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ABSTRACT Electricity theft is considered one of the most significant reasons of the non technical losses
(NTL). It negatively influences the utilities in terms of the power supply quality, grid’s safety, and economic
loss. Therefore, it is necessary to effectively deal with the electricity theft problem. For detecting electricity
theft in smart grids (SGs), an efficient and state-of-the-art approach is designed in the underlying work
based on autoencoder and bidirectional gated recurrent unit (AE-BiGRU). The proposed approach consists
of six components: (1) data collection, (2) data preparation, (3) data balancing, (4) feature extraction, (5)
classification and (6) performance evaluation. Moreover, bidirectional gated recurrent unit (BiGRU) is used
for the identification of the anomalies in electricity consumption (EC) patterns caused due to factors like
family formation changes, holidays, parties, and so on, which are referred as non-theft factors. The proposed
autoencoder-bidirectional gated recurrent unit (AE-BiGRU) model employs the EC data acquired from state
grid corporation of China (SGCC) for simulations. Furthermore, it is visualized from the simulation results
that 90.1% accuracy and 10.2% false positive rate (FPR) are obtained by the proposed model. The results are
better than different existing classifiers, i.e., logistic regression (LR), decision tree (DT), extreme gradient
boosting (XGBoost), gated recurrent unit (GRU), etc.

INDEX TERMS Autoencoder, bidirectional gated recurrent unit, deep learning algorithms, smart grid,
electricity theft detection, machine learning algorithms, synthetic theft attacks.

I. INTRODUCTION
Electricity is a great and significant favor of science to human
beings, which makes their life easier [1], [2]. It is used in
various sectors such as medical, agriculture, transportation,
industrial, commercial and residential. However, the electric
utility companies suffer from several challenges due to
losses in electricity transmission and distribution [3], being
partitioned into non technical losses (NTL) and technical
losses (TL). TL cover a small and unavoidable amount of
the losses incurred to the electric utility, e.g., transmission
line and transformer losses [4]. Whereas, the NTL cover a
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large amount of the losses. The reasons of the NTL include
interfering with the meter so that it can report less electricity
consumption (EC) value instead of the real EC to the utility,
bypassing the meter, meter readers reporting the false EC
values in return of some bribe, etc., [5]. The economic loss
faced due to the electricity fraud is greater than $25 billion
per year throughout the world. The USA suffers around
$1.6 billion loss annually while Fujian (China) suffers more
than ¥100 million loss per annum [6].

The manual meter inspection method is currently used
for detecting electricity theft, which is costly in terms of
human resource, money, and time. With the help of energy
data acquisition system, electricity theft detection (ETD) is
directed by some novel methods, which are distinguished

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 56863

https://orcid.org/0000-0002-6817-0757
https://orcid.org/0000-0003-3777-8249
https://orcid.org/0000-0003-4183-7221
https://orcid.org/0000-0002-0412-7127
https://orcid.org/0000-0001-9070-6821
https://orcid.org/0000-0002-0718-4442


Pamir et al.: NTL Detection Using AE-BiGRU to Secure SGs

into network, data and hybrid methods [7]. In the first type
of methods, ETD is performed by learning the historical
EC data. With the exponential growth in the development
and usage of the artificial intelligence (AI), the data based
methods are well-suited options for ETD in smart grids
(SGs) [8] and [9]. These methods are further grouped
into supervised learning methods and unsupervised learning
methods. In the supervised learning methods, labeled data is
employed for training the algorithms [10]. The supervised
data based methods include wide-and-deep convolutional
neural networks (WDCNNs) [11], hybrid deep neural net-
works [12], support vector machine (SVM) [13], etc. These
methods are trained to perform binary classification for ETD
in SGs, and they give the best performance. However, the
labeled data are needed to train these models, which are
rarely available. If available, the data imbalance issue exists.
The imbalance is between the normal data samples and
the abnormal data samples. The imbalance is due to easy
availability of the normal users’ EC data in real environment
as compared to abnormal users’ EC data. One-sided, biased,
and skewed decisions towards the class with higher number
of samples, i.e., honest class, are made due to data imbalance
issue. It also causes the model to have high false positive
rate (FPR) value.

The authors in [13] proposed an SVM based consumption
pattern based ETD (CPBETD) model for binary classifica-
tion. However, the curse of dimensionality issue is ignored,
which results in a high FPR that leads to increase in the
cost associated with on-site inspections. Moreover, using the
transformer meters and k-means clustering technique,
the CPBETD is made strong against the identification of
the EC pattern irregularities because of the non-theft reasons
(drift). However, the CPBETD is still inappropriate in identi-
fication of the anomaly due to drift and that is why it achieves
high FPR value. Furthermore, as discussed previously, the
authors in [11] and [12] proposed WDCNNs and hybrid
deep neural network for efficient ETD in SG, respectively.
However, the concept of drift is not considered in these
articles. This is another issue due to which ML models
generate high FPR value. Drift means the irregularities in
the EC patterns due to the non theft factors such as holidays,
changes in the number of residents in a family, and changes
in the number of electric appliances.

There is a special need of developing a modern approach
to efficiently deal with the above challenges. An efficient and
state-of-the-art approach is designed for ETD in SG based on
the autoencoder and bidirectional gated recurrent unit (AE-
BiGRU). The major contributions made in the underlying
work are listed below.
• An AE-BiGRU theft detector is developed for efficient
and effective ETD in SGs. For dealing with the curse of
dimensionality issue, the autoencoder (AE) algorithm is
used.

