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Abstract: Smart meters, intelligent devices used for managing energy consumption of consumers, are one of the inte-
gral components of the smart grid infrastructure. The smart metering infrastructure can facilitate a two-way
communications through the Internet to leverage home energy management and remote meter reading by the
service providers. As consequence, the smart meters are extremely susceptible to various potential security
threats, such as data tampering, distributed denial of services attack and spoofing attacks. In this paper, we
put forward a scheme to detect anomalies in energy consumption data using real-world datasets. Thereby,
addressing data tampering attacks. We have adapted an unsupervised machine learning method to distinguish
the anomalous behaviour from the normal behaviour in the energy consumption patterns of consumers. In
addition, we have proposed a robust threshold mechanism for detecting abnormalities against noise, which has
not been used in smart grids before. Our proposed model shows an accuracy of 94.53% in detecting anomalous
patterns in energy consumption data. This accuracy surpasses the existing benchmark in anomaly detection in
energy consumption data using machine learning models (Huang and Xu, 2021).

1 INTRODUCTION

Smart meters form an integral part of the smart grid
infrastructure. They play a significant role in regulat-
ing the advanced metering infrastructure(AMI) sys-
tems (Hart, 2008). The AMI enables different ser-
vices, such as electronic billing, grid monitoring, grid
operation and demand response for both consumers
and providers. On the other hand, smart meters are
deployed by electricity providers and retailers to mon-
itor fine-grained energy consumption of households
in real-time. Consequently, they are physically ac-
cessible and more prone to data tampering attacks.
The demand for these smart meters is increasing with
every passing day and they are being widely de-
ployed. However, Tellbach and Li proved that cyber-
attacks on these smart meters can incur huge financial
losses (Tellbach and Li, 2018). These data are often
communicated to the service providers over a secure
channel (Erkin et al., 2013), and are required to mon-
itor and manage the grid (Knirsch et al., 2016).

The cyber attacks in the smart grid can be destruc-
tive and cause the electronic devices like smart de-
vices and/or generators to malfunction. Well known
attacks are false data injection, spoofing, denial of ser-
vices (DoS), man-in-the-middle, replay and meter by-
pass attacks. We discuss the severity of these attacks
below.

False Data Injection Attack: False data injection
attack is launched to inject fake data or payloads into
the smart meters or the advanced metering infrastruc-

ture (AMI), that modifies the power system data or
state of the smart meters. A number of incidents
of false data injection attacks have been performed
by customers in USA, Ireland, Virginia and Hong
Kong (Lo and Ansari, 2013).

Spoofing Attack: In this kind of attack, a new sys-
tem element is added at one end that acts as a legiti-
mate body (Fan et al., 2015).

DoS Attack: DoS attack is launched to flood
any computer or network system with overwhelming
packets through different sources or geographical lo-
cations to overflow the system buffer, thereby shatter-
ing the system and leaving it inoperable (Wang et al.,
2017).

In addition, a new attack called the puppet attack
on smart meters can cause DoS attacks in the metering
networks (Yi et al., 2016). Security weaknesses of
smart meters were discussed in the 2014 Black Hat
Europe conference, where Alberto and Javier stated
how an attacker can get access to the encryption keys
(for e.g. a master key) by exploiting the hardware of
the device (Illera and Vidal, 2014).

Attacks on smart grid seriously affect the entire
ecosystems, such as smart home activities, indus-
trial operations, hospital facilities, financial and gov-
ernment institutions. In 2014, an Australian util-
ity company was seriously affected by the DDoS at-
tack caused due to a misdirected command (Wueest,
2014). Also, the cyber-attacks on Ukrainian energy



companies in 20151 and 20162 caused power black-
outs in the region for several hours.

Contributions: The main contributors of this pa-
per are summarised as follows.

• In this paper, we have proposed a novel unsu-
pervised deep learning based Long Short time-
Denoising Autoencoder(LSTM-DAE) model to
detect anomalies in energy consumption data of
smart meters. As a result, we have addressed the
issue of real world anomaly detection. This would
help in detecting the energy theft by customers,
meter malfunctioning or third party attacks.

