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A Smart Community (SC) is an essential part of the Internet of Energy (IoE), which helps to integrate Electric Vehicles (EVs) and
distributed renewable energy sources in a smart grid. As a result of the potential privacy and security challenges in the distributed
energy system, it is becoming a great problem to optimally schedule EVs’ charging with different energy consumption patterns
and perform reliable energy trading in the SC. In this paper, a blockchain-based privacy-preserving energy trading system for
5G-deployed SC is proposed. The proposed system is divided into two components: EVs and residential prosumers. In this
system, a reputation-based distributed matching algorithm for EVs and a Reward-based Starvation Free Energy Allocation
Policy (RSFEAP) for residential homes are presented. A short-term load forecasting model for EVs’ charging using multiple
linear regression is proposed to plan and manage the intermittent charging behavior of EVs. In the proposed system, identity-
based encryption and homomorphic encryption techniques are integrated to protect the privacy of transactions and users,
respectively. The performance of the proposed system for EVs’ component is evaluated using convergence duration, forecasting
accuracy, and executional and transactional costs as performance metrics. For the residential prosumers’ component, the
performance is evaluated using reward index, type of transactions, energy contributed, average convergence time, and the
number of iterations as performance metrics. The simulation results for EVs’ charging forecasting gives an accuracy of 99.25%.
For the EVs matching algorithm, the proposed privacy-preserving algorithm converges faster than the bichromatic mutual
nearest neighbor algorithm. For RSFEAP, the number of iterations for 50 prosumers is 8, which is smaller than the
benchmark. Its convergence duration is also 10 times less than the benchmark scheme. Moreover, security and privacy
analyses are presented. Finally, we carry out security vulnerability analysis of smart contracts to ensure that the proposed smart
contracts are secure and bug-free against the common vulnerabilities’ attacks. The results show that the smart contracts are
secure against both internal and external attacks.

1. Introduction

Globally, the residential smart homes’ market size is
expected to be more than $50 billion before the year 2023.
It is also observed that the number of households, which

migrates to smart homes, has increased at an annual average
growth rate of 14% from 2017. The increase in the number
of smart homes has two impacts: benefits and issues. The
benefits of the increase in the smart homes include saving
of money, time, and energy as well as increase in the user
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comfort. However, privacy and security challenges increase.
In smart grids, a nanogrid is a smart home that has energy
storage and generation sources, e.g., small scale wind tur-
bines and photovoltaics [1]. The generated energy is stored
using batteries and plug-in Electric Vehicles (EVs). A group
of connected nanogrids within nearby neighborhoods estab-
lishes a microgrid, which allows local energy trading
between the smart homes. There are two approaches to per-
form energy trading in the power system: centralized and
distributed. The centralized approach is also known as the
traditional energy trading system. It is a conventional
approach that the smart grid uses for energy management.
In the approach, a central control unit is used that manages,
processes, and regulates energy transactions. However, this
approach has some challenges, such as a single point of fail-
ure and security-privacy-related problems. Among the solu-
tions provided to solve the centralized approach problems is
the introduction of a distributed model. In [2], the authors
propose a Peer-to-Peer (P2P) method for smart grid opera-
tions. The work provides an overview of the proposed strat-
egies for wireless communication, distributed P2P energy
trading, and P2P power grid control unit that enables the
smart grid operations. The authors in [3] propose an energy
trading model between islanded microgrids using distrib-
uted convex optimization techniques. In the model, a
subgradient-based cost minimization algorithm is imple-
mented, which converges to an optimal solution with mini-
mum communication overhead. In [4], the authors propose
a virtual framework incorporated with communication con-
straints, which also considers its impact on energy trading
cost. The authors modify the distributed energy trading
framework considered in the literature with more communi-
cation constraints, where the impact of the resulting virtua-
lized microgrid framework is investigated on the overall
trading costs. The authors in [5] propose a hierarchical
framework to identify and categorize the key technologies
and elements involved in P2P energy trading. The frame-
work is developed and simulated using game theory. In dis-
tributed energy systems, adversary users heavily threaten the
security and privacy of the system through many malicious
exploitations [6], e.g., node impersonation, falsification, pri-
vacy leakages, and advertising fraudulent energy services.

Environmental pollution and climate change are major
issues that disturb the Smart Communities (SCs). These
issues are caused due to a tremendous increase in green-
house gas emissions generated from fossil fuel-based vehi-
cles. The introduction of EVs is among the solutions that
are generally being accepted to resolve the environmental
pollution problems [7]. As a long-term automotive technol-
ogy, EVs are becoming popular in minimizing the total
dependency on fossil fuel-based vehicles and reducing the
emissions of greenhouse gas. However, as the number of
EVs increases, the unorganized charging of EVs creates a
new peak load. The reason is that it causes a serious energy
instability problem in the distributed energy system. In
order to overcome this issue, the capacity of power delivery
is increased to solve the needs of new peak demand that is
generated by the unorganized EVs. However, this results in
a huge infrastructure cost. Moreover, a smart grid-based

method is developed to enable EVs to communicate with
the power grid and manage their charging needs. However,
this process can cause a single point of failure as it is imple-
mented in a centralized model. In addition, demand-supply
mismatch and lack of trust challenges are still not resolved in
the energy system. Another solution to manage energy for
both residential homes and EVs is by exploring load fore-
casting models. In [8], the authors propose a Recurrent
Inception Convolution Neural Network (RICNN) that com-
bines 1-Dimensional CNN (1-D CNN) and Recurrent Neu-
ral Network (RNN) to forecast consumers’ energy usage.
The 1-D convolution inception module is used to calibrate
the time forecasting, and the hidden state vector values are
computed from the nearest time steps. The model is verified
in terms of energy usage data of three large energy distribu-
tion complexes in South Korea. The authors in [9] present a
probabilistic forecasting model for consumers to predict
uncertainty and variability of the future load. In the model,
Long Short-Term Memory (LSTM) is adopted to learn both
the short-term and long-term dependencies among the load
dataset. Pinball loss is used for training the parameters. The
experiments are conducted using an open source dataset of
Ireland. However, the energy management models, i.e., load
forecasting models, use a centralized approach, which inher-
ited its challenges.

Currently, as a result of the high benefit of Fifth-
Generation (5G) technology against the previous-generation
technologies (first generation–fourth generation) in terms of
the number of network connections, power consumption,
security, reliability, and transfer speed, various countries
across the world have adopted it [10, 11]. Based on [12], the
5G network is found to be very flexible and multifunctional.
Therefore, different problems are solved in terms of power
application and cost analysis. The 5G technology provides
intelligence, sensing, and convergence of pervasive broadband
that makes a great change in the SC and smart industrial mar-
kets. Using 5G technology in a smart grid, novel business
frameworks are created at both the consumer and utility sides
with fog and edge computing together with intelligent and
automated controls [13]. The technology depends on very
small cell functions for its slicing network that gives various
advantages at the transmission side and the distribution side
to perform on in a ubiquitous fashion. Therefore, the need
for 5G in smart grids and other places where new power grids
can benefit the access of information is highly required. A lot
of research works have been conducted to explore the poten-
tial benefit of using 5G technology for the demand response
management and Internet of Things in smart grids [14, 15].
However, the full potentials of 5G technology in smart grids
are not utilized.

To address the above mentioned challenges, an efficient
solution is required to ensure irrevocable, transparent, and
distributed digital transactions. Blockchain technology is a
distributed network that is able to solve the problems associ-
ated with the centralized approach [16, 17]. It addresses the
problems in a decentralized and distributed manner. Using
the blockchain, transactions are stored in a decentralized
system [18]. The network’s nodes in the blockchain main-
tain all of the executed transactions. Thus, compromising
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the security of the network is merely not possible as it needs
to control the miners that maintain the entire network secu-
rity [19]. The blockchain users that are responsible for secur-
ing, verifying, and adding transactions into blocks of the
network are called miners or validators. The mining process
is performed according to the rules given by a consensus
mechanism [20–22]. A consensus mechanism in the block-
chain is used to permit untrusted peers to agree on the global
state of the network [23]. In the blockchain, each block is
cryptographically linked with its prior block forming a
secured chain [24]. However, the lack of trust and privacy
of users and demand-supply mismatch are still not fully
solved using blockchain.

This research work proposes a distributed, verifiable,
anonymous, and privacy-preserving energy trading system.
The system enables users to trade and communicate securely
using blockchain in 5G network. In the system, a reputation-
based privacy-preserving EVs’ matching scheme is pro-
posed. Also, the proposed system incorporates identity-
based encryption (ID-based encryption) and homomorphic
encryption (HE) techniques to protect the privacy of the
transactions and users, respectively. An energy allocation
model is also proposed in order to motivate residential pro-
sumers to participate in the energy trading. The model is
developed based on the consumers’ historical contributions
and the type of their transactions.

The remainder of this paper is structured as follows. Sec-
tions 2 and 3 present the related work and problem state-
ment, respectively. Sections 4, 5, 6, 7, and 8 discuss the
proposed system model, proposed solutions, proposed
methodology, and its security and privacy analyses. Section
9 presents the simulation results and their discussion while
the conclusion and future work are given in Section 10.

2. Related Work

In this section, a detailed literature review is presented,
which is divided into energy trading and EVs’ charging load
forecasting.

2.1. Energy Trading. In [19], the authors propose a localized
P2P energy trading model for EVs using consortium block-
chain. The model uses an iterative double auction mecha-
nism to optimize price and quantity of energy during
trading. Furthermore, the goal of the model is to maximize
social welfare and to protect EVs’ privacy. The authors in
[25] analyze the effects of the EV’s charging position. The
results show that charging at foreign stations can cause pen-
etration of privacy far more than charging at home. The
authors in [26] propose an effective privacy reservation sys-
tem for EVs and charging stations. The system also provides
penalty and authentication mechanisms. However, the sys-
tem is centrally controlled and managed, which makes the
management more challenging when the number of users
increases. In [27], the authors implement an integrated sys-
tem that combines charging prioritization, encryption mech-
anism, and payment framework for the dynamic charging
model. Computational and communication overheads are

reduced in the system. However, the system does not elimi-
nate the issue of a single point of failure.

In [28], the authors develop an accurate, confidential,
and automated model for charging stations’ selection based
on EVs’ distance and energy cost. They also implement a
blockchain-based payment mechanism where EVs send
their charging requests and charging stations send proposals,
which is similar to an auction mechanism. However,
increasing the overall system’s efficiency is not considered
in the model. In [29], the authors propose a secure
communication model that has a privacy-preserving pay-
ment process for EVs’ monitoring system. In addition, com-
munication and computational overheads are reduced in the
model. However, a mechanism to authenticate and verify
users in the model is not included. In [30], a new communi-
cation model for on-the-move charging of EVs based on a
subscribe/publish method for dissemination of appropriate
data to EVs is proposed. The model allows the EVs’ users
to make optimal decisions about where to charge their
EVs. In [31], a three-party model that is integrated with
EVs in a smart grid context is proposed. In the model, two
schemes are also proposed that focus on EV-centered and
SC-centered. Furthermore, a demand-on-schedule energy
management system is proposed. The system combines
SCs and EVs to achieve an efficient resource management
system in the power generation network. The model allows
complex and flexible interactions between energy grids,
SCs, and EVs.

