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Abstract

With the development of near-term quantum devices, hybrid quantum-classical computing

has been acknowledged as a promising framework to realize near-term quantum advan-

tages on important tasks, including chemistry, optimization and machine learning. The

performance of such frameworks significantly relies on the power of parameterized quan-

tum circuits (PQCs). However, it is challenging to design more suitable PQC architec-

tures showing quantum superiorities for practical quantum machine learning tasks. In

this thesis, we make progress in studying the power of PQCs in quantum classification and

quantum natural language processing, and exploring the limitations of PQCs in quantum

data encoding.

Specifically, we first propose variational shadow quantum learning for quantum classifica-

tion, which in particular utilizes the local PQCs inspired by classical shadows to extract

features of quantum data in a convolution way. We show this method could avoid the

notorious barren plateaus issue and has superiorities with respect to accuracy and param-

eter numbers compared with baselines. Secondly, we propose a quantum self-attention

neural network, where we introduce the self-attention mechanism into PQCs and then

utilize a Gaussian projected quantum self-attention serving as a sensible quantum version

of self-attention. We show this approach outperforms 1) the best existing QNLP model

based on syntactic analysis, and 2) a simple classical self-attention neural network in text

classification tasks on public data sets. Lastly, we prove that, for the PQC-based data

encoding strategies, the average encoded state will concentrate on the maximally mixed

state at an exponential speed on circuit depth.

In conclusion, we propose two new quantum neural network (QNN) models for handling

practical machine learning tasks, demonstrating QNN’s ability to extract features and

the potential of quantum machine learning in real-world applications. In addition, we

also reveal the concentration of data encoding, which seriously limits the performance

ix
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of downstream quantum supervised learning tasks. Such concentration might also guide

the practical data encoding design. All these progress would benefit practical quantum

machine learning.
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Chapter 1

Introduction

1.1 Background

After Feynman put forward the concept of quantum computing in the 1980s [1], quantum

computing has become a promising paradigm [2] for fast computations that can provide

substantial advantages in solving valuable problems [3–7]. With major academic and

industry efforts on developing quantum algorithms and quantum hardware, it has led to

an increasing number of applications in areas including cryptography [8], chemistry [9, 10],

optimization [11], and machine learning [7, 12–14] and so on. The reason is that quantum

computing has the inherent nature of parallel computing, which makes it able to show

significant computational advantages for some specific problems [3].

At the same time, machine learning [15, 16], as the core of artificial intelligence, has also

changed almost all aspects of our lives in recent years with applications ranging from face

recognition, speech recognition, product recommendation, autonomous driving and so on.

Quantum machine learning is the combination of quantum computing and machine learn-

ing [7, 17–19]. In this field, on the one hand, one hopes to enhance some traditional

machine learning algorithms with the help of quantum computers, so as to realize the

advantages in inference accuracy or running speed. On the other hand, one also hopes

1



2 Chapter 1. Introduction

that machine learning methods can help solve some problems in the quantum field. Quan-

tum machine learning is also expected to have a wide range of applications like classical

machine learning.

At present, some quantum machine learning algorithms, such as quantum data fitting al-

gorithm [20], can be expected to achieve exponential acceleration under certain conditions.

Most of these algorithms are based on Shor’s algorithm [21] or HHL algorithm [22]. They

generally need fault-tolerant quantum computers to run, and they also require quantum

random access memory (QRAM) [23] technology similar to classical random access mem-

ory. However, neither fault-tolerant quantum computing nor QRAM is available in the

near future.

Quantum devices available currently, also known as the noisy intermediate-scale quantum

(NISQ) devices [24], have up to a few hundred physical qubits. They are affected by co-

herent and incoherent noises, making the practical implementation of many advantageous

quantum algorithms less feasible. But such devices with 50-100 qubits already allow one to

achieve quantum advantage against the most powerful classical supercomputers on certain

carefully designed tasks [25, 26]. A natural question is how to design powerful quantum

machine learning algorithms by employing these near-term quantum devices for practical

applications in the NISQ era.

A currently feasible and popular way is to adopt the hybrid quantum-classical framework,

that is, allocate some relatively difficult tasks, which is generally considered to be clas-

sically intractable, to the quantum computer and leave those relatively simple tasks to

the classical computer to run. Some of the earliest representative works are variational

quantum eigensolver (VQE) [27, 28] and quantum approximate optimization algorithm

(QAOA) [29], which are used to solve molecular ground state preparation problems and

combinatorial optimization problems, respectively. They encode the process of generating

quantum states with exponential dimensions into parameterized quantum circuits and run

them on quantum computers, and leave the update process of these parameters to classical

computers, so as to make full use of near-term quantum devices.

The key to this hybrid framework lies in the design of parameterized quantum circuits

(PQCs), i.e., PQC design. A PQC mainly includes some quantum gates that are easy
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to implement on NISQ devices and have low noise, such as single-qubit rotation gates,

two-qubit control-not (CNOT) gate, etc. The classical parameters that are required to

be updated are usually encoded as the rotational angles of these single qubit gates, e.g.,

the Pauli-Y rotation gate with parameter θ, Ry(θ). The two or multi-qubit gates have no

adjustable parameters. Our purpose is to explore how to place these quantum gates, such

as sequential or parallel placement, to express appropriate transformations. Theoretically,

any unitary transformation can be constructed from these simple gates with parameters,

and then the functions we need can be constructed. But the cost is that the circuit depth

it needs is exponentially related to the number of qubits. Unfortunately, a too-deep circuit

depth will make the error of the final quantum state of the circuit significantly large on the

NISQ devices. Therefore, it is urgent to study how to use relatively shallow parameterized

quantum circuits to express the complex functional relationship, and then demonstrate

the actual quantum advantages for machine learning.

Since PQCs are usually regarded as quantum neural networks [30], we can also understand

them from the perspective of neural networks. In the classic case, different neural network

architectures have been proposed to match different problems, such as convolutional neu-

ral network [31] for visual problems, recurrent neural network [32] for natural language

processing. Similarly, in the quantum case, what kind of PQCs should we devise to adapt

to different application tasks?

PQCs can be used not only as models. They can also be used in quantum data encoding,

that is, taking the input as a parameter in a PQC in the data preprocessing stage. This is

because, for classical data, the input is generally classical, so they need to be encoded into

quantum states first, and PQC is an effective encoding method in the NISQ era. Therefore,

what kind of PQCs could provide a better encoding circuit is also worth studying.

This thesis mainly focuses on the capabilities and limitations of PQCs. Specifically, we

mainly explore the capabilities and potential quantum advantages of PQCs in machine

learning applications, as well as some limitations of PQCs in data encoding. These results

may shed light on the future research of near-term quantum machine learning.
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1.2 Research Problems

As an emerging and promising interdisciplinary research direction in the fields of quan-

tum computing and artificial intelligence, the area of quantum machine learning abounds

with scientific research problems worth exploring. Theoretically speaking, quantum com-

puting can be applied to almost all machine learning tasks, such as image classification,

recommendation systems, natural language processing, etc. However, to realize quantum

advantages, it usually requires fault-tolerant quantum computers and quantum random

access memory. Unfortunately, in the current NISQ era, these cannot be realized. On the

contrary, on recent quantum devices, we can only realize some shallow-depth quantum cir-

cuits to ensure the accuracy of the final quantum state. Therefore, our goal is to explore,

by employing shallow PQCs, whether we can still accomplish the above machine learning

tasks with (potential) quantum advantages. Next, we list some relevant concrete research

problems that this thesis tries to solve.

• How to design suitable parameterized quantum circuit architectures for different

application tasks?

From the above background introduction, we know that the role of PQCs in processing

quantum machine learning tasks is similar to that of neural networks in classical machine

learning. In other words, whether the PQC architecture is appropriate or not will directly

affect the performance of variational quantum algorithms for specific tasks. In the clas-

sical case, neural networks have various architectures in deep learning to be applied to

different tasks, such as convolutional neural networks [31] suitable for vision tasks, recur-

rent neural networks [32] suitable for natural language tasks, and even attention-based

neural networks [33] with excellent performance for both tasks. In the quantum case, a

few PQC architectures such as quantum convolutional neural networks [34] and quantum

long short-term memory [35] have been proposed for some physical classification problems.

However, it is still uncertain whether they are suitable for classical machine learning tasks

and whether they have potential quantum advantages. Therefore, it is urgent to study

how to design more suitable PQC architectures to realize potential quantum advantages

for different quantum machine learning tasks.
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• How to choose various PQC-based data encoding strategies for classical data?

In quantum machine learning, the inputs are generally classical, so these inputs need to be

encoded into corresponding quantum states in a form similar to data preprocessing before

they can be placed on quantum computers for execution. Encoding classical information

into quantum one is nontrivial [7], especially more difficult on NISQ devices. One of the

feasible schemes is to use PQC for encoding. However, most of the existing PQC-based

encoding schemes such as angle encoding, and IQP encoding are designed by experience

and lack theoretical support. Therefore, how to systematically understand the encoding

strategies based on PQCs and how to select these strategies need to be further studied.

This thesis makes progress to the above research problems by proposing two new PQC

architectures, i.e., shadow quantum learning for general classification tasks and quantum

self-attention neural networks (QSANN) for natural language processing tasks. Further-

more, as a response to the last research problem, we point out the concentration issue

of PQC-based data encoding strategies, which could significantly influence the eventual

performance of quantum machine learning tasks. Next, we give the motivation and con-

tributions for these results.

1.3 Motivation

1.3.1 Shadow Quantum Learning

The main idea of a hybrid quantum-classical algorithm is employing parameterized quan-

tum circuits (as a unitary neural network architecture) to search the parameter space and

combining classical optimization methods like gradient descent (GD) to find the best pa-

rameters [36–39]. These hybrid algorithms have been applied to many topics such as quan-

tum eigensolver [36], quantum simulation [40], quantum state distance estimation [41, 42]

and quantum matrix decomposition [43]. So far, most proposals for variational quan-

tum classification process information in the global sense such that the quantum circuit

always acts on the whole Hilbert space fulfilling high-dimensional transformation. And

the classical feature/information extracted from the quantum system is achieved through
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measurement. This formulation faces two potential challenges. One is the quantum re-

source such as the number of quantum gates required may be exponential/polynomial in

the number of qubits. However, more efficient architectures could exist by limiting the

operating scope to a few selected qubits to achieve the same task performance but signifi-

cantly reduce the quantum resource required, e.g., constant dependence on the number of

qubits. The other challenge is the notorious Barren Plateau problem [44]. As the problem

size increases, it will exhibit exponentially vanishing gradients, making the optimization

landscape flat and hence untrainable using gradient-based optimization methods.

To overcome the above challenges, we explore a significantly different hybrid architecture

inspired by classical shadows. Classical shadows [45], devised from shadow tomography

[46], represent a series of succinct classical descriptions of quantum states. These descrip-

tions are generally obtained by employing simple or even local observables to measure on a

computational basis. Furthermore, some important quantum properties such as quantum

fidelities and entanglement entropies can be predicted using classical shadows rather than

possessing full information of quantum states. This provides us the intuition that the idea

of obtaining classical shadows may also be helpful in quantum classification. Concretely

speaking, our method extracts only “local” features from the subspace of quantum states,

which we call shadow features, by using only local parameterized quantum circuits acting

on a few selected qubits. Then these shadow features are fed into a fully-connected neural

network to complete the quantum classification tasks.

1.3.2 Quantum Self-Attention Neural Networks

In recent years, the self-attention mechanism [47], due to its capability of capturing long-

term information, has become a dominant neural network framework in machine learning,

especially in natural language processing. Natural language processing (NLP) is a key

subfield of AI that aims to give machines the ability to understand human language.

Self-attention neural networks have excellent performance on various NLP tasks such as

language modeling [48], machine translation [33], question answering [49], and text classi-

fication [50]. This motivates us that it is desired to introduce a self-attention mechanism
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into quantum neural networks to enhance the performance of the latter. Detailed mathe-

matical description of the self-attention mechanism is deferred to Subsec. 2.5.2.

Due to human language’s high complexity and flexibility, NLP tasks are generally chal-

lenging to implement. Thus, it is natural to think about whether and how quantum

computing can enhance machines’ performance on NLP. Some works focus on quantum-

inspired language models [47, 51–53] with ideas borrowed from quantum mechanics. An-

other approach, known as quantum natural language processing (QNLP), seeks to develop

quantum-native NLP models that can be implemented on quantum devices [54–57]. Most

of these QNLP proposals, though at the frontier, lack scalability as they are based on

syntactic analysis, which is a preprocessing task requiring significant effort, especially for

large data sets. Furthermore, these syntax-based methods employ different PQCs for sen-

tences with different syntactical structures and thus are not flexible enough to process the

innumerable complex expressions possible in human language.

To overcome these drawbacks in current QNLP models, we propose the quantum self-

attention neural network (QSANN), where the self-attention mechanism is introduced into

quantum neural networks. Because of the word-embedding technique [58], our method can

avoid the problems of the model based on the syntactic analysis mentioned above and also

makes use of the excellent ability of the self-attention mechanism. We also note that

a recently proposed method [59] for quantum state tomography, an important task in

quantum computing, adopts the self-attention mechanism and achieves decent results.

1.3.3 Concentration of Quantum Data Encoding

For a typical quantum machine learning task, the quantum circuit used in the variational

quantum algorithms consists of two parts: a data encoding circuit and a QNN. Hence, the

design of variational quantum algorithms could be further decomposed into the design of

the data encoding circuit and the design of QNN architecture. On the one hand, developing

various QNN architectures is the most popular way to improve these algorithms’ ability

to deal with practical tasks. Numerous architectures such as strongly entangling circuit

architectures [60], quantum convolutional neural networks [34], tree-tensor networks [61],

and even automatically searched architectures [62–65] have been proposed. On the other
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hand, one has to carefully design the encoding circuit, which could significantly influence

the generalization performance of these algorithms [66, 67]. Consider an extreme case. If

all classical inputs are encoded into the same quantum state, these algorithms will fail to

do any machine learning tasks. In addition, the kernel’s perspective [68–71] also suggests

that data encoding strategy plays a vital or even leading role in quantum machine learning

algorithms [14, 72, 73]. However, there is much less literature on data encoding strategies,

which urgently requires to be studied.

Encoding classical information into quantum data is nontrivial [7], and it is even more

difficult on near-term quantum devices. One of the most feasible and popular encoding

strategies on NISQ devices is based on parameterized quantum circuits (PQCs) [74], such

as the empirically designed angle encoding [14, 75], IQP encoding [76], etc. It is natural to

ask how to choose these encoding strategies and whether there are theoretical guarantees

of using them. More specifically, it is necessary to systematically understand the impact

of such PQC-based encoding strategies on the performance of QNNs in quantum machine

learning tasks.

1.4 Contributions

The main contributions of this thesis are summarized as follows:

• As the first attempt to extract local features inspired by classical shadows, we propose

a variational shadow quantum learning (VSQL) framework that could be adapted

to many near-term quantum applications. In particular, we apply this framework to

develop quantum classifiers for near-term quantum devices. Firstly, we employ the

parameterized shadow quantum circuits U(θ) (denoted as shadow circuits) acting

on selected local qubit subspace rather than the whole qubit Hilbert space, which

considers the operating scope efficiency and the connectivity limit on quantum hard-

ware. Secondly, the shadow features of the input data (encoded as quantum states

ρ(m) with labels y(m)) will be computed via measuring the PauliX⊗X · · ·⊗X observ-

ables on the quantum devices. The final step is to utilize a classical Fully-Connected

Neural Network (FCNN) to post-process these shadow features, and we could then
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decide the label prediction ŷ(m) through an activation function. The advantages of

this work are multi-fold. First, VSQL can be easily implemented on quantum devices

with topological connectivity limitations, since it mainly considers locally-operated

quantum circuits. Second, we show that VSQL involves significantly fewer parame-

ters (independent of the problem size) than existing variational quantum classifiers

[60, 77]. Notably, we prove that VSQL could naturally avoid the Barren Plateau is-

sue [44] (gradients vanishing issue in QML) by limiting the operating scope. Finally,

we demonstrate real-world applications of VSQL to do quantum state classification

and handwritten digit recognition. We in particular show that VSQL outperforms

existing variational quantum classifiers in the test accuracy while requiring much

fewer parameters. (Chapter 3)

• We propose a quantum self-attention neural network (QSANN), where the self-

attention mechanism is introduced into quantum neural networks. In each quan-

tum self-attention layer of QSANN, we first encode the inputs into high-dimensional

quantum states, then apply PQCs on them according to the layout of the self-

attention neural networks, and finally adopt a Gaussian projected quantum self-

attention (GPQSA) to obtain the output effectively. To evaluate the performance

of our model, we conduct numerical experiments of text classification with different

data sets. The results show that QSANN outperforms the currently best-known

QNLP model as well as a simple classical self-attention neural network on test ac-

curacy, implying the potential quantum advantages of our method. The advantages

of this work are multi-fold. First, our proposal is the first QNLP algorithm with a

detailed circuit implementation scheme based on the self-attention mechanism. This

method can be implemented on NISQ devices and is more practicable on large data

sets compared with previously known QNLP methods based on syntactic analysis.