• We implement six synthetic theft attacks to tackle
the data imbalance or inadequacy of the minority
class data.

• We employ the BiGRU model to deal with drifts. The
BiGRU has long term memory, which makes it able to
learn long term temporal correlation and identify the
drift easily.

• The dropout regularizationmethod is added in BiGRU to
avoid the proposed AE-BiGRU model from overfitting
issue.

• To stop the proposed model from trapping into the local
optima, Adam optimization method is employed.

• For dealing with the missing values, simple imputer (SI)
is used. While for tackling outliers, three sigma
rule (TSR) of thumb is used. Whereas, for handling the
unscaled data present in the selected dataset, min-max
scaler is employed.

The organization of the remaining manuscript is done in
the following manner. Section 2 analyzes the related work.
Sections 3 and 4 describe the problem statement and the
system model proposed in the underlying study, respectively.
The results obtained from simulations are elaborated in
Section 5. At the end, the concluding remarks and future work
of the paper are given in Section 6.

II. RELATED WORK
The work done in the field of ETD in SG is discussed in
this section. The work is categorized into hardware, game
theoretic and artificially intelligent literature. In hardware
based category [14]–[16], some hardware instruments are
employed to deal with the electricity theft. For instance,
in [14], the authors proposed a hardware based solution for
ETD in SG. They use some sensors possessed by the smart
meter (SM) to indicate the electricity theft. However, the
installation and maintenance of these additional hardware
devices need additional cost.

ETD is taken to be a game played between electric
utility company and the electricity thief in game theory
methods [17]–[19]. The key objective of these game theory
based approaches is to achieve the Nash equilibrium for
the game between the electric company and abnormal
consumer. As no hardware equipment is involved in these
ETD approaches, so no additional cost is required, hence,
game theory based methods are cheaper than the hardware
based ETD methods. However, the game theory based ETD
solutions are also not the suitable approaches to deal with
the electricity theft problem due to the reason that it is
very difficult to find an optimal and satisfactory equilibrium
between the malicious users and utility.

In AI based literature [20]–[33], the authors employed AI
related techniques in order to detect the theft of electricity
using EC data provided by the SM. In [20], genetic algo-
rithm (GA) is employed for adjusting the hyperparameters’
values. However, synthetic minority oversampling (SMOTE)
is used for data balancing that causes the proposed model
to overfit. The authors in [21] employed some ensemble
boosting and bagging techniques for ETD in SG. The SMOTE
is used to tackle the data imbalance problem. The results show
that high true positive rate (TPR) and low FPR are achieved
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by the bagging techniques, i.e., extra trees and random forest
(RF). However, data balancing is performed via SMOTE,
where, the models tend to overfit. Moreover, an improved
SMOTE, i.e., k-means clustering SMOTE (K-SMOTE) based
data balancing and improved RF based electricity theft
classification is done in [22]. The proposed method provides
accurate and reliable locations for manual on-site inspection,
so that NTL is reduced and the power system’s stability and
reliability are improved. The computational overhead of the
proposed technique is also reduced as the decision trees (DTs)
in RF are working in parallel. In [23], convolutional neural
network (CNN) is used in combination with long short term
memory (LSTM). For extracting important features, CNN is
utilized.While the LSTMdetects electricity theft. In addition,
the unbalanced class issue is resolved by generating the
synthetic data of the theft class using SMOTE. However,
SMOTE leads the proposed model to the overfitting problem.

In [24], the authors proposed a model that performs
conditional wasserstein generative adversarial network based
data balancing to deal with unbalanced data problem, stacked
convolution denoising autoencoder based feature extraction
to deal with the curse of dimensionality issue, and light
gradient boostingmachine based detection of electricity theft.
It is abbreviated as (CSL) classifier. In [25], the authors
proposed a conditional variational autoencoder (CVAE)
model for the augmentation of the data points to solve
the data imbalance issue. Moreover, feature extraction is
done by the encoder with the convolution layers to finally
achieve dimensionality reduction. Finally, the CNN classifier
is employed for ETD in SG. Furthermore, the authors in [26]
proposed a siamese network for electricity theft classification
in SG. Moreover, the imbalanced data issue is resolved by
the adaptive synthesis technique. In addition, in order to
make the proposed deep siamese model more generalized,
two dimensional EC data alongwith one dimensional EC data
are considered. The two dimensional data (i.e., weekly EC
data) are handled by the CNN, whereas, the one dimensional
data are handled by the LSTM.

In [27], a categorical boosting (CBoost) technique is
proposed for ETD. For handling the missing values in
the dataset, the k nearest neighbors (KNN) algorithm is
employed. Moreover, in order to deal with the issue of
imbalanced data, the SMOTETomek method is used. For
selection and extraction of the important features from the
dataset, the features extraction and selection based on the
scalable hypothesis (FRESH) technique is used. Finally,
the CBoost classifier is used to classify the electricity theft
in SG. Furthermore, a modern ETD algorithm, i.e., text
CNN is proposed in [28]. The datasets of both residential
and industrial type users are considered. The residential
EC dataset of the Irish users and the industrial dataset
of the Chinese users are utilized for ETD. Moreover, the
augmentation of the minority class data is done using a
newly proposed data augmentation technique. The authors
in [29] proposed a new model that is the combination of the
existing DT, KNN, and SVM models, termed as DT-KSVM,

for ETD in SG. The data augmentation is done using WGAN
to solve the imbalanced data problem. A two level detection
of theft is performed in this paper. The primary or first level
theft detection is done utilizing a popular similarity measure
method, whereas, the proposed DT-KSVM is responsible for
secondary level ETD in SGs. Futhermore, in [30], a modified
ensemble algorithm is designed for detection of the abnormal
EC behavior, called dynamic ETD algorithm. Moreover, the
imbalanced data issue is tackled using the hyperparameter of
the XGBoost, i.e., scale-pos-weight.

