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� A novel graphene integrated module
for electromagnetic THz filtering,
sensing and high-gain radiation
patterns is proposed.

� The graphene-based metamaterial
introduces an excellent tunability to
the filters and the antennas in THz
regime.

� The proposed module exhibits
excellent performance for different
wave polarizations and oblique
incident angles.

� The maximum sensitivity of 0.145
THz/RIU is achieved for the proposed
sensor.
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In this paper, a novel tunable graphene-based bandstop filter/antenna-sensor is presented. This structure
is an integrated module that can be used to combine filtering and high-gain radiation performance. The
initial design of the unit cell consists of four U-shaped stubs loaded, resembling the arms of a ring and a
sensing layer in the substrate. The reflection and transmission spectra are obtained for various graphene’s
chemical potentials and refractive index of sensing layer (Ns) of structure in the range of 1.3–1.6 THz. The
proposed structure exhibits the attributes of both dual-band filter and single-band antenna-sensor. The
conductivity of graphene and its structural parameters are studied to optimize the component perfor-
mance. In filtering mode, the first bandstop is from 1.23 to 1.6 THz equal to 26% of fractional bandwidth
(FBW) at 1.415 THz. The second stopband is centered at 3.12 THz with FBW of 14% for Ns = 1.6 and 0.6 eV
chemical potential. In the antenna mode, a single band of the antenna-sensor is centered at 1.95 THz for
the same Ns and same chemical potential. It is shown that a sensitivity of 0.145 THz/RIU is achieved at
Ns = 1.5 and chemical potential of 0.6 eV. Additionally, the performance of the proposed filter/antenna-
sensor module is investigated for different wave polarizations and oblique angles.

� 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
rk, Dyke

http://crossmark.crossref.org/dialog/?doi=10.1016/j.matdes.2022.110855&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.matdes.2022.110855
http://creativecommons.org/licenses/by/4.0/
mailto:ali.lalbakhsh@mq.edu.au
mailto:roy.simorangkir@tyndall.ie
https://doi.org/10.1016/j.matdes.2022.110855
http://www.sciencedirect.com/science/journal/02641275
http://www.elsevier.com/locate/matdes


M. Esfandiyari, A. Lalbakhsh, S. Jarchi et al. Materials & Design 220 (2022) 110855
1. Introduction

Nowadays, there has been increasing attention to filter/
antenna-sensors due to their simple configuration, multimodality
sensing, passive operation, and low cost [1]. These new integrated
structures introduced in this paper have three functionalities for
communicating, sensing and filtering at once and will minimize
the number of components and shrink the circuitry footprint. The
purpose method of filter/antenna-sensors is established by their
geometrical shape or their fundamental material of the structure
and the alteration effect in terms of their antenna or filter reso-
nance frequency, which is evaluated by these parameters influence
on the reflection or transmission coefficient.

The principle of Surface Plasmon Resonance (SPR) and its appli-
cation has been researched extensively in designing optical devices
that are structured by metamaterials in the past decade [2–4].
Metamaterials are artificially-made structures possessing extraor-
dinary electromagnetic properties that are not available in nature
and have been used extensively in designing various types of fil-
ters, antennas and electromagnetic components [5–13]. Over the
last decade, the combination of metamaterials and plasmonic has
found its various applications, including SPR sensors [14,15],
zero-index material and perfect lens [16], directivity enhancement
of nano antennas [17] absorbers [18], modulators [19,20] and fil-
ters [21–27]. Recently, an increasing demand is observed for Tera-
hertz (THz) broadband tunable filters [28,29], which are critical for
modern and emerging applications, such as fiber-optic sensors, and
wavelength-swept lasers, etc. It should be noted that there are
other mature technologies for filter and antenna designs, such as
microstrip technology [30–41] mostly associated with high loss
at the THz regime. Tunable filter/antenna-sensors are good candi-
dates for controlling transmitting waves due to their modularity,
an essential attribute in sensing and communications.

There are two major methods for altering THz waves used in
this paper. In the first method, materials properties and the action
of physical deformation are changed. For example, resonant fre-
quencies are dynamically controlled to offer the desired operating
frequencies by driving the martensitic transformation [42]. Conse-
quently, a dynamic band-stop filter range up to 0.56 THz was
achieved.

In the second method, materials intrinsic features are used to
adjust THz waves. Some materials in nature have varying permit-
tivity or permeability based on external situations such as heat,
electricity, magnetism, and light. Semiconductors or superconduc-
tors, phase change materials, ferroelectric or ferromagnetic materi-
als, liquid crystal materials, and graphene are examples of these
kinds of materials [43,44]. Among the materials listed, graphene
has become a promising solution in recent years mainly because
of its reconfigurability feature and produced using the microme-
chanical cleavage method since 2004 [44]. Graphene is a suitable
material for plasmonic appliances in the THz frequency regime
due to its meta-like properties. It is a one-atom-thick 2D system
with excellent optical properties critical in many potential applica-
tions, thanks to its high carrier mobility and anomalous quantum
Hall effect in electrical transport [45].

