the

appropriate breeding strategy for crop improvement. For this,

the combination of efficient phenotypic, genetic, and epigenetic

screening systems may be required to identify useful traits from a

large-scale random epigenome modification.
Targeted epigenome modification

RNA interference
RNAi was developed in the late 90’s as a means to regulate

specific gene expression via epigenetic modifications. RNAi can

be induced by the expression of transgenes designed to form an

inverted repeat separated by a spacer that folds into a hairpin

RNA (hpRNA) structure (Baulcombe, 2004). This hpRNA is

then processed into siRNAs that mediate post transcriptional

transgene silencing (PTGS) and subsequently transcriptional

gene silencing (TGS) by the RdDM pathway. Similarly, virus

induced gene silencing (VIGS) has also been used to induce

PTGS and RdDM in plants (Abrahamian et al., 2020). These

methods can efficiently trigger PTGS but not necessarily TGS

(Eamens et al., 2008). The exact mechanism is not known, but

there seems to be a mechanism to protect some endogenous

genes from TGS. However, non-polyadenylated or hpRNA

transgenes inserted into an intron show efficient RdDM and

TGS (Mette et al., 1999; Dalakouras et al., 2009). The heritable

epigenetic state may depend on the target gene but may be made

more efficient by designing the RNAi to intronic regions. Further

understanding of the exact mechanism of epigenome heritability

is anticipated to allow more efficient and flexible design of RNAi

for any epialleles of interest.
TALE and CRISPR/Cas9
An alternative method for epigenome modification is via the

use of genome editing enzymes. Transcription activator-like

effectors (TALEs) and Clustered regularly interspaced short

palindromic repeats/CRISPR-associated protein 9 (CRISPR/

Cas9) are enzymes that have been used for targeted epigenome

editing. TALEs are proteins that are naturally occurring

transcriptional activators secreted by the plant pathogen

Xanthomonas spp. Fus ing a DNA methylat ion or

demethylating enzyme such as DNA methyltransferase 3 alpha

(DNMT3A) or ten-eleven translocation 1 (TET1) to TALE has
A
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FIGURE 3

Methods to induce epigenetic changes. (A) DNA methylation is
altered during tissue culture, or chemical (zebularine) induced
random DNA demethylation by inhibition of DNA methylation,
leading to gene expression change and induced phenotypic
diversity. (B) CRISPR/dCas9 induced DNA methylation by fusion
of DNA methyltransferase to the dCas9 protein. The dCas9
fusion protein is directed to the homologous regions (target
sequence) of the designed sgRNA and induces methylation to
the flanking DNA region. The target sequence requires a PAM
motif (N can be A, C, G or T) within the sgRNA design.
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been used for DNA methylation modification in mammalian

cells (Lo et al., 2017).

Cas9 is a DNA endonuclease that associates with a single-

guide RNA (sgRNA). sgRNA consists of a 20 nucleotide sgRNA

recognition sequence containing a protospacer adjacent motif

(PAM) that has 5’-NGG-3’ sequence and a scaffold sequence for

Cas-binding. Cas9/sgRNA complex is directed to bind to the

recognition sequence on the genomic DNA. For epigenome

editing, a dead Cas9 (dCas9) is used so the Cas9 will still bind

to the target DNA but will not cleave the site. Similar to TALEs,

an epigenomic modifying enzyme can be fused to dCas9 and

direct the epigenome modification in the target region

(Figure 3B). Both enzymes have lower binding efficiency on

heterochromatic regions, however, TALEs have recently been

reported to have higher binding efficiency than Cas9 for genome

editing (Jain et al., 2021), and this can also be expected for

epigenome editing [e.g., for DNA demethylation (Moradpour

and Abdulah, 2020)].
Implementation in breeding

One of the important considerations for using artificially

induced epigenome modification is the legal or political

regulation concerning the safety of the consumers and

environment. Genetically modified organisms (GMOs) have

been regulated in many countries to limit their use to within a

closed environment to prevent the release of any transgenic

plant material (including pollen) to an open environment. For

releasing transgenic plants for commercial use, a strict and often

expensive risk assessment is often required, which may outweigh

the benefit of transgenic plants.

Conventional mutagenesis using ionizing/non-ionizing

irradiation and chemicals have created useful traits for various

crops. These techniques can induce structural changes of the

genome including deletions, insertions, and chromosomal

rearrangements (Hase et al., 2020; Ma et al., 2021). These

mutagenized plants were generated long before GMO

regulations existed and have been used by breeders for crop

improvement. Random epigenome mutagenesis by tissue culture

or chemicals, which does not introduce transgenes, are also not

under GMO regulation and could be used for breeding purposes

in a similar way to genetically mutated varieties.

