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Abstract  
Apnea is a sleep disorder that stops or reduces airflow for a short time during sleep. Sleep apnea may last 

for a few seconds and happen for many while sleeping. This reduction in breathing is associated with loud 

snoring, which may awaken the person with a feeling of suffocation. So far, a variety of methods have been 

introduced by researchers to diagnose sleep apnea, among which the polysomnography (PSG) method is 

known to be the best. As a set of biological signals, including electrooculogram (EOG), electromyography 

(EMG), electroencephalography (EEG), electrocardiogram (ECG), pulse-oximetry results (𝑆𝑝𝑜2), and 

breathing signals, are recorded and studied in this method, analysis of PSG signals is very complicated. 

Many studies have been conducted on the automatic diagnosis of sleep apnea from biological signals using 

artificial intelligence (AI), including machine learning (ML) and deep learning (DL) methods. This research 

reviews and investigates the studies on the diagnosis of sleep apnea using AI methods. First, CADS for 

sleep apnea using ML and DL techniques along with its parts including dataset, preprocessing, and ML and 

DL methods are introduced. This research also summarizes the important specifications of the studies on 

the diagnosis of sleep apnea using ML and DL methods in a Table. In the following, a comprehensive 

discussion is made on the studies carried out in this field. The challenges in the diagnosis of sleep apnea 

using AI methods are of paramount importance for researchers. Accordingly, these obstacles are elaborately 

addressed. In another section, the most important future works for studies on the diagnosis of sleep apnea 

from PSG signals and AI techniques are presented. Ultimately, the essential findings of this study are 

provided in the conclusion section.  
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1. Introduction  
Sleep is a biological phenomenon that involves all body organs and includes sleep with rapid and non-rapid 

eye movements [1-2]. Scientists have indicated that any individual is asleep for almost one-third of their 

lifetime, which is called a period for memory consolidation and brain recovery [3-4]. When an individual 

is asleep, their brain is consolidated, and its function is improved, which facilitates learning, memory 

recovery, and retention. Thereby, any disorder in sleep interrupts or reduces the functional quality of sleep 



[5-6]. Lack of sleep varies in children, teens, and adults. The adults who sleep for less than 8 hours a night 

suffer from sleep deprivation [7]. According to the conducted studies, the average sleep time of teenagers 

is lower than the standard sleep time at that age. Despite public belief, teenagers need more sleep than adults 

[Cite]. According to surveys, 15% of teenagers sleep for 8.5 hours or more, and more than 26% of them 

sleep for less than 6.5 hours a night [8]. Some sleep disorders are so serious that they can interrupt 

individuals' natural, spiritual, social, and emotional functions [9-10].  

Sleep breathing disorders refer to disorders that lead to short cessation during sleep. Sleep apnea is one of 

the most common sleep breathing disorders [11]. This disorder happens due to the relaxation of soft tissue 

in the back of the throat. Loud snoring is one of the symptoms of sleep apnea that is caused by the vibration 

of soft tissue [12-13]. Sleep apnea causes a sudden and frequent reduction in blood oxygen level, which 

may lead to awakening from sleep [12-14]. Breathing of patients suffering from sleep apnea during sleep 

is accompanied by loud snoring and repeated stops and starts. Having a breathing disorder during sleep 

leads to brain damage, interruption of sleep, reduced sleep time, variation in hormone level in the body, and 

increased sympathetic nerve activity level [15-16]. This disorder has different types, including Central sleep 

apnea (CSA) [17], obstructive sleep apnea (OSA) [18], and mixed sleep apnea (MSA) [19].  

CSA happens when the brainstem is damaged in the region that controls breathing. The brainstem could be 

damaged due to an infection or stroke. In this case, the brain cannot send the proper signals to the muscles 

to control breath [20-21].  

Obstructive sleep apnea syndrome (OSAS) is a much more common variety of sleep apnea and happens 

due to interruption in the airflow in the throat while sleeping [22-24]. OSAS is a form of interruption in 

breathing while sleep in which the airway through the mouth and nose are completely obstructed for 10 

seconds or more [22-24]. This obstruction can be due to large tonsils, tongue, or tissue in the airway [22-

24]. Almost 5% of people in the world suffer from OSAS. Besides, OSAS patients experience sleep apnea 

more than five times per hour of sleep. Due to lack of oxygen and carbon dioxide exchange during sleep 

apnea, the blood oxygen saturation declines [22-25]. If blood oxygen saturation declines to less than 30% 

of normal condition during the sleep apnea and continues for more than 15 seconds, this matter will be of 

paramount importance clinically [22-25]. In addition, hormonal disorders caused by sympathetic activation 

in the long term can lead to the development of metabolic disorders, such as resistance to insulin, diabetes, 

and obesity [22-25].  

MSA is a combination of central and obstructive sleep apnea. It means that MSA occurs due to interruption 

in breathing during sleep by both obstructions in the airway and lack of the brain's ability to send signals to 

the body to breathe [26-28]. On the contrary to OSA that normally happens in the REM phase of sleep, this 

disorder often happens in the N-REM phase of sleep. However, it must be noted that MSA is not as common 

as OSA [29]. According to studies, 5% to 15% of sleep apnea patients suffer from this type of sleep apnea 

[29]. In adults, sleep apnea syndrome is treated based on Continuous Positive Airway Pressure (CPAP), 

weight loss, and ultimately dental and surgical instruments [30-31]. Initial treatment in children is Aden 

tonsillectomy. In the cases when surgery in children cannot be done, CPAP is employed [32-33].  

So far, physicians have proposed various methods to diagnose sleep apnea, among which the PSG method 

is the most important [34-35]. PSG is the most useful standard method for diagnosing breathing disorders 

during sleep, which is used for initial diagnosis, determining the severity of sleep apnea in sleep, and 

discovering several initial disorders in sleep [34-35]. PSG includes biological signals, such as EOG, EMG, 

EEG, ECG, 𝑆𝑝𝑜2, and breathing signals [34-35].  

PSG recording is extremely complicated, costly, challenging, and requires the presence of a specialist 

group. Analysis of PSG signals is generally carried out manually, which is a demanding and exhausting 



task subject to human error [36]. It is because physicians ought to divide long-term signals into 20 to 30-

second frames and analyze them afterward [37]. In order to tackle these challenges, it is essential to propose 

a CADS for sleep apnea detection from PSG signals, including EOG, EMG, EEG, ECG, 𝑆𝑝𝑜2, and 

breathing signals [35]. Over recent years, many research have been conducted on the diagnosis of sleep 

apnea using biological signals and AI techniques [38-40]. This study aims to help specialists by proposing 

solutions to increase accuracy in sleep apnea detection using ML and DL techniques.  

In this paper, there will be a comprehensive review in sleep apnea detection from PGG including EOG, 

EMG, EEG, ECG, 𝑆𝑝𝑜2, and breathing signals using AI methods. In the second section, the search strategy 

will be provided, and a review of the ML and DL methods will be discussed for sleep apnea detection in 

the second section. In the fourth section, the CADS based on AI for the diagnosis of sleep apnea will be 

discussed. In this section, first, the datasets, preprocessing methods, various ML and DL methods will be 

discussed. Also, the conducted studies in the field of sleep apnea detection will be introduced in this session. 

The fifth section addresses the most important challenges for sleep apnea detection using AI methods. The 

discussion of this paper will be provided in the sixth section, where there will be a comprehensive 

comparison between the ML and DL studies in the diagnosis of sleep apnea. In the following, the future 

works and conclusions are provided in sections 7 and 8, respectively.  

2. Search Strategy 

2.1. Paper search  

In this section, the paper search is done based on PRISMA guidelines [41]. The published papers search is 

performed between years 2016 and 2022 in the field of sleep Apnea detection, where the general keywords 

like Apnea, central sleep apnea, obstructive sleep apnea, and mixed sleep apnea, EOG, 𝑆𝑝𝑜2, EMG, ECG, 

EEG, PSG, respiration signals, Deep Learning, and Machine Learning have been used. These keywords 

have been searched in databases like Nature, IEEE Xplore, MDPI, Frontiers, Science Direct, ArXiv, 

Springer, Wiley, etc. Figure (1) displays the number of paper published in different databases for AI studies.  

  
Fig 1a. Number of papers published for sleep apnea detection using ML methods  



2.2. Selection of papers   

The selection way of important papers for the diagnosis of sleep apnea using AI methods has been provided. 

In this section, the provided articles between 2016 to 2022 that are related to this research have been 

investigated and considered. The selection process of the relevant papers has been performed in 3 levels. 

First, 328 papers were collected, and then 83 papers were filtered out due to irrelevance. In the next step, 

49 papers filtered based on input data or biological signals.  In the following, 24 other papers were filtered 

out due to the type of datasets or the used AI methods. Ultimately, 172 papers were chosen for study, the 

details of each were discussed. The papers selection process has been displayed in Figure (2). In this study, 

the researchers have investigated all valid papers in the diagnosis of sleep apnea using ML and DL methods. 

The last investigation of the papers in this field was performed on 16 Jan 2022. Investigation of the papers 

is based on PRISMA instructions. Also, the input and output criteria have been provided in Table (1). 

 

Fig 1b. Number of papers published for sleep apnea detection using DL methods 

 

Table 1. The exclusion and inclusion criteria for diagnosis of sleep apnea  

Inclusion Exclusion 

1. polysomnography signals 1. Treatment of sleep apnea 

2. Biological signals and neuroimaging  2. Clinical methods for treatment of sleep apnea  

3. Central sleep apnea, obstructive sleep apnea, mixed 

sleep apnea. 

3. Rehabilitation systems for sleep apnea detection 

(Without AI techniques) 

4. DL models (CNNs, RNNs, AEs, CNN-RNN, CNN-

AE, GAN, Transfer Learning, etc.)  

 

5. Feature extraction methods (Times, Frequency, Time-

Frequency, Non-Linear)  

 

6. Classification methods (SVM, KNN, RF, MLP, etc.)   



 

3. Diagnosis of Sleep Apnea Syndrome Using Artificial Intelligence Techniques  

In recent years, sleep apnea has been introduced as a dangerous factor for various ailments, e.g., 

cardiovascular diseases [42-43]. Physicians make the diagnosis of sleep disorders manually, which is time-

consuming, exhausting, and dependent on the operator [44]. This leads to difficulty in the diagnosis in most 

cases. In the AI field, various studies have been conducted in the diagnosis of sleep apnea using ML and 

DL methods [38-40]. In [45-49], the researchers mainly aim to investigate the papers in the field of sleep 

apnea detection using ML techniques. In addition, in [50], researchers have provided a review study in sleep 

apnea detection using DL techniques. In our study, a review is be conducted over whole performed studies 

in sleep apnea detection using AI techniques. In Tables (2) and (3), the conducted studies in sleep apnea 

detection using ML and DL methods are provided.  

 
Fig 2. Papers selection process based on the PRISMA guidelines. 