• Also, time series energy data can be appropriately
handled using sequential model like LSTM(Long
Short Time Memory). Since our model is built
using LSTM and Auto-encoder, unlike other ex-
isting machine learning models used for anomaly
detection in energy data, it is most befitting.

• Our model achieves an accuracy of 94.53% and
false positive rate of 5.47%, thereby having better
performance metrics than the existing models.

2 RELATED WORKS

In this section, we review some existing works (Nagi
et al., 2009; Nizar et al., 2008; Yip et al., 2017; Li
et al., 2020; Huang and Xu, 2021; Yip et al., 2018;
Cui et al., 2021) related to the detection of anoma-
lies in power consumption data of smart meters. They
specifically focused on grid’s electricity consumption
data.

Yi et.al (Yip et al., 2017) designed a linear regres-
sion based detection model for energy theft and de-
fective smart meter was used for detection of anoma-
lies. The anomalies are considered coefficients to the
power consumption values of users, sampled at dif-
ferent points of the day in the form of a matrix. How-
ever, the model shows numerical discrepancies when-
ever the rate of anomaly i.e. anomaly coefficient of
a particular user vary throughout the day. They had
used Irish Smart Energy Trial Data-set that was based
on half-hourly samples. They acquired anomaly co-
efficients through t-statistics and p-values using Mat-
lab’s fitlm function. Though they introduced categor-
ical values like off-peak and on-peak hours for coeffi-
cients of anomalies, it was not good enough to justify

1https://ics-certus-cert.gov/alerts/IR-ALERT-H-16-
056-01

2https://www.technologyreview.com/2016/12/22/5969/ukraines-
power-grid-gets-hacked-again-a-worrying-sign-for-
infrastructure-attacks/

situations since anomalies can vary throughout differ-
ent times. Also, the threshold set for anomaly coeffi-
cient to be anomaly rather than an outlier is not based
on a robust mechanism since technical errors (Yip
et al., 2018) or measurements errors from device can
likely create the noise. Additionally, they did not pro-
vided any numerical measurements on the model’s
performance.

In (Yip et al., 2018) the discrepancy in numerical
value of their previously mentioned LP model (Yip
et al., 2017) was solved, by introducing Linear Pro-
gramming where varying anomaly coefficients were
considered that made the model more realistic. It fur-
ther improved the threshold for anomalies from 0 to
0.05 on the same dataset. However, they still did not
consider losses due to technical faults such as cables,
transmission lines and distribution stations. There-
fore, we still cannot rely on the improved threshold,
which might not be reliable enough.

While, Li et.al (Li et al., 2020) proposed a
blockchain based detection method in conjunction
with unsupervised K-Nearest Neighbor(KNN) for
clustering into three categories like working class,
holiday class and outlier class. However, there is great
uncertainty in the method of data collection from sen-
sors and smart meters deployed by them in factories
and homes. In addition, there was no justification
for the selection of k value in the KNN algorithm.
The concepts for relation between data using corre-
lation coefficient and number of occurrences of data
points using Poisson’s distribution to address anoma-
lies was appropriately evaluated. They neither pro-
vide a proper justification to distinguish anomalies
from data-points that are simply outliers, nor deploy
a robust mechanism against outliers and anomalies.
The picture of their stated analysis is rather vague and
thereby makes the detection rates unreliable.

Moreover, Huang et.al (Huang and Xu, 2021) used
Stacked Sparse Denoising Auto-encoder for detection
of data theft. The model is stated to be unsuper-
vised with single labels of honest customers obtained
from the Electricity Consumption Fujian, China data-
set. However, we deem it appropriate to state that
it is semi-supervised. The anomalies are obtained
from the reconstruction error with a claimed opti-
mal threshold. The threshold is set through the ROC
Curve. The ROC curve in turn is dependent on the
False positive rate and this is acquired from the test
set which is inappropriate (Merrill and Eskandarian,
2020) because the threshold should have been deter-
mined from the training set. Consequently, we need a
robust mechanism to determine thresholds and a bet-
ter model for real time classification.