2.2. Electric Vehicles’ Charging Load Forecasting. The
authors in [32] propose a one-step short-term load forecast-
ing for the EV model using CNN with a niche immunity lion
technique. The model is improved by incorporating niche
immunity to obtain better forecasting results. As shown in
the experimental results, traditional forecasting models have
less accuracy than the deep learning models when the data-
set is small. Similarly, authors in [33] propose a model for
short-term load forecasting by incorporating LSTM in the
conventional RNN scheme. LSTM solves the gradient van-
ishing problem in the RNN network. The authors in [34]
propose an LSTM model for electricity load forecasting of
individual residential homes.

In [35], the authors propose a system that predicts the
daily load of EV charging stations using the Back Propaga-
tion Neural Network (BPNN). A fuzzy clustering approach
based on the method of transfer closure is implemented to
pick the actual load data, which is similar to the predicted
data to enhance the predictive precision. However, BPNN
causes overfitting and gets trapped into the local minimum
easily. Similarly, in [36], the authors propose a short-term
load forecasting scheme for EVs’ charging stations using
Radial Basis Function Neural Networks (RBFNNs). The pro-
posed scheme is modified using the fuzzy control theory [37]
to address the issues of trapping into local minimum and
overfitting. The experimental results show that the forecast-
ing accuracy increases exponentially. However, the forecast-
ing systems are implemented using a centralized approach,
which are prone to privacy- and security-related issues,
and a single point of failure.
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3. Motivation, Problem Statement,
and Contributions

This section presents the motivation, problem statement,
and research contributions.

3.1. Motivation and Problem Statement. The attention of
many automobile companies has been attracted to develop
EVs as a result of the excessive greenhouse gas emissions
from petroleum machines. Concerning this, the automobile
companies manufacture a large number of EVs to provide
an eco-friendly and sustainable conveyance system. How-
ever, this results in an insufficient charging infrastructure
to cater to the needs of energy users due to massive penetra-
tion of EVs in the SC. Many research works provide solu-
tions to the lingering problems. For example, inefficient
allocation of resources, leakage of sensitive information of
EVs, and a single point of failure are the problems in the
existing works, which are not fully solved. Therefore,
improvements in the literature are strongly needed. The
authors in [38] propose a model for distributed privacy pre-
serving and efficient matching of charging demander with
charging suppliers. This model uses the bichromatic mutual
nearest neighbor (BMNN) to address the issue of exposing
driving patterns, schedules, and whereabouts of EVs. How-
ever, the pieces of information transmitted or received are
not verified and not guaranteed to be from legitimate users.

On the other hand, blockchain permits users to have a
distributed and decentralized P2P network where non-
trusted users communicate verifiably with each other. Sev-
eral methods to secure P2P energy trading are proposed in
the blockchain-based models. In [44], the authors propose
an optimal scheduling algorithm for charging Hybrid EVs
(HEVs). The model adopts consortium blockchain to ensure
the users’ privacy and secure the energy trading. In the
model, the scheduling algorithm is aimed at reducing energy
cost and optimizing the satisfaction function of users while
targeting different performance metrics. The targeted met-
rics include waiting time, EV driving speed, discharging
location, and charging entities. The optimization technique
used in solving the problem is an improved Nondominated
Sorting Genetic Algorithm (NSGA). However, the privacy
of transmitted information is not guaranteed using block-
chain technology alone [45, 46]. The reason is that the con-
tents of all monetary balance and transactions are visible to
the public, which allows the information to be easily
accessed. Also, consortium blockchain is partially secure
and less efficient as compared to other categories of block-
chain technology. Similarly, in [39], the authors examine
the adaptability of consortium blockchain to set up a stable
electricity trading network. The blockchain-based network
provides distributed storage and maintenance of the autho-
rized nodes. However, relying on the merits of consortium
blockchain cannot guarantee the reliability of the network’s
security. Also, it does not prevent the information from
internal attackers. The authors in [40] propose an effective
solution to reduce the excessive operational overhead in
the trading model. The overhead increases when nodes are
motivated to use local energy out of their self-interest as

elaborated in [47]. As a result, it may be tantamount to a
high cost of transportation for the trading partners. How-
ever, this mechanism decreases the financial benefits of the
system. Also, privacy and security of the trading data are
overlooked.

In terms of optimal energy allocation, many research
works are studied in the literature based on prosumers’ rep-
utation. These works use different performance parameters
to determine the reputation. The performance metrics used
are historical energy supply contribution, rate of past partic-
ipation of a prosumer, and load demand in the current time
interval. The authors in [41, 48] propose a contribution-
based allocation of energy policy to establish models that
simplify energy trading in the electricity markets. In these
models, the energy allocator collects excess energy from pro-
viders and allocates it to the energy deficit prosumers. How-
ever, these models do not consider the starvation level (SL)
of consumers and the design of a proper mechanism to
detect malicious energy transactions. The authors in [42]
propose a novel Starvation-Free Optimal Energy Allocation
Policy (SF-OEAP). The model is based on three parameters
for prosumers in the smart distributed network of an energy
market. The parameters are revenue index, prediction accu-
racy, and energy starvation. The Distribution System Opera-
tor (DSO) collects excess energy from energy generators and
performs a fair energy allocation between consumers. How-
ever, the authors in [41, 42, 48] do not consider any mecha-
nism to detect malicious transactions, which plays an
important role to determine the reward for the prosumers
and make the system free from malicious activities. In spite
of the observable advantages of using blockchain [19, 39,
43] to establish a trustworthy platform, the privacy concern
and other related issues still restrict its implementation in
energy trading systems. In this study, a mechanism to solve
the privacy and security issue and the lack of optimal fair-
ness in energy allocation is proposed. The challenges to be
solved also include operational inefficiency of the system, a
single point of failure, and absence of an optimal scheduling
algorithm for users. The proposed research work is an exten-
sion of [49, 50]. Table 1 shows the comparison between the
proposed model and the existing models.

3.2. Research Contributions. The primary contributions of
the proposed work are presented as follows.

(i) A secure energy trading model and an optimal
energy scheduling algorithm for users are proposed
using blockchain and smart contract. The proposed
model ensures that the transaction is verified and it
came from a legitimate user

(ii) An improved privacy-preserving and EVs’ match-
ing mechanism is proposed by integrating the repu-
tations of users. The mechanism helps to prevent
exposing the EVs’ privacy

(iii) A novel method for calculating the reward index
(RI) between prosumers is proposed. Furthermore,
a Reward-based Starvation-Free Energy Allocation
Policy (RSFEAP) algorithm is presented to
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distribute energy between prosumers. The proposed
algorithm motivates prosumers to subjectively share
their resources. It also ensures efficient and stable
operations of the network as well as establishes a
fair trading environment

(iv) ID-based encryption and HE techniques are incor-
porated into the proposed system to protect the pri-
vacy of the transactions and users, respectively

(v) A short-term load forecasting model for EVs’ charg-
ing using multiple linear regression (MLR) is pro-
posed to accurately plan and manage the
uncertainty of EVs’ intermittent charging behavior

(vi) Simulation study and theoretical analysis are
employed to show the effectiveness of the proposed
system. Furthermore, the security vulnerabilities of
the smart contracts are analyzed to make the system
bug-free against attacks

4. The Proposed System Model

The proposed system model deployed in the 5G network is
divided into two components: residential energy prosumers
and EVs. The model is discussed in the following sections.

4.1. Electric Vehicles’ Component. In Figure 1, the overall sys-
tem model is presented. The proposed system model is
divided into two components: EVs and residential energy
prosumers. In the EVs’ component, the component is cate-
gorized into three parts: (i) privacy-preserving search and
match scheduling, (ii) validation of transactions and
blockchain-based EVs’ energy trading, and (iii) load fore-
casting for EVs. The proposed component has two users
groups, which are energy-buying EVs (EBEVs) and energy-
selling EVs (ESEVs). Examples of ESEVs are V2V chargers,
public/private charging stations, and residential stations.
The system is assumed to have no central scheduler. In the
EVs’ component, the EBEV user initiates a local query using
communication devices that help to search for available
ESEV in the 5G-deployed SC. The communication between
EBEVs and ESEVs is done by either Long-Term Evolution

(LTE) or Dedicated Short-Range Communications (DSRC).
More elaboration about the communication devices can be
found in [38]. ESEVs receive a charging request from EBEVs
and respond them in a distributed fashion.

In this component, the selection of ESEVs is based on
their reputation points. The reputation points are submitted
to and retrieved from the blockchain. This ensures the integ-
rity of the reputation points and also verifies its source. By
considering the reputation points, the EVs’ locations are
outright hidden. In the model, it is assumed that all EVs
are situated within a short proximity. Thus, the EVs’ reputa-
tion points are considered instead of the distance between
EBEVs and ESEVs. When the EVs’ selection is complete,
the ESEV’s location to EBEV is identified using Partially
HE (PHE). After the completion of the search and match
process, the energy trading takes place using a smart con-
tract along with the monetary process. Additionally, the
information of EBEVs and ESEVs is verified and is stored
in the blockchain.

Moreover, EVs have more benefits over the conven-
tional vehicles based on oil supply safety, containment of
global warming, emissions reduction, and energy savings.
However, as the number of EVs increases in SC, the load
profile distributed energy network greatly changes [51]. As
a result, the power grids’ reliability and stability can occur
because of the charging demand randomness and the
intermittent behavior of renewable energy source [52].
To tackle the aforementioned problem, load forecasting is
required. The integration of forecasting models for EVs’
charging is a possible method to reduce energy transmis-
sion line loss and enhance the usage of local energy con-
sumption as well as improve the advantage of renewable
energy development where the generated energy is directly
sold to EVs. Therefore, EVs’ load forecasting is introduced
to properly plan and manage the intermittent charging
and discharging behavior of the vehicles.

