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A B S T R A C T

In this paper, optimum design of building structures is conducted by metaheuristic algorithms due to the
shortcomings of the conventional design methods in providing economical designs. The Harmony Search (HS)
is utilized as the main algorithm which was developed based on the musical process of searching for the
optimal condition of harmony to produce an appropriate search approach for design optimization purposes.
Besides, the Tribe-Harmony Search (Tribe-HS) algorithm is also proposed for the first time in this paper to
improve the performance of the HS algorithm which divides the HS’s searching phase into three distinct phases
called ‘‘tribes’’, lead the primary algorithm to prioritize global search in the early iterations while resolving
local search in the later iterations. Three building structures with 135, 3860, and 8272 structural members
are used as design examples to demonstrate the suggested method’s capacity to solve challenging optimization
problems. The recommended method’s overall performance is compared to that of the conventional Harmony
Search algorithm and ten alternative metaheuristic algorithms using a total of 30 independent runs in each
instance for statistical reasons. The findings demonstrated that the suggested method outperformed the other
metaheuristics for the study design instances.
. Introduction

Structural optimization is the process of finding the best configura-
ions of elements for a structural system with consideration of design
onstraints and a fully developed objective function. In most cases, the
otal construction cost of the structure is considered objective functions
n which the topology, size and shape of the structural systems have
he main role in this purpose. Design constraints are the other aspect
f the structural optimization process which demonstrate the structural
ehavior, including the deformation, force, fatigue, and damping of
tructural members. Structural optimization considers these objective
unctions and design constraints to provide a better configuration of
lements for a structural system. In other words, structural optimization
s an intelligently developed design concept in which the optimal
onfiguration of the structural components is considered by means of
fully-established optimization algorithm.

The process of finding an optimal configuration of elements for a
tructural system requires an optimization algorithm that should be
apable of providing better results than the traditionally developed
esign approaches. In this regard, the metaheuristic-based optimiza-
ion approaches could be considered as optimization algorithms that
ave been utilized for optimization purposes in different fields for

∗ Corresponding author.
E-mail address: mehdi.azizi@tabrizu.ac.ir (M. Azizi).

several decades. The Genetic Algorithm (GA) [1], Differential Evolu-
tion (DE) [2], Ant Colony Optimization (ACO) [3], Particle Swarm
Optimization (PSO) [4], Charged System Search (CSS) [5–7], Material
Generation Algorithm (MGA) [8,9], and Chaos Game Optimization
(CGO) [10,11] are some of these methods. Additionally, several of the
aforementioned metaheuristic algorithms have been used in various en-
gineering problems, yet none of them has ever proven to be extremely
the optimal method. Regardless matter how strong the algorithms are,
several improvements may be made to basic algorithms to provide
more accurate results with less computing time. These advancements
are intended to enhance current algorithms or hybridize two or three
of them to achieve reasonable outcomes for objective functions.

Many of the significant optimization algorithm improvements in-
clude: the enhanced PSO introduced by Wang, et al. [12], improved
ACO proposed by Kaveh and Talatahari [13], upgraded Whale
Optimization Algorithm proposed by Azizi, et al. [14], hybrid GA-
Imperialistic Competitive Algorithm developed by Fasahat and Pay-
vandy [15] and hybrid Ant Lion Optimizer-Jaya approach presented
by Azizi, et al. [16]. Meanwhile, some other developed approaches are
mentioned in Refs. [10,17–24].

While designing diverse engineering structures, one of the most
difficult challenges for structural engineers is optimizing the structure’s
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weight, shape, cost of construction, topology, and manufacturing time
while considering numerous constraints. These features are frequently
incorporated in an optimization problem that considers the best design
sections of structural elements for minimizing the structure’s weight by
considering inequality and equality constraints. Farshchin, et al. [25]
discussed the optimum design of multiple steel frame structures using
School Based Optimization (SBO) algorithm. Khodadadi, et al. [26] pro-
posed the multi-objective version of a recently proposed metaheuristic
algorithm called Crystal Structure Algorithm (CryStAl) for engineering
optimization problems. Kaveh and BolandGerami [27] proposed an up-
graded version of Colliding Body Optimization (CBO) algorithm called
‘‘Cascade Enhanced CBO’’ for large-scale steel space frames’ optimiza-
tion. Talatahari, et al. [28] combined eagle strategy with DE algorithm
for design optimization of different frame structures with steel sections.
Maheri, et al. [29] developed an improved version of the Honey Bee
Mating Optimization (HBMO) algorithm for optimum element determi-
nation of side-sway structural frames with steel design sections. Kaveh
and Ghazaan [30] discussed size optimization of skeletal steel struc-
tures while an improved Whale Optimization Algorithm (WOA) has
been proposed for this purpose. Kazemzadeh Azad, et al. [31] utilized
the Big Bang–Big Crunch (BB–BC) as the main optimization algorithm
for optimum design of different frame structures, while the Upper
Bound Strategy (UBS) is implemented for enhancing the computational
complexity of the main algorithm. Kazemzadeh Azad, et al. [32] dis-
cussed the optimum design of steel frame structures by combining the
BB–BC algorithm with UBS to reduce the number of structural analyses
needed as much as possible throughout the optimization procedure.
Hasançebi [33] utilized Evolutionary Strategy (ES) for economic design
optimization of multiple frame structures. Tort, et al. [34] discussed
the optimal design of towers in real-world engineering for lattice
transmission by utilization of Simulated Annealing (SA). Furthermore,
Kundu and Garg [35] introduced an efficient hybrid approach for
solving several types of engineering design and numerical optimization
problems called enhanced teaching–learning Harris hawks optimization
(ITLHHO), which uses improved teaching–learning-based optimization.
Kaveh and Vazirinia [36] introduced an improved sine cosine algorithm
(USCA), which utilizes a harmony search-based operator to increase
exploration while also dealing with changeable constraints, and saves
the best answers in an archive. Brajević and Tuba [37] developed
an upgraded version of artificial bee colony (UABC) approach for
constrained optimization problems that improves the fine-tuning prop-
erties of the modification rate parameter and uses the ABC algorithm’s
modified scout bee phase. To increase firefly algorithm’s efficiency
in handling constrained engineering optimization problems, Brajević
and Ignjatović [38] suggested an updated firefly algorithm (UFA). The
suggested methodology employs a set of feasibility-based criteria to
guide the search to the most feasible section of the search space,
as well as an enhanced boundary constraint scheme and an equality
constraint approach. Pathak and Srivastava [39] proposed a new bat
algorithm that includes a cuckoo search and Sugeno inertia weight
(UBCSIW). The bat algorithm, which can exploit optimum solutions
in search space, is merged with cuckoo search, which can explore the
best solution globally utilizing Levy flight in the search space, in the
proposed UBCSIW algorithm.