It is clear that almost all of them have used a



supervised or semi-supervised framework for detec-
tion of data theft. However, supervised and semi-
supervised machine learning algorithms cannot pro-
vide a good solution for real word scenarios.

3 Proposed Host-Based Intrusion
Detection System

The Host-Based Intrusion Detection System (HIDS)
is used for detecting abnormalities in smart meter en-
ergy consumption data. These abnormalities could be
caused due to several reasons, such as energy theft,
measurement errors, technical errors and/or faulty
meters (Yip et al., 2017). Though majority of re-
search works on anomaly detection have been car-
ried out using supervised models, it is inappropri-
ate since substantial amount of labeled anomalous
samples is impractical. On the other hand, semi-
supervised methods work a way around the require-
ment of labeled anomalous samples by completely
relying on readily available normal samples. Thus
they utilise data labeled as normal to detect anomalies
and examples that do not comply with normal sam-
ples are simply flagged as anomalies. However, semi-
supervised approaches are significantly susceptible to
over-fitting or under-fitting,leading to poor recall or
precision (Goldstein and Uchida, 2016).

This issue is daunting for all applications and
specifically for grid data where we need very low
false positives and false negatives (Mitchell and Chen,
2013). Since, the data may or may not contain anoma-
lous samples. A more practical scenario is to use unla-
beled data samples. As a result, unsupervised learning
is the approach to achieve this (Merrill and Eskandar-
ian, 2020). Therefore, we propose an unsupervised
model for anomaly detection, relevant to any practical
scenario. Our model is based on deep neural network
using LSTM-AE .

3.1 Anomaly Detection Model

We present a LSTM-DAE model for anomaly detec-
tion in smart meter energy data. The model is inspired
by the capability of LSTMs to predict time-series data
and autoencoders in extracting features and recon-
structing data as mentioned in (Huang and Xu, 2021).
In our knowledge, this is the first work on anomaly
detection of smart meter power data based on LSTM-
AE, and significantly our approach is novel since it
introduces a denoising LSTM-AE. The Denoising el-
ement is introduced to remove noise from the data in
order to develop a robust Auto-encoder.

Structure of LSTM-DAE: We would first explain
what is LSTM, Auto-encoder and Denoising Auto-
encoder, separately.

1. LSTM is a type of neural network that was intro-
duced to solve the vanishing gradient problem in
RNNs. The vanishing gradient problem occurred
when some of the weights ceased to change dur-
ing the learning process. As a result, preference
given to the current information would lead to ne-
glection of past events. Therefore, the model can-
not learn substantially in case of relations recur-
ring over a long period of time. While, LSTMs
were designed to control the entire information
flow within neurons, through a gate that adds and
deletes the information. Consequently, the model
can learn long-term as well as short-term depen-
dencies by controlling the process of forgetting
unlike RNN. However, it limits the memory ca-
pacity in such a way that the output gate infers the
updated cell state. It is particularly suitable for
multivariate or univariate time-series data where
it can be supervised or unsupervised (i.e. the data
set can be with or without labels) (Lindemann
et al., 2021).

Figure 1: LSTM cell as designed by Hochreiter and
Schmidhuber in 1997

2. Auto-encoders have been effective as unsuper-
vised model for removal of outliers since they
can reconstruct data efficiently with higher den-
sity. The neural network has two models called
an encoder and a decoder that are trained to-
gether. The encoder compresses the initial input,
thereby learning important features, while the de-
coder reconstructs the data from its compressed
state. Therefore, the whole model can learn highly
complicated data patterns (Merrill and Eskandar-
ian, 2020).