4. CADS Based on AI Methods for Detection of Sleep Apnea Syndrome  

This section addresses the CADS based on AI for the diagnosis of sleep apnea from PSG data. There are 

numerous studies regarding the diagnosis of sleep apnea, aiming to achieve a real tool for the rapid diagnosis 



of such sleep disorders [51-53]. Currently, researchers use ML and DL methods in the implementation of 

CADS for the diagnosis of sleep apnea and have obtained important results. Generally, the CADS based on 

AI consists of different sections: datasets, preprocessing, feature extraction, dimension reduction, and 

classification methods [54-48]. The CADS based on ML implementation is more complicated for the 

diagnosis of sleep apnea compared to the DL methods. The increasing the accuracy in sleep apnea detection 

requires great knowledge in the field of machine learning algorithms. On the other hand, the implementation 

of CADS based on DL is simpler with high performance for the diagnosis of sleep apnea from the biological 

signals. That is because, unlike ML, the feature selection and dimensions reduction in DL is performed in 

unsupervised form by deep layers [59-60]. Another merit of DL methods is that their performance is not 

diminished as the performance increases, though increasing the inputs in ML models leads to the 

performance reduction and the accuracy decline of diagnosis of sleep apnea. In Fig. (3), the CADS based 

on AI along with its sections (ML and DL models) have been defined for sleep apnea detection. In the 

following, first, the CADS based on ML are discussed based on Figure (3). Then, a summary of these papers 

has been reported in Table (2). Afterward, the most important sections of CADS based on DL techniques 

are introduced for sleep apnea detection from the biological signals. Finally, a summary of the conducted 

studies in DL field are provided in Table (3).  

 

Fig. 3. Illustration of automated diagnosis sleep apnea using of AI methods.  

4.1. Datasets  

In this section, various available datasets have been introduced for the research in Apnea detection. Each 

of them has been discussed in the following.  

4.1.1. St. Vincent's University Hospital / University College Dublin Sleep Apnea Database 
This dataset contains 25 signals of PSG from adult cases with apnea disorder [61]. The cases were selected 

in a six-month period from the cases visiting the sleep disorders hospital of St Vincent University for the 

diagnosis of Apnea, obstructive central Apnea, or primary snoring. The number of cases was 25, out of 

which 21 were male, and four were female. In this dataset, there are various data: ECG, EMG, EOG, EEG, 

Thermistor,, ribcage movements, abdomen movements, finger SpO2, snoring (tracheal microphone), and 

body position. In this dataset, sleeping steps have been determined by an experienced sleep technologist 

according to the Rechtschaffen and Kales standard [61].  

4.1.2. Apnea-ECG Database  
This dataset includes signals from 70 cases which is equally divided for training and test [62-63]. The 

signals recording was done in 7-10 hours. Each signals recording includes an ECG signal, a set of 



interpretations of Apnea by a human expert (according to the simultaneous recording of respiration and 

signal), and a set of QRS interpretations. In addition, eight records are accompanied by four extra signals, 

which include respiration signals from the chest, abdomen, nose airflow, and SpO2. More information has 

been provided in references [62].  

4.1.3. Sleep-EDF Database Expanded  
In this dataset, PSG recording has been performed from 198 cases, which includes EOG (horizontal), EEG 

(Fpz-Cz and Pz-Oz), EMG, and event marker. In addition, some of the recordings also have rectal body 

temperature and oro-nasal respiration. The sleep patterns have been scored manually by the educated 

experts according to the Rechtschaffen and Kales instructions. More information on this dataset has been 

indicated in [63-65].  

4.1.4. Sleep Heart Health Study PSG Database 
The Sleep Heart Health Study (SHHS) has been performed by National Heart, Lung, and Blood Institute to 

investigate the cardiovascular consequences caused by respiration disorders in sleeping [66]. In the first 

part of this dataset, the signals recording was performed from 6441 males and females in the age range of 

40. This signals recording was done from 1 Nov 1995 to 31 Jan 1998 and is called SHHS Visit 1. In addition, 

the second part of the signals has been recorded from Jan 2001 to June 2003, where 3295 individuals have 

participated and are called SHHS Visit 2. The performed PSG recording has various signals: EOG, EMG, 

thoracic and abdominal excursions, nasal-oral airflow, finger-tip pulse oximetry, ECG, heart rate, body 

position, and ambient light [66-67].  

4.1.5. Multi-Ethnic Study of Atherosclerosis (MESA)  
MESA is a research study from 6 centers supported by NHLBI in the field of relevant factors to the 

subclinical cardiovascular disease development and the process trend from subclinical to clinical 

cardiovascular disease on 6814 males and females in the age range between 45-84 years on 2000-2002 [68-

69]. Also, four other tests have been performed in 2003-2004, 2004-2005, 2005-2007, and 2010-2011. In 

2010-2012, 2237 cases participated in the MESA sleep test, out of which the PSG signals, the 7-day wrist 

actigraphy, and sleep questionnaires were recorded [68-69]. More information from this dataset has been 

provided in References [68-69].  

4.1.6. MIT-BIH Polysomnographic Database  
The MIT-BIH dataset is a set of several physiological signals during sleep which is recorded in Boston's 

Beth Israel Hospital Sleep Laboratory [70]. This dataset includes more than 80 hours of 4-channel, 6-

channel, and 7-channel PSG recordings, each of which has EEG, ECG, and respiration signals [70].  

4.1.7. PhysioNet/CinC 2018 Challenge 
The biological signals of this challenge are collected by Computational Clinical Neurophysiology 

Laboratory (CCNL), Massachusetts General Hospital (MGH), and the Clinical Data Animation Laboratory 

(CDAC). This dataset includes 1985 cases that were under surveillance in the MGH sleep laboratory. The 

sleep steps have been interpreted by the experts in MGH according to AASM instructions. Various 

physiological signals like ECG, EMG, EOG, EEG, and SpO2 have been recorded from the cases and are 

placed in this dataset [71].  

4.1.8. MrOS sleep study  
MrOS is a study regarding osteoporotic fractures among males. Between the years 2000-2002, 5994 males 

with ages more than 65 registered in 6 clinical centers. Between Dec 2003 to March 2005, 3135 individuals 



of participants were chosen for the sleep study and were put under actigraphy studies for 3-5 days (without 

any surveillant). The sleep study aims to understand the relationship between sleep disorders and falling, 

fracture, mortality, and cardiovascular diseases [72].  

4.2. Preprocessing Techniques  

The preprocessing is an important step for the biological signals where the CADS based on AI are divided 

into two low-level and high-level techniques. The lower-level methods in preprocessing the biological 

signals include steps like noise removal, baseline correction, segmentation, and normalization [73-74]. 

These methods in improving the performance of CADS based on AI play an important part in the diagnosis 

of sleep apnea. In addition, researchers use a number of advanced preprocessing methods to increase the 

performance, which is called high-level preprocessing. In the CADS based on ML, the high-level 

preprocessing techniques often include the methods in the domain of frequency or time-frequency. The Fast 

Fourier Transform (FFT) [75] is a high-level preprocessing method in the frequency domain and is used in 

the some studies. The high-level preprocessing techniques in the time-frequency domain are include Gabor 

[cite], empirical mode decomposition (EMD) [76], discrete wavelet transform (DWT) [77], continues 

wavelet transform (CWT) [78], wavelet coefficients Thresholding (WCT) [79], and Bivariate fast and 

adaptive EMD (FAEMD) [80], which are used in sleep apnea detection. In addition, in the CADS based on 

DL, the data augmentation (DA) methods exist as one high-level preprocessing [81]. Also, in some research, 

the DWT [77], Hilbert–Huang transform (HHT) [82], short time Fourier transform (STFT) [83], and Mel-

frequency Cepstral coefficients (MFCC) [84] methods were used as a high-level preprocessing step in the 

diagnosis of sleep apnea.  

4.3. Machine Learning Techniques  

This section introduces the most important parts of CADS based on ML, where various feature extraction 

and dimension reduction algorithms are presented. In the following, the feature extraction and dimensions 

reduction for diagnosis of sleep apnea are introduced.  

4.3.1. Feature Extraction Methods  

The feature extraction is the most important section in the CADS based on AI for sleep apnea detection, 

and these methods are divided into four categories in ML: Time-domain, Frequency-domain, Time-

Frequency domain, and nonlinear. In Table (2), the research in the sleep apnea detection in the biological 

signals using ML techniques is provided. As obvious, in a part of Table (2), various feature extraction 

methods used in each study is demonstrated. Table (2) provides more details of the studies using the feature 

extraction methods in the diagnosis of sleep apnea. In the following, the feature extraction methods for 

diagnosis of sleep apnea are provided. 

A) Time Domain and Statistical Features  

The biological signals have important information, and in case of accurate extraction, we can detect various 

diseases such as epileptic seizures [85-86], schizophrenia [87-88], and sleep apnea [89] with high 

performance. Since the biological signals in the time domain demonstrate the body activity during the 

Apnea, the time-domain and statistical features are powerful tools in analyzing these signals. Also, the time-

domain and statistical features are considered as the morphological analyst for investigating the biological 

signals [90-91]. In references [155, 189], various time-domain and statistical features are used for sleep 

apnea detection, and satisfactory results have been obtained. In Table (2), a summary of other papers are 

provided where they have applied the time-domain and statistical feature extraction methods for sleep apnea 

detection. 



 

B) Frequency-Domain Features  

Spectral analysis of the biological signals is done using methods in the frequency domain such as FFT. 

Accordingly, in most studies, frequency-domain feature extraction methods have been used for the 

diagnosis of sleep apnea [125]. The most important feature extraction method in the frequency domain is 

the power spectrum density (PSD) [92].  

C) Time - Frequency Domain Features 
In order to overcome the issues in the time and frequency domains, the time-frequency domain method are 

provided, which increases the accuracy and performance of CADS using biological signals [93-94]. In these 

methods, the times and frequency information are extracted from the biological signals, which are important 

in the processing of medical signals [93-94]. Some research have used the time-frequency methods, 

including biorthogonal antisymmetric wavelet filter bank (BAWFB) [95] and tunable Q-factor wavelet 

transform (TQWT) [96], for sleep apnea detection.  

D) Non-Linear Features  

The nonlinear features are recognized among the most important feature extraction methods and are used 

in the diagnosis of various diseases using biological signals [97-98]. The reason behind the tendency to use 

the nonlinear feature extraction methods by researchers is that most biological signals, e.g., EEG, have 

nonlinear and chaotic behavior [99]. Thus, the nonlinear feature extraction methods increase the accuracy 

of diagnosis of the disease in chaotic signals [99]. For the diagnosis of sleep apnea, the researchers have 

used nonlinear methods for the feature extraction, some of which include various methods such as entropy 

[100], fractal [101], correlation coefficients (CCE) [102], Lempel-Ziv complexity (LZC) [103], etc.  

4.3.2. Dimension Reduction Methods  

In the feature matrix, some features lack useful information for classification or have repeated information, 

which increases computational complexity in classification algorithms. This issue reduces the efficiency of 

CADS for the diagnosis of sleep apnea. In order to increase generalization and reduce the complexity of 

classification algorithms, it is necessary to have a dimension reduction step for the feature matrix [104]. 