On the other hand, RNAi, TALE, and CRISPR/Cas9

technologies all require the introduction of transgenes to

induce targeted epigenome modification. Therefore, any of

these plants would be under GMO regulation, and would be

difficult to use for any breeding that requires the release of the

plant to an open environment. Recently some countries such as

United States, Argentina, Australia, and Brazil have indicated

that if no foreign DNA is present in the variety, it would not be

regulated as a GMO and would be regulated equivalently to

conventional crops (Smyth, 2020). Taking this into
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consideration, it may be possible to cross the epigenetically

modified crops to non-transgenic elite varieties to segregate

out the transgenes and select for desired lines assisted by

epigenetic markers.

Alternatively, transient expression or external application of

epigenome modifying transgene or proteins may be delivered to

the plant for epigenome modification without transgene

integration into the genome. Cell penetrating peptide is one

such method that allows DNA/RNA/proteins bound to a

designed peptide to transfer across the cell wall/membrane via

endocytosis (Numata et al., 2018; Oikawa et al., 2021).

Transfection of preassembled Cas9/sgRNA complex has been

demonstrated (Woo et al., 2015; Murovec et al., 2018), and cell

penetrating peptide has efficiently delivered proteins into plant

cells (Bilichak et al., 2015; Terada et al., 2020). The Cas9/sgRNA

delivery by cell penetrating peptides is expected to result in

highly efficient genome editing.

Similarly, grafting has also been reported to transport small

RNAs from the scion towards the root stock via the

plasmodesmata and sieve elements (Kasai et al., 2016). An

siRNA producing tobacco (Nicotiana benthamiana) scion was

grafted to a potato (Solanum tuberosum) rootstock and TGS

induced via the RdDM pathway; the TGS was maintained in the

progeny lacking the siRNAs. Rootstock-to-scion transfer of

small RNAs conferring virus resistance in the scion of cherry

tree was also demonstrated by grafting of a virus resistant

rootstock variety. Grafting of lines that express RNAi or

CRISPR/Cas9 transgenes for epigenome modification to an

elite variety may allow more efficient epigenetic breeding

without the need for finding a graft compatible line with the

desired epiallele (Figure 4). Furthermore, the identification and

application of epi-markers (that relates to agronomic trait and

epigenetics changes) have potential value for efficient breeding
FIGURE 4

Inducing epigenetic changes by grafting. RNAi construct
expressed in the rootstock produces siRNAs that induces DNA
methylation. The siRNA is known to transport within the plant,
and grafting a wild-type scion to a siRNA producing transgenic
rootstock will transport the siRNA to the wild-type scion. The
siRNA associates with the ARGONAUTE (AGO) protein and
induces de novo DNA methylation via the RdDM pathway. The
wild-type scion will be non-transgenic (free of transgene
integration into the genome).
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(Turcotte et al., 2022), and these technologies will also be useful

for screening epigenome edited crops.
Can epigenome-mediated
transgenerational stress memory
enhance crop performance
and productivity?

During development, plants display a wide array of adaptive

mechanisms in response to changes and challenges in their

environment, including biotic or abiotic stresses. These

responses can result in intragenerational adaptive phenotypic

change (Mozgova et al., 2019; Bhar et al., 2021). For example,

multiple intragenerational exposures of A. thaliana to water

stress “train” plants to better respond to subsequent exposure to

that stress (Ding et al., 2012). In another example, analysis of the

methylome revealed a central role for intragenerational

epigenetic change in the adaptive response of A. thaliana to

phosphate starvation (Yong-Villalobos et al., 2015). It is

important to note that what constitutes an adaptive change is

context dependent (Skirycz et al., 2011). These authors

demonstrated that responses allowing survival of A. thaliana

under extreme drought were not of benefit to plant growth and
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productivity under more moderate drought conditions. Thus,

responses to severe stress may not be of benefit under the more

moderate conditions typical of standard crop production

environments. This can account for the low level of success in

translation of findings of many basic studies of stress response to

the applied field of crop production (Skirycz et al., 2011).