3. When these Auto-encoders are fed with noisy in-
puts to reconstruct actual outputs,they are known
as denoising autoencoders. These are more robust
against noise and help prevent learning identity



function as in general autoencoders i.e. recon-
structing X from X (Vincent et al., 2008). In this
model, noise is added to the input X such that it
constructs a clean output from the noisy samples
i.e. X̂. (Vincent et al., 2008). This corruption of
inputs can be done in several ways such as by re-
placing 30% of the input values with zero, 50% of
the inputs with zero, (Huang and Xu, 2021)using
random noise or white Gaussian noise.

Figure 2: The proposed Denoising Auto-encoder where
noise is added to the real inputs before feeding it to the
model

According to Merill et.al (Merrill and Eskandar-
ian, 2020), in a normal case of anomaly detection,
the reconstruction error generated from any regular
auto-encoder during prediction on test set is used for
determining an anomaly score. Though this tech-
nique assumes that normal samples will be recon-
structed more accurately than anomalous ones, it also
assumes that anomalies cannot be reconstructed accu-
rately. Often times, auto-encoders can actually gen-
eralize quite well to reconstruct anomalous inputs.
However, this over-generalization cannot be solved
through more regularization, capacity restriction or
reduction in training time since all these might men-
ace the reconstruction of normal samples.

Therefore, we proposed a denoising LSTM based
Auto-encoder. This auto-encoder will detect anoma-
lies in time series consumption data and would be ro-
bust against noise.

Figure 3: Pictorial depiction of an LSTM AE with skip con-
nections according to (Kieu et al., 2019).

4 EXPERIMENTAL EVALUATION

In this section, we report the experimental findings
on detecting anomalies using a smart meter use-case.
We have put forward an unsupervised deep learning-
enabled IDS to distinguish between the normal and
anomalous behaviour in energy consumption patterns
of households.

Datasets We use two different datasets for anal-
ysis as mentioned below: Our emperical evaluations
are based on two different datasets present in the ta-
ble.

Dataset Period of Consumption Number of samples Data Location
UCI Energy Consumption Dataset3 December 2006 to November 2010 2075259 Paris, France

Irish Contracted Power Dataset4 1st January,2009 to June, 2010 157992996 Ireland
Table 1: Dataset description

The UCI Power Consumption dataset extracted
from traditional meters was chosen to consider a di-
verse range of parameters, such as current, voltage
and sub-meter data in addition to power consump-
tion. Significantly, the dataset was unlabelled resem-
bling any real-world dataset. However, we were un-
able to validate the performance of the model due
to lack of a ground-truth. Therefore, we later used
Irish power consumption dataset that consists of half-
hourly smart meter data from honest customers only
i.e. non-anomaly labels. We did not feed labels to our
model but utilised the labels to calculate the various
performance metrics including accuracy, false posi-
tives and false negatives.

4.1 Metrics

We define few metrics in terms of our work. It is im-
portant to understand those before we delve further
into the experiment section, since it describes the way
in which we have used them.

MSE- The MSE is the difference between the
square of the actual and predicted data for all ’n’ sam-
ples. We can represent it as

MSE = 1/n
n

∑
i=1

(X2
actual −X2

predicted) (1)

Model Loss- It is a scalar value that indicates how
close are the predictions of the model to the actual
labels. If the loss is low (ideally 0), the predictions
are perfect, and close to 0 are good predictions; else
if it is closer to 1, the predictions are bad.

Threshold- It is the range beyond or below which
anomalies are flagged.

False Positive(fp): The number of samples that are
non-anomalies while they are flagged as anomalies.



False Negative(fn): The number of samples that
are anomalies, but are flagged as non-anomalies.

True Positive(tp): The numbers that state how
many are samples are correctly predicted as non-
anomalies.

True Negative(tn): It states how many samples are
correctly predicted as anomalies.

Accuracy: It is the percentage of correct predic-
tion of non-anomalies from the samples. It can be
represented as follows.