For this purpose, a variety of techniques have been introduced that are divided into two categories, including 

feature reduction and selection. In the CADS based on ML, researchers have employed various techniques 

for feature reduction or feature selection, which are summarized in Table (2). The principal component 

analysis (PCA) is one of the most important feature reduction method that is employed in [105]. Besides, 

other essential feature selection techniques can be forward wrapper approach (FWA) [106], neighborhood 

components analysis (NCA) [107], normalized auto-correlation (NAC) [108], and sequential feature 

selection (SFS) [109] in the diagnosis of sleep apnea.  

4.4. Deep Learning Methods  

In this section, various DL models in the diagnosis of sleep apnea from biological signals are introduced. 

The DL models in this section include convolutional neural networks (CNN's) [110-112], generative 

adversarial networks (GANs) [113-114], recurrent neural networks (RNNs) [110-112], Autoencoders (AEs) 

[110-112], deep belief networks (DBNs) [110-112], CNN-RNN [110-112], and CNN-AE [110-112]. In the 

following, each one of these methods will be investigated. 

4.4.1. Convolutional Neural Networks (CNNs)  

CNNs have become the most recognized structure of deep neural nets in recent years, mostly due to their 

astonishing performance for any image or data processing task. The idea behind these structures has been 



around since the 1990s [110-112]; however, it was Alexnet's paper [110-112] that started the path of these 

networks by resolving many base idea shortcomings. Firstly developed on images, these networks take 

advantage of spatial patterns to create a robust representation of the data at hand; therefore, they can be 

applied to many types of data such as signals, images, and 3D scans. 

A) 2D and 3D CNNs 

Two of these structures are of utmost importance in biomedical signal processing, 2D-CNNs, and 3D-

CNNs. Given the literature and studies were done on 2D-CNNs, many famous structures of these networks 

exist for different tasks, making them the best models for benchmarks [110-112]. Moreover, the 

transformation of many types of data, such as signals, into images is another vastly researched area, all of 

which help researchers to use these networks easily with a minimum required knowledge of the underlying 

math.  As for 3D models [110-112]. The 3D scans and modalities present utterly useful information for the 

diagnosis; the performance of each system is deeply dependent on the quality of data, compelling the need 

for 3D-CNNs. 2D-CNN architecture for diagnosis of sleep apnea from PSG signals is shows in Figure (4).  

 
Fig. 4. Block diagram of 2D-CNN model for sleep apnea detection. 

B) Transfer Learning  

Transfer learning has been shaped to be the heart of many research papers in recent years [110-112]. With 

improvements in deep neural nets and hardware resources, many researchers have strived toward training 

new models on small datasets, especially in the field of biomedical data processing [115-116]; however, 

using transfer learning and pre-trained models has paved the path of using very deep models on small 

datasets dramatically. In this technique, a neural net is first pre-trained on a large dataset such as ImageNet; 

then, using trained weights as a starting point, the model is fine-tuned on desired datasets [110-112].  

C) Generative Adversarial Networks  

With the surge of various social media, data publicity in many fields such as sentiment analysis [113-114] 

is no longer considered a challenge. However, generative models' importance is two-fold; first, generating 

data similar to a data set introduces many challenges that solving them helps dramatically in other fields 

such as representation learning. Secondly, in many tasks such as biomedical data processing, public labeled 

data availability is still a big challenge. GANs were firstly introduced in 2014 by Ian Goodfellow [113-

114]. By using a simple adversarial idea, two networks try to increase the loss of another one, one by 

generating data non-distinguishable by the other one and the other network by distinguishing the generated 

data from the original data [113-114]. GAN architecture for diagnosis of sleep apnea from PSG signals is 

indicated in Figure (5).  

 



 

 
Fig. 5. Block diagram of GAN model for sleep apnea detection. 

4.1.2. Autoencoders  

Unsupervised learning has always been an arguably more exciting field of study for many researchers. The 

outcome of those studies has helped toward automation of many tasks, such as feature extraction and 

representation learning [110-112]. AEs are an example; these networks work by the idea of taking the input 

data into a latent space and then back to the original space and thus learn a useful encoding for data into the 

latent space [110-112]. These networks are also among the oldest methods used in neural nets [110-112]. 

AE architecture for diagnosis of sleep apnea from PSG signals is indicated in Figure (6).  

 
Fig. 6. Block diagram of standard AE model for sleep apnea detection. 

4.1.3. Recurrent Neural Networks  

Whilst the deep learning methods are widely referred to as representation learning methods, robust 

representation comes from accurately finding patterns in data. Yet data is presented in many shapes and 

forms; consequently, it is logical to design different network structures for various forms of data. Time 

series, such as EEG, ECG, and many other biomedical signals, are among the most primary methods of 

diagnosis, and proper detection of temporal patterns is essential in order to process these data precisely. 

Temporal patterns can be shown in the short or long term, and recurrent neural nets are designed with this 



in mind. The two most famous structures of these networks are LSTM and GRU, and they are extensively 

used for many tasks such as time-series detection and prediction [117], video processing [118], text 

generation [119], and epileptic seizure prediction [120], etc. RNN architecture for diagnosis of sleep apnea 

from PSG signals is indicated in Figure (7).  

 
Fig. 7. Block diagram of RNN model for sleep apnea detection. 

4.1.2. Deep Belief Networks  

Restricted Boltzmann Machine (RBM), the building block of Deep Boltzmann Machine (DBM), is an 

undirected graphical model [110-112]. The unrestricted Boltzmann machines are also similar; however, 

they may also have connections between the hidden units. DBNs are unsupervised probabilistic hybrid 

generative DL models comprising of latent and stochastic variables in multiple layers [cite]. Moreover, a 

variation of DBN is called Convolutional DBN (CDBN), which is more suitable for images and signals, as 

it uses the spatial information of data [110-112]. 

4.1.6. Convolutional Autoencoders  

CNN-AEs are a group of DL models that employs unsupervised learning and applies to various medical 

applications [121-122]. The architecture of these networks is based on AEs that employ Conv layers in the 

decoder and encoder sections [110-112]. First, images are inserted into the encoder layer, which is based 

on Conv, and the outputs are like compressed images. There are also Conv layers in the decoder section. 

This layer receives the images of the encoder section and performs the recovery of the images. CNN-AE 

architecture for diagnosis of sleep apnea from PSG signals is indicated in Figure (8).  

 



Fig. 8. Block diagram of standard CNN-AE model for sleep apnea detection. 

4.1.7. Convolutional Recurrent Neural Networks  

Architectures based on CRNN consist of two networks, including CNN and RNN. Due to the capabilities 

of CNN in learning spatial features and the capability of RNN in learning temporal features, this combined 

structure has captured lots of interest [110-112]. In CRNN architecture, the signals are first applied on the 

input of the CNN network and, after passing through several Conv layers, are inserted into the input of the 

RNN network [110-112]. One CRNN architecture for diagnosis of Apnea from PSG signals is indicated in 

Figure (9). 

 
Fig. 9. Block diagram of standard CNN-RNN model for sleep apnea detection. 

 

 



Table 2. Automatic diagnosis of sleep apnea using ML methods  

Work Datasets Modalities Number of Cases 
High level 

Preprocessing 
Windowing Feature Extraction Feature Selection Classifier 

K 

fold 

Performance 

Criteria (%) 

 [123] MIT Standard Data ECG 
40 Obstructive 

sleep apnea(OSA)  

Discrete wavelet 

packet 

decomposition 
(DWPD) 

-- FFT, WPD NA SVM NA 
Acc=93.34 

Sen=90 

Spe=100 

 [124] 
PhysioNet Apnea-

ECG database 
ECG 35 OSA Gabor Filters 1 Min  

Histograms of Local 

Descript,1D-

LPQ+1D-MLBP 

Weighted 

Histogram 

Concatenation 

LS-SVM 10 

Acc=93.31 

Sen=93.05 

Spe=93.46 

 [125] 

University Hospital 

Leuven (UZ 

Leuven) 

PPG signal 

26 

Polysomnographic 

Recordings 

-- 40 Sec 

STD, the Power at 

High and Low 

Frequency (PLF) 
Bands 

FWA LS-SVM NA 

Acc=72.66 

Sen=73.81 

Spe=72.55 

 [126] 
PhysioNet 

Dataset 

ECG 
70 Records NA -- 

Multimodal 

Features 
NA SVM 10 Acc=96.64 

 SpO2 

 [127] Clinical 

ECG 
15 OCA, 17 

Normal 
-- 
 

-- 

Time Domain and 

Frequency Domain  

Features  

Weighted 
Decision Method 

SVM NA 

Acc=80 

Sen=60 

Spe=100 
RES 

 [128] MIT/BIH Dataset  EEG 
16 Subjects (1195 
Normal and 947 

Apnea Signals) 

Decomposition -- 
HFs-based 

Statistical Features 
PSO LS-SVM NA 

Acc=98.82 
Sen=98.66 

Spe=99.03 

 [129] UCD ECG 
40 Healthy 

Subjects, 13 Apnea 

Alternate Direction 
Method of 

Multipliers 

(ADMM), EMD  

-- 
Energy 

and RR Interval 
NA SVM 10 

Acc=97.5 

Sen=95.45 

Spe=100 

 [130] Clinical 

ECG 
148 OSA, 33 

unaffected 
Pan–Tompkins -- Different Features NA 

Multi-Layer 

FNN 
NA 

Acc=97.8 
Sen=98.6 

Spe=93.9 

SpO2 

BMI 

 [131] UCD  SpO2 25 Subjects -- 1 Min Statistical Features   NA SVM 10 

Acc=90.2 

Sen=87.6 
Spe=94.1 

 [132]  UCD Dataset SpO2 

25 Subjects (1457 

Apnea Events 

and 2278 Non-
apnea Events) 

-- 1 Min Statistical Features ??? SVM 10 
Acc=90.2 
Sen=87.6 

Spe=94.1 

 [133] 

PhysioNet Apnea-

ECG database ECG 
95 Single-lead 

ECG Recordings 
DWT 

1 Min 
 Entropy Features SFFS SVM 10 

Acc=95.71 

Sen=95.83 

Spe=95.66 UCD 30 Sec 

 [134] 
Clinical 

Thoracic 
Respiratory 

Effort and SpO2 

Signals 

18 Healthy 

Individuals, 18 

OSA, 18 central 
sleep apnea (CSA) 

-- -- Different Features GA SVM NA 

Acc=90.9 

Sen=90.9 
Spe=100 

 UCD 25 Subjects 

 [135]  EEG    
Multi-Domain 

Feature Extraction 
 LS-SVM 6 

Acc=97.7 

Sen=97 
Spe=94.2 



 [136] PhysioNet ECG 70 Records 

Wavelet 
Decomposition, 

Wavelet Reshaping, 

QRS Detection 

NA 

Cubic B-type 

Interpolation 
Wavelet Transform 

??? SVM NA 

Acc=90.52 

Sen=86.1 
Spe=93.4 

 [137] MIT/BIH Dataset  EEG 16 Subjects 
Adaptive Hermit 

Decomposition 
30 Sec 

Artificial Bee 

Colony (ABC) 