4.1.1. Homomorphic Encryption. HE is a cryptographic sys-
tem, which was first proposed in 1970s [53]. It is an encryp-
tion process that allows a specific type of mathematical
computation to be executed on a ciphertext, which further
generates another ciphertext. Thus, the output of the gener-
ated encrypted text matches the plaintext operations as if the
operations are performed directly on the plaintext without
any sign of distortion or alteration. This method allows users
to perform operations on an encrypted data without know-
ing the real data supplied from the sender or having the pub-
lic key to decrypt the encrypted message. It also provides the
prospect for privacy preservation in many applications, e.g.,
storing data in cloud, and improving election security and
transparency. Furthermore, HE solves the challenges of
maintaining the confidentiality of processed and stored data
in a database faced by other non-HE techniques. It is subdi-
vided into Fully HE (FHE) and PHE [54]. FHE allows all
computations (multiplication and addition) on ciphertext
while PHE supports either multiplication or addition. In this
paper, Paillier’s cryptosystem is used, which is classified
under PHE. It is more efficient and simpler than the FHE
scheme [55]. The Paillier system has three steps: decryption,

Table 1: The comparison of the proposed model with existing
models.

References A B C D E F

Base paper 1 [19] Yes No No Yes No No

Base paper 2 [38] No Yes Yes No No No

Base paper 3 [39] Yes No No Yes No No

Base paper 4 [40] Yes No No Yes No No

Base paper 5 [41] No No Yes No No No

Base paper 6 [42] No No Yes No No No

Base paper 7 [43] Yes No No Yes No No

Proposed model Yes Yes Yes Yes Yes Yes

A: blockchain; B: encryption; C: fair allocation algorithm; D: malicious
detection; E: privacy and security analysis; F: reputation.
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encryption, and key generation. The equations of the crypto-
system are adopted from [38].

p and q are two large prime numbers that are selected
with the same bit length in the key generation step, setting
n = pq and λ = ðp − 1Þðq − 1Þ. μ and g are computed from
λ and n, which are μ = ðλ mod n2Þ−1 mod n, and g = ðn + 1
Þ. The encryption and decryption keys are defined as ðn, gÞ
and ðλ, μÞ, respectively. A random integer rεℤn is selected
when encryption is performed on a plaintext (i.e., Eða, rÞ).

At the encryption step, the data is encrypted using the
following equation.

E a, rð Þ = ga:rn mod n2: ð1Þ

While at the decryption step, the data is decrypted using
the following equation.

D bð Þ = L E a, rð Þð Þλ mod n2
� �

μ mod n, ð2Þ

where LðuÞ = ðu − 1Þ/n. Both encryption and decryption
functions must satisfy the following equations.

E að Þ · E cð Þ = E a + cð Þ,
E að Þc = E acð Þ,

ð3Þ

where a and c are plaintexts.

4.1.2. Adversary Model. In the proposed model, an Honest-
but-Curious (HBC) adversary model is adopted specifically
at the privacy-preserving search and match part. The com-
monly used adversary model in studying privacy-
preserving matching profile is HBC [56]. The users in this
model carefully report and respond to other users’ queries.
In this model, we assume that some nodes in the blockchain
are malicious nodes, which can attack the system in two
ways.

ðQ1Þ The attacker will try to understand other users’
location even though they are not matched

ðQ2Þ The attacker may try to understand and change
reputations of other users to gain advantage of being selected

It is further assumed that the attacker has adequate
power to breach any node’s privacy in the system. Also,
the attackers are unable to take over more than 51% of the
computational power in the blockchain. It is further
assumed that the minority nodes in the network have mali-
cious behavior and are not more than 50%.

4.2. Residential Energy Component. The residential energy
component is also an important component in the proposed
system model. This component consists of an aggregator
(AG) and a set of participating prosumers ðProsumer1,
Prosumer2,⋯, ProsumernÞ in the distributed network. The
prosumers in the network are interlinked and share energy
using dedicated power-sharing lines. Both AG and prosu-
mers interact and trade energy through the blockchain. It
is assumed that in a given time slot, every prosumer is able
to produce energy G, and it has a load L. When Gj ≥ Lj,

Energy blockchain
and smart contract

Public charging
station

Residential
prosumer

Aggregator

Residential
consumer

EV Energy
requester

EV Energy
supplier

Public energy
stationEV Energy

requester

Residential
prosumer

EV load forecasting

Searching and matching

Decrypted data

Encrypted data with ID-
based encryption

Encrypted data with
homomorphic encryption

Information flow via
blockhain

Figure 1: The proposed system model.
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the jth prosumer becomes the energy seller (provider),
whereas, when Gj < Lj, the prosumer becomes the energy
buyer (consumer) and purchases energy either from the
main grid or another prosumer with surplus energy. AG is
an autonomous entity between the seller and buyer that
gathers the surplus energy from the energy providers. AG
is encouraged to have its own energy storage devices to store
energy and maintain the system’s stability and reliability,
e.g., ultracapacitor and batteries. The sum of surplus energy
from providers is given as Ej,as =Gj − Lj, E =∑j∈Prosumerð
Ej,asÞ.

A typical scenario where consumers request energy from
AG is depicted in Figure 1. AG plays a good role in this com-
ponent as an independent system. It is an equitable entity,
which has full control over prosumers. Additionally, AG
uses the RSFEAP algorithm to allocate the available energy
to consumers, which is collected from the providers and dis-
tributed to the consumers. Besides that, AG distributes
rewards to prosumers after the collection of all necessary
transactions’ data, as shown in Figure 2. Moreover, the data
used to communicate between AG and prosumers is invari-
ably passed through an encryption mechanism before the
communication takes place. The encryption technique used
in this component is ID-based encryption. The details of
the encryption process are presented in Section 7.1.

5. The Proposed Solution for Electric
Vehicles’ Component

In this section, privacy-preserving reputation-based distrib-
uted matching, smart contracts, and EVs’ charging load
forecasting are discussed.

5.1. Privacy-Preserving Reputation-Based Distributed
Matching. In this study, a blockchain-based decentralized

and distributed reputation system is proposed. The complete
layout of the proposed system is given in Algorithm 1. In the
system, once EBEV makes a request for charging, the algo-
rithm checks for ESEV that has the highest reputation points
without considering the distance. If ESEV with the highest
reputation points accepts the charging request from EBEV,
then the algorithm matches ESEV with EBEV. Otherwise,
ESEV with the second-highest reputation points will be con-
sidered by the algorithm. The sequence continues until EBES
and ESEV are matched. To preserve the privacy of EVs,
ESEVs are chosen based on their reputation points without
considering the information on EBEV’s whereabouts. After
selecting ESEV, communication between the two parties
takes place using the Paillier cryptosystem based on homo-
morphic computation.

5.1.1. Calculating Reputation. EBEVs submit ratings of
ESEV after the energy trading task is completed. Afterwards,
the process of calculating reputation points is initiated in the
blockchain. At the initial stage, EVs first register themselves
and obtain initial reputation and credibility points. These
points are publically available for all the involved EVs. The
actual reputation is the total accumulated rating provided
by the EBEV users for the services received along with the
raters’ credibility, which are discussed and presented in Sec-
tion 5.2.2. The usage of the credibility method gives more
weight to the reputation points of a rater with higher credi-
bility as compared to the one with less credibility. The mech-
anism to obtain the EVs’ credibility is not extensively
discussed in this research. When EBEVs are confirmed to
be trustworthy, their credibility increases; otherwise, their
credibility decreases.

5.1.2. Privacy-Preserving Reputation-Based Distance and
Location Calculations. To compute the distance between
EBEV and ESEV, the EBEV user needs to know the ESEV’s

Prosumer n

Prosumer 1 Reward R from
aggregator

Prosumer 2 Prosumer 3

Prosumer 4

Prosumer j

Energy provided

Reward provided

Figure 2: Reward allocation.
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reputation points, which are retrieved from the blockchain.
EBEV ensures that the reputation points are verified because
they are stored in the blockchain. This method gives a logical
approach to hide the ESEV location. Let the ciphertext of a
be EðaÞ using the Paillier cryptosystem. Also, an encrypted
squared distance computation between an ESEV Sj at loca-
tion locSj = ðxj, yjÞ and an EBEV Di at location locDi

= ðxi,
yiÞ is achieved using the following equations [38].

Dist i, jð Þ = ∣locDi
− locSj ∣ = xi − xj

� �2 + yi − yj
� �2

,

E Dist i, jð Þð Þ = E x2i − 2xixj + x2j + y2i − 2yiyj + y2j
� �

:

ð4Þ

In the proposed model, each EV has PHE keys to
encrypt the transactions between ESEV and EBEV. Further-
more, Algorithms 2 and 3 are inspired from [38], which
show the communication between EBEV and ESEV in a
privacy-preserved manner.

5.2. Smart Contracts of Energy Blockchain. In a blockchain
network, smart contracts are a collection of rules that digi-
tally facilitates, enforces, and verifies the contract made by
the participants in the network [57]. The smart contract pro-
vides a credible transaction that is made automatically with-

out involving a third-party. In addition, the transaction that
is performed using a smart contract is traceable, auditable,
and irrevocable. The proposed smart contracts in this model,
i.e., reputation and energy trading, are discussed in the fol-
lowing sections.

5.2.1. Smart Contract for Energy Trading. The energy trading
smart contract comprises of three essential functions: selling,
buying, and creating storage. The selling and buying func-
tions work hand-in-hand, which enable EVs to sell or buy
energy. When the energy trading begins, the smart contract

Input: D and S;
Output: matched result;
1: function Generic-matching(D, S)
2: i = 1 ;
3: whileD not matched with Sdo
4: Find distance of D based on reputation in a privacy
5: preserved manner;
6: ifSi accepts the request then
7: Match D with Si;
8: Break;
9: i + +;

Algorithm 1: Generic-matching function.

Output: send distance;
1: function EBEV()
2: notmatched = True;
3: whilenotmatcheddo
4: System broadcast the need for matching;
5: if only one supplier S1 responds then
6: S = S1 ;
7: else
8: S = select the ESEV user with the highest-reputation points;
9: Sendmessage(propose, D, S);
10: msg = getMessage();
11: if msg = accepted then
12: add EBEV’s loc(x, y) and calculate encrypted squared distance;
13: Sendmessage(encrypted(distance));
14: notmatched = False;

Algorithm 2: EBEV function.

Output: request result;
1: function ESEV()
2: notmatched =True;
3: whilenotmatcheddo
4: msg = getMessage ;
5: ifmsg:type = propose & Si accept proposal then
6: respond with encrypted loc(x,y);
7: Sendmessage(accept, S, D);
8: notmatched = False;
9: else
10: Sendmessage(reject, S, D);

Algorithm 3: ESEV function.
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first checks the available credit of EBEV. It is necessary to
confirm whether the EBEV user has enough money to pur-
chase energy or not. Afterwards, it also checks whether
ESEV has enough energy to sell or not. The smart contract
also checks whether EBEV has enough energy storage capac-
ity to accommodate the purchased energy or not. After all
conditions are checked and returned true, then the ESEV’s
account is credited with the digital coin while it is deducted
from EBEV’s account. On the other hand, the energy from
the storage of ESEV is subtracted and is added to the EBEV’s
storage. The createstorage function allows ESEVs to display
the amount of available energy to sell out with their respec-
tive prices. The pseudocode of the energy trading’s smart
contract is given in Algorithm 4.