Second, in QSANN, we introduce the Gaussian projected quantum self-attention,

which can efficiently dig out the correlations between words in high-dimensional

quantum feature space. Furthermore, visualization of self-attention coefficients on

text classification tasks confirms its ability to focus on the most relevant words. Last,

we experimentally demonstrate that QSANN outperforms existing QNLP methods

based on syntactic analysis [78] and simple classical self-attention neural networks
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on several public data sets for text classification. Numerical results also imply that

QSANN is resilient to quantum noise. (Chapter 4)

• We show that for the usual PQC-based data encoding strategies with a fixed width,

the average encoded state is close to the maximally mixed state at an exponential

speed in depth. In particular, we establish the following. Firstly, we theoretically give

the upper bound of the quantum divergence between the average encoded state and

the maximally mixed state, which depends explicitly on the hyper-parameters (e.g.,

qubit number and encoding depth) of PQCs. From this bound, we find that for a

fixed qubit number, the average encoded state concentrates on the maximally mixed

state exponentially on the encoding depth. Secondly, we show that the quantum

states encoded by deep PQCs will seriously limit the trainability of a quantum clas-

sifier and further limit its classification ability. Thirdly, we show that the quantum

states encoded by deep PQCs are indistinguishable from a quantum information per-

spective. Finally, we support the above findings by numerical experiments on both

synthetic and public data sets. (Chapter 5)

1.5 Publications

1.5.1 Related to the Thesis:

1. Guangxi Li, Zhixin Song, and Xin Wang. “VSQL: variational shadow quantum

learning for classification.” Proceedings of the AAAI Conference on Artificial Intel-

ligence. Vol. 35. No. 9. 2021. (Chapter 3)

2. Guangxi Li, Xuanqiang Zhao, and Xin Wang. “Quantum Self-Attention Neural

Networks for Text Classification.” arXiv preprint arXiv:2205.05625. 2022. (Chapter

4)

3. Guangxi Li, Ruilin Ye, Xuanqiang Zhao, and Xin Wang. “Concentration of Data

Encoding in Parameterized Quantum Circuits.” arXiv preprint arXiv:2206.08273.

2022. To appear in NeurIPS 2022. Spotlight. (Chapter 5)
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1.5.2 Others (∗equal contribution):

4. Youle Wang∗, Guangxi Li∗, and Xin Wang. “Variational quantum Gibbs state

preparation with a truncated Taylor series.” Physical Review Applied 16.5 (2021):

054035.

5. Youle Wang, Guangxi Li, and Xin Wang. “A Hybrid Quantum-Classical Hamilto-

nian Learning Algorithm.” arXiv preprint arXiv:2103.01061. 2021.

6. Guangxi Li, Youle Wang, Yu Luo, and Yuan Feng. “Quantum data fitting algo-

rithm for non-sparse matrices.” arXiv preprint arXiv:1907.06949. 2019.

1.6 Thesis Outline

The outline of this thesis is organized as follows:

• Chapter 2: This chapter introduces some necessary quantum basics, which are help-

ful for machine learning researchers: quantum state, density matrix, quantum gate,

quantum circuit and so on. We then give an overview of the hybrid quantum-classical

computing framework, because the algorithms involved in this thesis basically fol-

low this framework. Next, we introduce some quantum machine learning tasks,

like quantum classification, and quantum natural language processing. Finally, we

present some quantum data encoding strategies.

• Chapter 3: Classification is one of the most important tasks in quantum machine

learning. This chapter proposes a new variational shadow quantum learning frame-

work to deal with this problem. First, we introduce the model, loss function, analyt-

ical gradient, parameter quantity, and the analysis of the computational complexity

and theoretical classification ability of the framework in the case of binary classifica-

tion. At the same time, we show how it can avoid the barren plateau issue. Then we

show the similarities and differences of the framework in the above components in

the case of multi-label classification. Finally, we demonstrate the advantages of this

framework compared with some existing variational quantum algorithms through

numerical experiments.
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• Chapter 4: Quantum natural language processing is a promising research direction.

This chapter focuses on text classification and proposes a quantum self-attention

neural network framework to solve the problem. First, we introduce the main com-

ponents of the framework: the quantum self-attention layer, the selection of parame-

terized quantum circuits, the construction of loss function, the analysis of analytical

gradients, and the analysis of overall complexity. Then we carried out numerical

experiments on some toy-scale and medium-scale datasets, and the results show that

this framework has advantages in accuracy and parameter quantity compared with

some existing methods.

• Chapter 5: Quantum data encoding is a very important direction that is seldom

studied at present. This chapter focuses on the data encoding strategies based on

PQCs and points out the important concentration issue. Specifically, we show that

for PQCs with a fixed number of qubits, the average encoded state will close to the

maximum mixed state at an exponential speed with the increase of depth. This

result shows that adopting this encoding strategy will severely impact downstream

tasks. We also verified this by numerical experiments in the quantum supervised

learning task.

• Chapter 6: We summarize the main contents and contributions of this thesis and

discuss possible future research directions.



Chapter 2

Preliminaries

In this chapter, we briefly introduce some preliminaries that are necessary for this thesis,

like quantum basics, parameterized quantum circuits, hybrid quantum-classical computing

framework, quantum classification, quantum natural language processing, and quantum

data encoding.

2.1 Quantum Basics

Here, we briefly introduce the basic concepts of quantum computation that are necessary

for this thesis. Interested readers are recommended to the celebrated textbook by Nielsen

and Chuang [79].

2.1.1 Quantum States

Information in the quantum computing field is represented by n-qubit quantum states over

Hilbert space C2n×2n , which could be mathematically described by positive semi-definite

matrices ρ � 0 with property Tr(ρ) = 1. Following this density matrix formulation, a

quantum state is pure if Rank(ρ) = 1; otherwise, it is mixed. For a pure state ρ, it can be

represented by a unit vector in the form that ρ = |ψ〉〈ψ|, where the ket notation |ψ〉 ∈ Cd

denotes a column vector and bra notation 〈ψ| = |ψ〉† with † denoting conjugate transpose.

13
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In general, we would also use |ψ〉 to denote a pure state for simplicity. A mixed state could

be represented as ρ =
∑

i qi |ψi〉〈ψi|, where the coefficients qi > 0 records the probability

for a quantum system to be in each corresponding pure state |ψi〉〈ψi| and hence
∑

i qi = 1.

Specifically, a mixed state whose density matrix is proportional to the identity matrix is

called the maximally mixed state ≡ I
2n .

2.1.2 Quantum Gates

Typical single-qubit gates include Pauli gates,

X ≡
⎡⎣0 1

1 0

⎤⎦ , Y ≡
⎡⎣0 −i

i 0

⎤⎦ , Z ≡
⎡⎣1 0

0 −1

⎤⎦ , (2.1)

and their corresponding rotation gates RP (θ) ≡ e−iθP/2 with a parameter θ ∈ [0, 2π) and

P ∈ {X,Y, Z}. Another commonly used gate U3 that appeared in this thesis is defined

as U3(θ1, θ2, θ3) ≡ Rz(θ3)Ry(θ2)Rz(θ1), which can implement an arbitrary single-qubit

unitary transformation with appropriate parameters. In this thesis, Rz, Ry are equivalent

to RZ , RY without specified. A multi-qubit gate can be either an individual gate (e.g.,

CNOT) or a tensor product of single-qubit gates, e.g., Z ⊗ Z, Z ⊗ I, Z⊗n and so on.

2.1.3 Quantum Evolution

The evolution of a pure quantum state |ψ〉 is mathematically described by applying a

quantum circuit (or a quantum gate), i.e., |ψ′〉 = U |ψ〉, where U is the unitary operator

(matrix) representing the quantum circuit and |ψ′〉 is the quantum state after evolution.

Similarly, due to the linearity, the evolution of a mixed quantum state ρ =
∑

i qi |ψi〉〈ψi|
could also be mathematically described by employing a quantum circuit ρ′ = UρU † =∑

i qiU |ψi〉〈ψi|U †, where the coefficients qi ≥ 0 and
∑

i qi = 1.

Since quantum evolution is essentially a matrix operation, we can use a series of quantum

gates with adjustable parameters to evolve so that the initial state can evolve to any

desired target quantum state. The work of adjusting the parameters in the quantum gate
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is very similar to the parameter updating process of the neural network. We will further

explain this later.

2.1.4 Quantum Measurement

Quantum measurement is usually introduced at the end of algorithms to extract classical

information from the final quantum state. For instance, given a pure quantum state |ψ〉
and an observable O, one could design quantum measurements to obtain the information

〈ψ|O |ψ〉. Similarly, if a quantum state ρ is in density matrix form, the quantum mea-

surement is in the form 〈O〉 = Tr(Oρ), which we call the expectation of the observable O.

Here, O is Hermitian.

Now we describe these two kinds of quantum measurements through concrete examples.

For the pure state |ψ〉 = α |0〉+ β |1〉, if we measure it on a computational basis, then we

will get the state |0〉 with probability

p0 = 〈ψ|M0 |ψ〉 = 〈ψ| · |0〉〈0| · |ψ〉 =
[
α∗ β∗

]
·
⎡⎣ 1 0

0 0

⎤⎦ ·
⎡⎣ α

β

⎤⎦ = |α|2,

and similarly, get the state |1〉 with probability p1 = |β|2. Also for the pure state |ψ〉 =
α |0〉 + β |1〉, the expectation of Pauli Z operator is defined as 〈Z〉 = Tr(Z |ψ〉〈ψ|) =

〈ψ|Z |ψ〉 = 〈ψ|M0 |ψ〉 − 〈ψ|M1 |ψ〉 = p0 − p1. Here, M0 ≡ |0〉〈0| and M1 ≡ |1〉〈1|
denote the quantum observables. Obviously, 〈Z〉 varies in the range [−1, 1] and we cannot

estimate it through just one-time measurement. Hence, we need to run and measure

the entire circuit multiple times (or multiple shots) to get multiple measurement results.

Suppose we repeat it S times and obtain S0 times 0 and S1 = S − S0 times 1, then

〈Z〉 ≈ S0−S1
S . From the Chernoff bound, the number of repetitions S scales of O( 1

ε2
log 1

η )

such that |〈Z〉− S0−S1
S | < ε with probability at least 1−η. Empirically, 2048 or 4096 shots

are sufficient to satisfy most requirements.

Within this thesis, we focus on the hardware-efficient Pauli measurements, i.e., setting O as

Pauli operators or their tensor products. For instance, we could choose Z1 ≡ Z ⊗ I⊗(n−1),

X2 ≡ I ⊗X ⊗ I⊗(n−2), Z1Z2 ≡ Z ⊗ Z ⊗ I⊗(n−2), etc., with n qubits in total.
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2.2 Parameterized Quantum Circuits

The parameterized quantum circuit is the most studied formalism in NISQ algorithms and

also is the core of this thesis. Therefore, in this section, we briefly introduce how PQC is

defined and designed.

Generally speaking, a PQC refers to a unitary operation with a series of adjustable param-

eters. By applying it to some common initial states, such as the state |0〉, one can obtain

the corresponding variational quantum state. Its purpose is to adjust these parameters

so that the final variational quantum state approximates the desired state. Similar to

the universal approximation theorem in neural networks [80], the universal PQC always

exists. Actually, it is known from [81] that the collection of all one-qubit gates together

with any set of imprimitive1 two-qubit gates are universal. However, the difficulty is that

such PQCs often require an exponential level of depth, so it is unlikely to be achieved at

the current stage. Fortunately, the authors of [82] pointed out that the data generated by

real physical systems usually have symmetry and locality, which means that we may only

employ some simple PQCs, that is, they are not so deep, but we can still approach the

quantum states we want. Therefore, how to design and select appropriate PQCs are very

significant for solving practical machine learning problems.

Different PQC architectures will significantly affect the performance of NISQ algorithms,

and one usually designs a PQC from two perspectives. On the one hand, from the per-

spective of the problem heuristic, PQCs will affect the convergence speed and the approx-

imation degree between the final variational quantum state and the target state that can

solve the problem optimally. For example, the unitary coupled cluster scheme [83] is one

prominent case of adopting this perspective. On the other hand, from the perspective of

quantum hardware, deeper PQCs will bring errors that cannot be ignored, and some com-

plex PQCs are difficult to construct through native and simple quantum gates. Therefore,

one usually needs to consider which one of these two perspectives is preferred according

to the actual problems and applications.

1A two-qubit gate is called imprimitive if it can map a two-qubit product state into a non-product
state. A typical example of imprimitive two-qubit gates is the frequently used CNOT or CZ gate.



Chapter 2. Preliminaries 17

This thesis mainly focuses on hardware-efficient PQCs [74], mainly because we regard

PQCs as alternatives to neural networks. We all know that neural networks have excel-

lent performance in machine learning, which also inspires us whether we can use these

hardware-efficient PQCs to obtain excellent performance in some practical machine learn-

ing tasks. We think this might be a fascinating yet challenging research direction.

Next, we will specifically introduce some hardware-efficient PQCs. An early work [28]

proposed a kind of hardware-efficient PQCs suitable for hardware constraints. These

PQCs not only use a limited set of quantum gates but also need to obey the topological

connections between qubits in hardware devices. These quantum gates usually include

single-qubit Pauli rotation gates and two-qubit entangling gates. These single-qubit gates

act on some or all of the qubits in parallel and form a block together with the entangling

gates, also known as a layer. The hardware-efficient PQCs usually contain multiple such

layers.

In general, a hardware-efficient parameterized quantum circuit with L layers [74] has the

form

U(θ) =
L∏
j

Uj(θj)Vj , (2.2)

where Uj(θj) = exp(−iθjPj/2) denotes a unitary derived from a Hermitian operator Pj

and Vj denotes some fixed operators such as Identity, CNOT and so on. Typically, Pj are

chosen as Pauli string operators. i.e., tensor products of Pauli operators and Vj are selected

according to the architectures of the actual quantum hardware, for example, CNOT or CZ

gates for superconducting computers [84] or XX gates for trapped ion computers [85], see

Fig. 2.1 for an illustration [74].

2.3 Hybrid Quantum-Classical Algorithms

After introducing PQCs, we now introduce the most popular algorithm framework in

the current NISQ era, the hybrid quantum-classical computing framework. According
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Figure 2.1: Examples of hardware-efficient parameterized quantum circuits with CZ
gates (left) for superconducting computers and XX gates (right) for trapped ion comput-
ers.

Figure 2.2: The architecture of hybrid quantum-classical algorithms, where the quantum
computer is considered as the main body and the classical computer is an assistant. In the
figure, Sx denotes the encoder circuit and Uθ is the parameterized quantum circuit. The
classical computer uses the estimation of the measurement outcome, e.g., expectations
of Pauli-Zk 〈Zk〉, to construct a loss function and compute its gradient, and after that
makes use of some optimization methods to update the parameters θ.

to this framework, we can define various machine learning models to adapt to different

applications.

The architecture of hybrid quantum-classical algorithms is depicted in Fig. 2.2. It mainly

contains the encoder circuit Sx and the parameterized quantum circuit Uθ, which are

implemented on quantum computers, and the whole learning procedure is done with the

assistance of classical computers that are used to construct loss function and compute

gradients of parameters. In the following subsections, we will introduce each of these

components.

2.3.1 Encoder Circuit

The encoder circuit Sx refers specifically to the data pre-processing operation which aims

to encode the classical data vector x into a quantum Hilbert space that usually has a higher
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dimensionality. On the one hand, the classical input x could be easily fed into a quantum

computer by being transformed to a quantum state through the encoder circuit; on the

other hand, the encoding process generally involves some non-linear feature maps, which

makes the classical data sets becoming easier to extract useful features for classification

or other tasks.

There are various encoding methods have been proposed. One of the most direct is ampli-

tude encoding, which encodes the classical input vector into the amplitudes of quantum

states [86]. The most significant advantage of this encoding is that only n-qubit quantum

states can represent the classical vectors with 2n dimension; that is, the required memory

can be compressed exponentially. Therefore, it is an essential source for some quantum

machine learning algorithms to accelerate exponentially [20]. Unfortunately, this encoding

requires a depth equivalent to the exponential number of qubits and requires quantum ran-

dom access memory, which is currently unavailable. Even if we can perform such encoding,

the time complexity required for data loading and readout is at least linear or polynomial

[87]; hence it might still be impossible to achieve the above exponential acceleration.

Another major category is to use PQC-based encoding [74], i.e., to encode each element

of the input vector as a parameter of PQCs. This scheme is the easiest to realize at

present and perhaps the most capable of realizing potential quantum advantages. The

most common example is angle encoding [88], i.e., each classical element corresponds to a

Pauli rotation gate on a qubit, and the number of qubits required is equal to the dimension

of the classical vector. The advantage of this encoding is that it can bring some nonlinear

feature mapping and better solve downstream tasks; The disadvantage is that it consumes

too many qubit resources. Some other encoding strategies may also provide potential

quantum advantages, such as IQP [76], a quantum version of the random kitchen sink

[89] and so on. More data encoding strategies are concluded in Sec. 2.6 with a detailed

mathematical description.
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2.3.2 Loss Function

With the above preparation of the encoder circuit and parameterized quantum circuit,

one can obtain the final parameterized quantum state |ψ(θ)〉. Next, we can design the

corresponding loss function with the help of classical computers and according to different

target tasks. Generally speaking, there are two kinds of learning tasks. One is to make

the parameterized quantum state approach the target quantum state, such as in quantum

chemistry. The objective is to find a distance measure between the target and the generated

states. Another one is to extract useful information through this parameterized quantum

state, such as in the supervised learning classification tasks. Similarly, this also aims to

design a distance measure between the useful information and the target label information.

In this subsection, we will introduce the most commonly used loss functions for these two

types of tasks: fidelity and expectation of Pauli operators.

2.3.2.1 Fidelity

Quantum fidelity, which represents the overlap between two quantum states, is a typical

distance measure of quantum states in the quantum area. It can be defined as

F (|ψtarg〉 , |ψ(θ)〉) ≡ | 〈ψtarg|ψ(θ)〉 |2, (2.3)

where |ψtarg〉 denotes the target quantum state and |ψ(θ)〉 is the parameterized quantum

state generated by the parameterized quantum circuit. The fidelity-based loss function

could be designed as one minus fidelity or just the negative fidelity, i.e.,

L(θ) = 1− F (|ψtarg〉 , |ψ(θ)〉); (2.4)

L(θ) = −F (|ψtarg〉 , |ψ(θ)〉). (2.5)

This kind of loss function is employed in various state preparation algorithms, and for

specific examples, this target state is often designed as a computational basis state |ei〉,



Chapter 2. Preliminaries 21

e.g.,

F (|ei〉 , |ψ(θ)〉) ≡ | 〈ei|ψ(θ)〉 |2. (2.6)

Typical instances are included in quantum optics [90–92], excited state preparation [93, 94]

and quantum machine learning [73, 74, 95, 96].