Fisher-score 

Ranking Test 
ELM 10 

Acc=99.53 

Sen=99.47 
Spe=99.58 

 [138] 

Childhood 

Aden tonsillectomy 

Trial (CHAT) 

SpO2 

453 Children (43% 

of them suffered 

severe OSAS) 
Performing a 

Standardization 

Process 

-- Different Features L1 penalty term LR 15 

Acc=79 

Spe=96 

AUC=90 

Pediatric 

Department of the 

Hospital General 
Universitario 

of Valencia 

27 Patients 

[139] 
PhysioNet Apnea-

ECG database 

EDR 
70 ECG 

Recordings 
Pan-Tompkins 

Algorithm, PCA 
1 Min 

Novel Sparse 
Residual Entropy 

(SRE) Features 

(Sparse Residual 
Entropy Features) 

NA SVM 10 

Acc=78.07 

Sen=78.01 

Spe=78.13 
RR-Time-series 

 [140] 

PhysioNet Apnea-
ECG database 

ECG-derived 
respiration 

(EDR) 

20 Simultaneously 

Lead II ECG 

Recording 
Pan-Tompkins 

Algorithm, 

Correcting the RR 
Series 

1 Min 
Time and Frequency 

Domain Features  

Temporal Feature 

averaging 
SVM 35 

Acc=90.9 
Sen=89.6 

Spe=91.8 
Apnea-ECG 

Dataset Generated 

for PhysioNet/CinC 
Challenge 2000 

70 Single-lead 
(lead II) ECG 

Recordings 

 [141] 
Apnea-ECG 

Database 

EDR 70 single lead ECG 
Recordings 

Pan-Tompkins 
Algorithm, PCA 

1 Min FuEn NA KELM 10 

Acc=76.58 

Sen=78.02 

Spe=74.64 HRV 

 [142] Clinical 

Pressure-

sensitive mats 
(PSM) 

9 Subjects 

Occupancy 

Extraction, SNR-

maximizing Sensor 
Signal Combination 

Method 

30 Sec 
Time and Frequency 

Domain Features 
NA BiLSTM 5 

Acc=95.1 

Sen=85.7 
Spe=96 

 [143] PhysioNet Dataset  
ECG (EDR, 

HRV) 
70 ECG 

Recordings 
-- 
 

1 Min Different Features 

Quintessential 

Wise Feature 

Selection 

Artificial 

Neural 
Network 

(ANN) 

NA 

Acc=82.12 

Sen=88.41 

Spe=72.29 

 [144] MIT/BIH Dataset  EEG 

16 Subjects (947 
Apnea EEG 

Epochs, 1195 

Control Epochs) 

TQWT --  LZC Feature NA KNN  10 

Acc=96 

Sen=95.68 
Spe=96.22 

 [145] 
PhysioNet Apnea-

ECG database 
ECG 

32 Subjects 

(10,480 Normal 

Epochs, 6513 
Apnea Epochs) 

 BAWFB 1 Min FuEn, LogEn  KWT LS-SVM 35 
Acc=90.11 
Sen=90.87 

Spe=88.88 

 [146] ECG 35 Subjects 1 Min FuEn, LogEn T-Test SVM 35 Acc=90.87 



PhysioNet Clinc 

Challenge-2000 

Database 

Wavelet Frequency-
bands (WFBs) 

Forward Wrapper 
Feature Selection 

Sen=92.43 
Spe=88.33 

 [147] Clinical MRI 
3 Subjects (1 

Snorer) 
FFT, CWT -- Oscillation Features NA NA NA NA 

 [148] 

PhysioNet Apnea-

ECG database 

ECG 

35 Subjects with 
Apnea-hypopnea 

Index (AHI) 

FFT 1 Min  
Statistical Features, 

Entropy  
KWT SVM NA 

Acc=92.59 

Sen=89.7 

Spe=94.67 
Pre=91.27 

MIT-BIH Dataset  
-- 

University College 

Dublin sleep apnea 
database (UCDDB) 

35 Subjects with 
Apnea-hypopnea 

Index (AHI) 

 [149] Clinical Different Signals   
213 OSA, 66 No 

OSA 

Data Sampling 

(SMOTE) 
-- Different Features 

Permutation 
Feature 

Importance  

SVM NA 
Acc=83.33 
Sen=80.33 

Spe=86.96 

 [150] MIT-BIH Dataset  EEG 16 Subjects HHT 30 Sec Different Features NA SVM NA 
Acc=96 
Sen=100 

Spe=98 

 [151] Clinical 

Akaike's 

Information 

Criterion (AIC) 

154 OSA, 96 
Without OSA 

-- -- Different Features 

Stepwise 

Selection 
Backward 

Elimination  

SVM NA 

Acc=79.7 

Sen=71.4 

Spe=84.7 

 [152]  PhysioNet  
ECG 35 Subjects 

-- 1 Min  Different Features  -- 
SVM, BPNN, 

IBPNN  
-- Acc: 85%  

 [153] MIT-BIH Dataset  

EEG,  Abdomen 

Movements, 

Nasal flow, 
Ribcage 

Movements, 

Snoring 

25 Subjects  DWT 30 Min  Statistical Features  -- -- -- -- 

 [154] 

Polysomnographic 

studies (University 

Hospital 
Leuven in Belgium) 

SpO2 79 Subjects  DWT -- 

Phase Space 

Reconstruction,  

Convex Hull 
Algorithm 

-- KNN, LS-SVM -- Acc: 93%  

 [155]  

University of 

Chicago Medicine 

Comer Children’s 
Hospital 

(Chicago, IL, USA) 

SpO2 298 Subjects DWT -- Mean, Variance -- 
logistic 

regression (LR) 
-- 

Acc: 81.9%, Sens: 

79.1%, 
Spec:84.1% 

 [156]  

data collection was 
conducted in the 

Sleep Center of 

South Campus of 
Guang’anmen 

Hospital, China 

Academy of 
Chinese Medical 

Snore  14 Subjects 
Pre-emphasis 

technique 
Different Times  NSPC, MFCC 

 
 

 

PCA 

 
 

 

SVM 
-- Acc: 87.05%  



 [157]  MIT-BIH Dataset   ECG 16 Subjects Filtering -- Different Features  -- SVM -- 
Acc=80.8 
Sens=80.6 

Spec=79.8 

 [158]  PhysioNet ECG  32 Subjects 
Data transformation 

technique  
Different Times  

Different Statistical 

Features  
-- 

Different 

Classifiers  
10 Acc= 94.32 

 [159]  PhysioNet  ECG  35 Subjects DT-CWT   Statistical Features  ANOVA 
Different 

Classifiers  

 

 

 
10 

 

 

 
Acc: 84.4 

 [160]  Clinical  

physiological 

radar monitoring 

system 

(PRMS) 

5 Subjects linear demodulation  60 Sec 

PSD, packing 

density and linear 

envelop error  from 

radar captured 

paradoxical 

breathing patterns 

-- 
SVM, KNN, 

RF 
-- Acc=93.75 

 [161]  
PhysioNet Apnea 

Database 

ECG, SAO2, 

Airflow, 

Abdominal,  
Thoracic  

8 Subjects -- Different Times   
Time-Domain and 

Non-Linear Features  
ANOVA SVM  -- 

AUC = 95.23 
Sen = 94.29  

spec = 96.17 

 [162]  

recordings of 

patients referred to 

the University 
Hospitals Leuven  

SpO2 100 Subjects 
Sharp changes and 

ripples correction 
5 Min 

143 features  and 
their logarithmic 

Transformation  

-- LS-SVM -- Acc:76.7  

 [163] 
PhysioNet ECG 

Apnea Database 
ECG 70 Subjects TQWT 1 Min CCE  -- 

MLP,  

Bagging, RF  
10 

Acc= 92.78 

Spec=93.91 
Sens= 90.95  

 [164] 

Tianjin Chest 

Hospital dataset 
EEG  

EEG 30 Subjects DWT  10 Sec ApEn  RFE  
KNN, SVM, 

RF 
-- 

Acc= 94.33% 

Sens= 93.10 
Spec= 95.07 

 [165]  
PhysioNet Apnea-

ECG database 
ECG 10 Subjects DWT  2 Sec 

Mean RR,  RMSSD,  

SDNN,  Variance, 

LF, HF, LF/HF 
ranges considered  

-- NARX -- 
Sens= 93.3 
Spec=91.8  

Acc= 92.55 

 [166]  
Sleep Neurological 

Laboratory 
ECG -- 

Amplitude 

Respiratory 
Modulation 

-- SSWT, ISSWT -- -- -- -- 

 [167]  
PhysioNet Apnea 

Database  
SpO2  8 Subjects -- 1 Min 

Time and Frequency 

Domain Features  
GA MLP -- Acc: 97.7  

 [168]  

PhysioBank 
database, collected 

at St. Vincent’s 

University Hospital 
Sleep Disorders 

Clinic in Dublin 

EEG 25 Subjects DWT, HT  30 Sec Different Features  ANOVA FFNN -- Acc=77.3  

 [169]  Clinical  ECG  241 Subjects 

Different 

Preprocessing 
Techniques  

300 Sec, 100 Sec Different Features  PCA  
SVM, KNN, 

OPLS, LDA  
-- 

Acc= 74 

Sens= 88 
Spec= 61  

 [170]  

PhysioNet 

Cardiology 2000 
Challenge Dataset  

ECG -- 

RR intervals were 

constructed (by Pan 
Tompkins 

1 Min  DNN  -- SVM-HMM -- Acc=84.7  



algorithm), RR 
intervals were 

interpolated into 

100 points 

 [171]  Different Datasets  EEG -- 
EMD 

-- 
R peak value, RR 

interval, peak values 

of P and T waves 

-- SVM  -- 
Sens=90  
Spec=85  

Acc=93.33 

 [172]  
PhysioNet and 

Clinical Dataset  
ECG  70 Subjects 

Pan-Tompkins 
algorithm  -- 

Different Time 

Features  
PCA 

SVM, RF, 

LDA, DT 
-- 

Acc= 95.01 
Sens=92.17 

Spec=94.79  

 [173]  

Amrita Institute of 

Medical Sciences 

Dataset 

ECG and 

Respiratory 

Effort signals 

32 Subjects HRV, RRV  -- 
Different Time and 

Frequency Features  
NAP SVM -- Acc: 50  

 [174]  
University of 

Chicago (Chicago, 

IL, USA)  

oronasal airflow 

(AF), Sp02  

946 (records were 

studied)  
DWT  10 Min 

ODI3 (spo2), Four 

statistical moments, 
maximum minimum 

amplitude, energy, 

wavelet entropy 

FCBF 
Different 

Classifiers 
-- Acc=90.99 

[175] 
PhysioNet Apnea-

ECG database 

ECG 32 subjects Pan-Tompkins 
Algorithm 

5 Min  CgSampEn2D  Different Tests 
Different 

Classifiers  

5 Acc=93.3 
Sen=92.5 

Spec=95 

[176] 
 