5.2.2. Reputation-Based Smart Contract. EBEV contacts
ESEVs through the smart contract to utilize their charging
services. In the public setting, various ESEVs are available
with different capabilities, intentions, and services. After
interacting with an ESEV, the EBEV user evaluates ESEV
based on its energy services that affects the energy
demander. The reputation points of each ESEV depend on
EBEVs’ ratings. Due to the fact that some EBEVs may mis-
behave, therefore, their integrity must be taken into consid-
eration. EBEV with higher credibility point acts honestly as
compared to one with less points. Therefore, EBEV rates
ESEVs fairly to increase their credibility significantly. The
reputation points are the cumulated ratings of EBEVs with
their credibility points. The smart contract for reputation
comprises two main functions: the viewing aggregated feed-
back and feedback submit. The viewing aggregated feedback
allows both EBEVs and ESEVs to check their available rat-
ings. The feedback submit function allows EBEVs to assess
ESEV after a transaction of energy takes place. The ESEVs’
reputation is calculated using the following equation [58].

RI =
∑M

m=0Credm × Rm

∑M
m=0Credm

, ð5Þ

where I is a unique identification for each ESEV that is
evaluated while the total number of EBEV-rated ESEVs is
M. The credibility of EBEV m is Credm. Rm is the rating of
node I given by EBEV m, and the total reputation points
of node I is RI . To reduce the execution and transaction
gas consumption of the blockchain, the mathematical com-
putations for reputation and EBEVs’ credibility are done
off-chain. Off-chain computation is defined as the computa-
tional model where the functions of state transition are cal-
culated by a trusted entity that is not on the blockchain.
The resulting transition state then continues on-chain after
verifying the computation of the state transition [59]. The
computation results are transferred to the reputation’s smart
contract for further processing. The pseudocode of the smart
contract for reputation is given in Algorithm 5.

5.3. Energy Load Forecasting for Charging Consumption
Based on Multiple Linear Regression. In this work, a forecast-
ing approach is employed to predict the EVs’ charging con-
sumption load based on regression analysis. Regression
analysis [60] is a type of predictive technique for modeling
and investigating relationship between independent and
dependent variables. These predictive techniques are com-
monly used for forecasting, time series modeling, and find-
ing a collective relationship between variables. Regression
analysis is divided into linear, multiple logistics, polynomial,
stepwise, ridge, lasso, and elasticNet regression. In this
model, MLR is used.

5.3.1. Multiple Linear Regression. MLR determines the rela-
tionship between the variables that are independent and
dependent. The equations presented for MLR are adopted
from [61], which are expressed in the following equation.

y = α0 + α1x1 + α2x2+⋯+αrxr + ε, ð6Þ

where y is the EVs’ charging load consumption, x1, x2,
⋯, xr are the independent variables, α1, α2,⋯, αr are regres-
sion coefficients with respect to the independent variables,

Input: energy requested from EBEV;
Output: (1) ESEV gives energy to EBEV; (2) EBEV sends money to ESEV;
1: function EnergyTrading()
2: if(EBEV available balance < EV’s charging cost)then
3: returnfalse;
4: if(ESEV available energy < EV’s requested energy)then
5: returnfalse;
6: if(EBEV storage < amount of energy purchased)then
7: returnfalse;
8: else
9: Subtract amount from EBEV’s account balance;
10: Add amount to ESEV account balance;
11: Store transaction;
12: Subtract energy from storage of ESEV;
13: Add energy to storage of EBEV;
14: Store transaction;
15 returnupdated information;

Algorithm 4: Smart contract for energy trading.
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and ε denotes the error rate. For multiple observations,
Equation (6) is split as presented in the following equation.

y1 = α0 + α1x11 + α2x12+⋯+αrx1r + ε1,

y2 = α0 + α1x21 + α2x22+⋯+αrx2r + ε2,

⋯

yi = α0 + α1xi1 + α2xi2+⋯+αrxir + εi,

⋯

yn = α0 + α1xn1 + α2xn2+⋯+αrxnr + εn:

ð7Þ

These equations are represented in the form of matrices
as follows.

y = αX + ε, ð8Þ

where,

y =

y1

y2

:

:

:

yn

2
666666666664

3
777777777775
, X =

x11 x12 ⋯ x1r

x21 x22 ⋯ x2r

:

:

:

xn1 xn2 ⋯ xnr

2
666666666664

3
777777777775
,

α =

α1

α2

:

:

:

αr

2
666666666664

3
777777777775
, ε =

ε1

ε2

:

:

:

εn

2
666666666664

3
777777777775
:

ð9Þ

The matrices y and X contain information of both
dependent and independent variables of the actual data.
The α from Equation (8) is derived by Equation (10) using
the least square method.

α = X ′X
� �−1

X ′y: ð10Þ

According to Equation (10), used to calculate the α
regression coefficient, the expected load could be predicted

as represented in Equation (11) using the MLR method.

ŷ = Xα: ð11Þ

ŷ is the forecasted value of y. In this model, error is the
absolute difference between the actual and forecasted values.

6. The Proposed Solution for Residential
Prosumers’ Component

The role of blockchain in fair energy trading and the method
to compute rewards for prosumers are discussed in this sec-
tion. According to the energy requirement, every energy
consumer decides its starvation parameter and sends it to
AG. AG uses the RSFEAP algorithm to distribute energy
across all prosumers based on their energy contribution,
type of transactions, and starvation parameters.

6.1. Fair Energy Trading Using Blockchain Technology. In
this study, a blockchain-based model is developed to decen-
tralize the energy systems. The model comprises of energy
consumers, energy providers, and AG as users. These users
coordinate and communicate via blockchain to facilitate
the decentralization of energy demand and generation.
However, maintaining and storing energy transactions using
a centralized system is still an open research problem.
Therefore, transactions in energy trading are coordinated,
recorded, and maintained with the support of blockchain
technology in a decentralized manner. The blockchain tech-
nology has many features: consensus mechanism, self-
enforced smart contract, immutability, etc. A consensus
mechanism is a collection of protocols that enables
untrusted prosumers to agree on a global state of the net-
work. In this work, Proof of Work (PoW) [62] is used. A
self-enforced smart contract is an agreement embedded as
a computer code that is managed by the blockchain. The
information immutability feature helps to ensure that the
transactions recorded on the blockchain remain unaltered
after miners’ verification.

6.2. Parameters for Fair Energy Allocation. This section dis-
cusses the parameters used for the energy allocation algo-
rithm across residential prosumers.

6.2.1. Starvation Level Parameter. The consumers in the
reward based energy allocation model are served with
excessive energy available in the system. It is found that
some prosumers in the network show a negligible contri-
bution, have a high rate of malicious transactions, or are
incapable of contributing energy. In this case, the

Output: (1) EBEV rated ESEV; (2) EV view reputation points;
1: function SubmitFeedback()
2: Positive or negative rating point is added;
3: returnTrue;
4: function ViewFeedback()
5: Returnaggregated feedback;

Algorithm 5: Smart contract for reputation.
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consumers might not receive energy, and they need to
purchase the required energy at a very high price from
the main grid. In RSFEAP, the minimum energy require-
ment of each prosumer is represented in the form of per-
centage. The starvation factor S is used to define the
threshold for the energy requirement. Based on the thresh-
old, each consumer meets its minimum energy require-
ment S × Earq to avoid energy starvation. The SL
parameter is calculated using the following equation [42].

SL = 1 −
EallocR

Earq

 !
× EallocR: ð12Þ

At every time slot, AG receives details of providers’
excess energy Eas and consumers’ energy request Earq.
RSFEAP guarantees optimal prosumer-generated energy
allocation EallocR to each consumer.

6.2.2. Reward Index. In this model, RI plays a vital role for a
fair energy allocation. It is mandatory to compute the RI
carefully to have fair energy allocation and trading mecha-
nisms. In the process of deciding the reward of a prosumer
i, two factors are considered, which are given below.

(1) The amount of energy contributions provided by the
prosumer in the past

(2) The number of valid or malicious transactions per-
formed in the present or past by the prosumers

Hence, RI is computed as follows.

Yi = 1 − e −θ/100ð Þ, ð13Þ

θ =
0, if valid transaction,

1, if malicious transaction,

(
ð14Þ

Ci = Ci − Ci × Yið Þ, ð15Þ

RIi =
Ci

CTotal
: ð16Þ

In Equations (13)–(16), Ci is the amount of energy con-
tributions provided by a prosumer till the present interval
and CTotal is the sum of the energy contributions recorded
by AG till the present interval. Yi is the quantifier for valid
and malicious transactions recorded by the miners in the
blockchain while θ is the index of each transaction (valid
or malicious) recorded. In the computation of RI, both
energy contributions and transaction types are treated with
equal preference. However, there may be a situation where
AG gives a higher preference to the type of transactions exe-
cuted rather than the energy contributed. In such a situation,
the preference values of a user will be multiplied by the
weight factor ρðρ > 0Þ. We assume to take the value of ρ as
1 in this paper since preferences to both transaction types
and energy contributions provided in the past are the same.
Therefore, a prosumer that shares surplus energy in the past
will get rewards in the future when energy is needed. The

reward depends on the type of transactions conducted by
the prosumer, which decreases with an increase in malicious
activity during energy transactions. Conclusively, when a
prosumer purchases energy, AG and miners store the infor-
mation about the exact net energy shared by the prosumer in
the blockchain ledger. AG uses the information to compute
the RI and update it regularly. RI is considered in RSFEAP
to show the consistency and credibility of prosumers in the
system.

6.2.3. Valid and Malicious Transactions. The valid and mali-
cious transaction (VMT) algorithm consists of punishment
and reward mechanisms. There are two types of actions to
be punished: first, when consumer i attempts to alter his
record to favor himself; second, when consumer i broadcasts
a forged request. On the other hand, it is rewarded when a
prosumer i acts honestly and performs a valid transaction.
As shown in Algorithm 6, if a malicious transaction is not
detected by the miners, the transaction is said to be valid
and its index θi will be set to zero (0). Therefore, the prosu-
mers’ RI will increase. On the other hand, if a malicious act
is detected based on the mentioned actions, then AG will
collect evidence to make a judgment and send it to the
miners for validation. If any prosumer is caught with mali-
cious activity, its transaction index θi will increase by 1,
which will decrease the RI.

