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ABSTRACT
Many of the applications of photonic crystals and photonic crystal fibers require the periodic structure to have some
type of defect. In photonic crystal fibers a point defect defines the fiber core, whereas in photonic crystals a line defect
acts as a waveguide, and point defects act as cavities. The modeling of these defects usually either makes use of periodic
boundary conditions, by which the defect is replicated periodically, or models a photonic crystal of finite extent. How-
ever, some applications, for example the cut-off behavior of a defect mode where the field extends very widely, require
methods that can model a defect in an otherwise infinite and perfectly periodic structure. Here we present such a
method. It combines the method of fictitious sources with averaging over the Brillouin zone, and we apply it to study
the long-wavelength behavior of the fundamental mode of photonic crystal fibers.

Keywords: Photonic crystals, photonic crystal fibers, micro structured optical fibers, defect modes. Bloch modes, mul-
tipole methods.

1. INTRODUCTION

While photonic hand gaps-frequency ranges in which the propagation of light is suppressed through Bragg reflec-
tion-form the foundation of the technological potential of many photonic crystal structures, it is the introduction of
defects into an otherwise periodic medium (e.g., waveguides, cavities etc) that allows this potential to be realized. The
introduction of defects into photonic crystal structures gives rise to defect modes, the frequencies of which lie in the
band gap of the surrounding PC, and thus are localized.

To date, the modeling of defect modes in imperfect periodic structures has been undertaken using techniques that as-
sume a finite siructure-e-either explicitly or implicitly, as in supercell methods which periodically replicate a finite struc-
ture. While such methods work well for strongly confined modes, difficulties arise when the mode becomes extended.
The computational requirements of modeling a sufficiently large structure can then become overwhelming and lead to
inaccurate results if the mode is poorly confined. '

/

To handle such problems, as typically arise in studying a mode near cutoff [1,2,3], we have developed an exact theory
~or computing defect modes in a genuinely infinite 2D lattice, and we apply it here to study the long-wavelength behav-
~orof mierostruetured optical fibers (MOF). Not only does the theory handle MOFs with an infinite cladding, but also it
IS computation all y more efficient than other techniques when the size of the structure becomes large. This method thus
allows for calculations similar to those for conventional fibers, which, because of their relatively simple geometry, are
also I:?odeled with infinite claddings. Though the cladding in these fibers is actually of course finite, it is nonetheless
SUfficl~ntly large for possible modeling errors to be completely negligible. One might expect that with further improve-
ments In technology a similar situation will occur with MOFs: namely that their cladding becomes so large that con-
~ne~nt losses and other finite cladding effects are negligible, and therefore for MOFs to be well-modeled as having
infinite cladding.

Photonic Crystals and Fibers, edited by Waclaw Urbanczyk, Bozena Jaskorzynska, Philip St. J. Russell,
Proc. of SPIE Vol. 5950, 595002, (2005) . 0277-786X1051$15 . doi: 10.1117/12.620657

Proc. of SPIE Vol. 5950 595002-1



In Sec. 2 we develop the fictitious source superposition method (FSS) [4] for a simple (single cylinder) defect and
plane incidence, noting that the theory extends naturally to arbitrary incidence and general defects. Here, we focus
the three main conceptual ideas that lie at its heart. The immediate motivation for the development of this method \\
the need to resolve the issue of a possible cutoff of the fundamental mode of index-guided MOFs. Previous work
some of us [2], suggested that this mode does have a cutoff at long wavelengths. However, this conclusion was bas
on the extrapolation of results for MOFs with large but finite cladding. In Sec. 3 then, we apply the FSS method
study this issue, making use of the FSS's capability to model structures with genuinely infinite cladding. This is a d
manding problem, for which the FSS is eminently well suited, since the mode field becomes very large even at wav
lengths that are not much larger than the spacing of the holes in the MOF cladding. Finally, in Sec. 4 we discuss o
work and draw some conclusions.

2. THEORY AND IMPLEMENTATION

While ultimately we will be solving problems in 3D, for
convenience and simplicity we will outline the method in 2D,
explaining the salient differences and generalizations as we proceed.
In 2D, we begin by considering the solution in either of the two
fundamental polarizations, respectively Ell and HII, in which the

problem is solved in terms of scalar fields V(r) = E, and

VCr) = Hz, representing the components of the electric and
magnetic field vectors parallel to the axes of the cylinders. In either case,
(V2 +k~)V = 0, where k j denotes the wavenumber in the particular medium.