Some studies have now demonstrated that plants are able to

transmit a portion of this intragenerational response to biotic

and abiotic stress, or to environmental change, to their offspring,

via the epigenome-mediated phenomenon referred to as

“transgenerational inheritance” (Figure 5 top; Herman and

Sultan, 2011; Mozgova et al., 2019). To accurately refer to a

case of epigenetic inheritance as transgenerational, the

inheritance of the epigenetic change in response to the stress

or environmental change experienced by a parent should be

observed in second- and/or subsequent generations in the

absence of the inducing stress and in progeny whose

embryonic and subsequent development occurred in the

absence of that stress (Heard and Martienssen, 2014). If the

epigenetic response is only observed in the first generation of

offspring that began their development as seed developing in the

maternal plant then that could simply be a type of maternal or

paren ta l e ff ec t and shou ld be re f e r r ed to as an

“intergenerational” effect. A common maternal effect is

“provisioning” of the developing seed by the maternal plant
FIGURE 5

A Pseudo-Lamarckian Process that combines transgenerational adaptation to stress combined with paramutation. This process may rapidly fix
(make homozygous in all progeny) a stress-induced, adaptive epigenomic change. “sr”: the epigenomic state of an individual prior to a given
stress. “SR*”: the epigenomic state of an individual following response to a given stress.
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with important nutrients and other compounds (Herman and

Sultan, 2016). This distinction is important in studies of animal

and human epigenetic inheritance and is adhered to in that field

(Heard and Martienssen, 2014). We will adhere to it here even

though nearly all studies in plant systems use the term

“transgenerational” broadly to refer to both intergenerational

and transgenerational inheritance. In a transgenerational

parallel to the intragenerational “training” described by Ding

et al. (2012), a further potentially valuable distinction should be

made. If the magnitude of the response or epigenetic change is

substantially greater in magnitude in the 2nd generation or

subsequent progeny than that observed in progeny of

unstressed parents when exposed to the same stress, then that

could properly be referred to as a transgenerational memory

effect; a case of “transgenerational training” that is often referred

to as “transgenerational priming” (Holeski et al., 2012).

As an example of a transgenerational biotic stress memory

that imparts adaptation, exposure of A. thaliana plants to

caterpillar herbivory resulted in an epigenome-mediated

jasmonic acid-dependent defense that persisted for two

subsequent generations in the absence of the biotic stress

(Rasmann et al., 2012), and thus was transgenerational as

defined by Heard and Martienssen (2014). However, the

adaptation to herbivory did not persist into the third

generation. In fact, transgenerational adaptation and priming

to both herbivory and pathogen attack is taxonomically

widespread across plant species (Holeski et al., 2012). In some

cases, pathogen attack can result in transgenerational resistance

to both the primary pathogen and other pathogens (reviewed in

Holeski et al., 2012). Herbivory on the wild radish (Raphanus

sativus L.) by the cabbage butterfly (Pieris rapae L.) resulted in

transgenerational priming of the adaptive response of increased

trichome density; a greater-in-magnitude response to herbivory

was observed in progeny whose parent was stressed than in those

whose parent was not stressed (Sobral et al., 2021).

As an example of a transgenerational abiotic stress memory

that imparts tolerance, limiting nitrogen supply to rice plants

induced epigenomic change that was heritable through two

progeny generations in the absence of the inducing stress and

that conditioned enhanced tolerance to the same stress (Kou

et al., 2011). Climate change poses a critically important

challenge to world crop production, and water scarcity is at

the forefront of that risk (World Economic Forum, 2015). A

study of transgenerational response to water deficit in the annual

plant Polygonum persicaria demonstrated that the adaptation

can be attributed to differential DNAmethylation and not due to

the maternal effect of provisioning (Herman and Sultan, 2016).

In peanut production, parental exposure to water deficit resulted

in an enhancement in field emergence in progeny for three

subsequent generations (Racette et al., 2020). However, of the

five peanut genotypes included in the study, enhanced field

emergence was only observed for two in each of the second and

third years of study, and these two differed in each year. A
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combination of water and heat stress in durum wheat seedlings

resulted in an intragenerational effect, apparently mediated by

differential micro-RNA expression, that imparted tolerance to

nitrogen limitation in progeny of stressed parents (Liu et al.,

2021). While these authors referred to the effect as

transgenerational, only the first progeny generation was

studied. Thus, while this effect might in-fact be truly

transgenerational, it can only be defined as intragenerational,

according to the distinction described above. Of note is that this

represented the first case of “cross-stress” adaptation, in that the

parents were exposed to water and heat stress and the adaptation

was observed for nitrogen stress. Drought stress of the parental

plants was reported to result in a positive, intergenerational

effect on seedling growth in the F1 in oilseed rape (B. napus),

although it was referred to as a transgenerational effect by the

authors (Hatzig et al., 2018).