The critical contribution of most of the research studies reviewed
is developing a preferable design method for optimum frame struc-
ture element configuration. Due to the shortcomings of conventional
approaches with computational complexity difficulties, the importance
of offering a thoroughly defined optimization procedure is growing.
Determining the appropriate search space is one of the most promi-
nent phases of designing an optimum design strategy for structural
optimization. From a structural standpoint, using trial and error to
create building structures using available wide-flange sections (W-
shaped sections) does not fulfill the affordable aspects of engineering
projects. As a result, this research focuses on the optimum design of

real-size steel building structures, where more optimum and practical
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design sections may be chosen to determine the search space and give
an appropriate structural design configuration. The Harmony Search
(HS) algorithm is chosen as the primary optimization algorithm sug-
gested by Geem, et al. [40] and is based on the musical practice of
attempting to achieve perfect harmony. Zhang and Geem [41] reviewed
and focused on the historical development of Harmony Search (HS)
algorithm structure instead of applications; they elucidated adaption
of original operators of the basic harmony search, parameter adaption,
hybrid methods, handling multi-objective optimization problems and
constraint handling. There has been a growing interest in enhancing the
overall efficiency of this algorithm as a result of its many applications
in various optimization domains [42–48]. Numerous improved, modi-
fied, or hybridized variants of the HS algorithm have been suggested
and used for engineering design optimization as search techniques.
Keshtegar, et al. [49] proposed a modified version of harmony search
(HS) algorithm for improvisation procedure. Ouyang, et al. [50] sug-
gested an improved version of HS algorithm for problems related to
engineering design considering the general iteration models. Moon,
et al. [51] proposed a novel approach to estimate the vanishing point
using a harmony search (HS) algorithm; they claimed that HS stably
estimates vanishing points with respect to statistics when compared
with RANSAC. Yi, et al. [52] discussed the engineering design of
different optimization problems by using parallel chaotic local search
improved HS algorithm. Keshtegar, et al. [53] used a dynamic harmony
search (DHS) algorithm for accurate calibration of strength and strain
enhancement ratios of FRP-confined concrete. Hasanipanah, et al. [54]
proposed an ANN-adaptive dynamical harmony search algorithm for
accurate prediction of blast-induced flyrock. Yi, et al. [55] developed
an improved HS algorithm considering a multi-level screening strat-
egy for design optimization of engineering problems. Sheikholeslami,
et al. [56] discussed the optimum design of water distribution systems
utilizing a hybrid optimization method developed based on cuckoo
search (CS) and HS algorithms. Keshtegar, et al. [57] proposed a bi-
loop optimization framework of stiffened panels is proposed to search
the global optimum, including an adaptive response surface method
(ARSM) loop and a Gaussian global-best harmony search (GGHS) loop.
Ouyang, et al. [58] proposed a hybrid metaheuristic approach by utiliz-
ing Teaching–Learning Based Optimization (TLBO) and HS algorithms
for optimum design of difficult problems in engineering. Keshtegar and
Etedali [59] proposed based on the dynamical parameters that are ad-
justed using the previous results of the harmony memory with a simple
formulation. Gholizadeh and Barzegar [60] developed a sequential HS
algorithm for shape optimization of different structures by considering
frequency constraints. Jaberipour and Khorram [61] discussed mixed–
discrete problems in the engineering optimization field by utilizing
an enhanced HS algorithm. This study proposes the Tribe-Harmony
Search (Tribe-HS) algorithm, in which the primary notion of improve-
ment is derived from the ‘‘Tribe-CSS’’ method proposed by Talatahari
and Azizi [21]. These phases considered tribes lead the algorithm to
concentrate on global searching in the early iterations while local
searching is handled in the later iterations in the Tribe-HS technique.
These adjustments improve the exploration and exploitation rates of
the standard algorithm. To assess the suggested method’s ability to deal
with complex optimization problems, three different building structures
with 3, 20, and 60 stories with 135, 3860, and 8272 structural members
are deemed as design examples. The W-shaped design sections for struc-
tural components in these structures are utilized to analyze the design
requirements, and the AISC-LRFD [62] code for steel structure design
is applied. The suggested method’s overall performance is compared to
that of the conventional HS algorithm and several metaheuristics, with
30 independent runs performed in each example for statistical reasons.

The remainder of the paper is divided into the following sections.
In Section 2, the optimum design of steel frames, including objective
function and design constraints are presented. Section 3 describes the
utilized optimization algorithm in detail. In Sections 4 and 5, design
examples, including 3, 20, and 60-story steel structures, alongside alter-
native metaheuristic algorithms are illustrated, respectively. Numerical
results have been reported in Section 6. Finally in Section 7, the core
findings of this study are presented as concluding remarks.
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2. Optimum design of steel frames

2.1. Objective function

There is an assumption in the optimum design of steel structural
frames that 𝑁𝑚 structural members are classified to 𝑁𝑑 design groups.
To reduce the total weight of the structure, the sequence numbers in
steel design sections given to 𝑁𝑑 member groups are calculated using
a vector of integer values. The integer vector and total weight of the
analyzed structure are summarized below.

Find 𝐼𝑇 =
[

𝐼1, 𝐼2,… , 𝐼𝑁𝑑

]

(1)

To minimize 𝑊 =
𝑁𝑑
∑

𝑖=1
𝜌𝑖.𝐴𝑖

𝑁𝑡
∑

𝑗=1
𝐿𝑗 (2)

where, 𝜌𝑖 and 𝐴𝑖 are the steel design section’s unit weight and length
established for member group i, respectively; 𝐿𝑗 shows the length of the
jth member associated with the ith group, and 𝑁𝑡 indicates the overall
number of all structural members in group 𝑖.