2.1. Nomenclature and definitions
The aim of this method is to model the modes of the structure shown
in Fig. 1, comprising cylinders of radius a arranged in a regular
lattice with lattice constant d , interlayer spacing h and with lattice
vectors e1 and e2• The central cylinder is either removed or altered
(e.g., by changing its radius or refractive index) to form a defect.

Fig. 1. Schematic of the geometry with cylinders
of radius a and refractive index nj in a back-

ground of refractive index ne• The defect is
formed by removing the central cylinder, or by
changing its radius, refractive index or shape.

V satisfies a Helmholtz equation

In the exterior vicinity of each cylinder centred at cj' we represent the fields in terms of a multipole expansions [5,6]

involving cylindrical harmonic functions,

n=-
(I)

where k, = kne• In (1), the Hankel function terms are sourced at the particular cylinder i ,while the terms involving
Bessel functions of the first kind are due to sources on other cylinders or are associated with an external applied field.
On the interior of cylinder j, the general form of the field is

n=-

(2)

where k, = kn., The Bessel function terms associated with coefficients {c~} denote the regular part of the field that is

source on the cylinder boundary while the Hankel function terms, with coefficients {q~}, correspond to the field gener-
ated by a possible interior source.

2.2. Fictitious Sources: Solution for a single scatterer
We now outline the first of the three key ideas, namely the use of fictitious sources that
tailor the field in useful and interesting ways, and which forms the basis of our construc-
tion of a defect mode. Beginning with a single scatterer, in which we embed a source
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characterized by coefficients qi = [q~] , the field inside the cylinder is given by (2), with the exterior field specified by
(1). Then, from the continuity conditions that apply at the boundary of the cylinder, we can write the outgoing exterior
field and the regular part of the interior field as

Only the first of these two equations IS Important to us, WIth the second being included tor completeness. In (j), the
source coefficients bi are expressed as a reflection ( It ) of the standing wave field a' that is incident on the cylinder

and a transmission (t) through the interface of the interior source qJ . The matrices R, t ,R' and t, are essentially
Fresnel coefficients in the cylindrical harmonic basis. Because the local field expansion in cylindrical coordinates is
well suited to the circular shape of the scatterers, these matrices are diagonal. If, however, the inclusions were noncircu-
lar, then the various matrices would be no longer diagonal, but instead dense.

We are now in a position to construct a defect mode for this simple system. This particular cylinder may be made to
vanish, as in the case of a defect, by choosing the fictitious compound source that compensates for the presence of the
reflected field. Making use of Eq. (3), we set bi = 0 and see that this may be achieved by embedding the fictitious

. ~-l~.
source qJ = - T Raj within the cylinder-a source which is dependent on the incident field. This is illustrated in Fig.
3 which shows that exterior field can be can be made identical to the incident field by choosing the appropriate embed-
ded source.

(a) (b) (c)

Fig. 3. Panels (a) and (b) respectively depict the intensity distributionof a plane wave in free space, and a plane
wave being diffracted by a dielectric cylinder. In panel (c), we see that the diffracted field outside the cylinder is
identical to that in (a) (i.e.. in the absence of a scatterer) when an appropriatesource is embedded in the cylinder.
The field inside the cylinder is non-physical.

While this pr. .cess is quite straightforward for a single scatterer, the complexity of the interrelationships between scat-
terers in the ful Imodel of a defect mode (with an infinite cladding) makes the direct solution of the problem exceedingly
difficult, if not impossible. .

2.3. The superposition method
The difficulty of choosing an embedded
source in a general situation may be over-
Come by the second of the key ideas,
namely the construction of the defect mode
from a superposition of solutions of ,qua-
siperiodic field problems. We thus embed
a source qi = <J exp (iko . ci) in each cylin-

der (located at c") of the lattice, phased in
a quasiperiodic manner. The defect mode
is then formed by a superposition of the

Fig. 4. (a) The quasiperiodicsource distribution. (b) After a 2D integration over
the Brillouin zone with respect to ko • only a single source at r = fo = 0 re-
mains.
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quasiperiodic field problems by integrating with respect to the Bloch vector ko over the first Brillouin zone (BZ)
reciprocal lattice.