6.3. Optimization Formulation. AG optimally distributes
energy to every consumer based on the aforementioned
parameters. Hence, to efficiently allocate energy AiðEi,allocRÞ
to meet the consumers’ demand, an optimization problem
is formulated. The optimization formulation given in this
research is similar to [42].

max 〠
i∈Cs

Ai Ei,allocRð Þ, ð17Þ

such that, S × Ei,arq ≤ Ei,allocR ≤ Ei,arq,

〠
i∈Cs

Ei,allocR ≤ E: ð18Þ

According to the optimization problem given in Equa-
tion (17), some assumptions are made. AG will not distrib-
ute energy Ei,allocR to the consumer that will exceed its
energy requirement (Ei,arq) and will fall below its starvation
level (SL × Ei,arq). Therefore, the consumer will be able to
satisfy its minimum demand. Also, RSFEAP places a restric-
tion on the total energy distributed to the consumers so that
it cannot exceed the total energy aggregated from prosumers
with surplus energy E. The consumers’ objective functions
are given from the AG perspective, as shown in the following
equation.

Ai Ei,allocRð Þ = αRIiEi,allocR + βSLi: ð19Þ

Solving the following constrained optimization problem,
RSFEAP of AG is developed.
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(a) Problem 1: let the set of all consumers be Cs = f1, 2,
⋯, ng, �Earq = fE1,arq, E2,arq,⋯, En,arqg be the set of
exact energy request by the consumers, and �C = fC1,
C2,⋯, Cng be the set of energy contributions made
by the prosumers. The optimal value of the optimiza-
tion is computed using the following equation.

max 〠
i∈Cs

αRIiEi,allocR + βSLi, ð20Þ

such that S × Ei,arq ≤ Ei,allocR ≤ Ei,arq,

〠
i∈Cs

Ei,allocR ≤ E, ð21Þ

where β and α are that weight factors, which are used to
control the preference of every parameter of RSFEAP. β +
α = 1 and 0 ≤ β, α ≤ 1:

(b) Solution: if ∑i∈CsEi,allocR ≤ E, then all consumers are
allocated with their requested energy, i.e., Ei,allocR =
Ei,arq. On the other hand, an optimal energy alloca-
tion mechanism is used for the nontrivial case, i.e.,
when considering ∑i∈CsEi,allocR > E. In such a situa-
tion, one can obtain closed-form solution given by
Theorem 1.

(c) Theorem 1: an optimized allocation of energy
E∗
i,allocR = fE∗

i,allocR ∣ i ∈ Csg from the defined problem
is given below

E∗
i,allocR =

αRIi + β − υð Þ
2β

Ei,arq, ifEi,allocR > S × Ei,arq

and < Ei,arq,

S × Ei,arq, ifEi,allocR ≤ S × Ei,arq,

Ei,arq, otherwise,

8>>>>>>><
>>>>>>>:

ð22Þ

where υ is a real number that satisfies ∑i∈CsE
∗
i,allocR = E.

(d) The proof that shows that the objective function is
concave:

Ai Ei,allocRð Þ = αRIiEi,allocR + βSLi,

Ai Ei,allocRð Þ = αRIiEi,allocR + β 1 −
EallocR

Earq

 !
× EallocR

 !
,

Ai′ Ei,allocRð Þ = αRIi + β −
2βEallocR

Earq
,

Ai′′ Ei,allocRð Þ = −
2β
Earq

ð23Þ

Since the second derivative of the objective function is
negative where 0 < β≤1, then it is purely concave function.

(e) Proof: since all the constraints are linear and the
objective function is purely concave, the conditions
of Karush-Kuhn-Tucker (KKT) [42] guarantee Prob
lem 1 given as follows.

(1) Complementary slackness:

λihi x
∗ð Þ = 0: ð24Þ

(2) Primal feasibility:

hi x
∗ð Þ ≤ 0, gj x

∗ð Þ = 0: ð25Þ

(3) Dual feasibility:

λi = 0: ð26Þ

(4) Stationary:

0 ∈ ∂f x∗ð Þ + 〠
m

i=1
λi∂hi x

∗ð Þ + 〠
r

j=1
υj∂gj x

∗ð Þ: ð27Þ

Generally, the constraint vectors are represented as

Inputθi, Ci, CTotal;
OutputCTotal and Ci;
1: function FindMaliciousTransaction(θi, Ci, CTotal)
2: if(malicious transaction)then
3: θi = θi + 1;
4: Yi = 1 − eð−θ/100Þ;
5: Ci = Ci − ðCi × YiÞ;
6: Update CTotal with new Ci;
7: else
8: Update Ci;
9: Update CTotal with new Ci;
10: returnCTotal and Ci;

Algorithm 6: VMT algorithm.

12 Wireless Communications and Mobile Computing



single column vectors.

h xð Þ =

h1 xð Þ
h2 xð Þ
⋮

hm xð Þ

2
666664

3
777775, g xð Þ =

g1 xð Þ
g2 xð Þ
⋮

gr xð Þ

2
666664

3
777775: ð28Þ

We define m lagrange multipliers for λi inequality con-
straints and r multipliers υj for r equality constraints. Hence,

λ =

λ1

λ2

⋮

λm

2
666664

3
777775, υ =

υ1

υ2

⋮

υr

2
666664

3
777775: ð29Þ

From Equation (27), ∂f ðx∗Þ is derived as given in the
following equation.

∂f x∗ð Þ = ∂Ai Ei,allocRð Þ, ð30Þ

which is further simplified to the following equation:

∂f x∗ð Þ = αRIi + β −
2βE∗

i,allocR
Ei,arq

: ð31Þ

In Equation (27), the second term can be represented as
given in Equation (32) below. φ in the expression is used for
the second inequality constraint.

〠
m

i=1
∂hi x

∗ð Þ = −λi + φi: ð32Þ

And the last term in Equation (27), can be shown as

〠
r

j=1
∂gj x

∗ð Þ = υ: ð33Þ

By solving Equations (31), (32), and (33), the stationary
condition in Equation (27) is satisfied, which is expressed in
the following equation.

αRIi + β −
2βE∗

i,allocR
Ei,arq

+ λi − φ − υ = 0: ð34Þ

In the primal feasibility condition, hiðx∗Þ ≤ 0, and gjðx∗
Þ ≤ 0 is solved as

S × Ei,arq − E∗
i,allocR ≤ 0, ð35Þ

E∗
i,allocR − Ei,arq ≤ 0, ð36Þ

where Equations (35) and (36) give the following equation.

〠
n

i=1
E∗
i,allocR ≤ 0, ð37Þ

while the complementary slackness condition is shown
as

λi S × Ei,arq − E∗
i,allocR

� �
= 0, ð38Þ

φi E
∗
i,allocR − Ei,arq

� �
= 0: ð39Þ

Finally, the dual feasibility condition in Equation (26) is
expressed in the following equation.

λi = 0, φi = 0: ð40Þ

The inequality constraint and objective function are convex
and differentiable while the equality constraint functions are
affine. Therefore, the KKT conditions have an optimal solution
[48, 63]. To satisfy Equation (40), three possible cases are gener-
ated for E∗

i,allocR: S × Ei,arq ≤ E∗
i,allocR ≤ Ei,arq, E

∗
i,allocR = Ei,arq, and

S × Ei,arq = E∗
i,allocR. We first consider a case S × Ei,arq ≤ E∗

i,allocR
≤ Ei,arq. It is clear that λi = 0 and φi = 0. The λi and φi values
are then substituted in the stationary condition in Equation
((27)), and the result of E∗

i,allocR is generated as follows.

αRIi + β −
2βE∗

i,allocR
Ei,arq

− υ = 0, ð41Þ

αRIi + β − υ =
2βE∗

i,allocR
Ei,arq

, ð42Þ

where Equation (42) is further simplified to give the following
equation.

αRIi + β − υ

2β
Ei,arq = Ei,allocR∗ : ð43Þ

Considering a case E∗
i,allocR = Ei,arq, there exists a value of λi

taken from Equation (39). The value of φi can be substituted in
the stationary condition in Equation (27), and the E∗

i,allocR
results are given as follows.

αRIi + β −
2βE∗

i,allocR
Ei,arq

− φi − υ = 0, ð44Þ

αRIi + β − υð ÞEi,arq

2β
− E∗

i,allocR =
φiEi,arq

2β
, ð45Þ

where Equations (44) and (45) are further simplified to give the
following equation:

αRIi + β − υð ÞEi,arq

2β
= E∗

i,allocR +
φiEi,arq

2β
≥ 0, ð46Þ
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which produces

αRIi + β − υð ÞEi,arq

2β
≥ Ei,arq: ð47Þ

Furthermore, we consider a case S × Ei,arq = E∗
i,allocR where

φ = 0 from complementary slackness condition in Equation
(39). The value of φi can be substituted in the stationary condi-
tion in Equation (27), and the E∗

i,allocR results are given in Equa-
tions (48)–(51).

αRIi + β −
2βE∗

i,allocR
Ei,arq

+ λi − υ = 0, ð48Þ

αRIi + β − υð ÞEi,arq

2β
− E∗

i,allocR = −
λiEi,arq

2β
, ð49Þ

αRIi + β − υð ÞEi,arq

2β
= E∗

i,allocR −
λiEi,arq

2β
≥ 0, ð50Þ

which produce

αRIi + β − υð ÞEi,arq

2β
≥ S × Ei,arq: ð51Þ

Therefore, there exists an optimal allocation of energy
E∗
i,allocR = fE∗

i,allocR ∣ i ∈ Csg of Problem 1 in Equation (22).
From the three cases given above and the primal feasibility con-
dition in Equation (37), the optimal solution is given by Equa-
tion (22). Furthermore, the solution to the problem defined in
this paper uses quadratic programming. It is because the objec-
tive function is a quadratic problem with linear constraints.

6.4. Energy Allocation Algorithm. Before the energy transac-
tions start, the prosumers’ information is collected by AG to
allocate the energy to them. For each time interval, the total
available energy provided by the energy providers is E and
the total energy needed by the energy consumers is Ec. In
this work, the proposed energy allocation algorithm, i.e.,
Algorithm 7, is derived from [42], and it has two conditions,
which are as follows:

(1) When the total energy request from consumers Ec is
less than or equal to the total energy available E

(2) When the total energy request from consumers Ec is
greater than the total energy available E

In the first condition, consumers receive the same
amount of energy that they requested. In the second condi-
tion, consumers receive an optimal amount of energy as
shown in Algorithm 7 (lines 12–22). In these lines, the inte-
rior point method of quadratic programming is used to solve
the optimization problem where the optimal allocation of
energy is produced. A MATLAB function called quadprogð
Þf unction (line 21) is often used to solve a quadratic objec-
tive function. This function requires various input parame-
ters, both in the form of vectors and matrices. These input
parameters are the Hessian matrix H, vector f T , upper

bound ub, lower bound lb, and inequality constraints A
and b. Hessian matrix H as shown in lines 13 and 14 of
Algorithm 7 is a symmetric matrix. f T (line 14) is a vector
represented as the linear term of the objective function (line
13). The linear coefficient in inequality constraint is repre-
sented as A, and the constant vector of overall surplus
energy in the current time interval is represented as b. The
boundaries for energy allocations S × Ei,arq ≤ Ei,allocR ≤ Ei,arq
are represented as the upper and lower bound vectors (line
18). ub is the maximum limit set by AG for over allocating
energy to consumers. On the other hand, lb is the lower
threshold value set by each consumer to stop himself from
falling into starvation. Therefore, these input parameters
help the quadprogðÞf unction to be executed and return the
optimal energy allocation vector EallocR.