2.3.2.2 Expectation of Pauli Operators

As mentioned in Subsec. 2.1.4, the quantum measurement is a common method to extract

classical information from quantum states. Therefore, if we want to construct the loss

function according to this classical information, we must design different measurement

methods. In the NISQ era, a simple and effective way is to adopt the expectation of Pauli

operators. Concretely speaking, given the final quantum state |ψ(θ)〉, the expectation 〈H〉
of a Pauli operator H is defined as

〈H〉θ ≡ Tr(H |ψ(θ)〉〈ψ(θ)|) = 〈ψ(θ)|H |ψ(θ)〉 . (2.7)

Here, H is a linear combination of Pauli operators or their primitive tensor product, i.e.,

H =
∑
i

αiPi, (2.8)

where each simple Pauli operator Pi is summed with the corresponding coefficient αi.

The expectation-based loss function could be directly defined as

L(θ) = 〈H〉θ (2.9)

for the variational quantum eigensolver problem, which aims to find the minimum energy

or the minimum eigenvalue of the Hermitian operator H.



22 Chapter 2. Preliminaries

For the supervised learning task, here we take the binary classification as an example, the

expectation-based loss function is defined as

L(θ;x, y) ≡ ∣∣〈H〉θ,x − y
∣∣2 = ∣∣ 〈ψ(θ;x)|H |ψ(θ;x)〉 − y

∣∣2, (2.10)

where x denotes the input and y ∈ {−1, 1} is the corresponding label.

2.3.3 Optimizer

After defining the loss function, we need to use some optimization methods to optimize

these loss functions. In this subsection, we mainly introduce some gradient-based opti-

mization methods, such as finite difference, parameter shift rule and quantum natural

gradient and so on. We also briefly mention some gradient-free methods.

2.3.3.1 Gradient-based Optimization

The gradient-based optimization method is the most commonly used approach to optimize

a smoothing loss function. This is because according to the optimization theory, the

negative gradient represents the direction in which the loss function drops most rapidly.

Given the loss function L(θ), we generally have the following update rule

θ
(t+1)
i � θ

(t)
i − η

∂L(θ)

∂θi
, (2.11)

where θi denotes the i-th element of the parameter vector θ, t = 0, 1, 2, . . . denotes the t-th

iteration and η is the learning rate which could influence the convergence speed. Here,

θ
(0)
i means the initial guess which usually obeys some distributions such as Gaussian or

uniform, for the parameters.

The above update rules can be applied to almost all situations, but sometimes in order to

improve the convergence speed during training, some improved rules are proposed such as

stochastic gradient descent (SGD) and gradient update with momentum, i.e., Adam. The

former takes into account the problem of large number of data samples, that is, the sample

size is too large to be loaded into memory all at once for computing derivatives. Instead,
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only one or some data samples are randomly selected to calculate the derivative, and it is

proved that the convergence accuracy of SGD is theoretically the same as that of gradient

descent. Adam considers the “zigzag” problem of gradient, that is, the real negative

gradient only represents the direction of the fastest descent at the current moment, but

not the direction of the fastest descent overall. Concretely, Adam not only considers the

current gradient, but also considers the previous gradient, and adds them linearly with

different weights to ensure the fastest overall descent. What’s more, the experience in

engineering practice also tells us that Adam has an excellent performance in (quantum)

machine learning, thus it is also the update rule mainly adopted by this thesis.

Various methods for estimating gradients on quantum computers have been proposed [97],

here we will briefly introduce some of them.

Finite Difference The gradient estimation process by using a finite difference scheme

could be described as follows

∂L(θ)

∂θi
≈ L(θ + εei)− L(θ − εei)

2ε
, (2.12)

where ei denotes the unit vector in the i-th direction and ε is some smaller value. Note

that we need to evaluate two times of the loss function to obtain the gradient ∂L(θ)
∂θi

and

more sample times are required to get a better estimation of the gradient due to the limited

accuracy obtained from the quantum devices.

Parameter Shift Rule From the chain rule, the partial derivative ∂L(θ)
∂θi

could be

written as a function of the partial derivatives of the Pauli expectation values ∂〈P 〉θ
∂θi

, where

P denotes some Pauli operator. Then the gradient estimation process by using parameter

shift rule [98] is described as

∂〈P 〉θ
∂θi

=
〈P 〉θ+π

2
ei − 〈P 〉θ−π

2
ei

2
, (2.13)

where ei is the unit vector along the i-th direction of θ.
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Here we note that this method also requires estimating the Pauli expectation values twice.

But different from the finite difference method, the gradient estimated here is theoretically

exact. Therefore, this becomes a popular quantum method for gradient estimation.

Quantum Natural Gradient The quantum natural gradient is an extension of the

classical natural gradient. In the classical case, the efficiency of standard gradient descent

is affected by the flat Euclidean parameter space, hence the (classical) natural gradient

of non-Euclidean parameter space is proposed to improve it [99]. The updating rule of

quantum natural gradient [100] is as follows

θ
(t+1)
i � θ

(t)
i − ηF−1(θ)

∂L(θ)

∂θi
, (2.14)

where F(θ) denotes the Fubini-Study metric tensor or quantum Fisher information metric.

Compared with other gradient descent methods, the quantum natural gradient has the

advantage that it can effectively avoid falling into local minima [101], and thus has better

performance [100]. However, the disadvantage is that under the current quantum hardware

conditions, the Fubini-Study metric tensor is very difficult to estimate.

2.3.3.2 Gradient-free Optimization

In addition to the above gradient-based methods, some gradient-free methods have also

been proposed. For example, [102] proposes a natural evolution algorithm, which uses

the estimation of a natural gradient to update parameters instead of directly calculating

the gradient. Some authors [103, 104] use reinforcement learning algorithms to learn

an optimal strategy to optimize the parameters of quantum approximate optimization

algorithms. In addition, [105] uses the sequential minimization optimization method,

which is proven to be effective in classical support vector machines. Its core idea is to

decompose the optimization process into smaller components that are easy to solve.
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2.4 Quantum Classification

Classification is one of the most important tasks in machine learning. Its purpose is to

classify the input data of a given category into the correct category, which can be one

category or multiple categories. A typical classical example is the spam filtering system,

where we can divide an email into spam and non-spam. In addition, there are also other

tasks or challenges: for example, recognizing handwritten numbers and classifying them

into specific number symbols; Identifying whether the user’s reviews of a restaurant are

positive or negative, and so on.

Generally speaking, for different tasks, we should use different models to optimally adapt

them. However, no matter what kind of models we employ, a training data set containing

a large number of inputs and outputs (or labels) is required so that the model can be

trained from it. Furthermore, the training data set should cover all possible scenarios as

much as possible, and provide enough data samples for each category, so that the model

can be trained correctly.

Quantum classification, as its name implies, is to add quantum elements to the classical

classification. There are usually three forms: First, only the training data set is quantum,

i.e., the inputs are some quantum states with known labels. This situation is also known

as using classical classification models to classify quantum data [106–108]; Second, only

the classification model is quantum, that is, the inputs are still classical but they need to

be encoded into quantum inputs (i.e., quantum states) first, and then a quantum classifier

is adopted to classify [60, 74, 76]; Third, both the training data sets and the models are

quantum. This thesis mainly focuses on the latter two forms, namely, using quantum

models to classify classical data or quantum data.

2.4.1 Classification Task

The classification task could be described as follows: given a labeled training data set

D(train) = {(ρ(m), y(m))}, our purpose is to learn a complex mapping f between each set
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element (input) ρ(m) and its corresponding label y(m) such that

f(ρ(m)) ≈ y(m). (2.15)

However, our expectation is that this well-trained mapping f is not only suitable for the

training data set, but also for the test data set (i.e., recognize an unseen dog as a dog)

f(ρ(unseen)) ≈ y(unseen). (2.16)

This property is called generalization ability, which is extremely essential for all classifi-

cation problems and is also an important indicator to benchmark the performance of a

classifier. Here, we need to note that the input ρ denotes the quantum data. However, if

the input is classical, then ρ denotes the encoded quantum state of the classical input.

2.4.2 Quantum Classifiers

Quantum classifiers are widely studied and proposed with the purpose of using quantum-

enhanced features to achieve quantum advantages against the classical ones [76, 109].

Especially in the NISQ era, due to the unavailability of fault-tolerant quantum computers,

a large number of variational quantum classifiers are developed as temporary schemes

[34, 60, 61, 77, 98, 110, 111]. One could also refer to the relatively comprehensive review

[112] for more quantum classifiers.

As the main focus of this thesis, the variational quantum classifiers are actually the hybrid

quantum-classical algorithms that are mentioned above. Therefore, although our ultimate

goal is that quantum classifiers can achieve quantum advantages, the current variational

quantum classifiers obviously cannot achieve this goal. The dilemma mainly comes from

two aspects. On the one hand, the advantages of the expression ability of the variational

quantum circuits compared with that of the classical neural networks are still unclear;

On the other hand, the variational quantum classifiers are faced with a serious gradient

vanishing problem, i.e., the notorious barren plateaus [44]. Fortunately, some researchers

have analyzed the possibility of quantum advantages from the kernel’s perspective [68],

but further exploration is still needed.
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2.5 Quantum Natural Language Processing

Natural language processing (NLP) is an important branch of artificial intelligence, which

aims to let machines learn to understand human language. The purpose of quantum

natural language processing is to explore whether and how to use quantum computing

to enhance the performance of machines in the NLP field. The currently proposed quan-

tum natural language processing methods are generally divided into two categories: One is

quantum-inspired language models [47, 51–53] with borrowed ideas from quantum mechan-

ics; Another approach, just called quantum natural language processing (QNLP), seeks to

develop quantum-native NLP models that can be implemented on quantum devices [54–

57]. The focus of this thesis is the latter, where potential quantum advantages are expected

via building complex quantum circuits that are classically intractable. In this section, we

introduce some background knowledge in the QNLP field involved in this thesis.

2.5.1 Text Classification

As one of the central and basic tasks in the NLP field, text classification is to assign a

given text sequence to one of the predefined categories. Examples of text classification

tasks considered in this thesis include topic classification and sentiment analysis. A com-

monly adopted approach in machine learning is to train a model with a set of pre-labeled

sequences. When fed a new sequence, the trained model will be able to predict its category

based on the experience learned from the training data set.

2.5.2 Self-Attention Mechanism

The self-attention mechanism leads to an excellent leap in classical machine learning be-

cause it can connect two words at any distance, alleviating the problem of weak long-range

relationships in long short-term memory. This impact is particularly evident in natural

language processing. This is also the primary reason why we introduce self-attention into

quantum neural networks.
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In a self-attention neural network layer [33], the input data {xs ∈ Rd}Ss=1 are linearly

mapped, via three weight matrices, i.e., query Wq ∈ Rd×d, key Wk ∈ Rd×d and value

Wv ∈ Rd×d, to three parts Wqxs, Wkxs, Wvxs, respectively, and by applying the inner

product on the query and key parts, the output is computed as

ys =

S∑
j=1

as,j ·Wvxj (2.17)

with

as,j =
ex

�
s W�

q Wkxj∑S
l=1 e

x�
s W�

q Wkxl
, (2.18)

where as,j denote the self-attention coefficients.

2.5.3 DisCoCat Model

DisCoCat model [113] denote by tensors the meaning of words, where the order of each

tensor is specified by the grammatical types of words. A word type p has a left (pl) and a

right adjoint (pr), with two contraction rules:

p · pr → 1 pl · p → 1. (2.19)

And a transitive verb type will return an s. For example, a transitive sentence such as

“Alice likes apples” has the following derivation:

n · (nr · s · nl) · n → (n · nr) · s · (nl · n) → 1 · s · 1 → s. (2.20)

The overall pipeline has the following steps: first, do syntactic analysis on sentences; Step 2:

deduce according to the syntax tree of DisCoCat; Step 3: rewrite according to the diagram

of DisCoCat; The fourth step is to design the corresponding quantum circuit; Fifth, use

the quantum compiler to compile the quantum circuit into the executable language of the
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quantum computer; The sixth step is to run it on a quantum computer. In the last step,

post-processing such as measurement is carried out, and the results are obtained.

2.6 Quantum Data Encoding

Quantum data encoding [86] is an essential step for quantum algorithms to accept clas-

sical input. In the classical case, the information is extracted from the input to do the

downstream machine learning tasks; Similarly, in the quantum case, the useful informa-

tion needs to be reserved as much as possible via quantum data encoding strategies to do

quantum machine learning tasks. Hence, a good encoding strategy is necessary, especially

in the current NISQ era. In this section, we outline some common encodings.

2.6.1 Amplitude Encoding

Amplitude encoding is the most direct encoding strategy. It encodes an d-dimensional

vector x into an log2 d-qubit quantum state whose amplitudes in the computational basis

are the elements of the vector,

x → |x〉 ≡
d−1∑
i=0

xi |i〉 . (2.21)

Here we assume d = 2n with some integer n, and if that is not the case, we pad the

vector to 2�log2 d� dimensions with zero. Since it can express information of O(d) by

only using quantum memory of O(log d), amplitude encoding is a primary reason why

many quantum algorithms can achieve exponential speedup. Unfortunately, this encoding

cannot be implemented accurately on current quantum devices, which leads to exponential

acceleration only at the theoretical level. Therefore, it is urgent to find more practical

encoding strategies to realize quantum advantages.
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2.6.2 Repeated Amplitude Encoding

Repeated amplitude encoding means we repeat amplitude encoding k times in a tensor

product form,

x → |x〉 ⊗ |x〉 ⊗ · · · ⊗ |x〉 . (2.22)

This can enhance the power of amplitude encoding by employing O(k log2 d) qubits. In

general, the richer the feature types of input data contained in an encoding, the more ben-

eficial the following quantum model circuit is, i.e., the stronger its encoding power. From

this point of view, compared with the original amplitude encoding, the repeated amplitude

encoding contains more polynomial features, e.g., O(x2), O(x3), . . . , O(xk), hence it can

be viewed as an enhanced version.

2.6.3 Basis Encoding

Basis encoding is a ubiquitous encoding strategy in qubit-based quantum computing. It

encodes the binary representation of an input into a computational basis state,

x → |xn−1〉 · · · |x1〉 |x0〉 , (2.23)

where x =
∑n−1

k=0 2
kxk. For example, 5 is encoded into 5 = 101 → |1〉 |0〉 |1〉. It requires

O(n) qubits to encode a scalar and O(nd) qubits a vector with d dimensions.

2.6.4 Angle Encoding

Angle encoding is possibly the most common encoding strategy in the NISQ era. It encodes

n-dimensional vector x into n-qubit quantum product state,

x → Ry(x0) |0〉 ⊗Ry(x1) |0〉 ⊗ · · · ⊗Ry(xn−1) |0〉 , (2.24)

where xk’s are generally normalized to [0, 2π]. Here, we note that the Pauli-Y rotation

gate could be changed into other (Pauli) gates, e.g., Rx(xk).
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2.6.5 PQC-based Encoding

PQC-based encoding strategy means a d-dimensional vector x is embedded into a param-

eterized quantum circuit with d parameters, and the parameters are usually the rotation

angles of Pauli gates. The above angle encoding can be regarded as the most straightfor-

ward PQC-based encoding strategy. Theoretically speaking, a kind of PQC corresponds to

a concrete encoding strategy. Therefore, among these numerous PQC encoding strategies,

it is promising to explore which ones can better serve quantum machine learning.





Chapter 3

Variational Shadow Quantum

Learning

3.1 Introduction

Quantum computers are expected to have significant applications in solving challenging

problems in information processing. Inspired by the powerful capacity of classical super-

vised learning and its growing community [15, 114], it is natural to develop their quantum

counterparts and explore the emerging field of quantum machine learning (QML) [7, 17–

19]. Among many topics in this area, classification is one of the most important tasks, e.g.,

distinguishing quantum states [106–108] or recognizing classical data [60, 74, 76]. Classifi-

cation is usually described as a decision-making process with discrete variables where the

processing unit is provided with a labeled training set D(train) = {(ρ(m), y(m))} in order to

find the convoluted mapping F between each set element ρ(m) and its corresponding label

y(m). Once the training process is complete, we would expect the classifier F not only

learns the map F(ρ(m)) = y(m) precisely, but also generalizes its capacity of discrimination

to discover some hidden features shared with similar test data F(ρ(new)) = y(new) (i.e. rec-

ognize an unseen cat as a cat). This ability of generalization is valuable to all classification

tasks, and hence it is frequently used to benchmark the performance of a classifier.

33
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In classical machine learning, various approaches have been proposed to implement clas-

sification tasks, including perceptron-based algorithms, support vector machines, and the

most prevalent neural network (NN) framework [15]. With the quantum computing com-

munity growing in the NISQ era [24], similar ideas have been developed respectively,

including the quantum perceptron model [115], kernel-based method [70], and the quan-

tum neural network (QNN) framework [60, 61, 76, 77, 98, 109, 116, 117]. This chapter

focuses on QNN-based algorithms, also referred to as Variational Quantum Algorithms

(VQA) or hybrid quantum-classical algorithms.

The main content of this chapter was published in [111], and the remainder is organized

as follows: in Sec. 3.2, we introduce the variational shadow quantum learning framework

for binary classification, which includes model sketch, loss function, analytical gradients,

model complexity, theoretical classification ability and escape of barren plateau. The

similar contents of variational shadow quantum learning framework for multi-label clas-

sification are discussed in Sec. 3.3. In Sec. 3.4, numerical experiments are conducted to

verify the accuracy and efficiency of VSQL methods, including the classification of quan-

tum states, MNIST classification and distinguishing noisy quantum states. Lastly in Sec.

3.5, some discussions are concluded to inspire future research.

3.2 Variational Shadow Quantum Learning for Binary Clas-

sification

3.2.1 Sketch of Method

We now present the sketch of VSQL for binary classification. Our goal is to find the

optimal parameters θ∗ in the local parameterized quantum circuits U(θ), which we call

shadow circuit, and the best weights {w∗, b∗} in the fully-connected neural network such

that the algorithm could correctly predict the label of an unknown input quantum state.