2.2. Design constraints

The AISC-LRFD [29] code for steel structure design specifies two
primary design criteria: strength and serviceability. When attempting
to minimize the structures’ weight, for the design sections’ strength
criteria, the following constraints must be met:

𝐶 𝑖
𝐼𝐸𝐿 =

[

𝑃𝑢𝐽
𝜑𝑃𝑛

]

𝐼𝐸𝐿
+ 8

9

(

𝑀𝑢𝑥𝐽
𝜑𝑏𝑀𝑛𝑥

+
𝑀𝑢𝑦𝐽

𝜑𝑏𝑀𝑛𝑦

)

𝐼𝐸𝐿

− 1 ≤ 0 𝑓𝑜𝑟
[

𝑃𝑢𝐽
𝜑𝑃𝑛

]

𝐼𝐸𝐿
≥ 0.2 (3)

𝑖
𝐼𝐸𝐿 =

[

𝑃𝑢𝐽
2𝜑𝑃𝑛

]

𝐼𝐸𝐿
+
(

𝑀𝑢𝑥𝐽
𝜑𝑏𝑀𝑛𝑥

+
𝑀𝑢𝑦𝐽

𝜑𝑏𝑀𝑛𝑦

)

𝐼𝐸𝐿

− 1 ≤ 0 𝑓𝑜𝑟
[

𝑃𝑢𝐽
𝜑𝑃𝑛

]

𝐼𝐸𝐿
< 0.2 (4)

𝑣
𝐼𝐸𝐿 =

(

𝑉𝑢𝐽
)

𝐼𝐸𝐿 +
(

𝜑𝑣𝑉𝑛
)

𝐼𝐸𝐿 ≤ 0 (5)

where, 𝐼𝐸𝐿 shows the element number as 𝐼𝐸𝐿 = 1, 2,… , 𝑁𝐸𝐿 and
𝑁𝐸𝐿 is the total number of elements; 𝐽 indicates the number of
load combination as 𝐽 = 1, 2,… , 𝑁 and 𝑁 is the overall number
of whole design load combinations; 𝑃𝑢𝐽 indicates the compressive or
tensile (axial) strength that is needed for the 𝐽 th design load; 𝑀𝑢𝑥𝐽 and
𝑀𝑢𝑦𝐽 are the total flexural strengths needed for bending of structural
elements concerning 𝑥 and 𝑦, under the 𝐽 th design load combination,
respectively; the 𝑥 and 𝑦 subscripts are used as related symbols for
strong and weak axes bending, respectively. 𝑃𝑛, 𝑀𝑛𝑥 and 𝑀𝑛𝑦 are the
nominal compressive or tensile (axial) and flexural (for bending of
structural elements about 𝑥 and 𝑦 axes) strengths of the 𝐼𝐸𝐿th member
nder consideration. 𝜑 clarifies the axial strength resistance factor
ormulated about the gross section yielding which for compression and
ension are 0.85 and 0.9, respectively. 𝜑𝑏 shows the flexural resistance
actor (0.9). The shear strength needed under the Jth design load
ombination is denoted by 𝑉𝑢𝐽 , and 𝑉𝑛 elucidates the nominal shear
trength of the 𝐼𝐸𝐿th deemed elements and 𝜑𝑣 equals 0.9.

. Utilized optimization algorithms

This part discusses the metaheuristic optimization algorithms that
ere used, including the conventional Harmony Search method and its

mproved variant, named ‘‘Tribe-HS’’.

.1. Harmony search algorithm

The fundamental concept behind the development of a novel opti-

ization method called ‘‘Harmony Search’’ is that in a musical

3

Fig. 1. Flowchart of the HS algorithm [63].

performance process, a musician naturally conducts a proper searching
process to discover a better state of harmony with multiple tries. In
jazz improvisation, the player tends to achieve a musically pleasant
harmony as a perfect state by considering the aesthetic aspects. This
procedure is analogous to the optimization process, in which the
optimization algorithm strives to attain the global solution as a perfect
state by taking the objective function evaluation into account. Each
musical instrument’s pitch controls the aesthetic aspect of musical
performance as the values of decision variables control the objective
function evaluation. The HS algorithm’s mathematical formulation is
constructed in five major phases, each of which is discussed in detail.

The initialization procedure is carried out in the first phase, in
which the initial values for the harmony vectors (𝑋𝑖) consisting of
different decision variables (𝑋𝑖 = {𝑥1, 𝑥2,… , 𝑥𝑖,… , 𝑥𝑛}) and their
related objective function amounts (𝐹𝑖) are determined. The decision
variables demonstrate different musicians, and the objective function
evaluations demonstrate the harmony which these musicians achieve.
In this step, the crucial parameters of the HS algorithm such as the
Harmony Memory Size (HMS), Pitch Adjusting Rate (PAR), Harmony
Memory Considering Rate (HMCR), and the termination criteria, which
is deemed as the maximum number of iterations (MaxIter) are deter-
mined. The PAR and HMCR parameters are utilized to improve each
solution vector’s quality in the optimization process.

The initial Harmony Memory (HM) is determined in the second
phase, including the solution vectors generated randomly with the
harmony memory (HMS) size, classified regarding their objective func-
tion’s values. The mathematical presentation of the HM is as
follows:

𝐻𝑀 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

𝑥1

𝑥2

⋮

𝐻𝑀𝑆

⎤

⎥

⎥

⎥

⎥

⎥

⎥

(6)
⎣𝑥 ⎦
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Fig. 2. Schematic demonstration of the search procedure for the Tribe-HS in the first phase.
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In step three, a new harmony vector (𝑋′
𝑖 = {𝑥′1, 𝑥

′
2,… , 𝑥′𝑖 ,… , 𝑥′𝑛}) is

mprovised from the harmony memory or initial harmony vectors based
n the pitch adjustment, memory consideration, and randomization
rocess. The decision variables can be determined by choosing any
alues from the HM in Eq. (6) or choosing from the initial harmony
ectors. In this regard, a random number distributed uniformly in the
ange of (0, 1) is produced to decide between two choices. If the
roduced random number is higher than the previously determined
MCR, the novel harmony vector is selected from the HM, while

or the random numbers lower than the HMCR, the novel vector is
etermined to form the initial harmony vectors (𝑋𝑖). These aspects are
athematically represented as follows:

′
𝑖 →

{

𝑥′𝑖 𝜖 𝐻𝑀 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 (𝐻𝑀𝐶𝑅)

𝑥′𝑖 𝜖 𝑋𝑖 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 (1 −𝐻𝑀𝐶𝑅)
(7)

itch adjustment is used to mathematically model the mutation phase
f the procedure for the values obtained from the HM by creating
nother random value spread equally within the range of (0, 1). If the
reated random number is more than the previously determined PAR,
he novel harmony vector selected from the HM will choose a neigh-
oring value with the PAR probability; however, no pitch adjustment
s made if the generated random number is less than the PAR. These
onsiderations are mathematically expressed as follows:

′
𝑖 →

{

𝑥′𝑖 + (𝑏𝑤 × 𝑢) 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 (𝑃𝐴𝑅)

𝑥′𝑖 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 (1 − 𝑃𝐴𝑅)
(8)

here 𝑏𝑤 shows an arbitrary distance bandwidth and 𝑢 is a uniformly
istributed random number in the range of (−1, 1).

In step four, the HM is upgraded, and if the newly created harmony
ector outperforms the worst harmony in the HM concerning the value
f the objective function, the novel harmony is replaced by the worst,
nd the HM is sorted using the objective function values. The third
nd fourth phases are repeated in the fifth step until the termination
equirements are met. The flowchart of the suggested HS algorithm is
emonstrated in Fig. 1.
4

3.2. Tribe-harmony search algorithm

Premature convergence is a possibility for a large number of opti-
mization algorithms. An intriguing endeavor has been made to
strengthen the general capacity of metaheuristic approaches and algo-
rithms by providing appropriate solutions to the algorithms’ inadequa-
cies in the past few decades. In this respect, this study proposed the
notion of Tribe-HS to improve the HS algorithm’s potential of solving
challenging optimization problems. This idea relies on the fact that
by separating the search space into many separate groupings known
as ‘‘Tribes’’, the searching process is carried out in an old-fashioned
manner in which the tribes may offer a civilized way of life without
connecting in the early ages. Nonetheless, These tribes try to exchange
information and, in later years, even unite for a better way of life. The
search area in the HS algorithm is separated into many tribes (search
spaces) based on the presented notion, with each tribe’s searching
procedure completed in a unique way that increases the standard
algorithm’s performance.

To mathematically represent the above notion, a maximum number
of tribes (𝑁𝑡) should be established, which will be used to divide
he solution vectors in the search space into these tribes. Each of the
forementioned tribes has a random number of solution vectors (𝑁𝑠),
nd the searching process is carried out in these tribes in a particular
anner to converge on a correct solution effectively. The algorithm’s
rimary search phase is split into three distinct stages: the isolated, the
ommuning, and the unified phase. The new formulation includes the
topping requirements, which divides the maximum number of function
valuations or iterations into three parts.

The isolated phase of the algorithm is the initial phase in which
he solution vectors in the search space and inside the HM are not
llowed to exchange information or personal experiences with other
ribes. This procedure is repeated until the predetermined stopping
onditions, which are separated into the three stages indicated above,
re met. The second step, called the communing phase, allows tribes
o utilize the solution vectors in each other’s HMs and update their
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Fig. 3. Schematic demonstration for the Tribe-HS in the second phase in the search procedure.
Fig. 4. Schematic demonstration of the search procedure for the Tribe-HS in the third Phase.
most recently discovered information. As the third phase, the unified
phase brings together all of the solution vectors from separate tribes,
and this phase continues until the stated termination requirement is
fulfilled. The schematic representation of the Tribe-HS algorithm in its
three distinct stages is shown in Figs. 2–4, while the pseudo-code for
this algorithm is shown in Fig. 5.
5

4. Design examples

This part contains detailed information about the 3 real-size steel
building structures that are used to assess the Tribe-HS’s capability
to evaluate the structural elements’ optimal design sections. Different
plans select these structures and in diverse heights to find out the
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Fig. 5. Pseudocode of the Tribe-HS optimization algorithm.
usefulness of the improved optimization algorithm in dealing with
different sorts of building structures. The material characteristics used
in these structures are stainless steel with an elasticity modulus (E) of
200 GPa, yield stress (Fy) of 248.2 MPa, and steel unit weight (q) of
7.85 ton/m3.
6

To assist in the design process, the deemed building structures
are exposed to ten different load combinations, as listed in Table 1.
On typical floor beams, the acting dead and live loads are 14 and
10 kN/m, respectively, while the dead and live loads on roof beams
are 12 and 7 kN/m, respectively. The seismic and wind loads on the
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Fig. 6. The schematic representation and plan views of the 3-story steel structure.
Table 1
Load combinations for steel structural design.

No. Combination

1 1.4 D
2 1.2 D + 1.6 L
3 1.2 D + 1.0 (E𝑥/W𝑥) + 0.5 L
4 1.2 D + 1.0 (E𝑒𝑥/W𝑒𝑥) + 0.5 L
5 1.2 D + 1.0 (E𝑦/W𝑦) + 0.5 L
6 1.2 D + 1.0 (E𝑒𝑦/W𝑒𝑦) + 0.5 L
7 0.9 D + 1.0 (E𝑥/W𝑥)
8 0.9 D + 1.0 (E𝑒𝑥/W𝑒𝑥)
9 0.9 D + 1.0 (E𝑦/W𝑦)
10 0.9 D + 1.0 (E𝑒𝑦/W𝑒𝑦)

D: Dead Load, L: Live Load, E: Earthquake Load, W: Wind Load.
𝑥 and 𝑦: Loading directions without eccentricity.
𝑒𝑥 and 𝑒𝑦: Loading directions with eccentricity.

structural systems under consideration are assessed in accordance with
ASCE [64], establishing the minimum design loads for buildings and
other structures.