7. Proposed Methodology

7.1. Privacy and Security Construction for Residential
Prosumers. In this research work, an encryption mechanism
is used to protect users’ information for the residential prosu-
mer component. Sensitive data that does not affect the trading
mechanism is encrypted and is stored in the blockchain. The
focus of the research is to partially encrypt the users’ data by
allowing the energy and price values to be sent unencrypted
to the blockchain. This process allows the energy traders to par-
ticipate in trading without adding burden to the system by con-
cealing irrelevant information. It is important to use encryption
techniques to turn the plaintext into ciphertext to maintain the
system’s security and improve the users’ privacy in the block-
chain. Therefore, an asymmetric encryption technique is used
to encrypt the data before recording it on the blockchain. More-
over, a privacy protection technique, i.e., ID-based encryption,
is implemented. The technique that is used is based on the bilin-
ear map theory. It is known that the Ethereum blockchain does
not support complex mathematical computations [59]. More-
over, the Ethereum blockchain is adopted due to its stronger
security capability and less time consumption as compared to
IOTA during validation process [64]. Therefore, all the complex
computations are done off-chain, and the computed results are
forwarded to the blockchain for further computation and stor-
age. Similarly, the blockchain execution and transaction costs
are reduced, and also, the efficiency of the allocation process is
not affected. In order to protect the users’ information, addi-
tional encryption techniques are required. Therefore, in the pro-
posed system, ID-based encryption and HE techniques are
adopted.

7.2. Bilinear Map Theory. This section presents bilinear map
theory as follows.

(i) The three cyclic groups of prime order P are
denoted as G1,G2, and G3

(ii) g1 and g2 are generated from G1 and G2, respec-
tively, as g1 ∈ G1 and g2 ∈ G2

(iii) Bilinear map is presented as eð,Þ: G1 × G2 ⟶G3

The bilinear map properties are given as follows:
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(i) Nondegenerate: eðg1, g2Þ ≠ 1

(ii) Bilinear: ∀v ∈ G1, ∀u ∈ G2, and b, a ∈ℤ, we have eð
vb, uaÞ = eðv, uÞba

The proposed scheme is defined by Boneh and Frank-
lin’s ID-based system, implemented in 2001 [65], which
can be used for privacy protection in the blockchain. The
following are the steps of the encryption process.

7.2.1. Initialization. Construct two groups of elliptic curves
G1,G2 such that ∣G1 ∣ = ∣G2∣ = q, eð,Þ: G1 × G1 ⟶G2 is a
bilinear map and P ∈G1 is a generator. s ∈ℤ∗

q is randomly
selected, and s is defined as the master key where Ppub = s ·
P can be calculated. Let h : f0, 1gn ⟶G1, h1 : f0, 1gn ⟶
G2, and h2 : f0, 1gn ⟶ℤ∗

q be the three cryptographic hash
functions. The system’s parameters are published as fG1,
G2, e; ;n, q, P, Ppub, hð Þ, h1ð Þ, h2ð Þg.
7.2.2. Generating Private and Public Keys

(i) User A registers with AG using its ID number and
personal information

(ii) The client generates a public key based on the ID of
A, which produces Πid = hðidÞ

(iii) Private Key Generator (PKG) calculates the A’s pri-
vate key locally as Sid = s:Πid , then passes it to A via
a secure channel

7.2.3. Sending Message to the Blockchain

(i) Initially, user A encrypts a private message M as
follows

(a) Picks r ∈ℤ∗
q

(b) Calculates gid = eðΠid , PpubÞ, V = r · P

(c) U =M ⊗ h1ðgridÞ

(ii) After encryption, the user sends the encrypted mes-
sage ðV ,UÞ to the blockchain

Input:Earq, Eas, C ;
Output:EallocR ;
1: t = 1 ;
2:whilet ≤N time-slotsdo
3: E =∑k

i=1Ei,as ;
4: Ec =∑k

i=1Ei,arq ;
5: CTotal =∑k

i=1Ci ;
6: Compute RI for each consumer using Equation ((16));
7: ifEc ≤ Ethen
8: fori = 1 to n number of consumersdo
9: Ei,allocR = Ei,arq ;
10: else
11: f ðEi,allocRÞ =∑i∈CsαRIiEi,allocR + βð1 − Ei,allocR/Ei,arqÞ · Ei,allocR ;
12: f ðEi,allocRÞ = 1/2ET

i,allocRHEi,allocR + f TEi,allocR ;
13:

14: H =

a11 0 ⋯ 0

0 a22 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ ann

2
666664

3
777775, f

T =

a11

a22

⋮

ann

2
666664

3
777775 ;

15:
16: A = ½a11 a22 ⋯ ann�, b = E½ �1 ;
17:

18: ub =

E1,arq

E2,arq

⋮

En,arq

2
666664

3
777775, lb =

S × E1,arq

S × E2,arq

⋮

S × En,arq

2
666664

3
777775 ;

19:
20: Ei,allocR = quadprogrðH, f , A, b, lb, ubÞ ;
21: t + + ;

Algorithm 7: RSFEAP algorithm.
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7.2.4. Getting Message from the Blockchain

(i) System sends encrypted message ðV ,UÞ to A and A
decrypts data as follows

(a) M =U ⊗ h1ðeðSid , VÞÞ, where M is just the
plaintext

8. Security and Privacy Analyses

This section analyzes the privacy and security of the energy
trading model. The model is analyzed on the bases of the
secret key security, passive attack, and disguised attack.
Moreover, the smart contracts are analyzed using the Oyente
security analysis tool.

8.1. Security of Secret Key. The most essential and sensitive
part of the ID-based encryption technique is the master or
secret key. Once the secret key is revealed, the whole system
is under threat. Therefore, the secret key must be cautiously
and carefully stored. In traditional encryption systems, cen-
tral authority controls and manages the secret key, which
raises issues of security and centralization. However, in this
model, each node generates its master key instead of a single
PKG. Similarly, for the EV’s component, the communication
is done using Paillier encryption, which allows the receiver
of the encrypted message to perform an action on the
ciphertext without having the keys. Therefore, in encryption,
sharing of keys is not required. These encryption processes
resolve the centralization and security problems of the secret
keys.

8.2. Passive Attack. The passive attack comprises traffic anal-
ysis and information monitoring. In a transaction, the pas-
sive attacker can have access to two different types of
users’ information: data and addresses. The address is not
reversible because it is a user’s hash signature. Thus, the only
target point of the attacker is the plaintext information given
by the users and is the focus of this research work. The ID-
based encryption technique is used to protect and encrypt
information where only a string of unrecognized characters
can be seen. Similarly, for the EV’s component, Paillier
encryption is used to protect the privacy of the users’ loca-
tion. These strings are readable when the user is in posses-
sion of the private key, which makes the system passive
attack resistant.

8.3. Disguise Attack. In this attack, a disguised attacker may
have the ID of the legitimate user, so he can pretend to be
another user. Even if the attacker receives the encoded data,
it is difficult to regenerate the original information without
the private key. Thus, this makes the system resistant to
the disguised attacker. Further, different cases of EVs’ secu-
rity and privacy issues exist. Therefore, three (3) proposi-
tions are defined and analyzed.

Proposition 1. The attacker cannot learn other users’ loca-
tion information in the system before matching with the users
ðQ1Þ.

We assume that users interact with each other via secure
channels, i.e., through the blockchain or the Paillier encryp-
tion technique. The Paillier encryption technique allows
ESEV to work on encrypted data without knowing the actual
information from the EBEV user. Additionally, the selection
of ESEVs is based on the reputation values they have before
the match is made. This makes the proposed system conceal
the location information of both ESEVs and EBEVs.

Proposition 2. The internal and external attacks from the
computing nodes cannot compromise the proposed system
ðQ2Þ.

It is clear that the reliability of the proposed system
depends on the security provided by the blockchain. Gener-
ally, it is assumed that the attacker cannot control more than
51% of the computing nodes in the blockchain. The internal
and external attacks on the computing nodes are unable to
breach the whole system because the attackers need to con-
trol more than 50% of the nodes. PoW consensus mecha-
nism prevents the system from both internal and external
attacks.

Proposition 3. All energy trading tasks are open and trust-
worthy in the proposed system ðQ2Þ.

All operations in the smart contracts are constantly exe-
cuted on blockchain and the computed results are stored in
it. This process guarantees the trustworthiness of the system.
Also, the operations and the results obtained are verified by
the miners in the proposed system. Conclusively, the data
stored in the blockchain is made tamper-proof and
traceable.

8.4. Vulnerability Analysis of Smart Contract. This section
discusses the security vulnerability analyses of the smart
contracts. It also highlights the best way to develop and write
smart contracts, so that they can withstand all possible
attacks. In addition to the encryption mechanism, block-
chain technology is used to strengthen the overall security
of the system. The blockchain comes with its advantages as
well as some security problems. Among the security chal-
lenges, blockchain provides a solution to the Distributed
Denial of Service (DDoS) attack. The reason is that all
energy transactions are recorded on the private Ethereum
storage in a decentralized and distributed fashion and there-
fore are not prone to a single point of failure. This technol-
ogy has the ability to store data that cannot be altered or
changed (immutability feature) as long as it is confirmed
by the validators. The blockchain’s immutability feature
helps to ensure the integrity of all shared data between the
involved parties. The data can only be attacked if and only
if an attacker or group of attackers control more than 50%
of the network. Moreover, this type of attack is almost
impossible in the proposed system because the network uses
the PoW consensus mechanism.

Smart contracts’ developers must ensure that the con-
tract code is free of bugs and security vulnerabilities. The
proposed smart contracts are analyzed using Oyente security
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analysis tool to check for the known bugs and security vul-
nerabilities. The security vulnerabilities include reentrancy
vulnerability, timestamp dependence, callstack depth vul-
nerability, transaction ordering attack, parity multisig bug
2, and assertion failure. The results of the proposed smart
contracts analysis are presented in Table 2. The EVM byte
codes are evaluated by Oyente and the corresponding call
graphs are produced for each contract. Oyente conducts
the block-level smart contract code analysis by following
the rules given in Ethereum’s yellow papers [58, 66]. The
results show that the proposed smart contract is secure and
resistant to all the aforementioned attacks and vulnerabili-
ties. It also shows that there is no unhandled exception,
which may result in overflow or underflow of integer opera-
tions in the proposed smart contract’s callee and caller func-
tions. Moreover, external calls are reduced and all
evaluations are performed to ensure gas availability. The
external call reduction prevents the proposed smart contract
from reentracy attack. Similarly, external calls are also
reduced to protect the system from callstack attacks.
Table 2 also shows that there is no possible vulnerability
associated with the proposed smart contracts, which may
lead to timestamp dependency, transaction ordering depen-
dency, and parity multisig bug 2 issues.