The original meaning of the word ‘shadow’ is that we focus on the information of things in

a particular aspect rather than the whole one. This aspect of information usually comes

from projecting things in some directions. Here in this chapter, we regard the features that
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Figure 3.1: Sketch of variational shadow quantum learning (VSQL) for binary classifica-
tion with n = 4 and nqsc = 2. In the quantum device, the shadow circuit is implemented
on the subspace of input state ρin. Sliding through the whole system to collect the Pauli-
(X ⊗ X) expectations, i.e., shadow features. In the classic device, the resulting shadow
features oi’s are fed into a fully-connected neural network. Here, the output ŷ is a value
between 0 and 1 for the binary case. We should denote that all the shadow circuits U(θ)’s
sliding through the n-qubit Hilbert space are identical.

the local PQCs extract as the projection information of the input quantum state on some

qubit spaces. Therefore, we call the local PQCs the shadow circuits and the projection

information the shadow feature.

Like most classifiers, VSQL consists of two separate processes, viz. training and inference.

During the training process (illustrated in Fig. 3.1), we are given the training data set

encoded in n-qubit quantum state D(train) ≡ {(ρ(m)
in , y(m))}Ntrain

m=1 , where y(m) ∈ {0, 1}
denotes the binary label for the m-th input density matrix ρ

(m)
in . Then, the nqsc-local

shadow circuit acts on the first nqsc qubits and the corresponding Pauli-(X ⊗ · · · ⊗ X)

expectation value is estimated, recorded as shadow feature o1. Here (X⊗· · ·⊗X) has nqsc

Pauli-X gates. Next, the same shadow circuit is implemented on the subspace spanned

from the 2nd up to the (2 + nqsc − 1)th qubit to extract the second shadow feature o2.

As the shadow circuit slides down, we obtain n− nqsc + 1 shadow features in total. This

convolution-like way of sliding through the qubit positions can be adjusted according to

the hardware connectivity. Pauli-X gates employed to do measurements could be replaced

by other Pauli gates, which are also easy to be measured, e.g., Pauli-Z gates. Actually,

due to the universality of U(θ), Pauli-X and Pauli-Z or other Pauli gates would have

the same effects. We also note that there is only one shadow circuit here. However,
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Algorithm 1 Variational shadow quantum learning (VSQL) for binary classification: the
training process

Input: The training data set D(train) ≡ {(ρ(m)
in , y(m) ∈ {0, 1})}Ntrain

m=1 , EPOCH, optimiza-
tion procedure

Output: The final parameters θ∗, w∗ and b∗, and the list of losses
1: Initialize the parameters θ of the 2-local (for example) shadow circuit U(θ) from

uniform distribution Uni[0, 2π] and w, b from Gaussian distribution N(0, I)
2: for ep = 1, . . . , EPOCH do
3: for m = 1, . . . , Ntrain do

4: Apply multi-times the shadow circuit U(θ) to the input density matrix ρ
(m)
in

5: Measure the subsystem and estimate a series of expectations 〈X ⊗X〉, recorded
as oi’s

6: Feed the shadow features oi’s into the classical neural network and obtain the
output ŷ(m)

7: Compute the accumulated loss
(
ŷ(m) − y(m)

)2
and update accordingly the param-

eters θ, w and b via gradient-based optimization procedure
8: end for
9: if the stopping criterion is satisfied then

10: Break
11: end if
12: end for

the number of shadow circuits (ns) could be increased appropriately to accommodate

the difficulty of classification tasks, with ns(n − nqsc + 1) shadow features. Sequentially,

we feed these local features {oi} into a classical FCNN, which means they are summed

with weights w ∈ Rn−nqsc+1, bias b ∈ R and mapped into the range ŷ(m) ∈ [0, 1] via the

sigmoid activation function σ(z) = (1 + e−z)
−1

. Repeat the same procedure for each input

data and compute the accumulated loss L(θ,w, b;D(train)) between the predicted value

ŷ(m) and its true label y(m). Finally, VSQL utilizes a gradient-based optimizer to update

the shadow circuit parameters θ and the neural network parameters w, b, thus gradually

minimizing the loss function. Repeat these steps until the loss is converged with tolerance

ΔL ≤ ε or other stopping criteria are satisfied. Check Algorithm 1 for details.

During the inference process, the unseen test data set D(test) ≡ {(ρ(m)
in , y(m) ∈ {0, 1})}Ntest

m=1

is provided to the classifier F. We feed each sample in the test set to the trained hybrid

framework (combination of shadow circuit and FCNN) to predict its label. Then, the test

accuracy could be calculated by comparing the predicted labels and the true labels. The

details are provided in Algorithm 2. Furthermore, VSQL can be naturally generalized
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Algorithm 2 Variational shadow quantum learning (VSQL) for binary classification: the
inference process

Input: The test data set D(test) ≡ {(ρ(m)
in , y(m) ∈ {0, 1})}Ntest

m=1 , the parameters θ, w and
b from the training process

Output: The list of predicted labels and the test accuracy
1: Set the counter n c = 0, denoting the number of correctly predicted labels
2: for m = 1, . . . , Ntest do

3: Apply multi-times the shadow circuit U(θ) to the input density matrix ρ
(m)
in

4: Measure and estimate a series of expectations 〈X ⊗X〉, recorded as oi’s
5: Feed these shadow features oi’s into the classical neural network and obtain the

output ŷ(m) ∈ [0, 1]
6: if ŷ(m) ≤ 0.5 then
7: Set the predicted label as ‘0’
8: else
9: Set the predicted label as ‘1’

10: end if
11: if the predicted label == y(m) then
12: n c = n c+ 1
13: end if
14: end for
15: Compute the test accuracy as n c/Ntest

to multi-label classification by replacing the sigmoid activation function with a softmax

function.

3.2.2 Loss Function

Given the data set D ≡ {(ρ(m)
in , y(m))}Nm=1 and nqsc-local shadow circuits, the loss function

of VSQL for binary classification is designed to be the mean square error1 [118]:

L(θ,w, b;D)≡ 1

2N

N∑
m=1

[
ŷ(m)

(
ρ
(m)
in ;θ,w, b

)
−y(m)

]2
. (3.1)

Here, the predicted label ŷ(m) is defined as follows:

ŷ(m)
(
ρ
(m)
in ;θ,w, b

)
≡σ

(∑
i

wio
(m)
i

(
ρ
(m)
in ;θ

)
+b

)
, (3.2)

1The cross-entropy loss is considered in the multi-label case.
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where σ(z) denotes the sigmoid activation function and the shadow features oi are calcu-

lated through

o
(m)
i

(
ρ
(m)
in ;θ

)
=Tr

(
ρ
(m)
in (I⊗· · ·⊗ U †(θ)OU(θ)⊗· · ·⊗I)

)
. (3.3)

Note that the shadow circuit U(θ) and the physical observable O = X⊗· · ·⊗X are applied

on the same local qubits. Additionally, U(θ) is usually decomposed as a chain of unitary

operators:

U(θ) =
1∏

l=L

Ul(θl)Vl, (3.4)

where Ul(θl) = exp(−iθlPl/2) and Vl denotes a fixed operator such as Identity, CNOT and

so on.

3.2.3 Analytical Gradients

With the above preparation, we can easily derive the analytical gradients, with which

VSQL could naturally update its parameters θ and {w, b} via gradient-based optimization

method, e.g., SGD [119]. For each input ρ
(m)
in ,

∂L

∂wi
=

(
ŷ(m) − y(m)

)
· ŷ(m)

(
1− ŷ(m)

)
· o(m)

i , (3.5)

∂L

∂b
=

(
ŷ(m) − y(m)

)
· ŷ(m)

(
1− ŷ(m)

)
, (3.6)

∂L

∂θl
=

∂L

∂ŷ(m)
·
∑
i

∂ŷ(m)

∂o
(m)
i

· ∂o
(m)
i

∂θl

=
(
ŷ(m) − y(m)

)
·
∑
i

ŷ(m)
(
1− ŷ(m)

)
wi · ∂o

(m)
i

∂θl
, (3.7)

The partial derivatives w.r.t wi and b are written in Eqs. (3.5) and (3.6) could be directly

computed in the classical device and used to update wi, b through the backpropagation

algorithm [114]. And the partial derivative w.r.t θl in Eq. (3.7) can be regarded as a
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weighted sum of several partial gradients ∂o
(m)
i /∂θl,

∂o
(m)
i

(
θ; ρ

(m)
in

)
∂θl

= − i

2
Tr

(
U †
>lOU>l

[
Pl, U≤lρiU

†
≤l

])
. (3.8)

where ρi = Tr−i(ρ
(m)
in ) denotes the partial trace of ρ

(m)
in corresponding to the index i, U≤l =∏1

j=l Uj(θj)Vj and U>l =
∏l+1

j=L Uj(θj)Vj and [ρ, σ] = ρσ − σρ denotes the commutator

between ρ and σ. This gradient can be calculated exactly on the quantum device with the

π/2 parameter shift rule proposed by Mitarai et al.. Compared with the finite difference

scheme, this method leads to a faster convergence [120] and is more suitable to the existing

quantum devices.

3.2.4 Number of Parameters of VSQL

In the hybrid quantum-classical framework, the number of parameters in the quantum

circuit is an important quantity to measure its complexity and efficiency. The main reason

is that updating each parameter is costly in terms of quantum resources as it requires re-

running the entire circuit multiple times. Therefore, algorithms with a smaller number of

parameters are preferable in the NISQ era. Here, we exhibit this advantage for VSQL.

There are two kinds of parameters in VSQL, i.e., the parameters θ in the shadow circuits

and the parameters w, b in the classical NN. Assume the action mode of the shadow

circuits is “shadow sliding” (illustrated in Fig. 3.1), which is also employed throughout

this chapter. The number of parameters of VSQL for binary classification is summarized

as follows.

Proposition 3.1. For an n-qubit quantum system, if we use ns shadow circuits, then the

number of parameters of VSQL for binary classification is

# Params = # Params
∣∣
in shadow circuits

+# Params
∣∣
in NN

= nsnqscD + [ns (n− nqsc + 1) + 1] , (3.9)

where we denote by nqsc the number of qubits of the shadow circuits and assume each

shadow circuit consists of D layers with nqsc parameters in each layer.
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Thus, VSQL has a parameter quantity that is linearly related to n and D separately,

rather than nD that commonly appears in most of the ansatzes employed in the existing

literature [60, 77, 98]. For a 50-qubit quantum system, if we use just one 2-local shadow

circuit with 20 layers, i.e., ns = 1, nqsc = 2, D = 20, then the number of parameters of

VSQL is 40 + (50− 2 + 1) + 1 = 90, which is much smaller than nD = 1000.

3.2.5 Number of repetitions for computing each shadow feature

As we need to repeat the shadow circuits multiple times to estimate the shadow features,

here we give the number of repetitions required in VSQL.

Proposition 3.2. Given a precision ε, the number of repetitions of the shadow circuit

for computing each shadow feature at error ε, with probability at least 1 − η, scales as

O
(
log(1/η)/ε2

)
.

This proposition is directly derived from the Chernoff–Hoeffding theorem [121]. Further-

more, by utilizing these estimated shadow features, VSQL outputs the prediction value ŷ

and gives a label according to the following prediction rule

predicted label =

⎧⎪⎨⎪⎩
0, ŷ < 0.5

1, ŷ ≥ 0.5.

(3.10)

Therefore, in the inference process of VSQL, for an input state with the label y ∈ {0, 1},
if the predicted label is correct and the gap between the prediction value and 0.5 is τ

under an infinite number of repetitions of the shadow circuits, then the actual number of

repetitions, required to ensure that the input state is not misclassified, will be related to

the gap τ .

Proposition 3.3. For an n-qubit quantum system, if we use ns shadow circuits and

assume the final weights wi of the neural networks in VSQL are bounded as |wi| ≤ Cw,

and the prediction gap is τ ∈ (0, 0.5), then the actual number of repetitions for computing

each shadow feature, with probability at least 1− η, scales as O
(
n2
sn

2C2
w log(1/η)/τ2

)
.
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Proof. If the estimated error of each shadow feature oi is δ, then from Proposition 3.2, the

number of repetitions, with probability at least 1 − η, is O
(
log(1/η)/δ2

)
. What’s more,

due to

∂ŷ

∂oi
≡ ∂σ (

∑
iwioi + b)

∂oi
= ŷ (1−ŷ) · wi ≤ |wi|

4
≤ Cw

4
, (3.11)

the error of ŷ could be bounded as 1
4nsnCwδ, where the first inequality follows from 0 < ŷ <

1 and the term nsn means there are at most nsn shadow features. If we let 1
4nsnCwδ ≤ τ ,

the number of repetitions for computing each shadow feature is obtained.

From Proposition 3.3, we know, in the inference process of VSQL, if there is a large

prediction gap, then the output of VSQL will be allowed to have significant errors. This

means VSQL will require much fewer repetitions for computing each shadow feature yet

still ensure obtaining a correct predicted label.

3.2.6 Theoretical Classification Ability

In this subsection, we explore the theoretical classification ability of VSQL and give the

corresponding necessary and sufficient conditions.

Theorem 3.4. Given two types of input density matrices ρ
(0)
in and ρ

(1)
in with labels 0 and

1, respectively, VSQL can distinguish them if, and only if, there exists a group of θ that

makes at least one pair of shadow features o
(0)
i and o

(1)
i different, i.e., |o(0)i − o

(1)
i | > 0.

Proof. Sufficiency: Without loss of generality, we assume i = 1 and o
(0)
1 <o

(1)
1 . By simply

setting w1=1 and other wi’s as 0, and setting b=−(o
(0)
1 +o

(1)
1 )/2, we could obtain

ŷ(0)≡σ(
∑
i

wio
(0)
i +b)=σ[(o

(0)
1 −o

(1)
1 )/2]<σ (0)=0.5;

ŷ(1)≡σ(
∑
i

wio
(1)
i +b)=σ[(o

(1)
1 −o

(0)
1 )/2]>σ (0)=0.5.

By taking 0.5 as the decision boundary, we know VSQL could distinguish these two types

of input density matrices theoretically.
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Necessity: Assuming all pairs of shadow features o
(0)
i and o

(1)
i are identical for any group

of θ, then ŷ(0) and ŷ(1) will always be same. Hence, VSQL fails to theoretically distinguish

these two input density matrices, which is in contradiction with the condition.

Corollary 3.5. Given two types of n-qubit input density matrices. If each pair of their

corresponding m-local partial traces are identical (m < n), then VSQL is theoretically

incapable of distinguishing them via m-local shadow circuits, and vice versa.

The proof of Corollary 3.5 could be immediately derived from Theorem 3.4, because getting

identical partial traces is equivalent to having same shadow features (cf. Eq. (3.3)).

After exploring the necessary and sufficient conditions for the theoretical classification

ability of VSQL, we now discuss this ability under different local shadow circuits. Intu-

itively, larger shadow circuits will give VSQL stronger classification ability. The following

Theorem will give a detailed statement.

Theorem 3.6. Given two types of n-qubit input density matrices ρ
(0)
in and ρ

(1)
in . If VSQL

can not theoretically distinguish them via m-local shadow circuits, then neither can via

m′-local shadow circuits, where m′ < m < n.

Proof. From Corollary 3.5, we know every pair of the corresponding m-local partial traces

of these two states are identical, i.e.,

(
ρ
(0)
in

)
m-local

=
(
ρ
(1)
in

)
m-local

, (3.12)

where (ρ)m-local ≡ Trn/m-local (ρ) denotes the partial trace of ρ on all n other than m-local

qubit system and the subscripts “m-local” on both sides mean they are in the same m

local qubit system. If we similarly define the following

(
ρ
(0)
in

)
m′-local

≡ Trm/m′-local

((
ρ
(0)
in

)
m-local

)
(3.13)(

ρ
(1)
in

)
m′-local

≡ Trm/m′-local

((
ρ
(1)
in

)
m-local

)
, (3.14)
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then we have

(
ρ
(0)
in

)
m′-local

=
(
ρ
(1)
in

)
m′-local

. (3.15)

Due to the arbitrariness of m-local, we obtain m′-local can also be arbitrary, which means

each pair of the corresponding m′-local partial traces of these two states are identical.

From Corollary 3.5 again, we could finish the proof.

The following example shows that the other direction does not hold. Assume

ρ
(0)
in =

1√
2
(|000〉+ |110〉) · 1√

2
(〈000|+ 〈110|) (3.16)

ρ
(1)
in =

1√
2
(|000〉 − |110〉) · 1√

2
(〈000| − 〈110|) (3.17)

and let m′ = 1 and m = 2. In the following, we use (ρin)i and (ρin)i,j to denote the

1-local and 2-local partial traces, respectively, where i, j = 1, 2, 3, i < j. Now we verify

their 1-local and 2-local partial traces:

(
ρ
(0)
in

)
1
=

(
ρ
(0)
in

)
2
=

1

2
(|0〉〈0|+ |1〉〈1|) ,

(
ρ
(0)
in

)
3
= |0〉〈0| (3.18)(

ρ
(1)
in

)
1
=

(
ρ
(1)
in

)
2
=

1

2
(|0〉〈0|+ |1〉〈1|) ,

(
ρ
(1)
in

)
3
= |0〉〈0| ; (3.19)

(
ρ
(0)
in

)
1,2

=
1

2
(|00〉+ |11〉) · (〈00|+ 〈11|) (3.20)(

ρ
(1)
in

)
1,2

=
1

2
(|00〉 − |11〉) · (〈00| − 〈11|) . (3.21)

We see for these two states there exists different 2-local partial traces, even though each pair

of their corresponding 1-local partial traces are identical. This indicates, from Corollary

3.5, VSQL could theoretically distinguish them via 2-local shadow circuits, but could not

via 1-local ones. Hence, the two states in Eqs. (3.16) and (3.17) could be a successful

counterexample.

From Theorem 3.6, we confirm the intuition that the larger the number of qubits nqsc of

the shadow circuits is, the stronger the theoretical expressive ability of VSQL is. However,

if this number is too large, it will lead to other problems, such as the Barren Plateau issue
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described in the next subsection. Therefore, in this chapter, we set it as a hyper-parameter

whose value is chosen according to engineering experience.

3.2.7 Escape of Barren Plateau

In the last subsection, we have shown that VSQL has a strong theoretical classification

ability for a wide range of quantum states, especially by using large local shadow circuits.