These days, there has been a lot of attention concentrated on
tunable optical integrated modules to extend communication sys-
tems [46–48]. The advantages of such modules are simple config-
uration, multimodality sensing, passive operation, and the low
cost of plasmonic integrated structure fabrication that are used
for processing information [49–52]. Metal-based integrated struc-
tures display desired performance in the near-infrared region [53],
but poor confinement of metal surface plasmon polariton (SPPs) in
the THz range limits their application. In contrast, graphene SPPs
have high field confinement in the THz range, hence graphene-
2

based structures are a promising solution for tunable and reconfig-
urable integrated structures with superior performance. In detail,
the carrier density in graphene can be electrically adjusted by a
small bias voltage, leading to a fast tuning operation within a
nanosecond, which makes graphene a suitable material for tunable
filters/antennas-sensor [54,55]. Indeed, tuning (SPPs) enables
graphene-based integrated structures tunability, including central
frequency adjustability.

One of the modern methods of designing graphene-based com-
ponents is based on artificial intelligence approaches, where an
optimization algorithm is utilized to deliver an intuitive or non-
intuitive configuration [56]. Different types of nature-based algo-
rithms, such as particle swarm optimization [57,58], gray wolf
optimization [59–61], various types of artificial neural networks
[62–71], ant colony [72,73], and genetic algorithm [74] can be
incorporated into designing procedures to minimize the computa-
tion cost of the design.

This paper introduces a new class of metamaterial-based filter/
antennas-sensors. The proposed structure is composed of four U-
shaped stubs and a sensing layer responsible for creating a dual
bandstop response and a single band antenna. The operational
mechanism of this proposed structure is discussed through its per-
meability (l) and electric near field. The transmission and reflec-
tion spectra of these structures are analyzed through the
variation of the graphene’s chemical potential. Additionally, the
sensitivity of the integrated structure is achieved by varying the
refractive index of the sensing layer. In addition, the transmission
and reflection spectra of the U-shaped stub structure are investi-
gated for oblique angles of incidence for two polarizations.
2. Structure and simulation method

2.1. Graphene theory

In the THz band, the graphene conductivity rg is defined by the
Kubo formula as rg ¼ rintra þ rinter[4]. At our investigated fre-
quency regime (0.5 to 3.5 THz), rinter is insignificant and rintra is
considered as graphene conductivity, as follows:

rmono ¼ rintra ¼ 2e2KBT

ph2 :
i

wþ is�1 ½Lnð2 coshð
lc

KBT
ÞÞ�: ð1Þ

where e is the electron charge, KB is Boltzmann’s constant, T is the
ambient temperature (300 K) , —h is the reduced Planck constant, s is
the relaxation time (1ps), x is the angular frequency and lc is the
chemical potential. In order to achieve a stronger resonance, twenty
layers of graphene are used in the U-shaped stub loaded metamate-
rials, respectively. Multilayer graphene is essentially decoupled N-
layers of graphene. thus, the conductivity of N-layer graphene is
NrmonoðxÞ [75].
2.2. Calculating sensitivity

The resonance condition in the reflection or transmission spec-
tra is accessible when the wave vector of decaying waves and the
wave vector of surface plasmons are equal, that this event leading
to the creation of surface plasmon polaritons. However, this gener-
ation requires a prism, a grating and a defect on the metal surface
or an optical fiber. Generally, angle and wavelength methods are
two approaches for analyzing and investigating plasmonic sensors.
Sensitivity (S) is the main factor for defining the performance of a

sensor that is expressed by: S ¼ rf res
rNs

. If the refractive index of the
sensing layer differs by rNs, the frequency of the sensor differs
by rf res in the reflection or in the transmission spectra.
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2.3. U-shaped stub metamaterial unit cell

A tunable, dual-band stopband filter and a tunable single-band
antenna composed of four U-shaped stubs resembling the arms of
a ring unit cell is designed and shown in Fig. 1. Each U-shaped stub
of the ring operates as a high-low impedance transmission line
equivalent to a series LC resonator. The application of these U-
shaped stub results in a compact size of structure and a control-
lable harmonic frequency response, not possible using the basic
circular ring. A nanofluidic channel as a sensing layer is created
in the substrate of the unit cell. Each layer of the unit cell
microstructure is located at a distance h from the underneath layer
which includes SiO2 film with permittivity of 3.9.