9. Simulation Results

This section presents the experimental setup and the simula-
tion results of the proposed energy trading model.

9.1. Experimental Setup. The network topology of 100 ESEVs
and 100 EBEVs is generated within an area of 1 km by 1 km.
The locations of ESEVs and EBEVs are allocated with uni-
form distribution. Generally, 512-bit primes for q and p, as
given in Paillier’s cryptosystem, are used for the PHE calcu-
lations. The smart contracts are implemented on the Ether-
eum blockchain. The Ethereum blockchain is adopted due
to its stronger security capability and less time consumption
as compared to IOTA during validation process [64]. For
fair energy allocation, four energy prosumers and one AG
are considered. A day of 24 hours is divided into 24 slots
(interval of 1 hour each). The data used for the prosumers’
first 4 time intervals is obtained from study [42]. The com-
putational experiments are conducted on a desktop com-
puter with the following specifications: AMD E1-6015
APU with Radeon (TM) R2 graphics, 1.4GHz processor,
operating system is Microsoft Windows 10 with 4.00GB of
RAM, and codes are executed using MATLAB2018a. The
values of S, α, and β are set as 0:8, 0:6, and 0:4 in the simu-
lations, respectively. The dataset used for the EVs’ charging
load forecasting is taken from [67]. Figure 3 shows the nor-
malized EVs’ charging load of Boulder city, Colorado, from
1st January 2018 to 30 May 2019 (17 months). The dataset
contains transactions of EV charging for different locations.
It consists of numerous metadata for the charging transac-
tions like plug type, charging time, and gasoline savings. In
the proposed work, the energy consumption and charging
time are considered. For regression models, the most popu-
lar performance measures are forecasting accuracy, Mean

Square Error (MSE), Mean Absolute Error (MAE), Mean
Absolute Percentage Error (MAPE), and Root Mean Square
Error (RMSE) [68]. Therefore, in the proposed model, we
use the same parameters.

9.2. Results for the Electric Vehicle Component. In this sec-
tion, performance metrics and experimental results for the
EVs’ component are discussed.

9.2.1. Performance Metrics for the Electric Vehicle
Component. The effectiveness of the performance of the
EVs’ component is evaluated using the following perfor-
mance metrics. For the searching and matching algorithm,
convergence duration is used. For evaluating the EVs’ load
forecasting accuracy, MSE, MAE, MAPE, and RMSE are
used. For the blockchain, execution and transaction gas con-
sumption are used for the performance evaluation. The per-
formance parameters are discussed as follows.

(i) Convergence duration: it is the aggregated time inter-
val that the algorithm requires to converge. It
includes both computational and communication
overheads that are caused by the transmitted mes-
sages and encryption process, respectively

(ii) RMSE, MAPE, MAE, and MSE are defined in the
following equations [69]

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
w

i=1

yi − ŷið Þ2
yi

s
, ð52Þ

MAPE =
1
w
〠
w

i=1

yi − ŷi
yi

����
����, ð53Þ

MAE =
1
w
〠
w

i=1
yi − ŷij j, ð54Þ

MSE = 〠
w

i=1

yi − ŷið Þ2
w

, ð55Þ

where yi and ŷi are the actual and forecasted EVs’

Table 2: Report of the security vulnerability using Oyente tool for
energy trading and reputation smart contracts.

Parameters 1 2

EVM code coverage 47.9% 42.5%

Integer underflow False False

Integer overflow False False

Parity multisig bug 2 False False

Callstack depth attack vulnerability False False

Transaction-ordering dependence (TOD) False False

Timestamp dependence False False

Reentrancy vulnerability False False

1: energy trading contract; 2: reputation contract.
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charging loads at point i, respectively, while the total number
of EVs’ charging points is w.

(iii) Executional and transactional costs: executional cost
is the operational cost consumed for each line of
code in the smart contract’s function. The total
amount of gas consumed by smart contracts’ func-
tions for sending data to the blockchain is called
the transactional cost

9.2.2. Results of Reputation-Based Privacy-Preservation for
the Matching EVs. In Figure 4, a comparison between the
existing BMNN-based matching algorithm [38] and the pro-
posed reputation-based matching algorithm in terms of con-
vergence duration is presented. In the proposed reputation
process, AG arranges EVs in a list according to their reputa-
tion points. So, an EBEV selects ESEV with the highest rep-
utation that is presented at the top of the list. On the other
hand, to find the perfect match, EBEV communicates with
all the closest EVs when using the BMNN-matching process.
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Table 3: Energy trading smart contract cost.

Function 1 2 3

GiveKwh 43257 20577 6.3834E-14

CreateStorage 126906 104866 2.31772E-13

SellEnergy 23796 796 2.4592E-14

BuyEnergy 23574 574 2.4148E-14

Contract creation 1826521 1335125 3.16165E-12

1: transactional cost (Gwei); 2: executional cost (Gwei); 3: actual cost
(Ether).

Table 4: Reputation smart contract cost.

Function 1 2 3

Submit feedback 440697 417057 8.57754E-13

Contract creation 2017617 1478941 3.49656E-12

1: transactional cost (Gwei); 2: executional cost (Gwei); 3: actual cost
(Ether).

Historical EV’s charging load

Split EV’s charging load and
apply normalization

Train feature vectors

Forecast data using MLR

Forecasted results

l1 l2 ln-1 ln

Figure 5: EV load forecasting model.
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Because of this, the matching algorithm based on BMNN
increases additional communication and computational
overheads. The overall convergence duration of the
BMNN-based matching algorithm is compared with the
proposed algorithm as shown in Figure 4. In all situations,
as the communication range increases, and the number of
rounds grows, such that no EV accepting the charging
request is left. Thus, the communication duration also
grows. The proposed algorithm’s overall convergence dura-
tion reduces by approximately 2000ms as compared to that
of the BMNN algorithm’s convergence duration.

9.2.3. Results of Reputation and Energy Trading Using
Blockchain. Smart contracts are deployed to perform energy
trading between EBEVs and ESEVs. Tables 3 and 4 depict
the numerical findings of the transactional and executional
costs for the proposed smart contracts: reputation and
energy trading. The important functions of the proposed
smart contracts include the GiveKwh, CreateStorage, SellE
nergy, BuyEnergy, and ContractCreation functions. From
the tables, it is shown that the maximum gas is consumed
by the CreateStorage function. The reason is that the infor-
mation uploaded on the proposed system requires more
time and cost as compared to other functions. The gas con-
sumption depends on the data size, which will be added to
the proposed energy trading system. The other functions
are GiveKwh, SellEnergy, BuyEnergy, and ContractCreatio
n which consume the least cost as the functions do not
require additional uploading data.

9.2.4. Results of EVs’ Charging Load Forecasting Using MLR.
A short-term charging load forecasting model using MLR is

proposed to manage and plan for EVs’ charging behavior as
shown in Figure 5. Incorporating the forecasting model in
the proposed system can help both the charging stations
and EVs to properly plan ahead of the EVs’ charging in
order to maintain the usage of EVs and balance the energy
consumption in SC as well as to perform a profitable
energy trading. The forecasting model is divided into five
stages, which are the input stage, splitting EVs’ dataset
and normalization stage, training stage, forecasting stage,
and the final stage where the forecasting results are
obtained. Figure 3 shows the normalized EVs’ charging
load of Boulder city, Colorado, from 1st January 2018 to
30 May 2019 (17 months). The normalization graph shows
different variations of energy consumption across the days.
The dataset is divided into training and testing samples at
a ratio of 75 : 25. Afterwards, the normalized data is for-
warded to the forecasting engine for prediction. The actual
and the forecasted EVs’ charging load are presented in
Figure 6. In the figure, the red curve is the forecasted load
and the blue curve is the actual load. As shown in the fig-
ure, the proposed model gives excellent prediction results.
The forecasted result almost fits in the actual data, which
shows a high accuracy of the proposed forecasting model.
Error rates of the performance metrics are given in
Table 5. From both the table and figure, it is observed that
the result of the proposed forecasting model is good as the
error rates from all the performance metrics are signifi-
cantly low. To be precise, the forecasted accuracy of the
proposed model is 99.25%.

From Figure 6, it is seen that the MLR model accu-
rately maps the actual consumption of the electricity load.
This implies that the model intelligently avoids the chance
of overfitting during the forecasting of unseen periods of
electricity consumption. Moreover, the forecasting curve
of the MLR model shows that it perfectly learns the com-
plex patterns of the data during the testing phase. Further-
more, overfitting a regression scheme is caused as a result
of trying to estimate many parameters from very scanty
data. However, to estimate the coefficients for the entire
terms in the proposed scheme, a single sample is used
for each polynomial, interaction, and predictor. In addi-
tion, we avoid overfitting using the cross-validation
method.

9.3. Results for Residential Prosumers’ Component. In this
section, performance metrics and experimental results for
the residential prosumers’ component are presented.

9.3.1. Performance Metrics for the Residential Prosumers’
Component. The performance of the residential prosumers’
component is evaluated using the following performance
metrics: RI, type of transactions performed, the energy con-
tributed, average convergence time, and the number of
iterations.

9.3.2. Experimental Results for Residential Prosumers’
Component. The energy providers and consumers with sur-
plus and deficit energy register their energy requests with
AG via blockchain-based smart contracts. The data used
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Table 5: Forecasting error comparison.

MSE MAE RMSE MAPE Accuracy

0.0188 0.6161 0.7501 0.7480 99.2519
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for the simulations is taken from [42] and is presented in
Table 6. In this scenario, some users are registered as energy
consumers while others are registered as energy providers.
The prosumers’ registration takes place via blockchain.
According to previous research works [70–72], transactions
using blockchain are proved to be secured, distributed, trace-
able, and verifiable. In this research work, a cryptosystem
technique using the ID-based encryption technique is incor-
porated into the system that helps to conceal energy transac-
tional data.