4.1. Example 1: 3-story, 135-member steel structure

A three-story steel structure with 135 structural members is the first
design example. The structural members of this structure are composed
of 45 column elements, 66 beam elements, and 24 brace elements
deemed as standard W-shaped sections. The moment resisting connec-
tions alongside inverted V-bracings are utilized as a lateral resisting
system of the structure. The schematic and plan views of this structure
are shown in Fig. 6, while the elevation views are shown in Fig. 7.

All 135 structural components of the three-story steel structure are
classified into ten member groups based on their practical fabrication
requirements. Member grouping is evaluated at both the plan and
elevation levels, whereas structural members at the elevation level are
grouped within each story. Each story’s beams and braces are regarded
to be part of a single beam and bracing group, whereas the columns
are divided into four distinct groups at the plan level, as seen in Fig. 8.

4.2. Example 2: 20-story, 3860-member steel structure

The second design problem is the structural design of a 20-story
steel structure with 3860 structural components. This design sample has
7

1064 columns, 1836 beams, and 960 bracing parts, with the columns,
beams, and braces all having standard W-shaped design sections. This
structure’s lateral resistance is provided by cross-bracing systems in
the X and Y axes, in addition to moment-resisting connections. Fig. 9
depicts the schematic and plan views of this structure.

Based on their fabrication requirements, all 3860 structural mem-
bers of the 20-story steel structure are divided into 73 member groups.
Member grouping is evaluated at both the plan and elevation levels,
with structural members at the elevation level grouped every two
stories. Additionally, the columns are classified into five distinct groups
at the plan level, as illustrated in Fig. 10. Two groups are examined for
beams: inner and outer beams, while one group is selected for each of
the structure’s neighboring two stories. As a result, 43 column design
groups, 20 beam design groups, and ten bracing design groups are
examined concerning the structure’s plan and elevation levels.

4.3. Example 3: 60-story, 8272-member steel structure

The third design example is a 60-story steel structure with a struc-
tural tube system comprised of 8272 structural components. 3960
columns, 3960 beams, and 352 bracing components are evaluated
in this design example, in which the design sections for the beams,
columns, and braces are considered as standard W-shaped sections.
The mega-bracing systems with the X and Y directions, as well as the
moment-resisting connections, are used to prepare the lateral stability
of this structure for the first 24 stories, while the lateral resisting system
is used as a standard bracing system alongside the moment-resisting
connections for the 25th to 60th stories. Fig. 11 shows a schematic
representation of this structure.

Regarding the practical fabrication requirements, all 8272 members
of the studied 60-story steel structure are divided into 103 member
groups. The member grouping process is performed at both the ele-
vation and plan levels, with the structural member grouping process
occurring every six stories at the elevation level. Two column groups,
the corner, and side column groups, are considered for tubes A to D in
plan levels (Fig. 12), while each tube has one beam group. Every six
stories, the bracing components are considered a separate group.
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Fig. 7. The elevation views of the 3-story steel structure in X and Y directions.

Fig. 8. Column grouping of the 3-story steel structure.

Fig. 9. The schematic and plan views of the 20-story steel structure with 3860 members.

8
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Fig. 10. Column grouping of the 20-story steel structure with 3860 members.
Table 2
Internal parameters for the alternative metaheuristic algorithms.

Metaheuristic Parameter Description Value

GA

𝑝𝑐 Crossover percentage 0.8
𝑝𝑚 Mutation percentage 0.3
𝜇 Mutation rate 0.02
𝛽 Roulette wheel selection pressure 1

ACO
𝑁𝑠 Sample size 50
𝑞 Intensification factor 0.5
𝜁 Deviation-distance ratio 1

PSO

𝑤 Inertia weight 1
𝑤𝑑 Inertia weight damping ratio 0.99
𝑐1 Personal learning coefficient 2
𝑐2 Global learning coefficient 2

ICA

𝑁𝑒𝑚𝑝 Number of empires/imperialists 10
𝛼 Selection pressure 1
𝛽 Assimilation coefficient 1.5
𝑝𝑟 Revolution probability 0.05
𝜇 Revolution rate 0.1
𝜁 Colonies mean cost coefficient 0.2

BOA
𝑝 Probability switch 0.8
𝑝𝑒 Power exponent 0.1
𝑠𝑚 Sensory modality 0.01

KH
𝑉𝑓 Foraging speed 0.02
𝐷𝑚𝑎𝑥 Maximum diffusion speed 0.005
𝑁𝑚𝑎𝑥 Maximum induced speed 0.01

CSS

𝑎 Radius of charged sphere 0.1
𝐻𝑀𝐶𝑅 Harmony memory consideration rate 0.85
𝑃𝐴𝑅 Pitch adjustment rate 0.15
𝑘𝑡 Attract-repel coefficient 0.9
𝑁𝑐𝑚 Charged memory size 12
𝑘𝑎 Acceleration coefficient 0.5
𝑘𝑣 Velocity coefficient 0.5

HS

𝐻𝑀𝑆 Harmony memory size 50
𝑁𝑛𝑒𝑤 Number of new harmonies 20
𝐻𝑀𝐶𝑅 Harmony memory consideration rate 0.9
𝑃𝐴𝑅 Pitch adjustment rate 0.1
𝐹𝑊 Fret width (bandwidth) ±0.02
𝐹𝑊𝑑𝑎𝑚𝑝 Fret width damp ratio 0.995
9

Table 2 (continued).
Metaheuristic Parameter Description Value

Tribe-HS

𝐻𝑀𝑆 Harmony memory size 50
𝑁𝑛𝑒𝑤 Number of new harmonies 20
𝐻𝑀𝐶𝑅 Harmony memory consideration rate 0.9
𝑃𝐴𝑅 Pitch adjustment rate 0.1
𝐹𝑊 Fret width (bandwidth) ±0.02
𝐹𝑊𝑑𝑎𝑚𝑝 Fret width damp ratio 0.995
𝑁𝑇 Number of considered tribes 10

5. Alternative metaheuristics

This paper utilizes 10 other metaheuristic algorithms as alternative
approaches for comparative purposes. The GA, PSO, ACO, ICA, and
CSS are selected as classical methods which have been utilized in most
of the previous research, while the Butterfly Optimization Algorithm
(BOA) [65], Harris Hawks Optimization (HHO) [66], Multi-Verse Op-
timizer (MVO) [67], Galactic Swarm Optimization (GSO) [68], and
Krill Herd Algorithm (KHA) [69] are selected as some of the recently
developed novel metaheuristic algorithms. Some of the approaches
are classified as parameter-less optimization algorithms, meaning they
do not have any internal parameters in their general formulation. At
the same time, for some of them, some internal parameters need to
be determined in the optimization process. In Table 2, a parameter
summary is provided for these alternative approaches alongside the HS
and the proposed Tribe-HS algorithms, while for all of them, the initial
population size is utilized as 50.