MIT-BIH Dataset ECG 10 Recordings -- 1 Min Mean, Median, 
Variance, Ratio of 2 

Consequent R-R 

Intervals, Wavelet 
Entropy 

 Ensemble-
Bagged Tree 

classifier 

 Acc= 89.6 

[177] 

PhysioNet Apnea-

ECG database 

ECG 70 Recordings Pan-Tompkins 

Algorithm, EMD  

1 Min The First Five IMFs, 

Mean and Variance, 
Sum of The 

Amplitudes of Cross 

Power Spectral 
Density (CPSD) 

-- PSO_MLPNN -- Acc= 97.66 

Sen= 97.78 
Spec= 97.96 

[178] Clinical Respiratory 

Inductance 

Plethysmography 
(RIP), Nasal 

Airflow, ECG, 

SpO 2, 
Accelerometers 

Data 

28 Subjects -- 300 Sec, 5 Min, 

20 Sec 

Different Features  NCA, NAC RUSBoosted 

Trees 

-- Acc=89 

Sen=80 

Spec=100 

[179] Sleep Heart Health 
Study (SHHS1) 

SpO2 5,804 Subjects -- -- Classic Clinical 
Features, Statistics 

and Non-Linear 

Measures in Time 
Domain, Frequency 

Domain Analysis 

-- Least-Squares 
Boosting 

(LSBoost) 

 Acc=94.6 
Sen=82.2 

Spec=96.3 

2,647 Subjects Acc=91.6 

Sen=89.8 
Spec=92 

SHHS2 322 Patients Acc=96.6 

Sen=99 
Spec=63.6 

 RHUH 



[180] University of 
Chicago (UofC) 

ECG 
1738 Pediatric 

Subjects 
FFT 5 Min 

Hilbert Transform: 
Relative Power 

(RPs) 

NA LDA NA 

Acc=82.8 

AUC=79.6 

Spe=84.7 
Sen=63.8 

Childhood 

Adenotonsillectomy 

Trial (CHAT) 

[181] 

Clinical PPG, SpO2 96 Signals -- 1 Min  

using the Smooth 

Pseudo Wigner-

Ville Distribution 
(SPWV) and the 

Lomb Periodogram 

T-Test SVM 10 Acc=92.6 

[182] 

ISRUC  

EEG 

89 (57 Sleep 

Apnea and 32 

Normal Subjects) 

Decomposition 30 Sec  

Entropy, Energy, 

Heart Rate, Brain 

Perfusion, Neural 

Activity, 
Synchronization 

NA SVM NA 

Acc=90 

Sen=100 

Spe=83 

EDF  40 Subjects 

CAP  

20 (4 Sleep Apnea 

and 16 Normal 
Subjects) 

[183] 

Apnea-ECG 

Dataset 

Respiratory 

Signal 
8 Records HHT 1 Min 

time and frequency 

domain features 
NA RF NA 

Acc=95 

Pre=95.1 
F1=95.1 

Sen=94.4 

Spe=96 

[184] Sakarya Hendek 
State Hospital’s 

Chest Diseases 
Sleep Laboratory 

ECG, EEG 10 OSA Patients -- 30 Sec Different Features 
Fisher Score  

Ensemble 

Classifier 
NA 

Acc=87.12 

Sen=90 
Spe=85 PCA 

[185] Pediatric Sleep Unit 

at the Comer 

Children’s Hospital 
of the University of 

Chicago 

Airflow (AF) 

Signal 
946 AF signals -- 30 Sec 

Bispectral 

Features 

Fast Correlation-

Based Filter 
(FCBF) 

MLP NA Acc=90.15 

[186] MIT-BIH Dataset  EEG 16 Healthy 
Subjects, 8 

Unhealthy Subjects 

DWT 1 Min  Energy of Each 
Coefficients, Mean, 

Median, Standard 

Deviation 

-- SVM NA Acc=98 

[187] PhysioNet Apnea-

ECG database 

ECG 70 Recordings Different Methods  -- Different Features  PCA ANN-LM, 
ANN-SCG 

-- ??? 

35 Recordings 

SDMCMSH 

[188] Clinical EEG 30 Patients Decomposition -- Sample Entropy, 
Variance 

NCA RF, KNN, 
SVM 

10 Acc=88.99 
Recall=86 

Prec=89 

[189] Clinical PSG 184 Patients  WCT, DWT, 
SMOTE 

-- Statistical Features  ANOVA Different 
Methods  

10 Acc= 90.18 
Prec=78.5 

Recall=86.4 

F1-Score= 82.3 

[190] 
PhysioNet Apnea-

ECG database 

ECG 70 Recordings DWT 1 Min  Different Features  Different 
Techniques  

LDA, KNN, 
SVM, RF 

10 Acc= 90.3 
Sen= 86.6 

Spec= 92.59 



[191] Clinical Single Channel 
ECG 

10 Patients -- 10 Sec 25 Features Fisher Score, PCA DT, KNN, 
SVM, 

Ensemble 

Classifiers 

-- Acc=85.12 
Sen=85 

Spec=86 

[192] 
PhysioNet Apnea-

ECG database 

ECG 70 Recordings of 
32 Subjects 

-- 5 Min  Frequency Domain 
Features  

-- -- -- Acc= 90 
Sen= 87.5 

Spec=95 

[193] UCD SpO2 25 Optimal Duration-
Frequency 

Concentrated 

(ODFC), WFB 

1 Min  Shannon Entropy -- Ensemble 
RUSBoosted 

Trees 

10 Acc=89.21 

SAE Dataset  8 

Acc= 95.97  

[194] PhysioNet Apnea-

ECG database 

ECG 70 -- 1 Min  AR Coefficients, 

ACF Based Features 

SFFS Different 

Classifiers  

10 Acc= 93.90 

[195] Clinical  EEG 84  Frequency Band 

Decomposition 

30 Sec Normalized  

Symbolic Transfer 
entropy, Normalized 

Posterior-Anterior, 

Statistical Features 

F-Score DT,  ANN,  

KNN, SVM 

-- Acc=98.80 

[196] Taichung Veterans 
General Hospital 

(TCVGH)  

PSG 300 -- -- Waist 
Circumference, 

Mean Blood 

Pressure (BP),  
Systolic BP  

--  EFNN, ANN, 
Stepwise 

Regression 

5 Different Results  

[197] Tianjin Chest 

Hospital 

EEG 30 DWT  30 Sec Approximate 

Entropy 

SVM-RFE KNN, RF -- Acc=94.33 

Sens= 93.10 
Spec=95.07  

[198] 

PhysioNet Apnea-
ECG database 

ECG 35 -- 1 Min  Different Statistical 

and Frequency 
Features, SampEn, 

RenEn,TesEn  

 SFS SVM, KNN 10 Acc=81.40 

[199] 
PhysioNet Apnea-

ECG database 

ECG 60  -- 1 H  Different Statistical 

and Frequency 
Features 

LDA ANN -- Acc=98.30 

[200] EEG PhysioNet  EEG  5 -- 10 Sec Energy, Entropy, 

Statistical Features  

-- Bagging  5 Acc= 95.10 Sens= 

93.20 
Spec=96.80 

[201] Clinical  Airflow (AF),  

SpO2 

974 -- 30 Sec  Different Features  Fast Correlation-

Based Filter 

Method 

Multiclass 

Adaboost 

-- Acc= 90.26  

[202] EEG PhysioNet  EEG  31  FAEMD 1 Min  Temporal, Spectral, 

Time–Frequency 

Domain Features  

Non-Parametric 

Statistical Test 

RF ,SVM 10 Sens= 82.27 

Spec= 78.67 

[203] Apnea-ECG Data  ECG 70 -- 1 Min  Time Domain 
Features, Spectral 

Domain Features  

SFS SFS Algorithm 10 Acc=93.26  

 

 



Table 3. Automatic diagnosis of sleep apnea using DL methods  

Works Dataset Modality Number of 

Cases 

Length 

Window 

High Level 

Preprocessing 

Deep Learning 

Methods 

Classifier K-Fold Performance 

 [204] PhysioNet Sleep Database  Blood Oxygen 

Saturation, Oronasal 

Airflow, Ribcage and 

Abdomen Movements 

25 5 Sec -- CNN Fully 

Connected 

Layer 

-- Avg Acc=79.6 

 [205] Sleep Laboratory at the Toronto Rehabilitation 

Institute 

Airflow, SpO2, Chest 

and Abdominal 

Movements 

80 10 Sec Morphological 

Features Extracted 

CNN, LSTM Sigmoid 5 F1 Score 

(event-by-event 

detection 

algorithm): 

Between 12-

71% 

 [206] CHA database SpO2 746 20 Min -- CNN Linear -- Acc=95.1 

 [207] Alexandra Hospital, Brisbane, Australia EEG, EOG 891 30 Sec -- CNN, LSTM Softmax 10 Acc=84.5 

 [208] 
PhysioNet Apnea-ECG database 

SPO2 8 (apnea-ECG 

dataset) 

1 Min -- DBN Softmax 10 Acc=97.64 

UCD database 25 (UCD 

dataset) 

Acc=85.26 

 [209] Princess Alexandra Hospital (Brisbane, Australia) EEG, EOG 717 30 Sec -- CNN, LSTM Softmax -- Acc=83.2 

 [210] SHHS-1 dataset ECG, THOR and ABDO 2100 30 Sec -- LSTM, FLSTM Tanh -- Acc=83.4 

 [211] Sleep Data And 3D Scans Were Collected Prom the 

Patients Appearing to Genesis SleepCare for 

Different Sleep Issues 

Face Image 69 -- -- VGGFace, 

PAMs 

-- -- Acc: 

67.42% 

 [212] MIT-BIT Dataset  IHR, spo2 -- -- -- LSTM-RNN -- -- Acc=95.5 

 [213] -- PSM 9 30 Sec -- BiLSTM, TCN Softmax -- Acc=95.1 

 [214] MrOS Sleep Study ECG 545 15 Sec -- 1-D CNN, 

LSTM, DNN 

Softmax 10 Acc=79.45 

 [215] PhysioNet Apnea-ECG database ECG -- -- -- LSTM Softmax -- Acc=97.80 

 [216] Seoul National University Hospital, Multi-Ethnic 

Study 

Thoracic, abdominal, 

spo2 

129 10 Sec -- CNN Sigmoid -- Average 

accuracy: 

94.9%  MESA 50 

 [217] -- Abdominal and Thoracic 

Triaxial Accelerometers, 

SpO2, ECG 

-- -- -- LSTM Softmax -- Acc=92.3 



 [218] SHHS ECG 500 5 Min -- DNN 

(optimization 

with Dde) 

Relu -- Acc=72.95 

 [219] PhysioNet ECG 35 1 Min -- CNN Relu -- Acc=98.91 

Sen=97.82 

Spec=99.20 

 [220] Polysomnography (PSG) data for 17 patients 

recorded at the Interdisciplinary Center of Sleep 

Medicine in Charité- Universitätsmedizin Berlin in 

Berlin, Germany 

Oronasal thermal airflow 

(FlowTh), nasal pressure 

(NPRE), and abdominal 

respiratory inductance 

plethysmography (ABD) 