However, the sizeable operating scope of the shadow circuits will increase network param-

eters and the cost of compiling given limited hardware connections and leads to the Barren

Plateau issue. The barren plateau issue [44, 122] refers to the vanishing gradient problem

during the training process of QNN. That is, for a wide range of variational quantum cir-

cuits, the partial gradients of the objective function have a zero mean and an exponentially

vanishing variance, which makes it difficult for the optimizer to find the correct direction

to decrease the objective function. Therefore, it is important to discuss whether the BP

problem exists when proposing a new variational quantum algorithm.

Next, we evaluate the mean and variance of the analytical gradients in VSQL. There is

no barren plateau issue for the partial gradients (see Eqs. (3.5) and (3.6)) with respect to

the parameters wi and b of the classical NN. And for the partial gradient (see Eq. (3.7))

with respect to θl of QNN, the barren plateau issue is mainly reflected on the last term,

i.e., the partial derivatives (see Eq. (3.8)) of the shadow features oi with respect to θl.

Hence, it is sufficient to evaluate the mean and the variance of the partial gradient in Eq.

(3.8) to explore the barren plateau problem in VSQL. The results are summarized in the

following proposition.

Definition 3.7. A unitary t-design [123] is defined as a finite set of unitaries {Uk}Kk=1 on

a d-dimensional Hilbert space such that

1

K
·
∑
k

P(t,t)(Uk) =

∫
U(d)

dμHaar(U)P(t,t)(U), (3.22)

where P(t,t)(U) denotes a polynomial of degree at most t on the elements of U and at most

t on the elements of U †.
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Proposition 3.8. If U>l or U≤l forms at least an nqsc-local unitary 2-design, the mean

and the variance of the analytical gradients with respect to θl in VSQL (see Eq. (3.8)) are

evaluated as

E

[
∂oi
∂θl

]
= 0; Var

[
∂oi
∂θl

]
= −1

4
· C (ρi)

22nqsc − 1
, (3.23)

where C (ρi) ∈ (−4× 2nqsc , 0) denotes a constant and nqsc is the number of qubits of the

shadow circuits.

Proof. Before start, we need the following two lemmas [122–124]:

Lemma 3.9. Let {Uk}Kk=1 ∈ U(d) form a unitary t-design [123] with t ≥ 1, and let A,B

be arbitrary linear operators. Then

1

K
·
∑
k

Tr
(
UkAU †

kB
)
=

∫
U(d)

dμHaar(U) · Tr
(
UAU †B

)
=

Tr(A) Tr(B)

d
. (3.24)

Lemma 3.10. Let {Uk}Kk=1 ∈ U(d) form a unitary t-design [123] with t ≥ 2, and let

A,B,C,D be arbitrary linear operators. Then

1

K
·
∑
k

Tr
(
UkAU †

kBUkCU †
kD

)
=

∫
U(d)

dμHaar(U) · Tr
(
UAU †BUCU †D

)
=
Tr(A) Tr(C) Tr(BD) + Tr(AC) Tr(B) Tr(D)

d2 − 1

− Tr(AC) Tr(BD) + Tr(A) Tr(B) Tr(C) Tr(D)

d(d2 − 1)
;

(3.25)

1

K
·
∑
k

Tr
(
UkAU †

kB
)
Tr

(
UkCU †

kD
)
=

∫
U(d)

dμHaar(U) · Tr
(
UAU †B

)
Tr

(
UCU †D

)
=
Tr(AC) Tr(BD) + Tr(A) Tr(B) Tr(C) Tr(D)

d2 − 1

− Tr(A) Tr(C) Tr(BD) + Tr(AC) Tr(B) Tr(D)

d(d2 − 1)
.

(3.26)
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According to Eq. (3.8), i.e.,

∂o
(m)
i

∂θl
= − i

2
Tr

(
U †
>lOU>l

[
Pl, U≤lρiU

†
≤l

])
(3.27)

=
i

2
Tr

(
U≤lρiU

†
≤l

[
Pl, U

†
>lOU>l

])
, (3.28)

(i) if U>l forms at least a nqsc-local unitary 2-design, from Eqs. (3.27), (3.24) and (3.26),

we have

E

[
∂o

(m)
i

∂θl

]
= − i

2
·
Tr (O)E

[
Tr

(
[Pl, U≤lρiU

†
≤l]

)]
2nqsc

= 0, (3.29)

Var

[
∂o

(m)
i

∂θl

]
= −1

4
·
Tr

(
O2

)
E

[
Tr

(
[Pl, U≤lρiU

†
≤l]

2
)]

22nqsc − 1
; (3.30)

(ii) if U≤l forms at least a nqsc-local unitary 2-design, from Eqs. (3.28), (3.24) and (3.26),

we have

E

[
∂o

(m)
i

∂θl

]
=

i

2
·
Tr (ρi)E

[
Tr

(
[Pl, U

†
>lOU>l]

)]
2nqsc

= 0, (3.31)

Var

[
∂o

(m)
i

∂θl

]
= −1

4
·
⎛⎝Tr

(
ρ2i

)
E

[
Tr

(
[Pl, U

†
>lOU>l]

2
)]

22nqsc − 1
−

Tr2 (ρi)E
[
Tr

(
[Pl, U

†
>lOU>l]

2
)]

2nqsc(22nqsc − 1)

⎞⎠ .

(3.32)

Now let’s consider the term E
[
Tr

(
[P,U †AU ]2

)]
, where P is a Pauli product operator, U

denote a series of unitary matrices that the expectation acts on and A =
∑

j λj |λj〉〈λj |
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denotes a Hermitian operator, where we ssume λ1 ≥ λ2 ≥ · · · ≥ λ2nqsc . Then we have

E
[
Tr

(
[P,U †AU ]2

)]
= E

[
Tr(PU †AU − U †AUP )2

]
(3.33)

= 2E
[
Tr(PU †AU)2

]
− 2E

[
Tr(PU †AUU †AUP )

]
(3.34)

= 2E

⎡⎢⎣∑
i,j

λiλj Tr(〈λj |UPU † |λi〉〈λi|UPU † |λj〉︸ ︷︷ ︸
pij

)

⎤⎥⎦− 2Tr(A2)

(3.35)

= 2E
[
(�λ)†PΛ

�λ
]
− 2Tr(A2). (3.36)

Here, �λ = [λ1, λ2, . . . , λ2nqsc ]
 and we define a matrix PΛ = [pij ], where each element is

defined as

pij = 〈λi|UPU † |λj〉〈λj |UPU † |λi〉 . (3.37)

From the fact that pij ≥ 0 and
∑

i pij =
∑

j pij = 1, we know PΛ is a doubly stochastic

matrix. Now in order to bound the term (�λ)†PΛ
�λ, we can repeatedly perform the following

procedure followed from the Rearrangement inequality, i.e., for any i ≤ k and j ≤ l, we

have

λiλj + λkλl ≥ λiλl + λkλj .

pij pkl pil pkj

↑Δ1 (or ↓Δ2) ↑Δ1 (or ↓Δ2) ↓Δ1 (or ↑Δ2) ↓Δ1 (or ↑Δ2)

(3.38)

That is, for the four elements in the four corners of any rectangle (e.g., indexed by rows i, k

and columns j, l) in PΛ, we could increase pij , pkl and decrease pil, pkj by Δ1 simultaneously

to get close to its upper bound; Or conversely by Δ2 to get close to its lower bound (see

also Eq. (3.38)). Here, we can set Δ1 = min {pil, pkj} and Δ2 = min {pij , pkl} to satisfy
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the nonnegativity. An intuitive example for one step of this procedure is referred to below:

(�λ)†

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

j l
...

...

i · · · 0.3
−0.2−−−→ 0.1 · · · 0.4

+0.2−−−→ 0.6 · · ·
...

...

k · · · 0.5
+0.2−−−→ 0.7 · · · 0.2

−0.2−−−→ 0.0 · · ·
...

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�λ ≤ (�λ)†

PΛ︷ ︸︸ ︷⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

j l
...

...

i · · · 0.3 · · · 0.4 · · ·
...

...

k · · · 0.5 · · · 0.2 · · ·
...

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�λ

≤ (�λ)†

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

j l
...

...

i · · · 0.3
+0.4−−−→ 0.7 · · · 0.4

−0.4−−−→ 0.0 · · ·
...

...

k · · · 0.5
−0.4−−−→ 0.1 · · · 0.2

+0.4−−−→ 0.6 · · ·
...

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�λ.

(3.39)

After a finite number of steps, we will finally obtain

2nqsc∑
i=1

λiλ2nqsc−i+1 = (�λ)†

⎡⎢⎢⎢⎢⎢⎢⎣
1

1
...

1

⎤⎥⎥⎥⎥⎥⎥⎦�λ ≤ (�λ)†PΛ
�λ ≤ (�λ)†

⎡⎢⎢⎢⎢⎢⎢⎣
1

1

. . .

1

⎤⎥⎥⎥⎥⎥⎥⎦�λ =

2nqsc∑
i=1

λ2
i .

(3.40)

Substituting Eq. (3.40) into Eq. (3.36), we have

2
2nqsc∑
i=1

λiλ2nqsc−i+1 − 2Tr(A2) ≤ E
[
Tr

(
[P,U †AU ]2

)]
≤ 2

2nqsc∑
i=1

λ2
i − 2Tr(A2) = 0. (3.41)

Now we prove the variance of the gradients.
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(i) Substituting Eq. (3.41) into Eq. (3.30) with A = ρi, we define

C(ρi) ≡ Tr
(
O2

)
E

[
Tr

(
[Pl, U≤lρiU

†
≤l]

2
)]

.

We have

−4× 2nqsc < 2nqsc
(
0− 2Tr(ρ2i )

) ≤ C(ρi) ≤ 0. (3.42)

(ii) Substituting Eq. (3.41) into Eq. (3.32) with A = O = X ⊗ · · · ⊗X, and we define

C(ρi) ≡ Tr
(
ρ2i

)
E

[
Tr

(
[Pl, U

†
>lOU>l]

2
)]

−
Tr2 (ρi)E

[
Tr

(
[Pl, U

†
>lOU>l]

2
)]

2nqsc
.

Because O has half of the 1 eigenvalues and half of the -1 eigenvalues, we have

−4× 2nqsc <

(
Tr

(
ρ2i

)− Tr2 (ρi)

2nqsc

)(
2
2nqsc∑
i=1

(−1)− 2Tr(O2)

)
≤ C(ρi) ≤ 0. (3.43)

Another point that needs to note is that for most of θl’s, both U>l and U≤l approximate

nqsc-local unitary 2-design. Hence, although we give the upper bound 0, most of C(ρi)

will concentrate to 2
(
1− 2nqsc Tr(ρ2i )

)
, which is far from 0 if ρi is close to a pure state.

This completes the proof.

From Proposition 3.8, we notice that the variance of the gradients decays exponentially

with nqsc, rather than the qubit number n. Hence, no matter how big the problem size n

is, as long as we choose a small nqsc (e.g., nqsc ≤ 4) and assume C (ρi) ≈ −2×2nqsc , we can

evaluate the analytical gradients efficiently via more than 1,000 repetitions derived from

the Chernoff bound. In one word, VSQL could escape the barren plateaus by choosing an

appropriate operating scope nqsc. Moreover, [125] indicates that noise could also induce

the barren plateau issue. Following this line of reasoning, the small shadow circuits in

VSQL will also be beneficial for escaping the barren plateaus from a different perspective,

as less noise is introduced.
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(a) (2, 2) (b) (10, 2) (c) (20, 2) (d) (100, 2)

(e) (10, 2) (f) (10, 4) (g) (10, 6) (h) (10, 10)

Figure 3.2: The slice of loss landscape with respect to the first two circuit parameters
by changing the system size n and operating scope nqsc. Here, the binary list represents
(n, nqsc).

Here, we provide an illustrated example. Assume the n-qubit quantum state ρin =

|ψin〉〈ψin| we want to classify is labeled with 0, where

|ψin〉 ≡ ⊗n−1
j=0 Ry(2πj/n) |0〉 . (3.44)

The chosen shadow circuit consists of a layer of single-qubit Ry rotations and a layer of

CNOT gates which only connects the adjacent qubits, followed by another layer of Ry

rotations. Then, we compute the loss landscape in Eq. (3.1) with regard to the first two

circuit parameters by fixing all the other parameters with π/4 and setting the bias b = 0

and w ∼ N(0, I) sampled from a Gaussian distribution. The result, as shown in Fig. 3.2,

is in line with the above analysis, i.e., there is no barren plateaus with nqsc = 2, but the

loss landscape shrinks dramatically with an increasing nqsc.
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3.3 Variational Shadow Quantum Learning for Multi-Label

Classification

In this section, we simply describe the VSQL for multi-label classification, which consists

of overall sketch, loss function, analytical gradients, number of parameters, number of

repetitions and theoretical classification ability. Most of the settings are the same as the

binary case, except for the final activation function, where the sigmoid activation function

for the binary case is replaced by the softmax activation function for the multi-label case.

3.3.1 Sketch of VSQL for multi-label classification

The sketch of VSQL for multi-label classification is illustrated in Fig. 3.3, and the corre-

sponding training and inference processes are described in Algorithms 3 and 4, respectively.

Figure 3.3: Sketch of variational shadow quantum learning (VSQL) for multi-label
classification with n = 4, nqsc = 2 and K = 3. In the quantum device, the shadow circuit
is implemented on the subspace of input state ρin. Sliding through the whole system
to collect the Pauli-(X ⊗ X) expectations, i.e., shadow features. In the classic device,
the resulting shadow features oi’s are fed into a fully-connected neural network (FCNN).
Here, the softmax activation function is employed and the output ŷ is a K-dimensional
vector for the multi-label case.

3.3.2 Loss function

Given the data set D ≡ {(ρ(m)
in , y(m))}Nm=1 ⊂ C2n×2n × RK and nqsc-local shadow circuits,

where y(m) is a one-hot vector which indicates the category to which the mth data sample



52 Chapter 3. Variational Shadow Quantum Learning

Algorithm 3 VSQL for multi-label classification: the training process

Input: The training data set D(train) ≡ {(ρ(m)
in , y(m) ∈ RK)}Ntrain

m=1 , EPOCH, optimiza-
tion procedure

Output: The final parameters θ∗, W ∗ and b∗, and the list of losses
1: Initialize the parameters θ of the 2-local (for example) shadow circuit U(θ) from

uniform distribution Uni[0, 2π] and W , b from Gaussian distribution N(0, I)
2: for ep = 1, . . . , EPOCH do
3: for m = 1, . . . , Ntrain do

4: Apply multi-times the shadow circuit U(θ) to the input density matrix ρ
(m)
in

5: Measure the subsystem and estimate a series of expectations 〈X ⊗X〉, recorded
as oi’s

6: Feed the shadow features oi’s into the classical neural network and obtain the
output ŷ(m)

7: Compute the accumulated loss
∑K

k=1 y
(m)
k log ŷ

(m)
k and update accordingly the

parameters θ, W and b via gradient-based optimization procedure
8: end for
9: if the stopping criterion is satisfied then

10: Break
11: end if
12: end for

ρ
(m)
in belongs. For example, if K = 3, y(m) = [1, 0, 0]
 indicates the mth sample belongs to

class 0, y(m) = [0, 1, 0]
 for class 1 and y(m) = [0, 0, 1]
 for class 2. The loss function of

VSQL for multi-label classification is derived from cross-entropy [114]:

L(θ,W , b;D) ≡ − 1

N

N∑
m=1

K∑
k=1

y
(m)
k log ŷ

(m)
k

(
ρ
(m)
in ;θ,W , b

)
. (3.45)

Here, the output K-dimensional vector ŷ(m) of VSQL is defined as follows:

ŷ(m)
(
ρ
(m)
in ;θ,W , b

)
≡ σ

⎛⎝n−nqsc+1∑
i=1

wio
(m)
i

(
ρ
(m)
in ;θ

)
+ b

⎞⎠ , (3.46)

where W = [w1,w2, . . . ,wn−nqsc+1] ∈ RK×(n−nqsc+1), b ∈ RK×1, σ(z) = ez∑
j e

zj denotes

the softmax activation function and the shadow features oi are calculated through

o
(m)
i

(
ρ
(m)
in ;θ

)
= Tr

(
ρ
(m)
in (I⊗ · · · ⊗ U †(θ)OU(θ)⊗ · · · ⊗ I)

)
. (3.47)

Note that the shadow circuit U(θ) and the Hermitian operator O = X⊗· · ·⊗X are applied

on the same local qubits. We also note that the calculation of these shadow features and
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Algorithm 4 VSQL for multi-label classification: the inference process

Input: The test data set D(test) ≡ {(ρ(m)
in , y(m) ∈ RK)}Ntest

m=1 , the parameters θ, W and b
from the training process

Output: The list of predicted labels and the test accuracy
1: Set the counter n c = 0, denoting the number of correct predicted labels
2: for m = 1, . . . , Ntest do

3: Apply multi-times the shadow circuit U(θ) to the input density matrix ρ
(m)
in

4: Measure and estimate a series of expectations 〈X ⊗X〉, recorded as oi’s
5: Feed these shadow features oi’s into the classical neural network and obtain the

output ŷ(m) ∈ RK

6: if l = argmax
k

{ŷ(m)
k } then

7: Set the predicted label as ‘l − 1’
8: end if
9: if argmax

k
{ŷ(m)

k } == argmax
k

{y(m)
k } then

10: n c = n c+ 1
11: end if
12: end for
13: Compute the test accuracy as n c/Ntest

the construction of shadow circuits are the same as the binary case, i.e.,

U(θ) =
1∏

l=L

Ul(θl)Vl, (3.48)

where Ul(θl) = exp(−iθl/2Pl) with the Pauli product operator Pl and Vl denotes a fixed

operator such as Identity, CNOT and so on.
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3.3.3 Analytical gradients

For each data sample (ρ
(m)
in , y(m)) in the data set D and assume y

(m)
k = 1, the partial

derivatives with respect to the parameters wji, bj and θl are calculated as follows:

∂L(θ,W , b; ρ
(m)
in , y(m))

∂wji
=

⎧⎪⎨⎪⎩
(
ŷ
(m)
k − 1

)
· o(m)

i , j = k

ŷ
(m)
j · o(m)

i , j �= k

(3.49)

∂L(θ,W , b; ρ
(m)
in , y(m))

∂bj
=

⎧⎪⎨⎪⎩
(
ŷ
(m)
k − 1

)
, j = k

ŷ
(m)
j , j �= k

(3.50)

∂L(θ,W , b; ρ
(m)
in , y(m))

∂θl
=

n−nqsc+1∑
i=1

K∑
j=1

(
ŷ
(m)
j wji − wki

) ∂o
(m)
i

(
θ; ρ

(m)
in

)
∂θl

, (3.51)

where ŷ(m) and o
(m)
i are the corresponding abbreviations. It should be noted that the last

term in Eq. (3.51), i.e., the partial gradient ∂o
(m)
i /∂θl, is resolved the same as Eq. (3.8).