Accuracy = (t p+ tn)/(t p+ tn+ f p+ f n) (2)

4.2 Configuring Threshold

There are several methods for calculating the thresh-
old set-up such as the use of ROC curve (Huang and
Xu, 2021), 90 − 95% on the training data (Givnan
et al., 2022), mean and standard deviation method5,
Kentucky’s method (Zhou et al., 2021). Though
the threshold is very much dependent on the dataset,
and each method might provide different results, we
should choose a very robust threshold that would
overcome the noise due to some outliers, such as
measurement errors and technical errors. Therefore,
we preferred Kentucky’s method over the rest for a
robust mechanism as stated in (Zhou et al., 2021).
The threshold is calculated based on the training data,
where we assume that the training data is not anoma-
lous. The threshold is evaluated using Q1, Q2 and
IQR. Q1 is the first quartile which means that it is the
value under which 25% of data points are found when
they are arranged in increasing order. Q3 is the third
quartile which thereby, the value under which 75%
of data points are found when arranged in increasing
order. IQR is the inter-quartile range where

IQR = Q3−Q1 (3)

The formula for calculating the upper and lower
thresholds respectively are as follows.

lowerrange = Q1−1.5∗ IQR (4)

upperrange = Q3+1.5∗ IQR (5)

4.2.1 Experiments on UCI Dataset

We train LSTM-AE and LSTM-DAE to compare the
loss and reconstruction error for the same dataset. At
first, we train the LSTM-AE for five epochs and it
produces satisfactory loss value (loss value is 0.05).
This is done for both training and validation set. The
model is found to be a good fit since the plot of train-
ing set loss against validation seem to be converging

5https://github.com/tensorflow/docs/

towards the last few epochs. The loss values are sub-
stantially low indicating that the model is performing
well in terms of learning.

Then, we train our model on the same dataset
using noisy data. After training for 12 epochs, we
observe satisfactory low loss value in the last few
epochs. Thereby, indicating that the original data is
recovered well from the noised input. Further, we use
our LSTM-DAE model. The number of samples con-
sidered is 10,000 and that constitutes nearly 1 month
of data. The model loss shows that it is considerably
low i.e.,0.06, at only 12 epochs even with noisy in-
put. Therefore, this illustrates a good learning capac-
ity and efficient model performance.

The MSEs after noised inputs added to the training
set acquired from Paris Power Consumption data, are
in Figure 4.

Figure 4 shows the train MSEs on noisy inputs
to the model using Paris power consumption dataset.
The MSEs are low thereby, indicating that the model
is predicting very well. After the reconstruction er-
ror is calculated from test set, we check if that error
is beyond a selected threshold for the anomaly score.
Further, the sample would be flagged as an anomaly if
the error is beyond the threshold, otherwise the con-
sumption pattern will be considered as normal.
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Figure 4: MSEs from the noisy input of Train set on Power
Consumption Data-set

Finding Anomalies The test set for UCI dataset
is predicted and the MSEs i.e., MSE per sample is
calculated from the deviations of the actual test set.

Though, these MSEs in the test set are relatively
higher than those in train set, they are still visibly low
as shown in the y-axis of Figure 5. We tried to re-
construct the error through Keras’ predict function in
python. These errors are checked against the thresh-
old. Thereby, the errors found below the lower and
above the upper threshold limit are marked as anoma-
lies. We find that out of 399 samples in the test set, 23
are flagged as anomalies. However, we are unaware,
if the anomalies are correctly classified since the data-
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Figure 5: MSEs from the Test set on UCI Energy Dataset

set is unlabeled.

4.2.2 Experiments on Irish Power Data-set

Similar to the previous dataset, we calculate the loss
for this dataset too using LSTM-DAE. The loss is
found to be as low as 0.025 in this case, within just
14 epochs, thereby, yielding model consistency on
low loss value and establishing the model as a good
learner. Here, we have chosen 180 meters out of 6444.
The data points involved with these 180 meters are
3,863,725. Therefore, we have performed our experi-
ments on substantial amount of data rather than small
to medium scale data and obtained satisfactory results
on the learning capacity.