In [31], the authors considered the imbalance data problem,
high dimensionality issue, and classification. SMOTE and
near miss (NM) are used in combination to resolve the data
imbalance issue. The combined model is termed as SMOTE-
NM. Moreover, to solve high dimensional data problem, the
residual networkmodel is utilized. The suitable adjustment of
the hyperparameters’ values of the adopted classifiers is done
using the bayesian optimization algorithm. RF, Adaboost, and
DT are employed for ETD in SGs. Results show that RF
outperforms other employed algorithms in terms of FPR and
false negative rate (FNR). Furthermore, another state of the
art solution for ETD is designed in [32]. The theft detection
is done using the XGBoost model. The Irish EC dataset
is employed for ETD. The proposed classifier outperforms
the other existing classifiers in terms of accuracy and FPR.
In [33], the authors designed another state of the art technique
that is capable of efficiently dealing with fault and privacy
disclosure issues. So a new fault and privacy maintained
ETD is proposed, termed as FPETD. Moreover, principal
component analysis (PCA) is employed for tackling the curse
of dimensionality issue. The superiority of the proposed
model over the existing models with respect to accuracy is
shown via simulations. However, the computational overhead
is high. Furthermore, the authors in [34] presented a novel
deep learning (DL) algorithm, i.e., gated recurrent unit (GRU)
for theft classification in SGs. Moreover, the unbalanced data
problem is tackled using the application of the synthetic six
theft attacks. The state grid corporation of China (SGCC)
utility corporation’s dataset is employed for model training
and testing, which is one of the high dimensional datasets in
engineering applications that consists of 1035 features. The
results show that GRU achieved better results in comparison
with the benchmark SVM model with respect to accuracy,
FPR, AUC score, F1 score, recall, and precision. However,
curse of dimensionality problem is neglected.

III. PROBLEM STATEMENT
In [11] and [12], a CNN with the wide-and-deep learning
ability and a model that combines MLP with LSTM are
proposed for detecting the theft of electricity in SGs.
Nevertheless, data imbalance problem is ignored. Generally,
the normal class EC data are available in a large amount in
real environment, whereas, the theft data are rarely available.
So a ML model learns the normal class samples to a
great degree in comparison with the minority class samples.
Finally, the model looks skewed towards the majority class
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TABLE 1. Details of dataset.

and generates false results in terms of the minority class
samples. It means that the model is biased that leads to high
FPR value, where, high FPR results in high on-site inspection
cost. Moreover, the drift is also neglected by these articles.
Ignoring the drift causes high FPR value that is directly
proportional to the on-site inspection cost. Moreover, only
one layer is involved in the wide component of the model
proposed in [11] for 1D data analysis, which leads the model
to local optimal trapping problem.

In [13], an SVM based CPBETD approach is proposed
for detecting electricity theft in SG. However, the curse
of dimensionality problem is not considered. Curse of
dimensionality issue refers to a concept that occurs when
dealing with the high dimensional data; the classification
error increases if the number of features increase. Neglecting
the curse of dimensionality issue results inmodel’s overfitting
that leads to high FPR value, which simply implies the high
on-site inspection cost. Moreover, the proposed model deals
with drift by using the k-means clustering technique and
transformer meters. However, the mechanism employed by
the proposed model for drift identification is still not suitable
and it results in a high FPR value (11%).

In [20] and [21], SMOTE data balancing technique is
employed to deal with the imbalance data problem. However,
employing SMOTE for balancing the data leads to the
model’s overfitting issue. In addition, SMOTE is not an
appropriate choice for the time series sequential data. Further-
more, the selection of the suitable performance parameters is
necessary for a model’s effectiveness evaluation. However,
authors in [6] and [13] ignore the selection of appropriate,
suitable, and reliable performance measures.

IV. PROPOSED MODEL
The system proposed in this work for ETD is presented in
Figure 1, which consists of six different modules: data col-
lection, data preparation, data balancing, feature extraction,
classification module, and performance evaluation. These six
modules are elaborated in the current section.

A. DATA COLLECTION
SGCC provides the EC data that is being used in the
underlying work [35] for simulations’ purpose. The data are
labeled. A limited number of theft records are there in the
dataset. The dataset has the consumer number column, daily
basis EC data (1034 columns of EC data), and the flag or label
column that consists of 0 and 1, where, 0 represents the honest
user and 1 represents the theft consumer. More details related
to the dataset are given in Table 1.

It is noteworthy that the SGCC dataset contains outliers,
missing values, and unscaled data. Therefore, data prepara-
tion is performed to deal with these issues.