6. Numerical results

The numerical outcomes of the weight optimization procedure for
the 3-, 20- and 60-story steel structures are reported in this section.
For each of the HS, Tribe-HS, and considered alternative methods, a
total of 30 independent runs were undertaken. Figs. 13 to 15 show
the convergence history for the best results of these approaches for the
chosen 3-, 20-, and 60-story steel structures, respectively. It is worth
noting that the Tribe-HS can get better outcomes than the standard HS
with the minimum number of required structural analyses.
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Fig. 11. Schematic view of the 60-story steel structure with 8272 members.
Table 3 presents the optimal design sections for the HS, Tribe-HS,
nd chosen alternative approaches when considering the three-story
teel structure. It should be mentioned that for this reason, the best
esults from 30 independent runs in each metaheuristic method were
eported.

The optimal design elements for the 20-story steel structures derived
sing the Tribe-HS and the conventional HS are provided in Table 4.
10
The overall weight of the 20-story steel structure computed using the
HS standard method is 3236.38 tons, but the Tribe-HS algorithm calcu-
lates this value as 2809.63 tons, which is less than the HS determined
value. It could be observed that the overall weight of the structure
acquired using Tribe-HS is less than the weight obtained using HS,
demonstrating the suggested Tribe-HS method’s capabilities for this
purpose.
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Fig. 12. Column grouping in plan levels of the 60-story steel structure with 8272 members.
Fig. 13. Convergence history for the best results of different metaheuristics for 3-story structure.
Given that Kazemzadeh Azad, et al. [32] evaluated this design
xample using a variety of metaheuristic approaches, Table 5 compares
he HS and the proposed Tribe-HS with various approaches. It should
e highlighted that the Tribe-HS approach has the potential to provide
uperior outcomes than the other alternatives.
11
The optimal design sections for the 60-story steel structure derived
using the Tribe-HS, and the conventional HS are provided in Table 6.
The overall weight of the 60-story steel structure is determined using
the HS standard method to be 6958.17 tons, whereas the Tribe-HS
algorithm calculates it to be 6766.89 tons, which is less than the
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Fig. 14. Convergence history for the HS and Tribe-HS of the 20-story structure.
Fig. 15. Convergence history for the HS and Tribe-HS of the 60-story structure.
HS computed value. It could be mentioned that the overall weight
of the structures acquired using Tribe-HS is less than that achieved
using HS, demonstrating the suggested Tribe-HS method’s capabilities.
A comparative analysis is not appropriate since this instance is being
described for the first time in this work.
12
The stress ratio of the structural elements for the 3, 20-and 60-
story design examples are depicted in Figs. 16 and 18 respectively
for the standard HS and the proposed Tribe-HS algorithms. The stress
ratios of structural components in the Tribe-HS optimized structural
systems are greater, particularly near the allowable value, demonstrat-
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Fig. 16. Stress ratio of the structural elements for the 3-story design example.

Fig. 17. The stress ratio of the structural elements for the 20-story design example.

Fig. 18. The stress ratio of the structural elements for the 60-story design example.

13
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Table 3
Optimum design sections of different metaheuristics for the 3-story steel structure.

Groups GA PSO ACO ICA MVO GSO BOA KHA HHO HS Tribe-HS

CG1 W8 × 28 W18 × 60 W14 × 38 W16 × 36 W24 × 55 W24 × 68 W12 × 35 W10 × 33 W18 × 55 W14 × 43 W16 × 40
CG2 W30 × 90 W16 × 67 W12 × 45 W14 × 48 W18 × 60 W21 × 62 W16 × 57 W21 × 62 W18 × 55 W21 × 68 W18 × 60
CG3 W24 × 76 W27 × 84 W24 × 68 W18 × 50 W27 × 94 W27 × 84 W40 × 149 W21 × 73 W18 × 55 W24 × 68 W30 × 90
CG4 W33 × 130 W30 × 90 W27 × 84 W30 × 99 W24 × 94 W24 × 84 W24 × 68 W24 × 76 W30 × 90 W21 × 73 W21 × 62
B1 W21 × 44 W18 × 40 W21 × 68 W21 × 57 W18 × 35 W21 × 44 W16 × 31 W18 × 50 W21 × 44 W18 × 40 W21 × 44
B2 W8 × 18 W18 × 35 W18 × 40 W16 × 40 W18 × 40 W16 × 26 W24 × 55 W18 × 46 W16 × 36 W21 × 44 W18 × 40
B3 W21 × 50 W14 × 30 W10 × 22 W12 × 26 W16 × 26 W16 × 26 W8 × 21 W14 × 22 W16 × 26 W14 × 22 W10 × 22
BR1 W12 × 26 W6 × 25 W8 × 28 W8 × 24 W8 × 28 W8 × 24 W6 × 25 W8 × 24 W12 × 30 W12 × 30 W8 × 28
BR2 W5 × 16 W10 × 39 W6 × 20 W8 × 18 W6 × 20 W6 × 15 W6 × 15 W5 × 16 W6 × 15 W8 × 21 W8 × 21
BR3 W5 × 19 W8 × 18 W10 × 30 W8 × 18 W6 × 15 W5 × 19 W6 × 15 W4 × 13 W5 × 16 W10 × 19 W6 × 15

Weight (ton) 43.2073 41.1092 40.2583 38.3812 39.0215 38.2119 38.3569 38.1377 37.6269 38.1889 36.9721
Maximum drift ratio 1 0.9978 0.9599 1 1 0.9923 0.9915 1 1 0.9858 0.9965
Maximum stress ratio 1 0.9812 0.9505 0.9766 0.9683 0.9327 0.9971 1 0.9638 0.8613 0.9380

CG: Column Groups
B: Beam Group.
BR: Bracing Group.
Table 4
Optimum design sections for the 20-story steel structure with 3860 members.