This brief review reveals that the phenomenon of

transgenerational inheritance may typically be of limited

generational endurance, quite variable and inconsistent across

genotypes of the same species and between species, and often

conflated with what is properly referred to as intergenerational

effects. It may also depend greatly on the severity of the stress or

environmental change or result from a combination of stresses

rather than a single stress. “Mild” drought during the vegetative

stage in A. thaliana generated intragenerational changes

reflecting response to drought including changes in genomic

DNA methylation patterns (Van Dooren et al., 2020). However,

one generation in the absence of the mild drought stress was

sufficient to reset the epigenomes and result in phenotypically

similar progeny. The authors conclude that mild drought has no

transgenerational effects in A. thaliana. They state that there is a

“growing body of evidence against transgenerational epigenetic

changes being a predictable and common response of plants to

changes in the environment”. They also hedge their conclusions

by noting that a documentable transgenerational effect may

result from a more dramatic stress or perhaps from a

combination of stresses.

The value of making the distinction between inter- and

transgenerational effects when considering epigenetic

inheritance, especially where differential maternal provisioning

is clearly the determining factor, is illustrated by studies of these

effects in durum wheat (Triticum durum Desf.) in response to a

combination of drought and heat stress and in the soybean in

response to drought stress (Wijewardana et al., 2019; Liu et al.,

2021). In both studies, only the F1 of stressed parents was

evaluated, and performance measures were only for seed and

seedling performance. In both studies negative intergenerational

effects were observed; seeds obtained from stressed parents had

reduced germination rates and reduced seedling vigor. In both

studies, the casual factor clearly reduced maternal provisioning

resulting in reduced seed size, viability and performance yet the

effects were referred to as transgenerational. However, both

inter- and transgenerational effects might have been observed
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if performance at the adult stage of the F1, or in the F2,

were evaluated.

Transgenerational adaptation may be conditioned by a

unique type of siRNAs, the 21- and 24-nt “phased siRNAs”

(phasiRNAs) that accumulate during male gametogenesis in

pollen (Yadava et al., 2021). Pollen accumulation of

phasiRNAs was reported in maize (Zhai et al., 2015) and in

rice (Fan et al., 2016) and is now known to be a common

phenomenon in angiosperms (Xia et al., 2019). Their potential

agronomic importance is illustrated by the fact that hybrid rice

production uses the photoperiod-sensitive genic male sterility 1

(PMS1) locus which encodes a long-noncoding RNA that is

processed into 21-nt phasiRNAs that accumulate in pollen (Fan

et al., 2016). Yadava et al. (2021) studied the environmentally-

sensitive male sterility outer cell layer 4 (ocl4) locus in maize.

They found that in one derivative line male fertility restoration

by warm temperatures was enhanced as compared with other

lines of similar genotype, that this was mediated by the elevated

production (as compared with sterile counterparts) and pollen

accumulation of a 21-nt phasiRNA, and that this conditioned

fertility was perpetuated over several generations but apparently

only when pollen maturation occurred under warm

temperatures. Thus, it is debatable whether or not this is a

case of epigenetically-mediated transgenerational inheritance,

according to the strict rules discussed above. Looking forward,

one attractive hypothesis concerning pollen-accumulated

phasiRNAs is that they could possibly play a role in

transmitting epigenetic code to the next generation

following pollination.

While studies of the role of epigenetic inheritance in

adaptation is by definition and interest largely focused on

adaptation to a given stress or environmental change, in crop

production it is of equal practical importance that the epigenetic

changes may enhance progeny crop performance in production

environments that are optimal or relatively non-stressful.

Perhaps this is what has been demonstrated via the MSH1-

RNAi approach of the Mackenzie group (Kundariya et al., 2020;

Yang et al., 2020; Ketumile et al., 2022). In that approach, a form

of metabolic stress is imposed via silencing of MSH1 using

RNAi. This induces methylome repatterning, some of which is

heritable for several generations in the absence of MSH1

silencing, and some of which conditions enhanced vigor in

relatively non-stressful environments (Kundariya et al., 2020).