B. DATA PREPARATION
In many cases, an EC dataset consists of some unscaled data,
missing values, and outliers due to multiple reasons, i.e.,
meter’s fault, storage problem, etc., [36]. To efficiently deal
with the unscaled data, outliers, and the missing values, min-
max scaler, TSR, and SI techniques are utilized, respectively.
The main working flow of the SI method is taken from [11]
and is shown in Equation 1,

f (xi,s) =



xi,s−1 + xi,s+1
2

if xi,s ∈ NaN , xi,s−1,

xi,s+1 /∈ NaN
0 if xi,s ∈ NaN , xi,s−1 or

xi,s+1 ∈ NaN
xi,s Otherwise,

(1)

where s and i show a specific slot, i.e., day and a specific
electricity user, respectively. xi,s is the EC data of the user i for
the day s. The next day’s EC data is given by xi,s+1 while the
previous day’s EC data is given by xi,s−1. Not a number (NaN)
shows the missing data while f (xi,s) is the result of the SI
implementation, which provides us with an imputed dataset.
Moreover, the missing values can be tackled through other
statistical techniques, such as moving average (MA), double
MA and exponential MA [37]. However, the selection of SI
method is made because the missing value is filled using the
previous and the next values’ average. Furthermore, SI adds
diversity in the dataset where statistical techniques lack. The
reason is that the mentioned statistical techniques fill missing
values with the duplicate values suggested by the moving
window, which lead to the overfitting problem.

More oftenly, in EC datasets, some outliers can be found,
which affect the ML models’ detection accuracy. So we use
an outlier removal technique, i.e., TSR in the proposedmodel.
The mathematical formulation of TSR of thumb is borrowed
from [11] and is presented in Equation 2,

f (xi,s) =

{
avg(X )+ 2.σ (X ) if xi,s > avg(X )+ 2.σ (X ),
xi,s Otherwise.

(2)

In the equation, multiple values of xi,s form the vector X . The
standard deviation is given by σ (X ) while the average value
of X is given by avg(X ). Finally, f (xi,s) presents the output of
TSR implementation. It means that f (xi,s) represents the non-
outlier EC data of a consumer i at day s. The reason for using
the TSR technique over other outlier detection techniques
(e.g., isolation forest (IF) and local outlier factor (LOF) [38])
is that it follows the principle of normal distribution where an
outlier is the one that deviates from the distribution; while
the normal value does not. This process makes the outlier
detection process accurate and efficient. Whereas, IF first
isolates a feature from the given dataset and then declares it as
an anomaly or not. By doing this, the computational overhead
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FIGURE 1. Overview of the model proposed for detecting NLT in SGs.

is increased to a greater extent. Similarly, LOF identifies
anomalies by checking the deviation of an observation from
its neighbors, which is not efficient for high-dimensional
data. Keeping these concerns in view, TSR is used, which is
a time and cost-efficient technique to remove outliers.

Furthermore, the min-max scaler technique is employed
to deal with the unscaled data to normalize it or bring it in
a particular range because the DL techniques are sensitive
to diverse data. The formula used for the normalization
technique is taken from [11] and is given in Equation 3,

f (xi,s) =
xi,s −min(X )

max(X )−min(X )
, (3)

where the lowest possible value of vector X is given by
min(X ) while the highest possible value of vector X is given
by max(X ). The term f (xi,s is the normalized output of the
min-max scalar. Moreover, several other normalization tech-
niques are available such as robust scalar and Z-score [39].

However, we have found the best performance results using
min-max scalar because it scales values between 0 and 1.
Whereas, the above mentioned techniques normalize values
in different ranges, which are not efficient for the accurate
training of the classificationmodel. That is the reason of using
min-max normalization in this work.

C. DATA BALANCING
A dataset is considered imbalanced if there is a huge
difference in the number of observations of the normal
and abnormal classes. Due to imbalanced data, in testing
phase, the model will be biased towards the normal class,
which minimizes the abnormal or theft detection accuracy.
So to achieve good and satisfactory theft detection accuracy,
we need to balance our data first and then train the ML
algorithm. Many data balancing techniques are used in the
existing literature such as SMOTE [20], [21], CVAE [25],
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ADASYN [26], etc. SMOTE is most widely used by many
researchers in the literature for data balancing. However,
SMOTE creates model overfitting issue. Therefore, in this
research, synthetic theft attacks [40] are employed for
dealing with the issues of data imbalance and model
overfitting. In addition, theft attacks based synthetic data
generation is most suitable for the time series data. These
attacks successfully maintain the non-linearity in the EC
patterns.

The dataset (SGCC) we considered for the analysis is of
imbalanced nature, where the imbalance nature is dealt with
using the theft attacks. For denoting the electricity user’s EC
data, et is used where (t ∈ [0, 1034]). In the dataset, we have
EC data of 1035 days. The mathematical representations for
the synthetic theft attacks are taken from [40] and are given
in Equations 4-9,

t1(xi,s) = xi,s ∗ random(0.1, 0.9), (4)

t2(xi,s) = xi,s ∗ rs, rs = random(0.1, 1), (5)

t3(xi,s) = xi,s ∗ random[0, 1], (6)

t4(xi,s) = mean(V ) ∗ random(0.1, 1), (7)

t5(xi,s) = mean(V ), (8)

t6(xi,s) = V1034−s, (9)