Geometrical dimensions of the U-stub metamaterial are:
R ¼ 50lm , r ¼ 40lm, R1 ¼ 20lm, R2 ¼ 30lm,p ¼ 60lm,
h ¼ 7:5lm , g ¼ 8lm,Rs ¼ 8lm.
3. Results and discussion

In this section, we first examine the filter/antenna properties
and then the sensor properties will be investigated.

3.1. Filter/Antenna application

Recently, various computational approaches, such as finite ele-
ment, finite difference time domain, Finite-difference frequency-
domain have been used for computing parameters of microwave
and optical components including photonic crystals [76–86], vari-
ous types of filters [87–91], and electromagnetic devices [92–94].
In this paper, we used CST Microwave Studio (CST MWS) software
for predicting all outputs if the proposed structure. In detail, the
periodic boundary condition of CST MWS was used to numerically
predict all consequences of the proposed component. Here, trans-
mission and reflection spectra of the structure are investigated
where a normal incidence THz wave is illuminated. In this section
the refractive index of the sensing layer considers to be a constant
equal 1.6 and the properties of the filter/antenna are investigated
for various chemical potential. As illustrated in Fig. 2 b, the reflec-
tion spectrum is simulated and plotted for the proposed filter/an-
tenna device and for different chemical potentials of 0.4, 0.6, 0.8,
1, 1.2 and 1.4 eV. As observed in the results, reflection spectrum
exhibits a single resonance at 1.89, 1.95, 1.96, 1.98, 2 and 2.03
THz, respectively. Moreover, as the resonance frequency increases,
Fig. 1. Configuration of the single-layer U
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the corresponding depth increases, highlighting the adjustability of
the proposed structure and its sensing ability simultaneously.

The transmission spectrum exhibits two dips at 1.415 and 3.12
THz with bandwidths of 0.37and 0.42 THz and with lc ¼ 0:6eV and
Ns = 1.6 for a single layer of the U-stub metamaterial, where larger
values of the chemical potential result in resonances at higher fre-
quencies, as shown in Fig. 2 c. The quality factor is the ratio of res-

onance frequency to bandwidth as Q ¼ f r
B ¼

ffiffiffiffi

LC
p
R
L

¼ W0
R
L
. Consequently,

an equation for the RLC circuit can be written as: B ¼ R
L ¼ W0

Q , and
the bandwidth can be obtained as BW= Reff =L, where L is the induc-
tance and Reff is the effective electrical resistance [95]. As a result,
the strengthened coupling resistance increases, which in turn
widens the bandwidth of the stopband filter. The filter bandwidth
has a direct relationship with the effective electrical resistance.

Additionally, real permeability (l) of the unit cell is obtained to
further explore the characteristics of the filter/antenna for different
shapes of loop resonators. It is worth noting that l is derived from
S-parameters [96]. As illustrated in Fig. 2 a, the negative-
permeability of the unit cell induced negative group delay to cancel
the coupling currents, which causes device acts as a bandstop filter.
When permeability changes from a negative to positive amount, it
would cross zero, and a single band reflection occurs.

Regarding the antenna properties, radiation pattern of the
antenna is obtained where the chemical potential is set to 0.6 eV
and the refractive index is considered 1.6 and 1.3, as illustrated
in Fig. 3 a and b. The obtained gains are 14.9 and 15 dB at the res-
onant frequencies of 1.95 and 2 THz for Ns = 1.3 and 1.6.

The obtained gains for other chemical potential of 0.4, 0.8 and
1 eV are 14.5, 15.1 and 15.2 dB at their resonance frequencies
and Ns = 1.6, respectively.

Regarding the filter properties and the better understand of
bandstop filter mechanism, the electric field distribution through-
out the U-shaped stub is investigated. The effective refractive index
for the graphene plasmon (GPs) is neff ¼ b=k0 [4], where b is the
propagation constant of the GPs and k0 is the free space wavenum-
ber. According to the Fabry-Perot (F-P) model, the resonant wave-

length is keff ¼ neff leff
mþu

2p
, where leff is the effective F-P cavity length and

u is the phase shift of GPs and m can be regarded as the order of
resonance [28,29].

As illustrated in Fig. 4, at frequencies which the neff is small, the
resonance modes of the two adjacent unit cells in u-shaped stub
are strongly coupled, while the resonance exposes an inward cou-
-shaped stub loaded metamaterial.



Fig. 2. (a) Real permeability of Configuration of the single-layer U-shaped stub loaded metamaterial. (b) reflection and (c) transmission spectra for the U-shaped stub loaded
metamaterial and for four different chemical potentials of 0.4, 0.6, 0.8 and 1 eV.
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pling at the corresponding frequency of the decreasing edge of the
refractive index curve, i.e., 1.9 THz (Fig. 4). At the center frequency
of stopband, i.e. f = 1.4 THz, where the neff is high, the resonance
mode for the electric near-field exhibits the plasmonic hybridiza-
tion [97]. In this paper similar results for the second resonance fre-
quency of U-shaped stub metamaterial at three frequencies of 2.8,
3.3, and 3.5 THz as illustrated in Fig. 4, are obtained.