17 10 Sec -- LSTM, Bi-

LSTM 

Softmax -- Acc=85 

Spec=83.7 

Sen=90.3 

 [221] Samsung Medical Center (Seoul, Korea). ECG 86 10 Sec signal was converted 

into a 2D  

Different 

Models  

Softmax  -- Acc=99 

 [222] PhysioNet ECG 35 1 Min -- DNN Relu -- Acc=67.39 

 [223] MESA sleep study Nasal Airflow 100 30 Sec -- CNN Softmax 10 Acc=74.70 

 [224] MrOS sleep data Airflow 520 -- -- DNN Softmax 10 Acc=63.70 

 [225] Physionet/CinC Challenge EEG, EMG -- 30 Sec -- CNN Softmax 5 AUPRC=0.315 

AUROC=0.858 

 [226] Apnea-ECG database from PhysioNet  ECG -- 1 Min -- DNN Logistic 

Regression 

-- Acc=84.7 

 [227] MESA  PSG Nasal Airflow 

Signal 

1,507 30 Sec -- CNN Softmax 10 Average F1-

Score= 79.7 

 [228] Physionet Computing in Cardiology (CinC) Sleep 

Apnea Challenge database 

ECG 35 -- ECG converted to 

IHR 

LSTM-RNN -- 5 Acc=99.99 

MIT BIH Arrhythmia database 

 [229] Apnea Database v2.0 Hospital Quirón Salud de 

Málaga (Spain) 

Speech 525 -- -- X-Vectors 

Embeddings, 

Domain-

Adversarial 

Training (DAT) 

Softmax 15 Acc=76.60 

 [230] CapnoBase Vortal PPG, Respiratory Signal 42 (CapnoBase) 8 Sec -- ResNet  -- -- -- 

 [231] 

PhysioNet Apnea-ECG database 

ECG 70 1 Min -- CNN Softmax -- Acc=88.23 

Sens=82.74 

Spec=91.62 

 [232] MIT-BIT Dataset  EEG, EOG 20 150 Sec Removing 

Movement Epochs 

During Sleep 

CNN Softmax 4 Acc=81% 

 [233] Sleep Center of Samsung Medical Center (Seoul, 

Korea). 

ECG 86 10 Sec -- CNN Softmax -- F1_Score=87 



 [234] Sleep Center of Samsung Medical Center (Seoul, 

Korea) 

ECG 82 10 Sec -- CNN Softmax -- -- 

 [235] Ziekenhuis Oost-Limburg, a hospital in Belgium, 

ROBIN bioZ data 

Bio-impedance (bioZ) of 

the chest (ECG data is 

used for data alignment), 

Abdominal respiratory, 

Thoracic respiratory 

25 30 Sec -- KSTM -- 5 Acc=72.8 

Sen=58.4 

Spec=76.2 

 [236] CHAT-baseline Dataset SpO2 453 1 Min -- CNN Softmax -- Acc=93.6 

Spec=96.7 

 [237] -- RFID 4 -- -- RNN-AE -- -- TN: 94%, TP: 

92% 

 [238] 

PhysioNet Apnea-ECG database 

ECG 35 1 Min -- CNN, CNN-

RNNs 

Sigmoid 10 Avg Acc=89.11 

Avg Sen=89.91 

Avg 

Spec=87.78 

 [239] Human Experiments conducted by team Sound 4 3.2 Sec Boosting CNN, BstCNN Softmax -- Sen=89 

 [240] EIT datasets were obtained of premature neonate 

patients provided by the Emma Children's Hospital, 

Academic Medical Centre (AMC), in the 

Netherlands 

EIT boundary voltage 15 -- -- ResNet50 and 

SVM 

Softmax -- Acc=99 

 [241]  SHHS PSG Records (SpO2 and 

HR Signals) 

5000 Patients 30 Sec -- Bi-GRU Softmax, 

MV 

-- Acc=90.13 

Sen=94.13 

Spec=80.26 

 [242] Cleveland Children’s Sleep and Health Study 

database 

EEG, EMG, ECG, 

Respiratory Channels 

Including Airflow, 

Thoracic and Abdominal 

Breathing 

32 Participants 1 Min -- 1D-CNN Softmax -- Acc=98.97 

 [243] SDB Datasets Nocturnal PSGs, Single-

Lead ECG Recordings 

92 SDB Patients 10 Sec -- RNN Softmax  -- Acc=99 

Sen=99 

Spec=99 

 [244] Clinical Respiratory 8 Subjects -- DWT LSTM Softmax -- Acc=92 

Sen=87 

Spec=84 

 [245] Apnea-ECG Database ECG 70 ECG  1 Min Extraction of EDR 

And HBI Signals, 

SSA, HHT 

-- SVM and 

SAE-DNN 

Classifiers 

10 Different 

Results  UCD Database  -- 

PhysioNet Challenge Database -- 

 [246] Montreal Archive of Sleep Studies (MASS) Dataset 

Subset 2 (SS2) 

PSG 19 Records 20 Sec CWT Recurrent Event 

Detector (RED) 

Softmax 10 F1-Score=84:7 

Rec=82:6 

Pre=88:1 

 [247]  SHHS Visit 2 Single Channel EEG 2,650 Patients 30 Sec Critical-Band 

Masking (CBM) 

technique 

CNN Softmax 10 Acc=76.7 

MCC=54 
UCD 25 Participants 

MIT-BIH Dataset  16 Patients 



 [248] Diagnostic Imaging Center, Kuopio University 

Hospital, Kuopio, Finland 

SpO2 signal 1970 10 Min -- CNN Fully 

Connected 

Layer 

-- Acc=88.3 

Sen=90.9 

Spec=95.4 NeuroCenter, Kuopio University Hospital, Kuopio, 

Finland 

77 

 [249] St. Vincent’s University Hospital EEG 25 patients 10 Sec Decomposition LSTM Dense  -- Acc=81.9 

 [250] Sleep Heart Health Study (SHHS) Single Channel EEG 

Signals from PSG 

Recordings. 

100 Recordings -- -- CCN-SE Softmax 5 Acc=88.1 

Pre=80.4 

Sleep-EDF Expanded (Sleep-EDFx) 100 Recordings Acc=85.3 

Pre=75.1 healthy Clinical 10 Subjects 

 [251] PhysioNet Apnea-ECG Dataset (PAD) Discontinuous RR-

Interval Signals 

243 Recordings -- --  FENet Softmax -- Acc= 78.25 

Rec= 90.64 

Pre= 81.54 

Spec= 45.18 

University College of Dublin’s Sleep Apnea 

Dataset (UCDSAD) 

the Best Apnea Interventions for Research 
(BestAIR) 

 [252] 

PhysioNet Apnea-ECG database 

ECG 35 ECG 

Recorded 

Apnea Signals 

-- Data Augmentation CNN Softmax -- Acc=97.80 

Sen=100 

Spec=93 

 [253] Fırat University Research Hospital Sleep Room 

PSG Recordings 

PTT signals 50 Patients, 

50 Healthy 

-- Spectrogram AlexNet, VGG-

16 

SVM, KNN 10 Acc=92.78 

Pre=94.25 

Spec=98 

 [254] PhysioNet Sleep-EDFx Dataset Single Channel EEG 42 Subjects 30 Sec, 

150 Sec 

CWT SqueezeNet Softmax  Acc=85.07 

Sen=77.06 

Spec=95.78 

 [255] Sleep-EDF-2013 2 Scalp EEG Signals 39 Recordings 

from 20 

Subjects 

30 Sec Mapping Label RL+TCNN+ 

CRF 

Average 

Ensemble 

20 Acc=85.39 

MF 1=79.27 

Kappa=80 

Sleep-EDF-2018 153 Recordings 10 Acc=82.46 

 [256] Multi-Ethnic Study of Atherosclerosis (MESA) Single Lead ECG 1547 Records -- -- DeepCAD Sigmoid -- -- 

SHHS 1961 Records 

 [257] MIT-BIH EEG, ECG 18 PSG Signals 

Obtained From 

16 Healthy 

Adult Subjects 

30 Sec -- Dual-Modal and 

Multi-Scale 

DNN 

Sigmoid, 

Softmax 

5 ??? 

 [258] St. Vincent’s University Hospital EEG 25 Patients 1 Sec -- FCNN DNN -- Acc=80.2 

Sen=82.3 

Spec=79.8 

 [259] Sleep Disorders Unit, Loewenstein Hospital—

Rehabilitation Center, Raanana, Israel 

EEG, EOG, Chin EMG 

Signals 

2,014 Patients -- PSD Estimate, 

Spectrogram 

CNN Softmax 10 4 Category: 

Acc=60.6 

Binary: 

Acc=77.2 
Sen=76.5 

Spec=77.9 

 [260] Apnea-ECG Dataset Single Lead ECG. 70 Recordings 10 Sec -- CNN-LSTM Softmax -- Acc=96.1 

Sen=96.1 

Spec=96.2 



 [261] Apnea-ECG Database RR Interval from Single 

Lead ECG Signal 

70 Records 1 Min Christov Algorithm, 

Median Filter 

Algorithm, Data 

Balancing 

 MSDA-

1DCNN 

Weighted-

Loss Time-

Dependent 

(WLTD)  

10 Acc=89.4 

Sen=89.8 

Spec=89.1 

 [262] UCD Single Channel EEG 25 Recordings 

From 25 Adult 

Subjects 

30 Sec HHT, AE  OCNN + SeNet Softmax -- Acc=88.4 

MIT-BIH Dataset  16 Recordings, 

From 16 Male 

Subjects 

Acc=87.6 

 [263] MGH-PSG Dataset 4 Scalp EEG Bipolar 

Channels 

6,341 Patients 30 Sec Bipolar Montage 

Generation 

CNN-RNN Softmax 5 Different 

Results  

Ambulatory Scalp EEG Dataset 112 Patients 

 [264] sleep center of the First Affiliated Hospital, Sun 

Yat-sen University (FAH database) 

PSG 405 PSG 

Records 

30 Sec STFT, Grayscale 

Transform 

Mr-ResNet Post-

Processing 

and 

Estimated 

AHI Values 

-- Acc=91.2 

Sen=90.8 

Spec=90.5 CMH dataset  45 Patients 

 [265] 

PhysioNet Apnea-ECG database ECG 

70 Single-lead 
ECG 

Recordings 

-- DA Contrastive 

Learning-based 
Cross Attention 

Framework 

(ConCAD) 

Softmax 10 Acc=91.22 
MIT-BIH Dataset  

 [266] UCD  SpO2 Signals 25 patients 11 Sec -- 1D-CNN Softmax NA 

Acc=97.08 

Sen=84.65 

Spe=97.42 

 [267] 
Stanford Technology Analytics and Genomics in 

Sleep (STAGES) 
PSG 

1366 Patients 

(1756 Scans) 

-- Transforming Scans, 
Least Squares 

Solution 

ResNet18 
Softmax  10 

Acc=67 
Sen=59 

Spe=72 

 [268] UCD  PSG,  ECG 25 Patients 11 Sec 
-- 

1D-CNN Softmax NA 
Acc=99.56 
Sen=96.05 

Spe=99.66 

 [269] 