where V = {x1,1, x1,2, x1,3, . . . , x1,1034} represents the
overall EC values of a consumer. The six attacks mentioned
above are applied to the normal consumers’ EC data in order
to balance the normal and abnormal electricity consumers’
data of SGCC dataset. The considered SGCC dataset is
originally imbalanced. As the authors in [13] considered
the benign consumers dataset and synthetically generated
the theft data using theft attacks to balance the data.
Therefore, we also assumed that we have the dataset of
only benign consumers and synthetically generated the theft
data using theft attacks for data balancing. To avoid higher
time complexity, only 12000 data instances of 38757 benign
consumers’ EC data are selected for analysis purpose. The
theft attacks are applied for data balancing. Theft attack 1,
theft attack 2, theft attack 3, theft attack 4, theft attack 5,
and theft attack 6 are applied on benign data ranges 0-1000,
1000-2000, 2000-3000, 3000-4000, 4000-5000, and 5000-
6000, respectively. So the first 6000 records will become
theft consumers’ data, whereas, the remaining 6000 records
(starting from 6000 to 12000 records) are the normal data.
In this way, the dataset is balanced. Now, this dataset is
forwarded to the AE for extracting the necessary features to
achieve higher ETD accuracy and decrease FPR. Figure 2
displays the selected normal patterns while Figure 3 shows
the selected theft attack patterns. In the figures, the EC
patterns of a synthetic theft attack and a normal consumer
are depicted for 30 days (numbered from day 0 to day 29).

D. FEATURE EXTRACTION
To achieve an efficient solution for ETD in SG with
higher theft classification accuracy and lower FPR value, the

FIGURE 2. Electricity consumption pattern of a normal consumer.

FIGURE 3. Electricity consumption patterns of a consumer after applying
synthetic theft attacks.

feature extraction process is needed. However, the curse of
dimensionality problem is ignored by the existing studies,
which leads to the classifier’s overfitting issue that maximizes
the FPR value and minimizes the theft detection accuracy.
Therefore, we employed a powerful method for the extraction
of the key features, i.e., AE [6]. Feature extraction is a sub
type of feature engineering that is used for dimensionality
reduction, which is performed by deleting the redundant
and irrelevant data [40]–[42]. Feature extraction results in
lower computational and storage overhead as well as higher
classification performance.

AE [6], [44] is one of the popular feature extraction
techniques that consists of two modules: encoder and
decoder. Encoder transforms the original input data into
the lower dimensions (compressed representation) while
the decoder seeks to recreate the original input from the
compressed representation provided by the encoder module.
When training the encoder and decoder modules, the target
is to recreate the original input data with minimum recon-
struction loss. After model training, only encoder module
is employed for feature extraction [44]. Furthermore, it is
important to mention that AE efficiently compresses the
original representation of EC data into a low dimensional
feature space and then learns non-linear patterns from it.
This unique property of AE makes it superior over other deep
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FIGURE 4. Generic framework of GRU.

feature extractors. This is the reason of using AE as a feature
extractor in this work. Moreover, the encoding process of AE
is taken from [6] and is presented in Equation 10,

f = a(wx ∗ xt + bx), (10)

where, a(.) represents the activation function, f shows the
extracted feature vector,wx represents the input weight and bx
represents the bias term of the input value. Moreover, in AE
feature extractor, we use four Dense layers having 800, 400,
200, and 100 neurons, respectively, to compress (encode) the
original EC data into lower dimensions. For each Dense layer,
we employ ReLU as an activation function.

E. ELECTRICITY THEFT CLASSIFICATION
To classify the electricity theft, the BiGRU model [43] is
employed. In the primary DL networks and their subsequent
models such as CNN, weights’ updation is conducted during
the backpropagation process. Due to which the exploding
and vanishing gradient issues occur. Therefore, recurrent
neural networks (RNN) were designed to deal with these
issues, such as LSTM and GRU. On the other hand, LSTM
is also not a good and suitable model as it has high time
complexity and has numerous parameters in comparison with
the GRU. TheGRU is amore suitable classification technique
as compared to conventional DL approaches, i.e., MLP, CNN,
and LSTM. Furthermore, GRU extracts the features that are
beneficial to detect the presence of energy theft. A generic
architecture of GRU is depicted in Figure 4 [44]. The GRU
has update gate and reset gate. The former gate assists the
GRU algorithm to decide about the historical data that is to be
moved ahead. Whereas, the latter gate is used in the model to
determine that howmuch of the previous knowledge to forget.
The complete computations of the update gate, reset gate,
candidate hidden state and the new hidden state are given in
Equations 11-14 [44], respectively. The process flow of GRU
from the input to the output is given in Figure 4.

vt = {sigmoid ∗ (Wvxt +Wvht−1 + bv)} , (11)

rt = {sigmoid ∗ (Wrxt +Wrht−1 + br )} , (12)

h′t = {tanh ∗(Wxt +Wrt � ht−1)} , (13)

ht =
{
vt � ht−1 + (1− vt )� h′t

}
. (14)

FIGURE 5. Generic framework of BiGRU.

In the above equations, vt , rt , h′t , and ht represent the update
gate, reset gate, candidate hidden state, and the new hidden
state, respectively. W , ht−1, and b show weight, hidden
state at previous time step, and the bias term, respectively.
Moreover, the terms tanh represents the hyperbolic activation
function. The symbol � represents Hadamard product.