As compared with the MSH1-RNAi approach, a more low-

tech and thus more widely available approach world-wide would

be to simply expose parent plants in seed production programs

to a well-designed and inexpensive-to-impose environmental

change or stress treatment such as differing levels of drought or

varying macronutrient supply. The classic example of this is the

demonstration that in flax (Linum usitatissimum L.), seed

obtained from parents grown with varying levels of the

macronutrients nitrogen, phosphorus, and potassium,

produced plants which provided substantially more yield when
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grown with fertilizer than did seed obtained from plants not

grown with fertilizer (Durrant, 1958). Although quite variable,

this effect was reproducible and clearly not entirely attributable

to maternal effects. Interestingly, efforts to understand the

molecular basis of this apparently epigenetic phenomenon

invoked the genetic mechanism of DNA rearrangement due to

TE mobilization (Cullis, 1990). Is this an example of “paradigm-

lock”: an attempt to explain an epigenetic phenomenon in terms

of the more widely accepted genetic paradigm?

Another alternative to the MSH1-RNAi approach of the

Mackenzie group that has great potential and that avoids the

need for plant transformation would be to use a topically-

applied “stress mimic” spray treatment for parents in seed

production programs. For example, one might spray parents

in seed production fields with a double-stranded RNA (dsRNA)-

containing solution that results in RNAi suppression of selected

target genes, such as MSH1, that results in transgenerational

enhancement of crop performance. Over the last decade this

type of approach has been developed and documented to work

intragenerationally for the management of plant viral and fungal

pathogens (Tenllado and Dıaz-Ruız, 2001; Dubrovina et al.,

2019; Werner et al., 2020; Gebremichael et al., 2021). This type

of treatment can have epigenetic effects. Dubrovina et al. (2019)

demonstrated that topical application of dsRNA targeting

Enhanced Green Fluorescent Protein (EGFP) and Neomycin

phosphotransferase II (NPTII) reporters in A. thaliana resulted

in DNA methylation of target gene sequences and regions. Key

advantages of this approach over the use of stress treatments is

its ease of use and that it would avoid negative impacts of stress

treatments on the parent plants, insuring optimal seed yield and

seed quality. What if simply spraying plants in a seed production

field, or male parents in a hybrid seed production field, with a

solution containing various dsRNAs, can result in a transgenic

enhancement of productivity by 10% to 25%?

Simple use of parental treatment or stress in seed production

to produce crops with enhanced performance in optimal or non-

stressful environments would represent an “appropriate

technology” (Schumacher, 1973). It would be low-tech, low-

cost, widely accessible and available in both developed and

developing economies. Furthermore, it would not require the

use of genetic modification and thus would avoid the regulatory

hurdles discussed above.

A distinction informative to this discussion is between the

role of epigenetic phenomena in crop breeding versus in crop

production. Perhaps what matters is not the mechanism of

inheritance but rather its duration. Crop breeding may depend

more heavily on longer-term inheritance whereas crop

production may simply take advantage of shorter-term

phenomena, such as the above cases of transgenerational

inheritance. Isn’t taking advantage of parental treatments to

enhance or stabilize yields or field performance a production

strategy rather than a breeding strategy? Utilizing hybrid seed in

crop systems is also a production strategy, albeit one that then
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requires breeding for optimization. Thus, the recent studies that

have revealed a role for epigenetics in the phenomenon of

heterosis (Groszmann et al., 2013; Dapp et al., 2015;

Kawanabe et al., 2016; Fujimoto et al., 2018; Lauss et al., 2018;

Miyaji and Fujimoto, 2018), have in fact revealed a role for

epigenetics in an important production strategy. A third

example of this distinction is the case of Karma and the

mantling trait in the oil palm (Ong-Abdullah et al., 2015). In

that case, understanding the epigenetic basis of the trait allows

for the more efficient selection of lines for production rather

than for breeding. In light of this distinction, the list of cases

clearly describing the novel use of epigenetics specifically in crop

breeding might be fairly limited. A recent review of maternal

effects and intergenerational adaptation in response to biotic and

abiotic stress concludes that this phenomenon should be

considered in the establishment of forestry plantations (Vivas

et al., 2020). This is clearly a proposal to use epigenetics to

enhance production, rather than in breeding.