ST. VINCENT's University Hospital EEG 

25 Patients -- 

Variational Mode 

Decomposition 

(VMD)  

CNN-BiLSTM Sigmoid NA 

Acc=93.22 

Sen=91.71 

Spe=93.79 

The PhysioNet Computing in Cardiology 
Challenge 2018 

MIT-BIH 

 [270] Clinical DTI Data, sMRI 553 subjects -- -- 2D-CNN Sigmoid 3 -- 

 [271] PhysioNet Apnea-ECG database ECG 
70 Sleep Apnea 

Patients 
1 Min 

Transforming ECG 

Data to IHR Value, 

BiLSTM 

NA NA 

Acc=82.24 

Pre=76.95 
Spe=82.95 

 [272] 

Childhood Adenotonsillectomy Trial (CHAT) 

SpO2 
3196 SpO2 

Signals 

-- 

-- 1D-CNN LR NA 

Acc=97.8 

Sen=83.9 

Spe=99.3 

The University of Chicago (UofC) 

The Burgos University Hospital (BUH) 

 [273] 
PhysioNet Apnea-ECG database 

ECG, SpO2 
70 Recordings 

1 Min -- CNN-BiLSTM Sigmoid 10 
Acc=94.3 
Sen=95.1 

Spe=93.7 
Clinical 30 Patients 



 [274] PhysioNet Apnea-ECG database ECG 
70 primary 

records 

-- 
Transformation CNN-LSTM Softmax 5 

Acc=86.25 
Pre=86.55 

F1=87.68 

 [275] 

Dataset A: Loewenstein Hospital – Rehabilitation 

Center 
PPG Signal, EEG 

2149 PSG 

Recordings 
30 Sec -- 

 

CNN-LSTM 
Softmax NA Acc=83.3 

Dataset B: Sleep Disorders Centre, Princess 

Alexandra Hospital 
877 Recordings 

 [276] 

Physionet 

Respiratory Signals 

25 Recordings 16 Sec 

-- 

LSTM 

Softmax 5 Acc=82.04 
SHHS-1 

3610 
Recordings 

 [277] Clinical  PSG 450 Subjects 

30 Sec 

STFT and Grayscale 

Transform 
 (Mr-ResNet) NA NA 

Acc=91.2 

Sen=90.8 

Spe=90.5 
F1=90.5 

 [278] Apnea-ECG Dataset ECG 
70 PSG 

Recordings 

10 Sec 

-- CNN-LSTM Softmax NA 

Acc=96.1 

Sen=96.1 
Spe=96.2 

 [279] Apnea-ECG Dataset ECG 70 Recordings 1 Min -- 1D-CNN NA NA 
Acc=94 

Sen=88 

 [280] Clinical ECG 24 Patients 1 Min 
Pan-Tompkins 

Algorithm 
LSTM 

Sigmoid 5 
Sen=100 
Spe=100 

 [281] Apnea-ECG Benchmark Database ECG 35 Recordings -- -- 

LSTM 

Sigmoid 10 

Acc=99.8 

Sen=99.85 

Spe=99.73 

[282] Clinical 36 PSG, IR-UWB Radar 

Data 

40 Subjects 20 Sec -- CNN-LSTM Softmax 6 Acc=93 

Sen=78.1 

Spec=95.6 

[283] A3 Study Nox-T3 and Flow Data 579 Patients 1 Min Simple Baseline 

Adjustment (BLA) 

Procedure 

CNN -- 10 Acc=76.09 

Sen=78.33 

Spec=72.17 

[284] Clinical  SpO2 1970 HSATs 10 Min -- CNN Averaging -- Acc=88.3 
Sen=90.9 

Spec=95.4 
77 Patients 

[285] Apnea-ECG PSG 35 Recordings 60, 30 Sec -- CNN EPD -- Different 
Results MIT-BIH 18 Patients 

UCD 25 patients 

1026 

Recordings 

(Visit2) 
MrOS-Visit2 Study 

[286] 

 

SHIP MRI 181 Subjects -- DA U-Net -- 5 Average Dice 

Coefficients 89, 

87, 79 

[287]  INTERSPEECH 2017 ComParE Snoring Sub-
Challenge Datasets 

Sound 828 Snore 
Samples 

-- MFCC VGGNet, 
Inception, 

ResNet 

Softmax -- Acc= 44.6 

[288] 
PhysioNet Apnea-ECG database 

ECG  70 Subjects 1 Min Scalogram, STFT, 
DA 

2D-CNN Softmax 10 Acc= 92.4 
Sen= 92.3 

Spec= 92.6 



[289] University College Dublin Sleep Apnea Database EEG, ECG 25 patients 8 Sec 3 Recurrence Plots 
(RPs) 

3 ResNet-50 MV 10 Acc=91.74 
Sen=91.55 

Spec=91.51 

[290] Apnea-ECG Dataset ECG  70 Recordings 1 Min CWT, Hybrid 

Scalogram 
Representation 

(EMD-CWT) 

SCNN Softmax -- Acc=94.38 

Sen=94.30 
Spec=94.51 

University College Dublin Sleep Apnea Database 25 Patients Acc=81.86 

Sen=71.62 
Spec=86.05 

[291] MIT-BIH Dataset  EEG, ECG, and 

respiration signals 

EEG, ECG, and 

respiration signals 

16 Subjects 

25 Patients 

8 Sec 3 Recurrence Plots 

(RPs) 

ResNet-18 and 

ShuffleNet 

WMV 10 Acc=90.72 

Sen=89.61 

Spec=89.42 
St. Vincent’s University Hospital/ University 

College Dublin Sleep Apnea Database 16 Subjects 

[292] 

UCD  EEG 128 Samples NA -- 1D-CNN Sigmoid NA 

Acc=80.05 

Sen=79.53 
Spec=80.56 

[293] 

Clinical  

EEG 

500 Temporal 

Data 
NA 

Welch Method, 

Average PSD 

Modified 

Fusion 

Convolution 
Neural Network 

(MFCNN) 

Softmax NA Acc=91.7 
ECG 

[294]  
Clinical  Nasal Airflow 

500 15 Sec STFT Octave CNNs,  
Res2Net 

-- NA Acc= 91.23 
Sens=90.81 

Spec= 90.59  

[295] 
Apnea-ECG Data ECG 

32  1 Min  Data Division 1D-CNN  Softmax NA Acc= 97.1 
Spec=100 

Sens=95.7 

 

 



5. Challenges  

In this section, the most important challenges in the diagnosis of sleep apnea are discussed. These challenges 

fall into four categories, including PSG and neuroimaging datasets, ML techniques, and DL models. In the 

following, these challenges will are elaborately addressed.  

5.1. Challenges in PSG Datasets  

Recording PSG is known as the most important method for diagnosis of sleep apnea, and medical physicians 

widely use this method. As mentioned earlier, this signal recording method consists of ECG, EEG, EMG, 

EOG, 𝑆𝑝𝑜2, and breathing signals. Various available PSG datasets are discussed in section 3.1. It can be 

seen that the presented datasets have a limited number of cases. In addition, some of these datasets lack 

different types of PSG signals. It is important for researchers to tackle the challenges in this section because 

they will be able to carry out more applicable studies on the diagnosis of sleep apnea using AI techniques.   

5.2. Challenges in Neuroimaging Datasets  

EEG is one of the most important biological signals that is employed for the diagnosis of various diseases, 

including sleep apnea. This modality is known as one of the PSG recordings and is employed to examine 

the brain function during apnea in sleep. Among the available datasets presented, the EEG modalities are 

often missing. In some other groups of datasets, this modality is available for researchers with a limited 

number of cases. On the contrary, EEG recording consists of essential information about functional of the 

brain [296], and studies in this field can help researchers with a diagnosis of sleep apnea. In addition, a 

variety of studies on the diagnosis of sleep apnea from magnetic resonance imaging (MRI) modalities are 

being conducted [297-298]. In clinical studies [297-299], researchers investigate to what point Apnea 

affects the structure and function of the brain. So far, no dataset containing MRI modalities has been 

presented, which is a challenge in this field. All in all, the provision of available datasets from various 

neuroimaging modalities will lay the foundation for interesting studies on the diagnosis of sleep apnea.  

5.3. Challenges in ML methods  

Diagnosis of sleep apnea using ML techniques is complicated. It is because the selection of feature 

extraction to classification algorithms for obtaining high accuracy for diagnosis of sleep apnea from PSG 

signals is significantly time-consuming and requires try and error. Besides, ML models are not very 

applicable to input data [56]. However, various PSG signals must be examined in the real diagnosis of sleep 

apnea. These issues create serious challenges in having access to applied software for researchers in the 

diagnosis of sleep apnea.    

5.4. Challenges in DL Methods  

This section addresses the most important challenges in the diagnosis of Apnea using DL methods. In Table 

(3), the studies on the diagnosis of Apnea from biological signals using different DL models are presented. 

According to Table (3), researchers have employed standard or simple DL models for the diagnosis of sleep 

apnea and have obtained acceptable results. Nevertheless, complex DL models, including graph [300-301], 

attention [302-303], and representation learning [304-305], etc. have not yet been used in the diagnosis of 

sleep apnea research. It is mainly because of a lack of access to large input data. Lack of access to hardware 

resources with high efficiency is another challenge that prevents [55-58].  

6. Discussion  

Apnea is a disorder that prevents breathing at some points in sleep [1-3]. Patients with sleep disorders suffer 

from a variety of breathing problems and have several problems, including uncomfortable sleep with loud 

snoring [1-5]. These disorders include three groups of CSA, OSA, MSA, and PSG recording is also used 



for diagnosing them. Medical physicians use AI techniques as a suitable solution to diagnose sleep apnea. 

Many studies have been carried out in this field.  

According to the importance of this issue, we conducted a review study to examine the sleep apnea detection 

using biological signals and AI techniques. Tables (2) and (3) summarized the research on sleep apnea 

detection using ML and DL techniques. In table (2), the most important information of the studies on the 

diagnosis of sleep apnea using ML techniques is provided, which includes dataset, preprocessing, feature 

extraction, dimension reduction, and classification methods. Furthermore, Table (3) demonstrates the 

information regarding DL studies on the diagnosis of sleep apnea.  

In section 2, available datasets containing biological signals are provided along with their details for 

diagnosis of sleep apnea. Moreover, the employed datasets in ML and DL research for diagnosis of sleep 

apnea are also presented in a part of Tables (2) and (3). The number of datasets in ML and DL research are 

displayed in Figure (10). As shown in Figures (10.a) and (10.b), datasets Apnea-ECG database and MIT-

BIH are most applicable to ML and DL studies for the diagnosis of sleep apnea, respectively.  

  

                                   (a) ML                                                                                   (b) DL  

Fig. 10. Number of MRI dataset used in sleep apnea detection using AI techniques: (a) DL and (b) ML 

The types of biological signals based on PSG for sleep apnea detection is also indicated in Tables (2) and 

(3). Accordingly, the number of biological signals based on PSG recording for ML and DL research are 

shown in Figure (11). According to Figures (11.a) and (11.b), the ECG signal is most applicable for 

diagnosis of sleep apnea using ML models. Additionally, compared to other biological methods, ECG 

recording is used more in DL studies.  