Generally, the bidirectional models have a special property
of learning information from the previous as well as the sub-
sequent (future) data in order to predict the current data [45].
BiGRU is an enhanced version of the GRU. It is widely
utilized in various domains like optical communication [45],
network security [46], structural damage recognition [47],
natural language processing [48], etc. However, it is narrowly
used in engineering applications, specially in ETD [43].
Therefore, in this work, we employed the BiGRU for ETD
in SG for further investigation. The generic architecture of
BiGRU is shown in Figure 5 [45].

The BiGRU technique is the combination of two GRUs
that are unidirectional in completely different directions [45].
One GRU, i.e.,GRU1 (also called forward GRU) moves from
left to right side and the second GRU, i.e, GRU2 (also called
backward GRU) moves from right to left side. Consequently,
the information traverses from right to left and then in
the opposite direction during the final prediction, where it
allows to predict the current data and observations using
the information from the past and future states. The basic
working mechanism of BiGRU is that the input data sequence
is initially passed through backward and forward neural
networks. Then, the output result of both are connected and
combined at the same output layer. For theft classification,
we use five layers: two BiGRU layers, a flatten layer,
a dropout layer, and a dense layer. We employ 50 neurons
in both the BiGRU layers, and use 0.2 dropout probability
value for Dropout layer. Finally, we employ 1 neuron and
sigmoid activation function for Dense layer to obtain the
output. Furthermore, an important property of BiGRU is that
it has a long term memory, which makes it able to learn
and retain the long term temporal dependencies between
the features. It helps BiGRU to detect electricity variance
in different consumption circumstances such as holidays or
parties, and easily differentiate between the real abnormal
pattern and drift. The BiGRU model’s process flow is
modeled mathematically using the Equations 15-17 [45].

−→
ht = GRU1(xt ,

−−→
ht−1), (15)
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←−
ht = GRU2(xt ,

←−−
ht+1), (16)

hut =
−→
ht ⊕

←−
ht , (17)

where
−→
hut ,
←−
ht ,
−−→
ht−1 and

←−−
ht+1 show the newly updated states

ofGRU1 andGRU2. The symbol⊕ denotes the concatenation
of two vectors.

F. PERFORMANCE EVALUATION METRICS
ETD is a binary classification task, which is performed to
classify an EC pattern as either theft or honest. The most
efficient and reliable performance evaluation metrics for this
task are accuracy, FPR, AUC, recall, precision, and the F1
score. The results can be generated in terms of the confusion
matrix that consists of four sub parameters: TPR, FPR, FNR,
and true negative rate (TNR). These parameters are defined
below.
• FPR: when an actually honest EC user is predicted as
fraudulent via the classification technique.

• TPR: when an actually fraudulent EC user is predicted
as fraudulent via the classification technique.

• TNR: when an actually honest EC user is predicted as
honest via the classification technique.

• FNR: when an actually fraudulent EC user is predicted
honest via the classification technique.

TNR and TPR show the correct classification, whereas, the
FNR and FPR show the misclassification. The fundamental
goal of ETD is to correctly detect the theft values, which
ultimately reduces the on-site inspection cost [3]. The
suitable performance parameters utilized for evaluation of the
proposed technique are described in the subsections below.

1) ACCURACY
The accuracy is not known as a suitable performance
evaluation parameter if the dataset is imbalanced [3]. The
reason is that even if a technique shows bad performance,
it still may have good accuracy value. It is due to the
model’s tendency towards the normal class. However, in our
scenario, we initially performed the data balancing using the
theft attacks. That is why, accuracy in our case is the most
suitable performance metric to perform efficient performance
evaluation. The formula used for calculating accuracy is given
in Equation 18 [49].

Accuracy =
TP+ TN

TP+ FP+ TN + FN
. (18)

2) AREA UNDER THE CURVE SCORE
AUC score is one of the important metrics used for
performance evaluation. It can also be called as the
separability measure. It shows the tradeoff between TPR
and FPR. High AUC score means high TPR and high TPR
shows model’s better classification capability. The AUC’s
calculation formula is taken from [11] and is given in
Equation 19.

AUC =

∑
i∈positiveclass RANKi −

M (M+1)
2

M × N
, (19)

where data sample i’s rank is given by RANKi, negative
samples are given by N and positive samples are given
by M .

3) PRECISION
Precision is another very necessary and suitable performance
metric needed for our model’s performance evaluation.
Precision shows the classifier’s performance with respect to
the FPR. The higher value of precision means low FPR that
is widely recommended. The calculation of precision is done
via Equation 20 [3].

Precision =
TP

TP+ FP
. (20)

4) RECALL
The second name of recall is sensitivity. It is calculated to
show the proportion that how many of the actual abnormal
electricity users are predicted abnormal by the algorithm.
Recall shows the classification algorithm’s performance with
respect to the FNR. The high value of recall means low FNR
that leads to high misclassification rate. Recall is calculated
using Equation 21 [3].

Recall =
TP

TP+ FN
. (21)

5) F1 SCORE
It is another performance metric, which is used for model’s
evaluation. It is calculated using the precision and recall
values. The high value of F1 score means that our model
is correctly classifying the abnormal as well as the normal
electricity users. The F1 score is calculated using the
mathematical formula given in Equation 22, being taken
from [50].