Since exposure to stress or environmental change induces

heritable epigenome-mediated changes in the transcriptome,

some of which may impart enhanced stress-tolerance or

enhanced vigor, might not these induced changes in gene

expression be the subject of paramutation? This is supported

by the observation that a role for transgenerational memory in

paramutation has been previously documented (Mikula, 1995;

Bente et al., 2021). Furthermore, since the phenomenon of

paramutation appears to occur at numerous loci throughout

the genome (Li et al., 2013; Regulski et al., 2013; Gouil and

Baulcombe, 2018), this form of non-Mendelian inheritance

might function to rapidly fix (make homozygous) these stress-

induced epigenome changes in all progeny of the stress-exposed

parents (Figure 5 bottom). If this “pseudo-Lamarckian”,

paramutation-mediated process of fixing adaptive stress-

induced epigenomic changes occurs, this would have

substantial significance in crop breeding programs and would

have significant implications for how such changes are followed

using molecular assays that purport to map and follow such

changes following out-crossing.
Future perspectives

The stable inheritance of traits is important for the use of

epialleles in breeding perhaps more so than for applications in

crop production per se. Unlike DNA sequence changes, DNA

methylation will lead to complicated DNA methylation states in

crossbreeding populations, but it still has potential to make new

and desirable phenotypes that cannot be produced by genetic

diversity. Marker assisted selection (MAS) and genomic

selection, which exploit genetic variation, have made a

significant contribution to the efficiency of breeding. In order

to apply the same methods to epimutation, it is necessary to

develop a method for selecting epialleles that is high-throughput.
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Inducing epimutation by chemical treatment or epigenomic

editing may be able to produce new traits. Since DNA

methylation is associated with gene expression, change of

DNA methylation of regions that regulate gene expression

such as cis-elements may induce new gene expression

associated with new phenotype.

It is clear that taking practical advantage of the potential of

epigenetics in crop breeding is in its infancy. While a great deal

of interest and enthusiasm has been generated, as evidenced by

the numerous review articles addressing the potential of this new

science and technology (see for example: Springer and Schmitz,

2017; Kawakatsu and Ecker, 2019; Dalakouras and

Vlachostergios, 2021; Turcotte et al., 2022), there are relatively

few cases of successful application of this new science to plant

breeding, with “successful application” being defined as

commercial release of a new cultivar or hybrid. This could be

due to the inherent instability and variability of epigenetic

programming and the difficulty in identifying precise

treatments and approaches for its utilization. It could also

reflect the lengthy period of time required to go from the

discovery or development of a valuable trait to the commercial

release of a new cultivar or hybrid developed utilizing that trait, a

period estimated to range from five to 20 years (Ahmar et al.,

2020). Furthermore, the novelty of the science and technology of

epigenetics would further delay occurrence and documentation

of such successful outcomes. With that said, the application of

new knowledge concerning epigenetic inheritance may

ultimately result in a substantial enhancement in crop

productivity world-wide.

However, it is possible that full appreciation of the potential

of epigenetics and its subsequent application to crop breeding

and production has been somewhat limited by the tendency to

attempt to fit epigenetic inheritance into classical models of

Mendelian inheritance and evolution, such as those underlying

the “modern synthesis” that marries Mendelian inheritance with

molecular biology (Laland et al., 2014; Pembrey, 2015). For

example, the numerous reviews of the potential of epigenetics in

crop improvement cited above typically focus on methods for

mapping and breeding based on Mendelian modes of

inheritance, whereas non-Mendelian modes of induction and

inheritance of epigenomic variation are common for epigenome-

determined traits. These reviews typically do not highlight or

stress how non-Mendelian modes of induction and inheritance

of epigenome-determined traits can be taken advantage to

rapidly enhance crop yields, such as the potential use of

transgenerational transmission of stress-induced change, or the

potential of paramutation to rapidly fix adaptive changes in

F2 progeny.

Pecinka and Scheid (2012) proposed a set of criteria that

should be met to establish epigenetic yet chromatin-mediated

transfer of stress adaptation to offspring in plants. Application of

such criteria is of great benefit to the field, assuring that claims of

longer-term inheritance of epigenetic variants are valid.
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However, focusing on fitting epigenetic phenomena into modern

synthesis models may also limit appreciation of the potential for

what may only be very short-term phenomena limited to one or

two generations, or phenomena that involve siRNA

transmission through pollen, in crop breeding and production.

To illustrate this, we can consider the discussion of the role of

epigenetics in human evolution by Pembrey (2015). Pembrey

(2015) points out that if a doctor has a patient in his/her office

that has an illness, such as diabetes, that may have been mediated

by transmission of an epigenetic state from his/her parents or

grandparents, then dealing with the patient’s illness in the

present is more important than fully understanding the role of

epigenetics across many generations in evolution. This is an

exact parallel to the question of intra- and transgenerational

adaptation to stress in crop plants. Does it really matter whether

or not epigenetic inheritance plays a central role in evolution, or

is unstable across many generations, if in fact one can

substantially enhance and stabilize yields by appropriately

stressing parents?
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