The superposed solution then satisfies the wave equation and the boundary conditions, and is associated with a fict

source distribution which, for cylinder j at r = cj is q f exp (iko .cj )dko. This is the key step, with the BZ integt

eliminating entirely the fictitious sources in all but the primary cylinder (j = 0 ). The sole remaining sour,

r = ro = 0 is thus available to modify the response field and, in doing so, to formulate the defect mode.

In the case of 2D lattices, the integration over the Brillouin zone requires
the calculation of a computationally expensive double integral. This
efficiency problem can be overcome, however, by reformulating the
problem so that only a one-dimensional integration is required. The
reformulation is the third key idea, modeling the structure as a diffraction
grating with an embedded quasiperiodically phased line of sources
(Fig. 5) sandwiched between two semi-infinite photonic crystals, the
properties of which are modeled by the Fresnel reflection matrix R~

[7,8]. Our use of R~ is crucial in that it encapsulates the second
dimension of the BZ, eliminating one integration and simplifying the
solution of the problem to require only a one-dimensional BZ integration.

Fig. 5. Geometryof the model showingthe
grating and its fictitious sources, the defect
(i.e., the cylinder to be removed) and the
plane wave fields.

The following section digresses to reformulate the problem in terms of the grating model, after which we return to 1
construction of the defect mode.

2.4. Reformulation in terms of a diffraction grating model
We now consider a cylinder grating with embedded quasiperiodically phased sources and note, from Bloch's theorei
that V(r+di) = V(r)exp(iaod) where ao is the lateral component of the Bloch vector ko' From this quasiperiodicit
it follows that the coefficients in the multipole expansions (1) and (2) for cylinder j are given by

the solution of which is

In (7), the S/ are lattice sums

(7)

that charactenze the contributions to each multipole order due to the (linear) phased array of multipole sources that
represents the grating. Later, we will also make use of an alternative form of the Green's function,
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(8)

From (1), we see that the exterior field expansion is determined by the singular and non-singular parts of the field whic
are related by a field relation known as the Rayleigh identity. In physical terms, this states that the non-singular part c
the field is due to sources radiating from all other cylinders (of the grating) and to sources that are exterior to the grat
ing. The derivation of the exact form of the Rayleigh identity that is appropriate in this case requires the use of a Greei
function satisfvins the inhomogeneous Helmholtz eouation



(9)
this time involving the plane wave basis in which the direction sines and cosines of the plane waves are given by
sin {}q == aq / ke, cos (}q == z, /ke respectively.

W~ next formulate the field in the vicinity of the primary cylinder using an application of Green's Theorem

where the two line integrals run over the exterior boundary of the cylinder C and the boundary of the unit cell D. We
evaluate these two line integrals, respectively using the multipole representation (7) of the Green's function for I(C)

and the plane wave form (9) of the Green's function for I(D), and derive

(11)

(12)

Thus, we deduce

(13)

and indicates thai the regular (non-singular) part (a ) of the multipole field in the vicinity of the primary cylinder is due
to outgoing radiation from all the cylinders of the grating (Sb ) and to the incoming plane wave fields from above
(J~rl-)and below I J;r;). In (14), the matrices J~ effectively perform a change of basis converting upward and
downward propagating plane waves into the cylindrical harmonic basis. Combining this with the boundary conditions
(3), we are led III express the source coefficients (b) in terms of the embedded fictitious sources and the incident plane
wave terms

(15)

(16)
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The integral around contour D represents the source of incoming plane waves leading to the expression in (11). Corre-
spondingly for lIC), the multipole form of the Green's function (7), which comprises two terms, gives rise to an outgo-
ing field (i.e., the Hankel function terms) from cylinder C and standing wave terms (i.e., the Bessel function terms) that
are generated by all other cylinders of the grating. Finally, converting the plane wave terms in I (D) into the cylindrical
harmonic basis with the aid of the Bessel generating function, we deduce the field identity connecting the coefficients in
the multi pole representation of the field

It is important to recognize that since the field sources lie within the grating, the incoming plane wave fields in (15) are
due to reflections from the semi-infinite photonic crystal arrays (above and below the grating) of outgoing plane wave
fields sourced by the grating. These-outgoing plane wave fields comprise two parts: an incident specular field that
passes straight through the grating and a scattered field term that is sourced by the grating. The precise form of the tat-
ter'follows from evaluating the integrall(C), this time using the plane wave form of Green's function (9), since I(C)

~neJ'il~s the field that is outgoing from the grating. We thus derive

O",i'inmatrix form.