In what follows, the reflection and transmission spectra of the
U-shaped stub array for chemical potential of 0.6 eV when
Ns = 1.6 and various polarizations and also incidence angles are
investigated. Due to the structure symmetry, the reflection and
transmission resonances of the introduced filter/antenna-sensor
4

is non-sensitive to the polarization of incoming waves for TE polar-
ization as shown in Fig. 5a and b.

As the incident angle (TE polarization) increases, the first reso-
nance of the stopband and the antenna resonance and their corre-
sponding bandwidth remain almost unchanged for grades up to 40�,
as shown in Fig. 5c-d. However, the second band is more sensitive
to the incident angle and represents the same rejection band for
incident angles up to 10�for the TE- polarization.

When an electromagnetic wave excites the structure, four stubs
of the split-ring structure support in-phase current oscillations,
except in a narrow frequency range in which an antisymmetric
current is established and the E-field becomes parallel to the Z-



Fig. 4. Effective refractive index of the U-shaped stub loaded metamaterial at chemical potential of 0.6 eV and Ns = 1.6 and simulated magnitudes of electric near-fields in the
top layer of the unit cell at frequencies of 1.1, 1.4, 1.6, 2.8, 3.3 and 3.5 THz, respectively.

            (a)                                                                                                        (b)

Fig. 3. The radiation patterns of the filter/antenna-sensor. (a) at the resonant frequency of 2 THz and Ns = 1.3 with chemical potential of 0.6 eV. (b) at the resonant frequency
of 1.95 THz and Ns = 1.6 with chemical potential of 0.6 eV.

M. Esfandiyari, A. Lalbakhsh, S. Jarchi et al. Materials & Design 220 (2022) 110855

5



Fig. 5. (a) Reflection and (b) transmission curve as a function of polarization angle (phi) (c) reflection and (d) transmission curves as a function of oblique incidence at
chemical potential of 0.6 eV and Ns = 1.6 for TE polarization.
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axis. This condition leads to the excitation of a sharp asymmetric
line-shaped Fano resonance which can be seen in Fig. 5c and d.
As it is shown, the depth of the Fano resonance increases with
the increase of theta.
6

In addition, for the chemical potential of 0.6 eV and Ns = 1.6, the
U-shaped stub array reflection and transmission spectra are non-
sensitive under the polarization of incoming waves for TM polar-
ization, as shown in Fig. 5a and b.



Fig. 6. (a) Reflection and (b) transmission curve as a function of polarization angle (phi) (c) reflection and (d) transmission curves as a function of oblique incidence at
chemical potential of 0.6 eV and Ns = 1.6 for Tm polarization.
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Fig. 7. Reflection of the filter/antenna-sensor as a function of refractive index of the sensing layer and (a) chemical potential of 0.6 eV and (b) 1 eV.
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However, regarding the incident angle (TM polarization), the
first resonance of the stopband filter and its corresponding band-
width remains nearly unchanged for grades up to 40�. However,
the second band is more sensitive to the incident angle and repre-
sents the same rejection band for incident angles up to 10�for the
TM- polarization. The resonance frequency of the antenna is also
non-sensitive up to 20�for TM- polarization (see Fig. 6).

3.2. Sensor application

In this section, the sensitivity of the structure is investigated. The
scattering parameter [S11] of the filter/antenna-sensor defines the
electrical performanceof the sensor. It is calculatedandstudiedwith
changing the refractive index of the sensing layer (Ns) in the range of
1.3 to 1.6 and is shown in Fig. 7a and 7b. As shown in Fig. 7, the res-
onance frequency of the sensor, when thewave is reflected from the
structure, decreases with increasing refractive index of the sensing
layer. It is observed that sensitivity is 0.145 THz/RIU and 0.17 THz/
RIU at Ns = 1.5 when lc ¼ 0:6 and 1 eV respectively.
4. Conclusion

In this article, a tunable, dual bandstop filter and a single-band
antenna-senor is designed and simulated in the THz regime. The
central frequency of the filter and antenna-sensor is tuned by vary-
ing graphene chemical potential. The depth of reinforced reso-
nances of the structure can be improved by increasing the
number of graphene layers. The reinforced resonances in an inter-
val approximately frequencies of 0.01, 0.3 and 0.1 THz can be cov-
ered when the chemical potential is varied between 0.4 and 1 eV in
the first and second band of the filter and the single band antenna,
respectively. Additionally, a sensitivity of 0.145 THz/RIU is
achieved at Ns = 1.5 and in chemical potential of 0.6 eV.
8
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