Stories Groups HS sections Tribe-HS sections Stories Groups HS sections Tribe-HS sections

1–2

CG1 W12 × 50 W30 × 99

11–12

CG1 W24 × 68 W33 × 291
CG2 W33 × 201 W14 × 132 CG2 W21 × 132 W27 × 94
CG3 W21 × 182 W12 × 230 CG3 W18 × 311 W30 × 124
CG4 W14 × 283 W36 × 650 CG4 W27 × 194 W36 × 300
CG5 W24 × 229 W36 × 160 CG5 W27 × 235 W18 × 76
IB W14 × 82 W10 × 100 IB W21 × 83 W24 × 84
OB W14 × 74 W14 × 61 OB W8 × 67 W12 × 72
BR W30 × 173 W18 × 119 BR W14 × 26 W14 × 109

3–4

CG1 W40 × 249 W24 × 207

13–14

CG1 W44 × 262 W10 × 77
CG2 W33 × 169 W14 × 109 CG2 W21 × 132 W33 × 130
CG3 W36 × 160 W27 × 235 CG3 W12 × 87 W18 × 143
CG4 W14 × 730 W44 × 230 CG4 W27 × 161 W18 × 106
CG5 W33 × 130 W36 × 182 CG5 W18 × 76 W14 × 68
IB W33 × 152 W12 × 50 IB W8 × 58 W12 × 53
OB W24 × 103 W14 × 48 OB W24 × 207 W36 × 135
BR W18 × 86 W12 × 65 BR W8 × 48 W14 × 53

5–6

CG1 W14 × 176 W12 × 72

15–16

CG1 W27 × 161 W44 × 335
CG2 W30 × 132 W21 × 122 CG2 W18 × 258 W36 × 260
CG3 W12 × 210 W40 × 264 CG3 W36 × 182 W40 × 174
CG4 W14 × 193 W40 × 264 CG4 W44 × 262 W27 × 84
CG5 W14 × 233 W18 × 143 CG5 W18 × 97 W30 × 90
IB W10 × 68 W27 × 84 IB W21 × 122 W14 × 68
OB W18 × 55 W21 × 73 OB W21 × 147 W24 × 103
BR W36 × 182 W8 × 40 BR W8 × 40 W10 × 45

7–8

CG1 W14 × 68 W40 × 183

17–18

CG1 W24 × 62 W30 × 477
CG2 W12 × 106 W12 × 106 CG2 W27 × 258 W12 × 79
CG3 W30 × 173 W21 × 166 CG3 W40 × 321 W16 × 67
CG4 W33 × 152 W36 × 393 CG4 W24 × 94 W40 × 174
CG5 W14 × 132 W30 × 108 CG5 W18 × 175 W10 × 88
IB W18 × 76 W12 × 58 IB W21 × 93 W14 × 99
OB W14 × 68 W21 × 166 OB W12 × 87 W30 × 116
BR W24 × 103 W24 × 94 BR W8 × 40 W14 × 68

9–10

CG1 W18 × 60 W16 × 77

19–20

CG1 W18 × 158 W24 × 250
CG2 W24 × 104 W27 × 94 CG2 W27 × 161 W10 × 112
CG3 W33 × 221 W30 × 292 CG3 W16 × 50 W18 × 86
CG4 W21 × 182 W40 × 174 CG4 W40 × 174 W8 × 67
CG5 W21 × 101 W40 × 211 CG5 W12 × 152 W24 × 104
IB W27 × 84 W10 × 77 IB W16 × 67 W18 × 55
OB W14 × 109 W27 × 102 OB W16 × 57 W12 × 190
BR W27 × 94 W10 × 49 BR W10 × 49 W10 × 17

Total weight (ton) 3236.38 2809.63
Maximum drift 0.8819 0.9091

CG𝟏−𝟓: Column Groups 1 to 5 (Fig. 7).
B: Inner Beam Group.
B: Outer Beam Group.
R: Bracing Group.
14
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Fig. 19. Drift ratio of the structural elements for the 3-story design example.
Table 5
Comparative results for the 20-story steel structure with 3860 members.

Stories UBS [25] HS Tribe-HS

Total weight (ton) 4117.43 3236.38 2809.63

UBS: Upper Bound Strategy.

ing that the Tribe-HS offered optimal design sections have the lowest
feasible design cross-sections in terms of an affordable design approach
(see Fig. 17).

The drift ratios of structural elements for the 3, 20, and 60 story
design examples are shown in Figs. 19 to 21 for the standard HS and
suggested Tribe-HS algorithms, respectively. For Tribe-HS-optimized
15
structural systems, drift ratios of structural elements are greater, par-
ticularly near the allowable value, demonstrating that the Tribe-HS-
provided optimal design sections have the smallest feasible design
cross-sections in terms of an affordable design approach.

7. Conclusion

This study proposes an improved metaheuristic method named
‘‘Tribe-Harmony Search’’ for optimal steel structure design. This algo-
rithm is a modified variant of the regular Harmony Search algorithm.
The Harmony Search algorithm is one the wellknown metaheuristic
algorithms utilizing the musical process of looking for the optimal
state of harmony to produce an appropriate searching strategy. Due to
the algorithm’s many uses in a variety of optimization domains, there
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Table 6
Optimum design sections for the 60-story steel structure with 8272 members.