The matrices K~ again perform a change of basis (essentially the reverse of that associated with J~), this time
cylindrical harmonics to plane waves. Combining the results in (15) and (17), we are led to the following express
for the outgoing plane wave fields above and below the grating

where R~ = K~GR.J~,R~ = K~GR.J~,T; = I +K~GR.J~,T~ = I +K~GR.J~,

Q~=K~Gt, Q~=K~Gt . We see from (18), that in the absence of an

embedded source (i.e., with q = 0 ), the terms R~ and Tg are the plane wave
reflection and transmission scattering matrices of the grating for incidence
from above and below. The terms Q~q refer to the contributions to the
upward and downward going plane wave fields that are generated by the
embedded source.

2.5. Modeling of the semi-infinite mirrors
We now consider the properties of the semi-infinite stacks above and below the
grating and note that for complete modal confinement, the bulk crystals that
constitute these stacks need to be operated in a band gap--otherwise the exis-
tence of propagating states in the infinite cladding would preclude a defect
state. The aim here is to characterize the reflection of the semi-infinite crystal
in terms of plane wave scattering matrices R~, where f1- = R:f1+ and

f; =R:f;.

Fig. 6. Schematic of the structuremot
eled, showing a sourced gratingem-
bedded between semi-infinitephotoni
crystals, and the plane wave fields,
respectively sourced at the grating ant
reflected by the PC "mirrors" above
and below.

This we undertake by computing the Bloch modes of the bulk crystal using a transfer matrix method [7,8] where \
solve the eigenvalue problem

(1'

(21
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of the Bloch modes along the interlayer boundaries The fonn of the transfer matrix must be consistent with the struc
ture of the lattice and so, in (19), the scattering matrices R, T, R' and T', are derived from the grating scatterin
matrices R~ and Tg by applying geometric transformations that pad the layers to the correct thickness and shear th
unit cell to be the correct shape, consistent with the lattice vectors, by altering the field phase origins at the upper an,
lower interfaces according to

(2(

and Q = diagexp(iapsx) and P = diagexp(iXpsy), where Sx and Sy are the components of the lattice vector

ez = (sx,Sy)' Note that for a square lattice, e1 = d(l,O) and ez = d(I,O), while for a hexagonal lattice, ej = d(I,O) and

ez = del, ../3)/2 .



Truncating the matrices appropriately and solving (19), we derive a set of modes [f;T,ft] and Bloch factors

J.l = exp( -iko oe2) which may be partitioned into downward and upward propagating sets, and which are paired by re-
ciprocity and energy conservation arguments [5,8]. In the case of the downward propagating modes, we combine the
vectors f± columnwise to form matrices F±. Correspondingly, we can assemble the upward propagating modes col-
umnwise into matrices F d .

From here, it is a straightforward matter to calculate the reflection matrices R~ for the semi-infinite PCs, for incidence

from above and below. In the case of a field f; ,incident from above onto a semi-infinite PC, giving rise to a reflected

field (2+ , we may express the field matching condition at the interface with the PC as

(22)

with the right hand side of (22) representing a linear combination of downward propagating Bloch modes with ampli-
tudes c" = [c:]. The Bloch mode expansion in (22) contains no upward propagating modes since the slab is semi-

infinite and there are no sources of upward propagating modes. Then, eliminating c- , we deduce that

f2+ = R:f; where R: = r (r (. (23)

The reflection matrix R::, may be found in a similar manner and using symmetry arguments it may be shown that for
square and hexagonal arrays

(24)