3.3.4 Number of parameters

The number of parameters of VSQL for multi-label classification is summarized in the

following proposition.

Proposition 3.11. For an n-qubit quantum system, if we use ns shadow circuits, then

the number of parameters of VSQL for K-label classification is

# Params = # Params
∣∣
in shadow circuits

+# Params
∣∣
in NN

= nsnqscD + [ns (n− nqsc + 1) + 1]K, (3.52)

where we denote by nqsc the number of qubits of the shadow circuits and assume each

shadow circuit consists of D layers with nqsc parameters in each layer.
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3.3.5 Number of repetitions for computing each shadow feature

Since the number of repetitions to estimate the shadow features is the same as the binary

case, here we merely rewrite it simply.

Proposition 3.12. (Same as Proposition 3.2.) Given a precision ε, the number of repe-

titions of the shadow circuit for computing each shadow feature at error ε, with probability

at least 1− η, scales as O
(
log(1/η)/ε2

)
.

Furthermore, by utilizing these estimated shadow features, VSQL outputs the prediction

vector ŷ and gives a label according to the following prediction rule

predicted label = argmax
k

{ŷk} − 1. (3.53)

Therefore, in the inference process of VSQL for multi-label classification, for an input state

with the label y ∈ RK , if the predicted label is correct and the gap between the largest

two values of the prediction vector ŷ is τ under an infinite number of repetitions of the

shadow circuits, then the actual number of repetitions, required to ensure that the input

state is still correctly classified, will be similarly related to the gap τ . And an analogous

result is concluded in Proposition 3.13.

Proposition 3.13. For an n-qubit quantum system, if we use ns shadow circuits and as-

sume the final weights wji of the neural networks in VSQL are bounded as |wji| ≤ Cw for all

i, j, and the prediction gap is τ ∈ (0, 1), then the actual number of repetitions for computing

each shadow feature, with probability at least 1− η, scales as O
(
n2
sn

2C2
w log(1/η)/τ2

)
.

Proof. If the estimated error of each shadow feature oi is δ, then from Proposition 3.2, the

number of repetitions, with probability at least 1 − η, is O
(
log(1/η)/δ2

)
. What’s more,

due to

∂ŷj
∂oi

≡ ∂

∂oi

(
e
∑

i wjioi+bj∑
l e

∑
i wlioi+bl

)
= ŷj (1− ŷj) · wji +

∑
l,l �=j

−ŷj ŷl · wli (3.54)

≤ ŷjCw

⎛⎝1− ŷj +
∑
l,l �=j

ŷl

⎞⎠ = 2ŷjCw (1− ŷj) ≤ 1

2
Cw, (3.55)
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for all j = 1, . . . ,K, the error of each value of ŷ could be bounded as 1
2nsnCwδ. If

we let 1
2nsnCwδ ≤ τ

2 , the number of repetitions for computing each shadow feature is

obtained.

3.3.6 Theoretical classification ability

Since it is too complex to explore the theoretical classification ability of VSQL for multi-

label classification, here, we merely give a sufficient condition which is concluded in The-

orem 3.14. From Theorem 3.14, we could also directly induce the corresponding results

analogous to Corollary 3.5 and Theorem 3.6, here we omit them.

Theorem 3.14. Given K types of input density matrices ρ
(0)
in , ρ

(1)
in and up to ρ

(K−1)
in with

labels 0, 1 up to K − 1, respectively. If there exists a group of θ that makes at least one

group of shadow features o
(0)
i , o

(1)
i , . . . , o

(K−1)
i different, i.e., |o(k)i −o

(k′)
i | > 0 for all k �= k′,

then VSQL is theoretically capable of distinguishing them.

Proof. Without loss of generality, we assume i = 1 and o
(0)
1 < o

(1)
1 < · · · < o

(K−1)
1 . By

simply setting wji = 0 for i �= 1, j = 1, 2, . . . ,K, we have

z1 = w11o
(k)
1 + b1, z2 = w21o

(k)
1 + b2, · · · zK = wK1o

(k)
1 + bK . (3.56)

Our goal is to prove that zk+1 is the largest one for any o
(k)
1 , k = 0, 1, . . . ,K − 1, via

adjusting w1 and b.

Now if we define o
(−1)
1 = o

(0)
1 − 1, set bj = −wj1o

(j−2)
1 for all j = 1, 2, . . . ,K, and set

0 < w11 < · · · < wj1 < · · · < wK1 such that

wj1 > wj−1,1
o
(j−1)
1 − o

(j−3)
1

o
(j−1)
1 − o

(j−2)
1

, for j > 1. (3.57)

Then we could easily verify that for any o
(k)
1 ,

1. if l ≥ k + 2, then

zl = wl1o
(k)
1 + bl = wl1o

(k)
1 − wl1o

(l−2)
1 = wl1

(
o
(k)
1 − o

(l−2)
1

)
≤ 0; (3.58)
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2. if l = k + 1, then

zl = wl1o
(k)
1 + bl = wl1o

(k)
1 − wl1o

(l−2)
1 = wl1

(
o
(k)
1 − o

(k−1)
1

)
> 0; (3.59)

3. from Eq. (3.57), we have

zk+1 = wk+1,1

(
o
(k)
1 − o

(k−1)
1

)
> wk1

(
o
(k)
1 − o

(k−2)
1

)
> wk1

(
o
(k−1)
1 − o

(k−2)
1

)
= zk,

(3.60)

and go on we have zk+1 > zk > zk−1 > · · · > z1 = w11

(
o
(0)
1 − o

(−1)
1

)
= w11 > 0.

Based on the above three cases, we obtain that zk+1 is the largest one, i.e., ŷk+1 is the

largest. That is to say, for any input density matrix ρ
(k)
in , VSQL outputs the predicted

label = argmax
k

{ŷk} − 1 = k, which means classifying correctly.

3.4 Numerical Experiments

We supplement our theoretical results with numerical experiments by classical simulation

of VSQL. Specifically, our numerical experiments include distinguishing two (and three)

families of 2-qubit quantum states and classifying handwritten digit images taken from the

MNIST data set. We also conduct experiments on classifying noisy quantum states to ex-

hibit the robustness of VSQL. All the simulations and optimization loops are implemented

via Paddle Quantum2 on the PaddlePaddle Deep Learning Platform [126].

3.4.1 Classification of Quantum States

Quantum state discrimination (QSD) is fundamental to the theory of quantum cryptogra-

phy [127] and quantum communications [79, 106, 128]. It is usually defined as follows: can

we recognize a quantum state ρk from a set of quantum states {ρi}Ni=1 with known prob-

ability distribution {qi}Ni=1 for the quantum system to be in each corresponding state, via

certain measurements? This is non-trivial since arbitrary pre-measurement manipulations

2https://github.com/paddlepaddle/Quantum
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and measurement does not always extract useful classical information from the quantum

system. Although, in principle, an optimal projective measurement can be designed ac-

cording to the Helstrom bound [129] by minimizing the average guessing error, this kind

of strategy is difficult to find in general and the optimal strategy is only known for limited

cases. Furthermore, even if we could obtain this optimal measure, the amount of informa-

tion that we can extract is still limited by the Holevo bound [130] and the physical real-

ization of those measures remains challenging given the hardware restrictions mentioned

before. From our perspective, it is natural to think of the combination of variationally

searching appropriate pre-measurement manipulations and hardware-efficient measures in-

stead of directly finding the optimal measure. In particular, those locally-operated shadow

circuits U(θ) will function as the pre-measurement manipulation in VSQL and the Pauli

measure X on each qubit is indeed hardware-efficient. In general, finite copies of the given

states are considered in the study of distinguishing quantum states [72, 131].

3.4.1.1 Classification of Binary Quantum States

We choose two canonical families of non-orthogonal 2-qubit quantum states as proof of

principle. These states are well-studied in Refs. [107, 108, 132], and are parametrized by

real numbers u and v. Here, we use the Dirac (bra-ket) notation to represent the quantum

states as

|ψu〉 = [
√

1− u2, 0, u, 0]
, (3.61)

|ψv±〉 = [0,±
√

1− v2, v, 0]
, (3.62)

where u, v ∈ [0, 1]. Then, we can write these two sets of quantum states as a mixed

quantum state ρ:

ρ(u, v)≡q1 |ψu〉〈ψu|︸ ︷︷ ︸
ρ1(u)

+
q2
2
(|ψv+〉〈ψv+|+|ψv−〉〈ψv−|︸ ︷︷ ︸

ρ2(v)

), (3.63)

with probability distribution {q1= 1
3 , q2=

2
3}. These choices are consistent with the existing

literature [107, 132].
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3.4.1.2 Theoretical Distinguishability

We first analyze the ability of our method for classifying these two families of quantum

states. The result is summarized in Theorem 3.15.

Theorem 3.15. Suppose we have two families of non-orthogonal 2-qubit quantum states,

shown in Eq. (3.63). We further assume that each state has multiple copies. VSQL could

exactly distinguish them by using only one 1-local shadow circuit, which consists of only

one Ry rotation gate applied on a qubit.

Proof. Without loss of generality, we assume |ψu〉 is labelled as ‘0’ and |ψv〉 is labeled as

‘1’. Thus our goal is to show ŷ (|ψu〉〈ψu| ; θ,w, b) < 0.5 and ŷ (|ψv〉〈ψv| ; θ,w, b) ≥ 0.5 for

any u, v ∈ [0, 1], i.e.:

zu ≡ w1o1 (|ψu〉〈ψu| ; θ) + w2o2 (|ψu〉〈ψu| ; θ) + b < 0 (3.64)

zv ≡ w1o1 (|ψv〉〈ψv| ; θ) + w2o2 (|ψv〉〈ψv| ; θ) + b ≥ 0 (3.65)

could be always satisfied with suitable w1, w2, θ and b.

Now we compute these 1-local shadow features from Eq. (3.3) as follows:

o1 (|ψx〉〈ψx| ; θ) = 〈ψx|
(
U †(θ)XU(θ)⊗ I

)
|ψx〉 (3.66)

o2 (|ψx〉〈ψx| ; θ) = 〈ψx|
(
I⊗ U †(θ)XU(θ)

)
|ψx〉 , (3.67)

where x ∈ {u, v} and the shadow circuit U(θ) is set as Ry(θ). Since

R†
y(θ)XRy(θ) =

⎡⎣ cos θ2
2 sin θ2

2

− sin θ2
2 cos θ2

2

⎤⎦ ·
⎡⎣0 1

1 0

⎤⎦ ·
⎡⎣cos θ2

2 − sin θ2
2

sin θ2
2 cos θ2

2

⎤⎦ =

⎡⎣sin θ cos θ

cos θ − sin θ

⎤⎦ ,

(3.68)
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we obtain the observables

o1 (|ψu〉〈ψu| ; θ) =
[√

1− u2 0 u 0
]
·

⎡⎢⎢⎢⎢⎢⎢⎣
sin θ 0 cos θ 0

0 sin θ 0 cos θ

cos θ 0 − sin θ 0

0 cos θ 0 − sin θ

⎤⎥⎥⎥⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎢⎢⎢⎣

√
1− u2

0

u

0

⎤⎥⎥⎥⎥⎥⎥⎦
= (1− 2u2) sin θ + 2u

√
1− u2 cos θ, (3.69)

o2 (|ψu〉〈ψu| ; θ) =
[√

1− u2 0 u 0
]
·

⎡⎢⎢⎢⎢⎢⎢⎣
sin θ cos θ 0 0

cos θ − sin θ 0 0

0 0 sin θ cos θ

0 0 cos θ − sin θ

⎤⎥⎥⎥⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎢⎢⎢⎣

√
1− u2

0

u

0

⎤⎥⎥⎥⎥⎥⎥⎦
= sin θ; (3.70)

And similarly

o1 (|ψv〉〈ψv| ; θ) = (1− 2v2) sin θ, (3.71)

o2 (|ψv〉〈ψv| ; θ) = (2v2 − 1) sin θ. (3.72)

Substituting Eqs. (3.69), (3.70), (3.71) and (3.72) into Eqs. (3.64) and (3.65), we have

zu = w1

[
(1− 2u2) sin θ + 2u

√
1− u2 cos θ

]
+ w2 sin θ + b, (3.73)

zv = (w1 − w2) (1− 2v2) sin θ + b. (3.74)

As w1, w2, θ and b are chosen arbitrarily and u, v ∈ [0, 1], without loss of generality, we

assume 0 < sin θ ≤ cos θ < 1, then

(1− 2u2) sin θ + 2u
√

1− u2 cos θ ≥
(
1− 2u2 + 2u

√
1− u2

)
sin θ ≥ − sin θ. (3.75)

If we set w2 < w1 < 0, combining with Eq. (3.75), we have

zu ≤ (w2 − w1) sin θ + b, (3.76)

zv ≥ (w2 − w1) sin θ + b, (3.77)
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where both the equal signs (‘=’) occur only if u = v = 1. Therefore, if we want zu < 0

and zv ≥ 0 all the time, it’s sufficient to have the following conditions:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 < sin θ ≤ cos θ < 1,

w2 < w1 < 0,

(w2 − w1) sin θ + b = 0.

(3.78)

Of course, we could also have other settings for θ, w1, w2, b that satisfy our requirements,

but here, one is enough. This completes the proof.

This theorem shows that VSQL could theoretically distinguish these two different fam-

ilies of quantum states. We further evaluate the performance of VSQL via numerical

experiments.

3.4.1.3 Experimental Setting and Results

300 density matrices with 100 ρ1(u) (labeled as ‘0’) and 200 ρ2(v) (labeled as ‘1’) are

sampled according to Eq. (3.63), where the parameters u and v are uniformly taken from

[0, 1]. Then, we randomly select 80% of them as the training set and the rest 20% as the

validation set. Consistent with Theorem 3.15, one 1-local shadow circuit, which consists

of an Ry gate only, is used to extract local features. The parameters of the shadow circuit

θ and the FCNN {w, b} are initialized from the uniform distribution Uni[0, 2π] and the

Gaussian distribution N(0, I), respectively. During the optimization loop, we choose the

Adam [133] optimizer with a learning rate LR = 0.03. Learning curves for the training

loss and the validation accuracy are illustrated in Fig. 3.4(a), where the distinguishability

shown coincides with Theorem 3.15. We conclude VSQL could perfectly recognize the two

families of quantum states defined in Eq. (3.63) after about 700 iterations. We find that

the classification task becomes very difficult when u, v are both close to 1. This makes

sense because ρ1(u = 1) → ρ2(v = 1) on the extreme case. This experimental result

highlights the strength of our method. As a comparison, we adjust the sample range such

that e.g., u, v ∈ [0.1, 0.9], and the results are shown in Fig. 3.4(b). As expected, this

modification leads to faster convergence.
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(d) u, v, t ∈ Uni [0.1, 0.9]

Figure 3.4: Learning curves that record the training loss and the validation accuracy
of VSQL with different experimental settings. (a) and (b) are binary classification with
different parameter range u, v ∈ [0, 1] and u, v ∈ [0.1, 0.9]. By adjusting the sample range,
the training loss and the validation accuracy reach the optimal values faster. (c) and
(d) describe a similar experimental setting but for a three-class classification of quantum
states.

3.4.1.4 Classification of Multi-Class Quantum States

As declared before, our method can be easily extended to multi-class classification and

numerically verified. Here, we take three different categories as an example. The data

set we choose is again taken from Eq. (3.63), but adding the following third family

ρ3(t) = |ψt〉〈ψt| with a new probability distribution {qi} = {1
4 ,

1
2 ,

1
4},

|ψt〉 =
[√

1− t2, t, 0, 0
]


, (3.79)

where t ∈ [0, 1]. We shall note that these three families of states |ψu〉 , |ψv〉 and |ψt〉 are

mutually non-orthogonal unless u, v, t are taken as 0 or 1. Hence, it’s difficult to distinguish



Chapter 3. Variational Shadow Quantum Learning 63

them via POVM method [106]. Now we use VSQL to distinguish them. Similarly, we

generate another 100 density matrices ρ3 which are labeled as ‘[0,0,1]’ (here we use one-hot

vectors to denote the labels, i.e., ‘[1,0,0]’ for ρ1 and ‘[0,1,0]’ for ρ2). The other experimental

settings are identical to the binary case except for the softmax activation function used

in FCNN. Similar learning curves of the training process for the loss and the validation

accuracy are demonstrated in Fig. 3.4(c), which shows VSQL could perfectly distinguish

multi-class quantum states by reaching 100% validation accuracy. The fluctuations on

the loss curve are probably due to the design of the cross-entropy loss function and the

existence of the highly non-orthogonal data samples. As a consequence, the validation

accuracy is also jiggling around but gradually converges to the theoretical maximum.

Similar to the binary case, we repeat the simulation by sampling u, v, t ∈ Uni [0.1, 0.9] and

summarize the results in Fig. 3.4(d). This eliminates the extreme cases u, v, t ∈ {0, 1}
which reduce the multi-class to binary classification. As expected, smaller fluctuations are

observed which means our method could unambiguously distinguish multi-class quantum

states.