F1 score = 2 ∗
Precision ∗ Recall
Precision+ Recall

. (22)

6) FALSE POSITIVE RATE
The high value of FPR leads to highmisclassification rate that
results in increase in the cost of on-site inspections. The cost
is incurred in order to confirm that the users are really honest
that are predicted as dishonest by the model. Therefore, low
FPR is highly recommended in theft users’ classification to
avoid high on-site inspection cost. FPR is computed using
Equation 23 [50].

FPR =
FP

FP+ TN
, (23)

where TP denotes true positive, TN denotes true negative, FP
denotes false postive and FN denotes false negative.

V. DISCUSSION OF SIMULATION RESULTS
The results obtained after performing extensive simulations
are discussed in this section. AE-BiGRU’s performance is
evaluated via performing simulations in Google Colaboratory
using Python programming language. SGCC dataset is used
for training the proposed and existing models. The dataset
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details are provided in Table 1. The initial preprocessing
of the dataset is done using TSR, SI, and min-max scaler
methods. After that, data balancing is performed using the
synthetic theft attacks. Then, the splitting of dataset in
training set and testing set is done in the ratio of 80%
and 20%, respectively, during training process. The short
introduction to these performance measures is already given
in the previous subsections. Furthermore, the details of the
existing techniques are given in the subsequent subsections.

A. SELECTED BENCHMARK TECHNIQUES
Before discussing simulation results, this section includes
the details of the existing approaches being implemented in
our study for comparison purpose. The compared methods
include LR, SVM, DT, RF, XGBoost, CNN, GRU, and
BiGRU.

1) LOGISTIC REGRESSION
LR is a supervised learning algorithm used for the classifica-
tion tasks. It has three types: binary, ordinal, andmultinomial.
We employed the binary LR that is used to output only
two possible values, 0 and 1. In our scenario, 0 means that
the consumer is honest while 1 means that the consumer
is dishonest or theft. This technique is also used by many
researchers in the literature for ETD, which is a binary
classification problem [12], [31], [43], etc.

2) SUPPORT VECTOR MACHINE
It is a widely used classifier that receives large popularity
in the literature for performing different classification tasks.
It is also employed by many researchers for solving the
ETD problem [3], [12], [13], [31]. To classify the theft and
non theft consumers, the SVM draws a hyperplane with a
huge margin between the support vectors. Furthermore, the
hyperparameters’ (kernel, γ , and C) values are adjusted. The
radial basis function (RBF) kernel is employed in the SVM.
Moreover, the default values for γ and C hyperparameters are
used.

3) DECISION TREE
DT is a supervised learning technique employed for both
the regression and classification tasks [44]. It is widely used
in the literature for the binary classification tasks such as
ETD [29], [31], [51].

4) RANDOM FOREST
RF is an ensemble model that is used for classification tasks.
It is the collection of the DTs used to make accurate and
reliable predictions [12]. RF is widely utilized for binary
classification problems like ETD [12], [21], [22], [43].

5) EXTREME GRADIENT BOOSTING
XGBoost is one of the popular supervised learning tech-
niques. This algorithm is extensively used for ETD in
SG [21], [30], [32]. In XGBoost, trees are combined to
perform accurate ETD.

FIGURE 6. Training and testing accuracy of AE-BiGRU.

6) CONVOLUTIONAL NEURAL NETWORK
CNN is a DL model used for performing the classification
tasks. It consists of multiple layers such as convolution layers,
pooling layers, fully connected layer, and softmax or logistic
layer. The convolution, pooling, and fully connected layers
are used to extract high level features, to decrease the spatial
size of those high level features, and to connect the neurons of
one layer to the another layer’s neurons, respectively. Finally,
the softmax layer is used for multi class classification while
the logistic layer is used for binary class classification [44].
CNN is also used by many researchers in the recent literature
for ETD in SGs [12], [23], [43], [52].

B. PERFORMANCE COMPARISON OF THE PROPOSED
AE-BIGRU MODEL WITH THE BENCHMARK TECHNIQUES
To check the effectiveness of our proposed method, we run
our model for 40 iterations of training and testing. Figures 6
and 7 represent the convergence plots for accuracy and loss
of AE-BiGRU, respectively. The Figure 6 shows that the
training accuracy value, at the 40th epoch, is 0.896 and the
testing accuracy value is 0.901, which are the maximum
values. The dataset we used for analysis contains some
zero values. At the 6th iteration, the proposed AE-BiGRU
model is trained on a batch that contains zero values, which
causes the overfitting problem. The final accuracy of the
proposed AE-BiGRU model is 90.1%. Moreover, Figure 7
presents the AE-BiGRU model’s training and testing loss for
40 epochs. The training and testing loss finally reaches value
of 0.245 and 0.237, respectively, which are the minimum
values. As the batch in the 6th epoch contains zero values,
therefore, the overfitting issue takes place at the 6th iteration
only. Figures 6 and 7 clearly indicate and prove AE-BiGRU
model’s excellent performance on training as well as testing
data, which means that overfitting is successfully avoided.

Figures 8 and 9 represent the GRU’s accuracy and loss
convergence, respectively. From Figure 8, it is observed
that, the final training accuracy and testing accuracy values,
at the 40th epoch, are 0.880 and 0.791, respectively. As no
feature extraction and no proper dropout regularization is
done in GRU model, therefore, after the 14th iteration,
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TABLE 2. Comparison of proposed AE-BiGRU model with benchmark techniques.