Table (2) introduces different feature extraction and dimension reduction algorithms for diagnosis of sleep 

apnea. As mentioned in the previous sections, the feature extraction methods are divided into four 

categories, including time-domain, frequency-domain, time-frequency domain, and non-linear features 

[306-309]. The non-linear techniques are among the most useful feature extraction methods in studies on 

the diagnosis of sleep apnea. On the other hand, feature extraction in CDAS based on DL is carried out by 

deep layers. Table (3) demonstrates DL techniques in the diagnosis of sleep apnea. In this section, the 

number of DL networks for sleep apnea detection is indicated in Fig. (12). According to studies, the CNN 



model is the most useful compared to other DL models, which is attributed to their high efficiency in 

processing applications of biological signals.  

 

 

 
                                 (a) ML                                                                                (b) DL  

Fig. 10. Number of biological signals based on PSG used in sleep apnea detection using AI techniques: (a) DL and 

(b) ML 

 

 
Fig. 12. Number of DL models for sleep apnea detection 



The last part of the discussion addresses the classification algorithms. Classification techniques are the last 

section of CADS based on AI for the diagnosis of sleep apnea. The classification algorithms for the 

diagnosis of sleep apnea are indicated in Tables (2) and (3). According to DL and ML research, the number 

of classification algorithms for diagnosis of sleep apnea are shown in Figure (13). As shown in Figure 

(13.a), the support vector machine (SVM) method is most used in ML applications. Also, the Softmax 

method is more popular in DL studies than other techniques based on Figure (13.b). 

  
                                       (a) ML                                                                                    (b) DL 

Fig. 13. Number of classification methods in sleep apnea detection: (a) DL and (b) ML  

7. Future Works   

In this section, future works for the diagnosis of sleep apnea in PSG signals using AI methods are proposed. 

In the first place, future works are allocated to the provision of available datasets containing PSG signals 

with a high number of cases. In addition, the provision of datasets with a variety of neuroimaging modalities 

is also discussed. In the second subsection, some of the newest ML techniques in the diagnosis of sleep 

apnea are proposed as future works. The newest DL techniques for future studies for sleep apnea detection 

are introduced in the third subsection. Finally, several ideas are mentioned in rehabilitation systems along 

with diagnosis of sleep apnea based on AI techniques.     

7.1. Future Works in Dataset  

Datasets are one of the most important sections in CADS for the diagnosis of various diseases. The first 

future work may provide datasets of PSG recordings with a high number of cases. As mentioned earlier, 

recording PSG signals includes ECG, EEG, EMG, EOG, 𝑆𝑝𝑜2, and breathing signals. Providing datasets 

with a high number of cased is of paramount importance for future studies. Furthermore, several clinical 

studies try to investigate the efficiency of MRI modalities in the diagnosis of Apnea [297-299]. Thereby, 



researchers' access to datasets of MRI modalities allows them to study the brain function during sleep apnea 

and compare the patients’ brain structure and the function to those of normal individuals.  

7.2. Future Works in ML Methods  

In Table (2), the conducted studies on the diagnosis of sleep apnea from biological signals using ML 

methods are summarized. The future works proposed in this section include the provision of new 

preprocessing, feature extraction, and classification methods. Various techniques for preprocessing 

biological signals have been introduced. Among the introduced methods, the techniques based on time-

frequency domain, such as new DWT [310-312] and EMD [313-315] methods, can be addressed as future 

work with a preprocessing approach.  

In another section of Table (2), different feature extraction methods in studies on the diagnosis of sleep 

apnea are introduced. The most important future work in this field may be Fuzzy feature extraction [316], 

functional connectivity [317-318], effective connectivity [319-320], dynamic connectivity [321], graph 

[322], and new entropy techniques [323]. Using the introduced techniques may increase the accuracy and 

efficiency of CADS based on ML for sleep apnea detection.   

According to Tables (3) and (4), a variety of classification algorithms are employed in the studies on the 

diagnosis of sleep apnea. However, none of these studies have used classification methods based on Fuzzy 

theories. As future works, using Fuzzy models type 1 [324-325] and type 2 [326-327] and Fuzzy regression 

[328] could lead to interesting studies in this field. Moreover, graph theory methods with a classification 

approach have not also been employed in the diagnosis of sleep apnea. Hence, using the graph theory 

method could be future work in the classification section [329]. 

7.3. Future Works in DL Methods   

This section introduces several ideas for using the newest DL techniques in future studies on the diagnosis 

of Apnea. Over the recent years, DL techniques have been significantly evolved, and researchers in this 

field have been able to develop novel models. A review of the studies on the diagnosis of Apnea using DL 

techniques is presented in Table (3). As can be seen, the studies on the diagnosis of Apnea, standard or 

simple DL models are used. For this purpose, some of the newest DL sets for future studies on the diagnosis 

of Apnea are introduced, graph [300-301], attention [302-303], and representation learning [304-305], etc.  

7.4. Future Works in Rehabilitation Systems    

This section introduces future works for rehabilitation systems based on AI techniques in the diagnosis of 

Apnea. CSA happens due to brain dysfunction. Medical physicians use neuroimaging modalities, such as 

MRI, to diagnose them. Transcranial magnetic stimulation (TMS) and transcranial direct current 

stimulation (tDCS) are two interventional methods for the rehabilitation of CSA [330-332]. In this treatment 

method, first, medical physicians detect the regions suspected to cause Apnea using MRI modalities. In the 

following, the suspected regions are electrically/magnetically stimulated using TDCS/ TMS methods [332-

333]. Regions for electrical stimulation must be selected accurately. Otherwise, it may have serious 

consequences for the patients. As future works, the provision of an accurate classification method for brain 

regions in MRI data using AI techniques seems necessary. This will increase the accuracy of selecting 

regions suspected to cause CSA for electric/magnetic stimulation.  

8. Conclusion  

Sleep apnea is one of the most common disorders many individuals suffer from today. Compared to the 

low ages, this disorder is more prevalent in adults and is directly correlated with snoring [11-12]. This 

disorder is prevalent in different ages, leading to irreparable damages to individuals [11-12]. Apnea in 



children could lead to attention deficit hyperactivity disorder (ADHD) [334]. Also, in older individuals, 

apnea could bring about diseases such as hypertension [335], cardiovascular diseases [336], and stroke 

[337]. The PSG is used as a precise method for the diagnosis of sleep apnea, and physicians obtain important 

information regarding the patients' condition [34-35]. However, the diagnosis of sleep apnea using PSG 

data is invariably challenging for physicians. Using methods based on AI and PSG data is of paramount 

importance for diagnosing sleep apnea. For this purpose, many studies are being done in diagnosis of sleep 

apnea using ML and DL methods.  

In this work, a comprehensive review has been conducted on the diagnosis of sleep apnea from biological 

signals using AI methods. A complete explanation was provided regarding sleep apnea and various 

diagnostic methods in the introduction part. In addition, in this section, the importance of using AI methods 

was also investigated in the diagnosis of rapid sleep apnea. The second section introduced the search 

strategy, which included a paper search mechanism and selection of papers. In this section, the PRISMA 

instructions were used, which could be interesting for the readers. In the third section, a discussion has been 

done regarding the research in the field of sleep apnea detection using ML and DL methods. Also, in this 

section, a comparison has been conducted on the number of performed studies for the diagnosis of sleep 

apnea using ML and DL methods. 

The CADS for sleep apnea detection in biological signals using AI methods was provided in Section 3. 

First, the available datasets from the PSG data were discussed along with the details. In the following, 

different low and high-level preprocessing methods for the EOG, EMG, EEG, ECG, 𝑆𝑝𝑜2, and respiration 

signals are presented. Next, the feature extraction, dimensions reduction, and classification methods in the 

CADS based on ML are provided, and the research of this field are summarized in Table (2).  Finally, the 

DL methods were discussed, and the sleep apnea detection research using DL models were summarized in 

Table (3). 

In another section, the important challenges in diagnosing sleep apnea from PSG signals and AI methods 

have been discussed. As discussed, these challenges include dataset, ML methods, and DL models. With a 

high number of cases, the lack of access to datasets from the EOG, EMG, EEG, ECG, 𝑆𝑝𝑜2, and respiration 

signals is still a serious challenge. In [297-299], the researchers used MRI modality for the diagnosis of 

sleep apnea, but the MRI neuroimaging is not provided for free, which is another challenge of the dataset. 

The diagnosis of sleep apnea using ML methods was provided as another challenge. As discussed, choosing 

the ML algorithms for the precision enhancement of apnea from the PSG data is difficult. In addition, 

increasing the input data in most cases leads to the performance decline of the CADS based on ML method. 

Accordingly, these are the serious challenges for providing the software for the diagnosis of apnea by ML 

methods. There have been various DL methods, and using advanced models requires numerous input data. 

This challenge leads to the lack of providing advanced DL methods by researchers. Also, the lack of access 

to the hardware resources with high performance is another reason behind not using the advanced DL 

models. In general, the introduced challenges have led to the unavailability of real-time tools for the rapid 

and accurate diagnosis of sleep apnea.  

In the following, the discussion section was introduced along with the subsets. A comparison between ML 

and DL fields for the diagnosis of sleep apnea was provided in the first subsection. Then, a comparison was 

made between the number of used datasets in the diagnosis of sleep apnea disorder. In another subsection, 

the number of used modalities in the ML and DL studies for the diagnosis of sleep apnea disorder was 

provided and displayed. Ultimately, the number of categorization algorithms in the ML and DL researches 

for the diagnosis of sleep apnea was investigated. This section assists the researchers achieve the diagnosis 

of sleep apnea algorithms with high performance.  



Future works have been reported in the diagnosis of apnea in section 6. Providing the available PSG datasets 

with a high number of cases is the first future work. In addition, providing the neuroimaging datasets, e.g., 

MRI, for the diagnosis of sleep disorder is also another future work. One of the future works is using state-

of-the-art ML methods to increase the accuracy of sleep apnea diagnosis. Also, in future studies, using new 

and advanced DL models will help the precision enhancement of diagnosis of sleep apnea. Of course, using 

advanced DL models requires the development of hardware resources which will happen in the future. 

Ultimately, providing the rehabilitation systems in the diagnosis of sleep apnea was defined as the future 

work. In this section, the idea of providing intervention methods for the treatment of CSA using TMS and 

tDCS methods was introduced along with the AI methods.  

With respect to the advances made in the diagnosis of apnea using AI methods, it is promising that the 

researchers achieve the real hardware and software platforms for the diagnosis of sleep apnea. In future 

works, various researchers will address the provided challenges, and the initial samples from the diagnosis 

of apnea will be provided. These platforms will help the specialists in the hospitals and health centers in 

the rapid diagnosis and treatment of sleep apnea. In addition, it is expected that in the future, the most 

important methods in the medical industry, e.g., internet of things (IoT), cloud computing, etc., will be used 

in the diagnosis and prediction of apnea in the most advanced platforms. 
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