3.4.2 MNIST Classification

Next, we apply VSQL to classify handwritten digits taken from a public benchmark dataset

MNIST [134], which consists of 60,000 train examples and 10,000 test examples. The

MNIST data set contains 10 different classes labeled from ‘0’ to ‘9’. Each image contains

28 × 28 grayscale pixels valued in 0 ∼ 255. In order to match the input of VSQL, these

pictures are normalized and unfolded into 784-dimensional vectors. Then, we expand

their dimension to 10-qubit pure quantum states {|ψi〉} (1024-dimensional vectors) via

zero-padding and represent them in the density matrix formulation {ρ(i)in } = {|ψi〉 〈ψi|}.
By doing so, the pre-processing is complete and we obtain the training set D(train) ≡
{(ρ(m)

in , y(m))}Ntrain
m=1 ⊂ C1024×1024 × R10. We first select two classes (‘0’ and ‘1’) to verify

the binary classification ability of VSQL, which contains 12,665 training samples (5923

0-label and 6742 1-label) and 2115 test samples (980 0-label and 1135 1-label). Then, we

use the whole data set to evaluate the 10-class classification performance.
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Rz(θ0,1) Ry(θ0,3) Rz(θ0,5) • Ry(θ1,1)

Rz(θ0,2) Ry(θ0,4) Rz(θ0,6) • Ry(θ1,2)

×D

Figure 3.5: The 2-local shadow circuit design for MNIST classification (binary case).
The first part uses Rz − Ry − Rz combination to represent general rotations on each
single-qubit subspace. The following repeated block consists of CNOT gates and two
single-qubit Ry rotations. The block circuit in the dashed box is repeated D times to
extend the expressive power of quantum circuits.

3.4.2.1 Experimental Setting

For the binary case, the 2-local shadow circuit (ansatz) used to extract local features is

shown in Fig. 3.5. The number of repetitions of the dashed block structure is denoted as

the circuit depth D and this ansatz has 2(D + 3) parameters in total. The parameters θ

and {w, b} are initialized from a uniform distribution in [0, 2π] and a Gaussian distribution

N(0, I), respectively. During the optimization, we choose the Adam optimizer with a batch

size of 20 samples and a learning rate of LR = 0.02. Each experiment is repeated 10 times

to collect the mean accuracy and the corresponding fluctuations. For the 10-class case,

the classification task becomes much more difficult and hence we choose 4-local shadow

circuits to extract shadow features, which can be extended from the 2-local design in Fig.

3.5. There will be 4(D + 3) parameters in each shadow circuit. All the other settings are

identical to the binary case, except for a new batch size of 200 samples.

3.4.2.2 Results

The results for the binary case are summarized in Table 3.1. Our method VSQL easily

achieves an average test accuracy above 99% with only ns = 1 shadow circuit and depth

D = 1, which has 8 rotation angles in the shadow circuit and 9 weights and 1 bias in

FCNN. This result demonstrates the powerful capacity of VSQL to classify handwritten

digits. By adding another shadow circuit to ns = 2 with 35 parameters, one could obtain

an average test accuracy above 99.5%. As a comparison, we list the results of existing

methods: Circuit-centric classifier [60] and QNN classifier [77]. Our method outperforms

these variational quantum classifiers in terms of the number of parameters and test ac-

curacy. Here, we should note that the details of their data preprocessing are slightly
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Methods ns D # Ps Test acc (%)

Circuit-centric classifier [60] / / 124 96.70

QNN classifier [77] / / 96 98.00

VSQL (this chapter)
1 1 18 99.43 ± 0.14
2 1 35 99.52 ± 0.18

Table 3.1: Summary of the existing variational quantum classifiers on MNIST binary
classification. VSQL outperforms other classifiers in terms of the number of parameters
and test accuracy by reaching 99.52% average test accuracy among 10 random experi-
ments. # Ps denotes # Params.

different from us, i.e., the Circuit-centric classifier uses the MNIST256 dataset with an

8-qubit quantum system, and the QNN classifier uses a 4× 4 downsampled version of the

MNSIT dataset with a 17-qubit quantum system. Although we have adopted a different

data preprocessing strategy, such excellent results (test error less than 1%) are sufficient

to illustrate the effectiveness of our method.

For multi-class classification, it is rarely discussed and tested in the literature of varia-

tional quantum classifiers. The one-vs.-all method is mentioned in Schuld et al. but is

troublesome to implement. Therefore, we only compare the performance of VSQL with

a single-layered classical neural network (NN). The experimental settings of the classi-

cal neural network are similar to VSQL, and it contains 7840 weights and 10 biases to

map the 784-dimensional input vectors to 10-dimensional output vectors. The results are

summarized in Table 3.2. When using 9 different shadow circuits with each circuit depth

D = 5, VSQL could reach almost the same test accuracy with the single layer NN, but

requiring much fewer parameters. Although this accuracy is not quite satisfactory, it can

still compete with the simplest classical NN. Notably, we find that if we select 1k samples

(about 100 samples for each class) for training from 60k examples and choose the same

size of test examples (10k), VSQL could achieve a higher test accuracy than NN (cf. the

bottom half of Table 3.2). The above finding indicates that VSQL could extract high-level

features from fewer training samples than NN, which may be a potential advantage of

VSQL for future practical applications in the NISQ era.
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Methods ns D # Ps Test acc (%)

NN (60k samples) / 1 7850 91.63 ± 0.15

VSQL (60k samples) 5 5 520 87.69 ± 0.98

VSQL (60k samples) 9 5 928 91.13 ± 0.51

NN (1k samples) / 1 7850 86.36 ± 0.23

VSQL (1k samples) 5 5 520 83.92 ± 1.20

VSQL (1k samples) 9 5 928 87.39 ± 0.40

Table 3.2: MNIST 10-class classification

3.4.3 Distinguishing Noisy Quantum States

In practice, it is inevitable to deal with noise on the current quantum hardware which leads

to noisy quantum states. Thus, it is essential to verify whether VSQL could distinguish

noisy quantum states if we want to realize VSQL on the hardware in near future. In this

subsection, we will run simulations on a pair of constructed noisy quantum states with

high fidelity.

The procedure for generating this pair of simulated quantum states is as follows:

(i) We first construct two pure states (in 3 qubits as an example) with high fidelity:

ρ(0) = |ψ0〉〈ψ0| and ρ(1) = |ψ1〉〈ψ1|, which are labeled 0 and 1 respectively, where

|ψ0〉 = 1/2 (|000〉+ |001〉+ |010〉+ |011〉) , (3.80)

|ψ1〉 = 1/
√
3 (|000〉+ |001〉+ |010〉) . (3.81)

(ii) Then we sample a unitary Us from matrix QR decomposition and apply it to these

two pure states: Usρ
(0)U †

s and Usρ
(1)U †

s .

(iii) Last we imposed a Pauli noise on the states, i.e.,

ρ
(i)
in = (1− pi)Usρ

(i)U †
s +

pi
3

3∑
j=1

EjUsρ
(i)U †

sE
†
j , (3.82)
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(a) Noise probability equals to 0.1 (b) Noise probability equals to 0.5

(c) Noise probability equals to 0.9 (d) Test accuracy curves

Figure 3.6: Shadow features changing with the number of iterations under different
noise probabilities, and the corresponding test accuracy curves.

where i ∈ {0, 1}, E1 = P ⊗ I ⊗ I, E2 = I ⊗ P ⊗ I, E3 = I ⊗ I ⊗ P , P ∈ {X,Y, Z}, and
the noise probability pi is sampled from a uniform distribution [0,P] with a constant P

between 0 and 1.

In our experiment, given a fixed P, we sample 40 probabilities p0’s and 40 p1’s and thus

generate 40 noisy quantum states for each class. Amongst these states, 50% is for training

and the remaining 50% for testing. We employ one 2-local shadow circuit, which is similar

to Fig. 3.5 with depth D = 1. The learning rate is set to 0.1 and the other experimental

settings are similar to the above two experiments.

In order to explore the sensitivity of VSQL to the noise level, we conduct multiple exper-

iments by setting P as 0.1, 0.5, 0.9, respectively. The test accuracy curves in the training
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process are illustrated in Fig. 3.6(d), where we see intuitively that all the test accuracy

could reach 100% after 20 iterations also, even though given a higher noise level. It also

shows that the lower the noise level is, the faster the test accuracy increases, which is in

line with our intuition. Furthermore, for the sake of figuratively understanding the classi-

fication ability of VSQL, we record the two shadow features (in Eq. (3.3)) of the 40 test

quantum states in each training iteration. The results with different noise probabilities

are illustrated in Figs. 3.6(a), 3.6(b) and 3.6(c), respectively. We observe that it is eas-

ier to distinguish when the noise probability equals 0.1 or 0.5, as the corresponding two

classes of points are distributed in two clusters initially. However, even if the two classes of

points are interlaced initially when the noise probability equals 0.9, they will be gradually

separated into two clusters with the training process going on.

3.5 Discussions

We proposed the VSQL framework, which adopts a similar idea of obtaining classical

shadows to distinguish quantum data. With theoretical justifications and numerical ex-

periments, we have shown that VSQL for classification outperforms many other variational

classifiers on the benchmark test of binary MNIST handwritten digit recognition with much

fewer network parameters. In particular, in our framework, less noise will be introduced

during the quantum-classical hybrid information processing as the number of quantum

gates used is independent of the problem size. By sampling a slice of the loss landscape,

we also briefly introduced the barren plateau problem and showed the solution to escape

from it. By adjusting the operating scope of shadow circuits, our approach can be easily

implemented on existing quantum devices with topological connectivity limitations.

We believe that VSQL would open the possibility for many future directions. For example,

in our VSQL, we set the local quantum circuits in a convolutional way. However, the best

combination of these local circuits deserves further exploration for practical problems,

especially on NISQ devices. It would also be interesting to explore the applications of

VSQL for generative models and unsupervised quantum machine learning tasks such as

clustering. Furthermore, the online learning version of VSQL may also be a good future
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direction, see [135–137]. We also expect that VSQL may shed light on other quantum

applications on near-term quantum devices.





Chapter 4

Quantum Self-Attention Neural

Networks

4.1 Introduction

In recent years, plenty of NISQ algorithms [122, 138–140] dealing with machine learning

problems, by employing parameterized quantum circuits [74] (also called quantum neural

networks [77]), show great potential in the field of quantum machine learning. However,

in artificial intelligence, the study of quantum machine learning in the NISQ era is still

in its infancy. Thus it is desirable to explore more quantum machine learning algorithms

exploiting the power that lies within the NISQ devices.

This chapter mainly focuses on quantum natural language processing, and the remain-

der of this chapter is organized as follows: in Sec. 4.2, we introduce the quantum self-

attention neural networks, which includes quantum self-attention layer, ansatz selection,

loss function, analytical gradients and complexity analysis. In Sec. 4.3, some numerical

experiments are conducted on MC, RP, Yelp, IMDb and Amazon data sets, and also some

visualization and noisy experiments are performed on the Yelp data set. Finally, some

discussions about future research are included in Sec. 4.4.

71
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Figure 4.1: Sketch of a quantum self-attention layer (QSAL). On quantum devices,

the classical inputs {y(l−1)
s } are used as the rotation angles of quantum ansatzes (purple

dashed boxes) to encode them into their corresponding quantum states {|ψs〉}. Then for
each state, there are three different classes of ansatzes (red dashed boxes) that need to be
executed, where the top two classes denote the query and key parts, and the bottom one
denotes the value part. On classical computers, the measurement outputs of the query
part 〈Zq〉s and the key part 〈Zk〉j are computed through a Gaussian function to obtain the
quantum self-attention coefficients αs,j (green circles); we calculate classically weighted
sums of the measurement outputs of the value part (small colored squares) and add the

inputs to get the outputs {y(l)
s }, where the weights are the normalized coefficients α̃s,j ,

cf. Eq. (4.5).

4.2 Method

In this section, we introduce the QSANN in detail, which mainly consists of quantum

self-attention layer (QSAL), loss function, analytical gradients and analysis.

4.2.1 Quantum Self-Attention Layer

In the classical self-attention mechanism [33], there are mainly three components (vectors),

i.e., queries, keys and values, where queries and keys are computed as weights assigned

to corresponding values to obtain final outputs. Inspired by this mechanism, in QSAL
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we design the quantum analogs of these components. The overall picture of QSAL is

illustrated in Fig. 4.1.

For the classical input data {y(l−1)
s ∈ Rd} of the l-th QSAL, we first use a quantum ansatz

Uenc to encode them into an n-qubit quantum Hilbert space, i.e.,

|ψs〉 = Uenc(y
(l−1)
s )H⊗n |0n〉 , 1 ≤ s ≤ S, (4.1)

where H denotes the Hadamard gate and S denotes the number of input vectors in a data

sample.

Then we use another three quantum ansatzes, i.e., Uq, Uk, Uv with parameters θq, θk, θv,

to represent the query, key and value parts, respectively. Concretely, for each input state

|ψs〉, we denote by 〈Zq〉s and 〈Zk〉s the Pauli-Z1 measurement outputs of the query and

key parts, respectively, where

〈Zq〉s ≡ 〈ψs|U †
q (θq)Z1Uq(θq) |ψs〉 ,

〈Zk〉s ≡ 〈ψs|U †
k(θk)Z1Uk(θk) |ψs〉 . (4.2)

The measurement outputs of the value part are represented by a d-dimensional vector

os ≡
[
〈P1〉s 〈P2〉s · · · 〈Pd〉s

]

, (4.3)

where 〈Pj〉s = 〈ψs|U †
v (θv)PjUv(θv) |ψs〉. Here, each Pj ∈ {I,X, Y, Z}⊗n denotes a Pauli

observable.

Finally, by combining Eqs. (4.2) and (4.3), the classical outputs {y(l)
s ∈ Rd} of the l-th

QSAL are computed as follows:

y(l)
s = y(l−1)

s +

S∑
j=1

α̃s,j · oj , (4.4)
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where α̃s,j denotes the normalized quantum self-attention coefficient between the s-th and

the j-th input vectors and is calculated by the corresponding query and key parts:

α̃s,j =
αs,j∑S

m=1 αs,m

with αs,j ≡ e−(〈Zq〉s−〈Zk〉j)2 . (4.5)

Here in Eq. (4.4), we adopt a residual scheme when computing the output, which is

analogous to [33].

4.2.1.1 Gaussian Projected Quantum Self-Attention

When designing a quantum version of self-attention, a natural and direct extension of the

inner-product self-attention to consider is αs,j ≡ | 〈ψs|U †
qUk |ψj〉 |2. However, due to the

unitary nature of quantum circuits, 〈ψs|U †
qUk can be regarded as rotating |ψs〉 by an angle,

which makes it difficult for |ψs〉 to simultaneously correlate those |ψj〉 that are far away.

In a word, this direct extension is not suitable or reasonable for working as the quantum

self-attention. Instead, the particular quantum self-attention proposed in Eq. (4.5), which

we call Gaussian projected quantum self-attention (GPQSA), could overcome the above

drawback. In GPQSA, the states Uq |ψs〉 (and Uk |ψj〉) in large quantum Hilbert space

are projected to classical representations 〈Zq〉s (and 〈Zk〉j) in one-dimensional1 classical

space via quantum measurements, and a Gaussian function is applied to these classical

representations. As Uq and Uk are separated, it’s pretty easier to correlate |ψs〉 to any

|ψj〉, making GPQSA more suitable to serve as a quantum self-attention. Here, we utilize

the Gaussian function [141] mainly because it contains infinite-dimensional feature space

and is well-studied in classical machine learning. Numerical experiments also confirm

our choice of Gaussian function. We also note that other choices for building quantum

self-attention are also worth future study.

Remark. During the preparation of this manuscript as well as after submitting our work

to a peer-review conference, we became aware that Ref. [142] also made initial attempts to

employ the attention mechanism in QNNs. In that work, the authors mentioned a possi-

ble quantum extension towards a quantum Transformer where the straightforward inner-

product self-attention is adopted. As discussed above, the inner-product self-attention

1Multi-dimension is also possible by choosing multiple measurement results, like the value part.
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Rx(θ0,1) Ry(θ0,5) • Ry(θ1,1)

Rx(θ0,2) Ry(θ0,6) • Ry(θ1,2)

Rx(θ0,3) Ry(θ0,7) • Ry(θ1,3)

Rx(θ0,4) Ry(θ0,8) • Ry(θ1,4)

×D

Figure 4.2: The ansatz used in QSANN. The first two columns denote the Rx-Ry

rotations on each single-qubit subspace, then followed by repeated CNOT gates and single-
qubit Ry rotations. The block circuit in the dashed box is repeated D times to enhance
the expressive power of the ansatz.

may not be reasonable for dealing with quantum data. In this chapter, we present that

GPQSA is more suitable for the quantum version of self-attention and show the validity

of our method via numerical experiments on several public data sets.

4.2.2 Ansatz Selection

In QSAL, we employ multiple ansatzes for the various components, i.e., data encoding,

query, key and value. Hence, we give a brief review of it here.

In general, an ansatz, a.k.a. parameterized quantum circuit [74], has the form U(θ) =∏
j Uj(θj)Vj , where Uj(θj) = exp(−iθjPj/2) and Vj denotes a fixed operator such as Iden-

tity, CNOT and so on. Here, Pj denotes a Pauli operator. Due to the numerous choices of

the form of Vj , various kinds of ansatzes can be used. In this chapter, we use the strongly

entangling ansatz [60] shown in Fig. 4.2 in QSAL. This circuit has n(D + 2) parameters

in total for n qubits and D repeated layers.

4.2.3 Loss Function

Consider the data set D ≡ {((m)x1,
(m)x2, . . .,

(m)xSm),
(m)y}Ns

m=1, where there are in

total Ns sequences or samples and each has Sm words with a label (m)y ∈ {0, 1}. Here,

we assume each word is embedded as a d-dimensional vector, i.e., (m)xs ∈ Rd. The whole

procedure of QSANN is depicted in Fig. 4.3, which mainly consists of L QSALs to extract
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Figure 4.3: Sketch of QSANN, where a sequence of classical vectors {xs} firstly goes

through L QSALs to obtain the corresponding sequence of feature vectors {y(L)
s }, then

through the average operation, and finally through the fully-connected layer for the binary
prediction task.

hidden features and one fully-connected layer to complete the binary prediction task. Here,

the mean squared error [118] is employed as the loss function:

L (Θ,w, b;D) =
1

2Ns

Ns∑
m=1

(
(m)ŷ − (m)y

)2
+RegTerm, (4.6)

where the predicted value (m)ŷ is defined as (m)ŷ ≡ σ
(
w
 · 1

Sm

∑Sm
s=1

(m)y
(L)
s + b

)
with

w ∈ Rd and b ∈ R denoting the weights and bias of the final fully-connected layer, Θ

denoting all parameters in the ansatz, σ denoting the sigmoid activation function and

‘RegTerm’ being the regularization term to avoid overfitting in the training process.