The construction of the matrix R~ outlined above is straightforward in that it involves the solution of systems of linear
equations of full rank. Typically, in these calculations, we truncate the plane wave series to include terms with indices
p E [~5,5] or less. thus generating matrices whose dimension is l l x l l or smaller. Bloch mode methods are also

widely used in device design [9,10,11] which requires the device being modeled as being encapsulated in a supercell
whose width is sufficiently large to ensure that adjacent supercells are effectively isolated from one another. In such
cases the matrices that arise are much larger-a consequence of the size of the supercell and also the effective spatial
resolution that is required of the plane wave series. In some cases, however, it is desirable to work with a truncated ba-
sis of modes in order to capture cleanly the essential physics of the problem which may be associated with only rela-
tively few modes. The field matching equations (such as (22» are then no longer exact, in the sense that the dimension
of the modal basis is less than the dimension of the plane wave basis. In such circumstances, these need to be solved in
a'Ieastsquares sense. This can be achieved in a computationally attractive and analytically elegant manner by means of
orthogonality relations that emerge from physical constraints such as reciprocity and energy conservation. The deriva-
tion of these is somewhat lengthy and so we present only the results, referring the interested reader to [5,8] for the full
treatment. For the modes of the bulk crystal that are dealt with in this paper, the two key results are

~ ..

(27)
\ & & J \ - - J \ ":« r q J

.'~tisiJnportant to note that since the reciprocity theorem is geometrical in its origin, it is universally applicable. How-
,ever,tbe results which derive from energy conservation are applicable only to lossless systems.
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Thesefollow respectively from reciprocity and energy conservation and mirror the corresponding properties that are
satisfied by the transfer matrices

In (75) and (26), we have



The remaining step is to form the two-dimensional defect mode from a superposition of solutions of the problem associ
ated with a linear array of sources that are quasi-periodically phased. We begin with the relation b(k,ao) = Z(k,ao)q

and observe that for cylinder j which is associated with the source q/ (ao) = q exp(ijaod) , the corresponding multipoh

source coefficients are bi (k, ao) = b(k, ao)exp(ijaod) . When we superpose all solutions by integrating ove

ao E [-l! / d.st / d], only a single source associated with the primary cylinder remains, since < q ' (ao) >= q DiO' when
the averaging operator is defined by

(34)

(35)
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2.6. Formulation of the defect mode
The reflection conditions derived at the end of the previous section

- .. .•. - .•.

together with the outgoing plane wave form (18) and the representation for the multipole coefficients b express
terms of the incoming plane wave and fictitious source quantities (15) allows us to derive the homogenous form

b=Zq
which expresses the outgoing field around the primary cylinder in terms of the fictitious source that it contains. ]
Z is a function of both wavenumber k and Bloch vector component ao, i.e., Z = Z(k,ao) where

We can make immediate use of (29) to construct the modes of a simple waveguide. To understand this, imagine tha
set b = 0 as before, thus zeroing the outgoing field scattered by the primary cylinder. Because of the Bloch conditi
the outgoing field in the vicinity of each cylinder j also vanishes since b i = b exp(ijaod) = O. Thus, by setting b:

we eliminate the entire row of cylinders, thereby forming a waveguide. The mode is then given by the non-trivial s'
tion of the homogeneous system of equations

Zq=O (
which we locate for a given frequency k by scanning the Brillouin zone by varying the Bloch vector component
over the interval [-l! / d, l! / d] to locate a root of the equation

detZ(k,ao)=O. (:
The dispersion curve then follows by repeating this procedure over a designated frequency range. Furthermore, the
tual mode may be reconstructed from the corresponding null vectors of Z .

A simple extension of this technique enables us to modify the central row of cylinders, represented by the gratii
Physically, this may involve altering the cylinder radius, the refractive index or even the shape of the cylinder. In
cases, we model the altered characteristics by a reflection matrix RI, such that for an incident multipole field a, t

outgoing field from the altered cylinder is b = RIa. Since this modification is to be generated by a fictitious source

within the original cylinder, we must have b = Ra +Tq where R and T are the multipole reflection and transmissir
matrices of the original cylinder as before. Finally, we invoke the relationship (29) derived above and form the dispe
sion relation for this modified waveguide bv solving the homoseneous svstem of eauations

in the same way as outlined immediately above (32).

To construct the 2D defect mode, we set < bO (k, ao) >= 0 and require a solution of



by searching for roots k of the equation det < Z(k) > =0.