Stories Groups HS sections Tribe-HS sections Stories Groups HS sections Tribe-HS sections

1–6

CC-A W27 × 94 W24 × 279

7–12

CC-A W36 × 280 W30 × 235
SC-A W21 × 111 W21 × 57 SC-A W14 × 257 W40 × 199
CC-B W27 × 84 W21 × 93 CC-B W27 × 84 W16 × 67
SC-B W24 × 55 W21 × 62 SC-B W16 × 50 W21 × 50
CC-C W21 × 147 W14 × 550 CC-C W14 × 145 W36 × 393
SC-C W40 × 277 W24 × 492 SC-C W36 × 328 W36 × 280
CC-D W36 × 194 W30 × 235 CC-D W18 × 311 W14 × 211
SC-D W40 × 249 W36 × 245 SC-D W33 × 354 W14 × 283
BM-A W30 × 148 W18 × 192 BM-A W24 × 492 W30 × 148
BM-B W40 × 199 W18 × 258 BM-B W33 × 141 W10 × 100
BM-C W27 × 129 W24 × 408 BM-C W18 × 55 W16 × 45
BM-D W40 × 211 W27 × 114 BM-D W33 × 130 W12 × 96
BR-D W18 × 65 W24 × 68 BR-D W24 × 103 W24 × 94

13–18

CC-A W21 × 132 W24 × 131

19–24

CC-A W24 × 94 W21 × 132
SC-A W24 × 103 W36 × 135 SC-A W40 × 199 W24 × 84
CC-B W14 × 159 W27 × 258 CC-B W21 × 101 W30 × 124
SC-B W33 × 318 W40 × 277 SC-B W27 × 178 W12 × 279
CC-C W24 × 162 W24 × 176 CC-C W30 × 261 W18 × 97
SC-C W36 × 260 W27 × 217 SC-C W36 × 245 W40 × 297
CC-D W36 × 280 W12 × 79 CC-D W30 × 99 W27 × 129
SC-D W30 × 326 W18 × 211 SC-D W40 × 174 W21 × 147
BM-A W14 × 43 W40 × 167 BM-A W12 × 152 W21 × 101
BM-B W36 × 280 W14 × 193 BM-B W14 × 132 W40 × 199
BM-C W36 × 170 W21 × 122 BM-C W16 × 77 W18 × 158
BM-D W21 × 44 W30 × 90 BM-D W18 × 35 W27 × 84
BR-D W27 × 102 W27 × 94 BR-D W24 × 55 W27 × 146

25–30

CC-A W40 × 167 W33 × 130

31–36

CC-A W36 × 182 W27 × 258
SC-A W12 × 120 W24 × 117 SC-A W14 × 132 W44 × 230
CC-B W27 × 235 W21 × 147 CC-B W14 × 132 W12 × 336
SC-B W30 × 124 W18 × 86 SC-B W24 × 104 W30 × 124
CC-C W40 × 277 W30 × 292 CC-C W40 × 174 W30 × 211
SC-C W33 × 118 W21 × 68 SC-C W14 × 120 W40 × 211
BM-A W24 × 146 W12 × 136 BM-A W21 × 166 W36 × 359
BM-B W40 × 235 W14 × 74 BM-B W14 × 90 W12 × 30
BM-C W21 × 68 W40 × 167 BM-C W24 × 76 W33 × 263
BR-C W36 × 182 W27 × 161 BR-C W40 × 264 W24 × 103

37–42

CC-A W30 × 132 W33 × 169

43–48

CC-A W36 × 245 W14 × 159
SC-A W10 × 112 W40 × 199 SC-A W36 × 160 W21 × 166
CC-B W40 × 431 W30 × 108 CC-B W44 × 290 W14 × 159
SC-B W14 × 398 W40 × 215 SC-B W14 × 370 W12 × 210
CC-C W12 × 65 W14 × 398 BM-A W24 × 207 W27 × 146
SC-C W27 × 178 W30 × 99 BM-B W14 × 53 W40 × 183
BM-A W27 × 194 W40 × 174 BR-B W21 × 182 W40 × 149
BM-B W12 × 96 W18 × 50 –
BM-C W8 × 24 W16 × 57 –
BR-C W33 × 318 W14 × 61 –

49–54

CC-A W14 × 550 W18 × 55

55–60

CC-A W8 × 40 W8 × 31
SC-A W18 × 50 W36 × 182 SC-A W18 × 40 W12 × 252
CC-B W36 × 150 W18 × 40 CC-B W40 × 149 W27 × 161
SC-B W24 × 76 W24 × 117 SC-B W12 × 35 W18 × 119
BM-A W18 × 97 W36 × 170 BM-A W16 × 67 W12 × 50
BM-B W16 × 67 W12 × 152 BM-B W21 × 68 W12 × 96
BR-B W36 × 170 W8 × 35 BR-B W33 × 221 W30 × 173

Total Weight (ton) 6958.17 6766.89
Maximum Drift 0.9985 0.9722

CC-A, CC-B, CC-C, CC-D: Corner Column Groups for Tubes A to D (Fig. 9).
SC-A, SC-B, SC-C, SC-D: Side Column Groups for Tubes A to D (Fig. 9).
BM-A, BM-B, BM-C, BM-D: Beam Member Groups for Tubes A to D.
BR-B, BR-C, BR-D: Bracing Member Groups for Tubes B to D.
has been an increased interest in improving the algorithm’s overall
performance. The traditional algorithm’s searching phase is broken
into three distinct phases in the Tribe-HS. These stages, called tribes,
lead the algorithm to prioritize global search in the early iterations
and local search in the later iterations. These adjustments improve the
conventional algorithm’s exploration and exploitation rates. 3 different
building structures with 3, 20, and 60 stories with 135, 3860, and 8272
structural members are deemed as design examples to assess the ability
16
of the suggested methodology in dealing with complex optimization
problems. The suggested method’s overall performance is compared
to that of the standard Harmony Search algorithm and many meta-
heuristics. The acquired findings demonstrated that the recommended
technique is capable of producing superior outcomes than the other
metaheuristics for the investigated design examples. The total weight of
the 20-story steel structure is obtained as 3236.38 tons using HS and
2809.63 tons using Tribe-HS, while the reduction rate is about 13%.
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Fig. 20. The drift ratio of the structural elements for the 20-story design example.
he overall weight of the 60-story steel structure is 6958.17 tons when
sing HS and 6766.89 tons when employing Tribe-HS, with a 3 percent
ecrease rate. The stress and drift ratios of the structural elements
re higher in the Tribe-HS optimized structural systems, particularly
ear the allowable value, demonstrating that the Tribe-HS provided
ptimum design sections have the lowest possible design cross-sections
n terms of an economical design process.
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Fig. 21. The drift ratio of the structural elements for the 60-story design example.
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