Initially, our training data is considerably less than
the test data for this data-set. This is so because,
we just wanted to validate the model performance in
terms of reconstructing the loss and minimal error
with relatively lesser data. Our model is trained using
the first 30 meters ranging between 1000 and 1030
i.e. 7,00,000 samples, while our test data comprises
of 150 meters i.e. 3,163,725 data points.

We plot the MSEs from training data for Irish
Power Data-set(see figure 6). We find that the MSEs
are relatively low as well.

Identifying Anomalies We acquire the test MSEs
and anomaly scores for Irish Power Data-set samples
having only healthy data. Our model is still essen-
tially unsupervised since we train without these la-
bels. However, we are able to use the labels for com-
parison after finding the anomalies. But, before ac-
quiring the MSEs, we divide the entire test set hav-
ing huge number of samples into chunks since we can
achieve better visualisation with lesser data points.
The MSEs for samples from meters ranging between
1031 and 1060 are low i.e. mostly within the range of
3.

In figure 7, it is seen that the samples for meters
between 1061 and 1090 are mostly within the range of
3.5 and very few are beyond 8.The meters ranging be-
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Figure 6: MSEs from the noisy input of Train set on Irish
Power Consumption Data-set

tween 1091 and 1120 too shows errors mostly within
3.5 and 4, while few are beyond 10. Similarly, meters
between 1121 and 1150 have most of the errors in low
range i.e. within 4. The last chunk for errors between
1151 and 1180 are around the range of 2 and very few
are beyond 10.
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Figure 7: MSEs from the Test set obtained from Irish Power
Consumption Data-set for meter samples 1061 to 1090

Therefore, with the MSEs ranging between 2 and
10, we conclude that the model performance stands
out with relatively very less data for training in com-
parison to the testing set.

We obtained the anomaly score from training er-
rors based on the fixed threshold for Irish Data-set.
The lower and upper ranges of the threshold are -
0.24896152299660124 and 1.3530767084315753 re-
spectively. We find that 2,951,974 half-hourly data
points from among 150 meters are marked to be non-
anomalous.

We find that out of 3,871,203 data points, 211,751
points were marked as anomalies. Thereby, indicating
the false-positives to be at 5.47%. The True Negatives
i.e. non-anomalies, stand at 94.53%. As a result, the



Figure 8: Anomalies from meter samples ranging between
1061 and 1090

accuracy of the model or detection rate is 94.53% with
just 16.67% of data considered for training.
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Figure 9: Confusion matrix for performance metrics based
on Irish Power Consumption Data-set

4.3 Comparison and Discussion

Our model LSTM-DAE is compared to other models
using two performance metrics i.e. accuracy and false
positive rate. Here, we have made comparison with
models like SSDAE, RDBN, PCA and SVM. We find
out that our model has a higher accuracy level and
lower FPR than the other models in Table 2, thereby
outperforming others (Huang and Xu, 2021).

Model Accuracy FPR
LSTMDAE (Our Work) 0.9453 0.0547

SSDAE 0.9174 0.0719
RDBN 0.8701 0.1362
PCA 0.8582 0.1793
SVM 0.8176 0.1607

Table 2: Performance of various models on detection of
anomalies in Energy consumption.

Our model LSTMDAE performs better than the
ones listed in the table. This gives an indication that
the model can be utilised for detecting anomalies and

prove to be a good detector for smart meters.

5 CONCLUSION AND FUTURE
DIRECTIONS

To conclude, we develop a robust unsupervised deep
learning model to find out cohort anomalies in the
power consumption data. We have considered every
possible parameter to make sure that we secure our
model against noise and flag the actual abnormalities.
The model is reliably suitable for a real world sce-
nario because of its unsupervised nature and has short
inference time. Additionally, we consider the time se-
ries data factor through LSTM, unlike other proposed
models. Therefore, it is a first of its kind for anomaly
detection of smart meter data, keeping in mind their
resource constrained nature. In the near future, we
would focus more on the two categories of anoma-
lies like anomalies due to faulty meter and anomalies
caused by theft using LSTM-DAE.
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