The theory, as outlined above, pertains to a two-dimensional problem for either of the two fundamental polarizations.
Its extension to three-dimensional fields, which are vector in nature, and which accommodate out-of-plane propagation
with a spatial dependence of expU[3z) , is quite straightforward and is outlined in [4]. The overall structure of the for-
mulation is identical, with only the nature of the search routine for the roots of the dispersion equation being altered to
suit the problem being tackled. In the case of a search for modes of a MOF, the defect acts as the fiber core and ~ corre-
sponds to the propagation constant of the mode, and we look for roots of det < Ztk, [3) >=0 which prescribe the disper-

sion equation neff = lleff (k) where neff = [3/ k .

2.7. Verification
We have validated the method by testing it
against altcrnati vc techniques (including the
commercial software RSoft BandSolve) for
computing waveguide modes and field modes
in photonic crystal fibers. In all cases. the
method gcnerates results of high accuracy in a
very efficient manner. Exemplifying this is
the computation of the fundamental mode of a
MOF using this (FSS) method and the
multipole utilities developed within our group
[12,13.]4]. The agreement between the two
calculations shown in Fig. 7 is excellent, as is Fig. 7. Axial component of the Poynting vector for the fundamental
the agreement between the calculations of the mode of a hexagonal MOF with a single cylinder defect at wavelength
effective refractive index. The FSS method A. / d .; 0.133. The structure has air holes of normalized radius
estimates I1d, =] .44933645 I3 while the a / d = 0.2 in glass of refractive index II = 1.45. The left panel shows
CUDOS MOF utilities [14] estimate that for a the mode reconstructed using the FSS method, while the right panel uses
finite structure with seven rings of holes the CUDOS MOF (multipole) Utilities in which the structure is modelled
neff = 1.4493364520 + il x 10-12 , where the as having 7 rings of holes..

small imaginary part corresponds to the leakage associated with the finite size.

While the above example, for a well confined mode, demonstrates that the FSS
method can replicate results from other methods whose accuracy, and limits of
accuracy, are well known, it does not bring out the real potential of the method,
designed to handle the more challenging problem of modeling extended modes
SUchas occur near cutoff or near the edge of a band gap. Accordingly, in our
next example (Fig. 8), we consider a highly extended mode formed using a
square lattice (with lattice constant d) having cylinders of radius a / d = 0.2
and refractive index of n = 3.0 in a background medium of index II = 1, with
the central cyli ndcr replaced by one of radius a / d = O.I7. Using a 40 point
Gaussian integration rule we were able to find, within three minutes, a defect
mode at a normalized frequency of d / A. = 0.32103515465 which subsequent
convergence studies showed was accurate to 11 significant figures. While this
mode can also be found using the commercial software RSoft BandSolve
(:which uses a supercell method based-on plane wave expansions) in a similar
ume, the same accuracy cannot be achieved.

- 10 I n - X

- 10 - 5 0 5 10
Fig. 8. Electric field intensity in an E
polarized defect mode in a square lat-
tice with a / d = 0.2 , the central cyl-
inder of which has been replaced by
one of normalized radius 0.17

3. LONG WAVELENGTH PROPERTIES OF FUNDAMENTAL MODE IN INDEX-GUIDED MOF
While ~e modes and their cut-offs in conventional step-index fibers are well understood, the situation for index guided
photomc crystal fibers (PCF) is less clear, particularly as the problem has no closed-form solutions. In all of the previ-
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ous theoretical work, the problem has been solved for problems which are subtly different using either supercell
ods or modeling a finite structure [15].

Previously, our group investigated the long wavelength behavior of the fundamental mode by considering a MOl
finite cladding, and then extrapolating the results to structures with infinite cladding [2]. In these, the medium 01

the micro structured cladding was taken to be solid glass and it was found that in MOFs with finite cladding, the I

area is limited to the core at short wavelengths, and covers the entire cladding cross section at long wavelengths.
tween these extremes, the modal area grows rapidly with wavelength, a process that is associated with strongly inc
ing confinement losses. In contrast with the behavior of the second mode [3], an extrapolation procedure shower
the width of this transition region remained finite in the limit that the cladding becomes infinite, leading to a some
controversial interpretation that a cut-off did exist for the fundamental MOF mode [2]. The need to clarify the exist
or otherwise of the "cut-off', in fact, motivated the development of the FSS method [4,16] .

.Il./d=0.133 .Il./d=0.5 .Il./d=1.1 .Il./d=1.6
Fig. 9. Axial component of the Poynting vector for a finite PCF with a 3 ring cladding
(top row) and PCF with an infinite cladding (bottomrow) for the specifiedwavelengths.