In T1, two prosumers, i.e., Prosumer 1 and Prosumer 2,
which are energy consumers, register their energy requests
as 18MWh and 9MWh, respectively. On the other hand,
Prosumer 3 and Prosumer 4, which are energy providers,
register their surplus energy as 15MWh and 7MWh, respec-
tively. The total surplus energy at time interval T1 is
22MWh. After receiving the registered information, AG
checks the available energy E and the total energy that is
requested by the energy consumers Ec using the proposed
RFEAP algorithm, i.e., Algorithm 7. If Ec ≤ E, then the situ-
ation is simple; therefore, AG distributes the total surplus
energy based on the exact amount of consumers’ energy
requests. If the aforementioned condition is false, AG uses

the second condition, i.e., Ec > E, for optimal allocation of
energy between consumers that use the novel RI-based algo-
rithm. Considering the situation in T1, Ec > E; therefore, the
surplus energy is allocated using the second condition of the
fair energy allocation algorithm. Also, AG uses Algorithm 6
and Equation (16) to compute the RI’s parameter that helps
to optimally allocate energy to consumers. The values of RI
and energy allocated for consumers in different time slots
are given in Table 6. From the table, it is depicted that RI
for the consumers at T1 is the same, which makes the algo-
rithm serve the consumers with equal importance. In this
case, the optimal energy allocation for Prosumer 1 and
Prosumer 2 is to get energy according to the ratio of their
request, i.e., 14.8MWh and 7.2MWh, respectively. In the
second time interval T2, Prosumer 1, Prosumer 2, and
Prosumer 3 are all energy consumers while Prosumer 4 is
the energy provider. The total surplus energy at the time
interval is 23MWh, and the total energy requested by the
consumers is 28MWh. It is observed in Table 6 that the
Consumer 3 gets higher consideration for the allocation of
energy because it has higher RI value than both Prosumers
1 and 2. Moreover, Prosumer 2 gets higher preference than
Prosumer 1 because of the similar reason for Prosumer 3.

Table 6: Overall energy allocation.

Slot Eareq MWhð Þ Ec MWhð Þ E MWhð Þ Eas MWhð Þ EallocR MWhð Þ RSFEAP Ealloc MWhð Þ SF-OEAP RI

T1 −18,−9, 0, 0½ � 27 22 0, 0, 15, 7½ � 14:8,7:2,0, 0½ � 14:8,7:2,0, 0½ � 20,20,30,15½ �
T2 −6,−11,−11, 0½ � 28 23 0, 0, 0, 23½ � 4:8,8:8,9:4,0½ � 4:8,8:8,9:4,0½ � 5,30,45,30½ �
T3 −8, 0,−17, 0½ � 25 21 0, 4, 0, 4½ � 6:4,0, 14:6,0½ � 6:4,0, 14:6,0½ � 5,30,30,20½ �
T4 −15,−17, 0, 0½ � 32 26 0, 0, 13, 13½ � 12,14,0, 0½ � 12,14,0, 0½ � 5,30,30,20½ �
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Figure 7: Comparison of allocated energy (Ei,allocR) to prosumers at
T1 time slot.
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The same process of the proposed reward energy allocation
is applied for T3 and T4, in which the energy is fairly distrib-
uted between the consumers.

Note that the empty bars in Figures 7–11 depict that the
prosumers are energy providers at those time intervals dur-
ing fair energy allocation. The energy allocation for
Prosumer 1 across all the four time intervals is given in
Figure 11. It is observed that the RI of Prosumer 1 has the

highest value at T1 as shown in Table 6; therefore, RSFEAP
gives higher preference to it when allocating energy, whereas
the other consumers share the remaining surplus energy
based on their SL and RI. In other time intervals, the same
rule applies to other consumers. As discussed previously,
the starvation value and RI of each prosumer depends on
the energy requested, past contributions, and type of trans-
actions. The impact of RI on the fair energy allocation for
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Figure 9: Comparison of allocated energy (Ei,allocR) to prosumers at
T3 time slot.
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Figure 10: Comparison of allocated energy (Ei,allocR) to prosumers
at T4 time slot.
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Figure 11: Comparison of energy allocated (E1,allocR) to consumer-
1 in each time slot.
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Figure 12: Impact of reward index on energy allocation to
prosumers at T1 time slot.
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all of the time slots is presented in Figures 12–15. Important
ratios, i.e., RIi/Sumð �RIÞ, Ei,allocR/E, and Ei,arq/Ec for the
energy prosumers are investigated during the fair energy dis-
tribution. Here, RIi/Sumð �RIÞ is the ratio of each energy con-
sumer’s RI to the total RI of all the energy consumers,
Ei,allocR/E is the ratio of each allocated energy for a consumer
to the sum of all the surplus energy during the allocation,
and Ei,arq/Ec is the ratio of each actual energy request by a

consumer to the sum of all consumers’ energy requests. In
Figures 12–15, it is shown that the amount of allocated
energy is large when the RI ratio is large; otherwise, it is less.
The effects of malicious and valid transactions are also inves-
tigated as depicted in Figures 16–18. It is clearly shown in
Figures 16 and 17 that an increase in malicious transactions
decreases the amount of energy contributions made by the
prosumers. On the other hand, an increase in the number
of honest and valid transactions increases the energy contri-
butions. The valid and malicious transactions directly affect
RI of each prosumer as shown in Figure 18. As observed
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Figure 13: Impact of reward index on energy allocation to
prosumers at T2 time slot.
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Figure 14: Impact of reward index on energy allocation to
prosumers at T3 time slot.
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Figure 15: Impact of reward index on energy allocation to
prosumers at T4 time slot.
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from the figure, when prosumers’ contributions increase, RI
also increases. The model prevents the proposed system
against continuous malicious transactions. The comparison
of energy level generated for each consumer by RSFEAP
and SF-OEAP [42] is shown in Figures 7–10. In terms of
average convergence time and maximum iterations, the pro-
posed model is better than the SF-OEAP algorithm [42]. The
convergence time and maximum iterations of the proposed
model are shown in Figures 19 and 20, respectively. The
results in Figure 19 show that the number of iterations
increases with the increase in the number of prosumers
where the number of iterations for 50 prosumers is 8, which

is less than than the number of benchmark scheme’s itera-
tions. Similarly, the convergence time for the proposed
model is approximately 10 times less than the benchmark
algorithm. The reason is that the proposed algorithm per-
forms the energy allocation based on reputation value, which
is obtained directly from the blockchain. While in the
benchmark algorithm, all the computations are done in the
algorithm. As a result, the computational time and the num-
ber of iterations are reduced. This shows that the proposed
model is faster than the benchmark schemes for implemen-
tation in real-time electricity market.
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Figure 17: Impact of malicious transactions in the energy
contribution for C2, C3, and C4.
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Figure 18: The effects of contributions on energy allocation.
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Figure 19: Average convergence time against the number of
prosumers.
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10. Conclusion and Future Work

This study proposes a blockchain-based privacy-preserving
energy trading system for 5G-deployed SCs. The proposed
system has two components: EVs and residential prosumers.
In the proposed system, an RSFEAP algorithm for residential
homes and a reputation-based distributedmatching algorithm
of EBEV with ESEV are presented. The RSFEAP algorithm is
proposed to efficiently allocate energy to the residential con-
sumers. The matching algorithm is proposed to match ESEV
with EBEV in a secured and distributed manner. A short-
term load forecasting model for EVs’ charging using MLR is
proposed to plan and manage the uncertainty of the charging
behavior of EVs. The proposed system integrates ID-based
encryption and HE techniques to protect the privacy of trans-
action data and users, respectively. Simulations are conducted
and findings depict that the proposed system achieves promis-
ing performance. In the simulations, the EVs’ charging load
forecasting shows a better performance with an accuracy of
99.25%. In the RSFEAP, the number of iterations for 50 prosu-
mers is 8, which is smaller than the benchmark scheme while
the convergence duration is also 10 times less than the bench-
mark scheme. RSFEAP ensures a fair distribution of energy to
each consumer in the energy-distributed system. Similarly, the
proposed matching algorithm of EBEV with ESEV converges
faster as compared to the existing BMNN algorithm with con-
vergence duration of approximately 2000ms. In the block-
chain, the proposed smart contracts consume reasonable
executional and transactional costs. Furthermore, in the pro-
posed system, privacy and security and smart contract analy-
ses are performed. The obtained results depict that the
proposed smart contracts and overall system are bug-free
and secure against security attacks and vulnerabilities.

In future, we intend to improve the EVs’ charging load
forecasting efficiency as well as the prediction accuracy. The
increase in the number of charging EVs increases the amount
of data, which will be used for improving EVs’ charging load
forecasting. Furthermore, the performance of the proposed
system will be optimized and explored using hardware imple-
mentation. The integration of encryption mechanism, alloca-
tion algorithm, and blockchain in energy trading domain is
still an open research topic and will be considered.

Nomenclature

1-D CNN: 1-Dimensional convolutional neural network
AG: Aggregator
BPNN: Back propagation neural network
BMNN: Bichromatic mutual nearest neighbor
CNN: Convolutional neural network
DSRC: Dedicated short-range communication
EBEVs: Energy-buying EVs
ESEVs: Energy-selling EVs
EVs: Electric Vehicles
FHE: Fully HE
HBC: Honest-but-Curious
HE: Homomorphic encryption
HEVs: Hybrid EVs
ID-Based: Identity-based

IoE: Internet of energy
KKT: Karush-Kuhn-Tucker
LSTM: Long short-term memory
LTE: Long-term evolution
MAE: Mean absolute error
MAPE: Mean absolute percentage error
MLR: Multiple linear regression
MSE: Mean square error
NSGA: Nondominated sorting genetic algorithm
P2P: Peer-to-peer
PHE: Partially HE
PKG: Private key generator
PoW: Proof of work
RBFNN: Radial basis function neural network
RI: Reward index
RICNN: Recurrent inception convolution neural

network
RMSE: Root mean square error
RNN: Recurrent neural network
RSFEAP: Reward-based starvation-free energy allo-

cation policy
SCs: Smart communities
SF-OEAP: Starvation-free optimal energy allocation

policy
SG: Smart grid
SL: Starvation level
V2G: Vehicle-to-grid
V2V: Vehicle-to-vehicle
Earq: Actual energy request of consumers
y: Actual EVs’ load
Eas: Available surplus energy of provider
L: Energy demand
EðaÞ: Encryption of the plaintext a
ŷ: Forecasted EVs’ charging load

consumption
G: Generation of energy
EallocR: Optimal energy allocation
S: Starvation factor
Ec: Sum of available energy from providers
E: Sum of energy requested from consumers
M: Sum of valid and malicious transactions
C: The amount of energy contributed by

prosumer
Credm: The credibility value of m
G1, G3, and G3: Three cylic groups of prime order
Yi: The quantifier for valid and malicious

transactions recorded by the miners
CTotal: The total energy contributed
Locðx, yÞ: The location of the user
Rm: The rating given by node m
RI : The reputation value of node I
θ: Transaction index
p and q: Two prime numbers that are selected for

the HE
δ: Regression coefficient.
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No data were used to support this study.
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