FIGURE 7. Training and testing losses of AE-BiGRU.

GRU starts overfitting, which continues till the last iteration.
The GRU’s final testing accuracy (at the 40th iteration) is
0.791. Moreover, Figure 9 represents GRU’s training and
testing loss. The minimization of training and testing loss
continues till the 8th iteration. After 8th epoch, overfitting
starts, which goes till the 40th iteration due to the improper
dropout regularization values and no feature extraction.
Finally, the Figures 8 and 9 very clearly depict that the
benchmark GRU model performs well on training data and
shows lower performance on the testing data, which means
that the overfitting issue has occurred. There are three reasons
in which the proposed AE-BiGRU model helps in avoiding
overfitting issue, which include synthetic theft attacks based
abnormal data augmentation, employing AE as a feature
extractor or dimensionality reduction algorithm, and using of
the dropout regularization strategy. The dropout probability
value selected for our proposed AE-BiGRU model is 0.2.
Finally, we can say that the most significant reason out of the
above three reasons is AE based feature extraction, that plays
a vital role and proves the proposed AE-BiGRU model to be
superior in comparison with the benchmark GRU in terms of
overfitting prevention.

The summary of the results of the selected benchmark
models and the proposed model with respect to different
performance measures is given in Figure 10 and Table 2.
In Table 2, P1, P2, P3, P4, P5 and P6 represent accuracy,
AUC score, precision, recall, F1 score and FPR, respectively.
The results show the inferiority of RF as compared to other

FIGURE 8. Training and testing accuracy of GRU.

FIGURE 9. Training and testing losses of GRU.

models. RF provides good results when it is trained using
relatively small number of samples and will rapidly reach to
a point where adding more data samples will not improve
the classification accuracy. On the other hand, CNN, GRU,
BiGRU, etc., require more data samples to provide the same
accuracy, however, the deep models benefit from the large
data, and continuously enhance the classification accuracy of
the model. Hence, CNN, GRU and BiGRU, provide better
results as compared to RF, LR, and SVM, which is seen in
Table 2 and Figure 10. RF, LR, and SVM do not perform
well while dealing with the large datasets such as SGCC
because they are prone to the overfitting problem. Conversely,
the proposed AE-BiGRU model provides better results in
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FIGURE 10. Performance comparison of different classifiers.

FIGURE 11. Performance comparison using FPR.

comparison with all the existing benchmark schemes with
regard to all the performance measures.

The proposed AE-BiGRU model outperforms all the
existing models with respect to all performance measures
due to many strong reasons. Firstly, it can efficiently handle
the data imbalanced problem using synthetic theft attacks.
Secondly, the encoder module efficiently encodes and
extracts the important features. Thirdly, the BiGRU module
is used to efficiently identify the drift due to its long term
memory that keeps long-distance dependency. Moreover,
the encoder module, synthetic theft attacks, and dropout
regularization efficiently handle the overfitting problem.
Finally, handling the model’s local optima trapping issue
using Adam optimizer further enhances the proposed model’s
performance.

The FPR value is computed and displayed in Figure 11 for
all the models: proposed and existing. The proposed model
has the minimum FPR value among all other schemes, i.e.,
0.102, whereas, LR has the maximum FPR value among all
the schemes, i.e., 0.348. The proposed model outperforms
other existing benchmark schemes in terms of FPR due to the
effectively dealing with the drift using the long term memory
in BiGRU. Secondly, the encoder module perfectly extracts
the necessary features.

The area under the receiver operating characteristic
curve (AUC-ROC) or in short, AUC, is considered another
important performance parameter. It measures and quantifies
a model’s overall performance. It is obtained by plotting the

FIGURE 12. Performance comparison using AUC-ROC.

FPR on x-axis and TPR on y-axis. The AUC values lie in the
range of 0 and 1. The AUC curve for the proposed and other
benchmark models is given in Figure 12. The AUC score for
the proposed model is 0.901, which is enhanced considerably
through synthesized theft attacks. On the other hand, the AUC
score for the LR classifier is 0.676, which is the lowest of
all the other classifiers, which makes it the worst performing
classifier.

VI. CONCLUSION AND FUTURE WORK
Aiming to deal with the problem of ETD, this article
proposes an AE-BiGRU model. The synthetic theft attacks,
for balancing the data, are being implemented in the proposed
study. As AE has a strong ability of extracting the important
features, it is employed for feature extraction. Moreover,
BiGRU is used for theft classification and achieves minimum
FPR value because it has long term memory, due to which
it can easily identify the drift. Furthermore, eight benchmark
ML and DL schemes, RF, SVM, XGBoost, LR, DT, CNN,
GRU, and BiGRU, are implemented for comparison purpose.
The simulation results depict that our proposed model
gives excellent performance in ETD with 91.3% precision,
90.1% accuracy, 90.1% AUC score, 89.9% F1 score, 88.6%
recall, and 10.2% FPR value, which are better than all
the benchmarks. Hence, it is concluded that AE-BiGRU is
an efficient model for ETD with maximum accuracy and
minimum FPR value. Furthermore, in the future, we will
consider additional non-sequential information of consumers
to find the accurate location of the energy theft. In addition,
the high sampling frequency of EC values and wrapper
feature selection methods will be taken into account to further
enhance the performance of the proposed model.
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