The first of the results obtained using the FSS method are presented in Figs 9 which shows contour maps of the ax
component of the Poynting vector for the fundamental mode of a hexagonal MOF with a / d = 0.12 and backgrou
refractive index n = 1.45. The lower row shows results for an infinite cladding while, in the upper row, results foi
finite structure with a three ring cladding are presented. The various columns correspond to different wavelengths, j

creasing from left to right. The wavelengths have been chosen to accord with the results for a finite MOF [2] for whi
at .Il./d=0.133 the fundamental mode exists, while for .Il./d=1.1 and .Il./d=1.6 the mode is cut off. The intermedia
wavelength shown, .Il./d=O.5, corresponds to the transition region. It is clear from Figs 9 that the mode does not cut c
at the longest wavelengths, in contrast to the conclusions reached earlier [2]. Note further that only at the longest wav
lengths do the energy density in the infinite and finite cladding MOFs differ significantly, and that the field in the fib
with finite cladding is actually better confined than that in the structure with the infinite cladding [17].

In order to study the cutoff of the fundamental mode in more detail we consider Figs 10, in which the left-hand pam
shows the difference of the effective mode index neff and the effective index of the fundamental space filling modi

nfsm ' the latter playing the same role as the cladding refractive index in conventional guided-wave structures [1]. Ind;
cated are results for structures with a infinite cladding (solid curve), as well as structures with a finite cladding (long
and short-dashed curves). When neff > nfsm the field in the cladding region is evanescent, whereas otherwise it is propa
gating. At short wavelengths, the effective indices of the fundamental modes in all structures are roughly the same, am
well above nfsm• This is because the field is confined strongly to the core, decaying substantially when it reaches thl
outer edge of the cladding.
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Significant differences between the MOFs with finite and infinite cladding become apparent at longer wavelengths. In
the MOF with the infinite cladding, as the wavelength increases, the effective index of the mode approaches nfsm from
above, but never crosses it. This indicates that, in the infinite structure, the fundamental mode is always evanescent in
the cladding. It is thus always guided and does not cut off, consistent with the conclusion from Figs 9. The behavior of
the structures with finite cladding is different: as the wavelength increases, they deviate from each other, and eventually
drop below nfsm, indicating that the field is not evanescent in the cladding region. Indeed, the losses of these modes
(not shown here) increase rapidly to the point where confinement is effectively lost [2].

The long wavelength behavior for MOFs should be compared with that of a w-fiber, a conventional fiber in which the
core is surrounded by a finite ring of low refractive index, which, in tum, is surrounded by a region with the same re-
fractive index as the core (right-hand side of Figs 10). It thus has a finite cladding and is the equivalent of the fiber we
have considered thus far, but consists of piecewise uniform material. The right-hand side of Figs 10 gives the same in-
formation as the figure on the left, i.e., it shows the effective index of the fundamental mode for structures with infinite
(solid) and finite (long- and short-dashed lines) cladding. The only difference is that nfsm is now replaced by the con-
stant cladding refractive index. From the similarity of the two figures, we conclude that the cut-off behavior of the fun-
damental modes of MOF structures and of w-fibers, are qualitatively the same. This conclusion is strongly supported by
considering the field plots in the w-fiber, essentially the equivalents of Figs 9. However, we do not show these results
[16] here.
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>::
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Fig IO.Left: difference of the effective refractive indices of the fundamentalmode in a PCF with infinite cladding (solid
curve). and a finite cladding of 9 rings (long-dashed)and 3 rings (short-dashed),and the effective index of the funda-
mental space filling mode nfsm' The PCF parametersare the same as for those for Figs 9. The dotted line, indicating
Thezero level, is included for convenience. Right: correspondingresults for a w-fiber, the conventionalequivalent. The
COreof this fiber has a radius a and a refractive index n = 1.45 . The cladding has a radius r and a refractive index
n = 1.43. The region outside the cladding has a refractive index n = L45 .

Even though we have found that the fundamental mode in a index-guided MOF does not h~ve a cutoff, the existence of
the transition region, found from the properties of MOFs with finite cladding [3], is genuine. One may ask the signifi-
ctm,ce ~f this region in light of the results obtained for MOFs with infinite cladding. Preliminary results show that this
~gton 15 to be interpreted as the wavelength interval over which the fundamental mode's spatial extent increases sig-
nUlCantly.

\Ve are therefore led to conclude that at long wavelengths, index-guided MOFs behave similarly to conventional fibers
[18]. Of c~urse this IS not true at short wavelengths, where MOFs can exhibit endlessly single-mode behavior [1,2]. The
analogy WIthconventional fibers can be straightforwardly analyzed quantitatively; even at A. / d = 1.6 , the longest wave-
length considered here. nb -nfsm "" 0.023, where nb is the refractive in the core. We can therefore understand the domi-
nant field COmponent of the mode using the scalar approximation [19]. We find that at this wavelength the transverse
Wavevector k has a mall al h th -3 . . .

.l. S V ue sue at k.l.d ""7 x 10 . In analogy with conventional fibers, therefore, we expect the
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field of the fundamental mode in the cladding to vary, on average, as Ko(kl.r), where Ko is a modified Bessel fu
We have confirmed this numerically. We may use this approximation to estimate the effective mode size. Doing
can estimate the approximate radius lil2 where the average field intensity decays to half the value at the core edge

by p = d 1.J3 [18]. At AI d = 1.6, we find that 'i/2 "" 200d , so the mode field extends over hundreds of periods;
knowledge, no conventional computational method exists that can be used to calculate such large modes.

4. DISCUSSION AND CONCLUSIONS
We have developed the FSS method in order to calculate the properties of infinite structures that are periodic, apar
a localized defect. In a sense this is a generalization of our previous work in which we used the matrix R_ [7,8]

termine the properties of line defects in otherwise genuinely infinite periodic structures. In these calculations R_
acterizes the media on either side of the waveguide. In a sense, the calculation here, which is for point defects, ~
how to "surround" the defect by a periodic structure on all four sides, rather than at just two. One may query the
that the method in fact calculates the properties of genuinely infinite structures. The answer to this question hing
the Brillouin zone integration described in Sec. 2.6. While the use of an elementary integration rule like the rect
rule is, in effect, equivalent to periodic boundary conditions in the associated directions, this conclusion cann
drawn for more complicated integration rules such as Gaussian integration. In our calculations we have used a nu
of different integration rules and have obtained essentially the same results each time. We therefore conclude tha
calculations indeed do give results for a genuinely infinite cladding.

Further, our method has allowed the first rigorous study of the long wavelength behavior of a MOF with truly inl
cladding. As mentioned in Sec. 1, some of us had suggested on the basis of numerical extrapolation techniques, tha
fundamental mode of MOFs could be cut off at long wavelengths, which the present, more accurate, study contrac
As is evident from Fig. 9, the fundamental mode of solid core MOFs is localized around the core at short wavelen,
but expands very rapidly into the cladding with increasing wavelength. This behavior is essentially the same as th,
the fundamental mode of standard step index fibers. However, in the case of MOFs with finite cladding, the fundar
tal mode does get cutoff at finite wavelengths. Furthermore, the cutoff wavelength scales as the square root of the I,
rithm of the cladding size [20], a pathological form of variation which invalidates the numerical extrapolation t,
niques applied in [2]. This however, does not invalidate our previous conclusions on the wavelength ranges in wI
MOFs can be operated remain unchanged. Indeed, recent experimental work has demonstrated the reality of the fui
mental mode cutoff in MOFs, with excellent quantitative agreement with our previous predictions [21].

In conclusion, we have presented the FSS that can be used to calculate the modes in infinite periodic structures wi
localized defect. The method relies on three conceptual steps: the use of virtual sources, Brillouin zone integration,
the use of scattering matrices R_ for a semi-infinite periodic structure, to reduce this integration to a line integral.
note that a technique involving virtual scatterers for in-plane propagation was recently reported by Ludwig and LeI
than [22]. The key difference with our method is that we use a fictitious compound source at the centre of the scatten
while Ludwig and Leviathan use sets of dipole sources placed near the boundaries of the scatterers. Our method can
applied to both in-plane and out-of-plane propagation, corresponding typically to 2-dimensional photonic crystals,
MOFs respectively. Here, however, we have applied it to the latter geometry in which we studied the long-wavelen,
behavior of the fundamental mode. The FSS method is particularly well-suited for this problem since the mode fit
becomes extremely large in this limit.
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