Combining Eqs. (4.1) - (4.5), we know each output of QSAL is dependent on all its inputs,

i.e.,

(m)y(l)
s ≡ (m)y(l)

s

(
θ(l)
q ,θ

(l)
k ,θ(l)

v ; {(m)y
(l−1)
i }Sm

i=1

)
= (m)y(l−1)

s +

Sm∑
j=1

α̃
(l)
s,j

(
θ(l)
q ,θ

(l)
k ; {(m)y

(l−1)
i }Sm

i=1

)
· o(l)

j

(
θ(l)
v ; (m)y

(l−1)
j

)
, (4.7)

where (m)y
(0)
s = (m)xs and 1 ≤ s ≤ Sm, 1 ≤ l ≤ L. Here, the regularization term is defined

as

RegTerm ≡ λ

2d
‖w‖2 + γ

2d

Sm∑
s=1

‖ (m)xs‖2, (4.8)

where λ, γ ≥ 0 are two regularization coefficients.
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With the loss function defined in Eq. (4.6), we can optimize its parameters by (stochastic)

gradient-descent [119]. The analytical gradient analysis can be found in Subsection 4.2.4.

Finally, with the above preparation, we could train our QSANN to get the optimal (or sub-

optimal) parameters. See Algorithm 5 for details on the training procedure. We remark

that if the loss converges during training or the maximum number of iterations is reached,

the optimization stops.

4.2.4 Analytical Gradients

Here, we give the stochastic analytical partial gradients of the loss function with regard

to its parameters as follows.

We first consider the parameters in the last quantum self-attention neural network layer,

i.e., θ
(L)
q ,θ

(L)
k ,θ

(L)
v , and the final fully-connected layer, i.e., w, b, and then the parameters

in the front layers could be evaluated in a similar way and be updated through back-

propagation algorithm [114]. Given the m-th data sample {(x1,x2, . . . ,xSm) , y} (here, we

omit (m) in the left superscript for writing convenience, the same below in this subsection),

we have

∂L

∂w
= σ̃ · 1

Sm

Sm∑
s=1

y(L)
s +

λ

d
w,

∂L

∂b
= σ̃, (4.9)

∂L

∂y
(L)
s

= σ̃ · 1

Sm
·w, (4.10)

where σ̃ = (σ − y)·σ (1− σ) and σ denotes the abbreviation of σ
(
w
 · 1

Sm

∑Sm
s=1 y

(L)
s + b

)
.

And we also have

∂L

∂θ
(L)
v

=

Sm∑
s=1

(
∂L

∂y
(L)
s

)� Sm∑
j=1

∂y
(L)
s

∂o
(L)
j

· ∂o
(L)
j

∂θ
(L)
v

, (4.11)

∂L

∂θ
(L)
q

=

Sm∑
s=1

(
∂L

∂y
(L)
s

)� Sm∑
j=1

∂y
(L)
s

∂α
(L)
s,j

· ∂α
(L)
s,j

∂〈Zq〉s · ∂〈Zq〉s
∂θ

(L)
q

, (4.12)

∂L

∂θ
(L)
k

=

Sm∑
s=1

(
∂L

∂y
(L)
s

)� Sm∑
j=1

∂y
(L)
s

∂α
(L)
s,j

·
Sm∑
i=1

∂α
(L)
s,j

∂〈Zk〉i ·
∂〈Zk〉i
∂θ

(L)
k
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where ∂y
(L)
s /∂o

(L)
j = α

(L)
s,j , ∂y

(L)
s /∂α

(L)
s,j = o

(L)
j , ∂α

(L)
s,j /∂〈Zq〉s = −∑Sm

i=1 ∂α
(L)
s,j /∂〈Zk〉i

and

∂α
(L)
s,j

∂〈Zk〉i = −α
(L)
s,j

(
α
(L)
s,i − δij

)
· 2 (〈Zq〉s − 〈Zk〉i) ,

δij =

⎧⎪⎨⎪⎩
1, i = j

0, otherwise.

(4.14)

Furthermore, the last three partial derivatives of Eqs. (4.11), (4.12) and (4.13) could

be evaluated exactly on the quantum computers via the parameter shift rule [98]. For

example, by combining Eq. (4.2),

∂〈Zq〉s
∂θ

(L)
q,j

=
1

2
(〈Zq〉s,+ − 〈Zq〉s,−) , (4.15)

where 〈Zq〉s,± = 〈ψs|U †
q,±ZUq,± |ψs〉 and Uq,± ≡ Uq

(
θ
(L)
q,−j , θ

(L)
q,j ± π

2

)
.

Finally, in order to derive the partial derivatives of the parameters in the front layers, we

also need the following
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i

, (4.16)

where the four terms denote the residual, value, query and key parts, respectively, and

each sub-term can be evaluated similarly to the above analysis. With the above prepara-

tion, we could easily calculate every parameter’s gradients and update these parameters

accordingly.

4.2.5 Analysis of QSANN

According to the definition of the Quantum Self-Attention Layer, for a sequence with S

words, we need S(d + 2) Pauli measurements to obtain the d-dimensional value vectors
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Algorithm 5 QSANN training for text classification

Input: The training data set D ≡ {((m)x1,
(m)x2, . . ., (m)xSm),

(m)y}Ns
m=1, EPOCH,

number of QSALs L and optimization procedure
Output: The final ansatz parameters Θ∗, weight w∗, b∗

1: Initialize the ansatz parameters Θ, weight w from Gaussian distribution N(0, 0.01)
and the bias b to 0.

2: for ep = 1, . . . , EPOCH do
3: for m = 1, . . . , Ns do
4: Apply the encoder ansatz Uenc to each of (m)xs to get the corresponding quantum

state |ψs〉, cf. (4.1).
5: Apply Uq and Uk to |ψs〉 and measure the Pauli-Z expectations to get 〈Zq〉s, 〈Zk〉s,

cf. (4.2), and then calculate the quantum self-attention coefficients αs,j , cf. (4.5).

6: Apply Uv and measure a series of Pauli expectations to get os, cf. (4.3), and then

compute the output {y(l)
s } of the l-th QSAL, cf. (4.4).

7: Repeat 4-6 L times to get the output {y(L)
s } of the L-th QSAL.

8: Average {y(L)
s } and through a fully-connected layer to obtain the predicted value

(m)ŷ.
9: Calculate the mean squared error in (4.6) and update the parameters through the

optimization procedure.
10: end for
11: if the stopping condition is met then
12: Break.
13: end if
14: end for

as well as the queries and keys for all words from the quantum device. After that, we

need to compute S2 self-attention coefficients for all S2 pairs of words on the classical

computer. In general, QSANN takes advantage of quantum devices’ efficiency in processing

high-dimensional data while outsourcing some calculations to classical computers. This

approach keeps the quantum circuit depth low and thus makes QSANN robust to low-level

noise common in near-term quantum devices. This beneficial attribute is further verified

by numerical results in the next section, where we test QSANN against noise.

In short, our QSANN first encodes words into a large quantum Hilbert space as the

feature space and then projects them back to low-dimensional classical feature space by

quantum measurement. Recent works have proved rigorous quantum advantages on some

classification tasks by utilizing high-dimensional quantum feature space [69] and projected

quantum models [95]. Thus, we expect that our QSANN might also have the potential

advantage of digging out some hidden features that are classically intractable. In the
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following section, we carry out numerical simulations of QSANN on several data sets to

evaluate its performance on binary text classification tasks.

4.3 Numerical Results

In order to demonstrate the performance of our proposed QSANN, we have conducted

numerical experiments on public data sets, where the quantum part was accomplished via

classical simulation. Concretely, we first exhibit the better performance of QSANN by

comparing it with i) the syntactic analysis-based quantum model [78] on two simple tasks,

i.e., MC and RP, ii) the classical self-attention neural network (CSANN) and the naive

method on three public sentiment analysis data sets, i.e., Yelp, IMDb and Amazon [143].

Then we show the reasonableness of our particular quantum self-attention GPQSA via

visualization of self-attention coefficients. Finally, the noisy experiments are performed

to show the robustness of QSANN to noisy quantum channels. All the simulations and

optimization loops are implemented via Paddle Quantum2 on the PaddlePaddle Deep

Learning Platform [126].

4.3.1 Data Sets

The two simple synthetic data sets we employed come directly from [78], which are named

as MC and RP, respectively. MC contains 17 words and 130 sentences (70 train + 30

development + 30 test) with 3 or 4 words each; RP has 115 words and 105 sentences (74

train + 31 test) with 4 words in each one. The other three data sets we use are real-world

data sets available at [144] as the Sentiment Labelled Sentences Data Set. These data

sets consist of reviews of restaurants, movies and products selected from Yelp, IMDb and

Amazon, respectively. Each of the three data sets contains 1000 sequences, where half are

labeled as ‘0’ (for negative) and the other half as ‘1’ (for positive). And each sequence

contains several to dozens of words. We randomly select 80% as training sequences and

the rest 20% as test ones.

2https://github.com/paddlepaddle/Quantum
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Data set n d Denc Dq/k/v λ γ LR

MC 2 6 1 1 0 0 0.008

RP 4 24 4 5 0.2 0.4 0.008

Yelp 4 12 1 1 0.2 0.2 0.008

IMDb 4 12 1 1 0.002 0.002 0.002

Amazon 4 12 1 2 0.2 0.2 0.008

Table 4.1: Overview of hyper-parameter settings. Here, ‘LR’ denotes learning rate,
Denc, Dq, Dk, Dv denote the depths of the corresponding ansatzes and d = n(Denc + 2).

4.3.2 Experimental Setting

In the experiments, we use a single self-attention layer for both QSANN and CSANN. As

a comparison, we also perform the most straightforward method, i.e., averaging directly

the embedded vectors of a sequence, followed by a fully-connected layer, which we call the

‘Naive’ method, on the three data sets of reviews.

In QSANN, all the encoder, query, key and value ansatzes have the same qubit number

and are constructed according to Fig. 4.2, which are easily implementable on the NISQ

devices. Specifically, assuming the n-qubit encoder ansatz has Denc layers with n(Denc+2)

parameters, we could just set the dimension of the input vectors as d = n(Denc + 2). The

depths of the query, key and value ansatzes are set to the same, and are at most the

polynomial size of the qubit number n. The actual hyper-parameter settings on different

data sets are concluded in Table 4.1. In addition, we choose Z1, . . . , Zn, X1, . . . , Xn,

Y1, . . . , Yn as the Pauli observables Pj in Eq. (4.3). For example, it is just required

3n observables when Denc = 1. However, if Denc > 1, we could also choose two-qubit

observables Z12, Z23 and so on. All the ansatz parameters Θ and weight w are initialized

from a Gaussian distribution with zero mean and 0.01 standard deviation, and the bias

b is initialized to zero. Here, the ansatz parameters are not initialized uniformly from

[0, 2π) is mainly due to the residual scheme applied in Eq. (4.4). During the optimization

iteration, we use Adam optimizer [133]. And we repeat each experiment 9 times with

different parameter initializations to collect the average accuracy and the corresponding

fluctuations.
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Method
MC RP

# Paras TrainAcc(%) TestAcc(%) # Paras TrainAcc(%) TestAcc(%)

DisCoCat [78] 40 83.10 79.80 168 90.60 72.30

QSANN 25 100.00 100.00 109 95.35±1.95 67.74±0.00

Table 4.2: Training accuracy and test accuracy of QSANN as well as DisCoCat on MC
and RP tasks.

In CSANN, we set d = 16 and the classical query, key and value matrices are also initialized

from a Gaussian distribution with zero mean and 0.01 standard deviation. Except for these,

almost all other parameters are set the same as QSANN. These settings and initializations

are the same in the naive method as well.

4.3.3 Results on MC and RP Tasks

The results on MC and RP tasks are summarized in Table 4.2. In the MC task, our

method QSANN could easily achieve a 100% test accuracy while requiring only 25 pa-

rameters (18 in the query-key-value part and 7 in the fully-connected part). However, in

DisCoCat, the authors use 40 parameters but get a test accuracy lower than 80%. This

result strongly demonstrates the powerful ability of QSANN for binary text classification.

Here, the parameters in the encoder part are not counted as they could be replaced by

fixed representations such as pre-trained word embeddings. In the RP task, we get a higher

training accuracy but a slightly lower test accuracy. However, we observe that both test

accuracies are pretty low when compared with the training accuracy. It is mainly because

there is a massive bias between the training set and the test set, i.e., more than half of

the words in the test set have not appeared in the training one. Hence, the test accuracy

highly depends on random guessing.

4.3.4 Results on Yelp, IMDb and Amazon Data Sets

As there are no quantum algorithms for text classification on these three data sets before,

we benchmark our QSANN with the classical self-attention neural network (CSANN). The

naive method is also listed for comparison. The results on Yelp, IMDb and Amazon data

sets are summarized in Table 4.3. We can intuitively see that QSANN outperforms CSANN



Chapter 4. Quantum Self-Attention Neural Networks 83

Method
Yelp IMDb Amazon

# Paras TestAcc (%) # Paras TestAcc (%) # Paras TestAcc (%)

Naive 17 82.78±0.78 17 79.33±0.67 17 80.39±0.61

CSANN 785 83.11±0.89 785 79.67±0.83 785 83.22±1.28

QSANN 49 84.79±1.29 49 80.28±1.78 61 84.25±1.75

Table 4.3: Test accuracy of QSANN compared to CSANN and the naive method on
Yelp, IMDb, and Amazon data sets. The highest accuracy in each column is indicated
in bold font. On all three data sets, QSANN achieves the highest accuracies among the
three methods while using much fewer parameters than CSANN.

Figure 4.4: Heat maps of the averaged quantum self-attention coefficients for some
selected test sequences from the Yelp data set, where a deeper color indicates a higher
coefficient. Words that are more sentiment-related are generally assigned higher self-
attention coefficients by our Gaussian projected quantum self-attention, implying the
validity and interpretability of QSANN.

and the naive method on all three data sets. Specifically, CSANN has 785 parameters (768

in the classical query-key-value part and 17 in the fully-connected part) on all data sets.

In comparison, QSANN has only 49 parameters (36 in the query-key-value part and 13

in the fully-connected part) on the Yelp and IMDb data sets and 61 parameters (48 in

the query-key-value part and 13 in the fully-connected part) on the Amazon data set,

improving the test accuracy by about 1% as well as saving more than 10 times the number

of parameters. Therefore, QSANN could have a potential advantage for text classification.
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(a) (b)

Figure 4.5: (a) The diagram for adding depolarizing channels in our simulated experi-
ments. The amplitude-damping channels are added in the same way. (b) Box plots of test
accuracy on Yelp data set with depolarizing and amplitude damping noises. Each box
contains 9 repeated experiments. The absence of a notable decrease in accuracy implies
the noise-resilience attribute of QSANN.

4.3.5 Visualization of Self-Attention Coefficient

To intuitively demonstrate the rationale of the Gaussian projected quantum self-attention,

in Fig. 4.4 we visualize the averaged quantum self-attention coefficients of some selected

test sequences from the Yelp data set. Concretely, for a sequence, we calculate 1
S

∑S
s=1 α̃s,j

for j = 1, . . . , S and visualize them via a heat map, where S is the number of words in

this sequence and α̃s,j is the quantum self-attention coefficient. As shown in the figure,

words with higher quantum self-attention coefficients are indeed those that determine the

emotion of a sequence, implying the power of QSANN for capturing the most relevant

words in a sequence on text classification tasks.

4.3.6 Noisy Experimental Results on Yelp Data Set

Due to the limitations of the near-term quantum computers, we add experiments with

noisy quantum circuits to demonstrate the robustness of QSANN on the Yelp data set.

We consider the representative channels [79] such as the depolarizing channel ED(ρ) and
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the amplitude damping channel EAD(ρ)

ED(ρ) ≡ (1− p) ρ+
p

3
(XρX + Y ρY + ZρZ) (4.17)

EAD(ρ) ≡ E0ρE
†
0 + E1ρE

†
1, (4.18)

with E0 = |0〉〈0|+√
1− p |1〉〈1| and E1 =

√
p |0〉〈1| denoting the Kraus operators, i.e.,

E0 =

⎡⎣1 0

0
√
1− p

⎤⎦ , E1 =

⎡⎣0 √
p

0 0

⎤⎦ . (4.19)

Here, ρ = |ψ〉〈ψ| for a pure quantum state |ψ〉 and p denotes the noise level. As a regular

way to analyze the effect of quantum noises, we add these single-qubit noisy channels in

the final circuit layer to represent the whole system’s noise, which is illustrated in Fig.

4.5(a).

We take the noise level p as 0.01, 0.1, and 0.2 for these two noisy channels, respectively,

and the box plots of test accuracies are depicted in Fig. 4.5(b). From the picture, we see

the test accuracy of our QSANN almost does not decrease when the noise level is less than

0.1, and even when the noise level is up to 0.2, the overall test accuracy has only decreased

a little, showing that QSANN is robust to these quantum noises.

4.4 Discussions

We have proposed a quantum self-attention neural network (QSANN) by introducing the

self-attention mechanism to quantum neural networks. Specifically, the adopted Gaussian

projected quantum self-attention exploits the exponentially large quantum Hilbert space as

the quantum feature space, making QSANN have the potential advantage of mining some

hidden correlations between words that are difficult to dig out classically. Numerical results

show that QSANN outperforms the best-known QNLP method and a simple classical self-

attention neural network for text classification on several public data sets. Moreover, using

only shallow quantum circuits and Pauli measurements, QSANN can be easily implemented

on near-term quantum devices and is noise-resilient, as implied by simulation results.
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We believe that this attempt to combine self-attention and quantum neural networks

would open up new avenues for QNLP as well as QML. As a future direction, more

advanced techniques such as positional encoding and multi-head attention can be employed

in quantum neural networks for generative models and other more complicated tasks.



Chapter 5

Concentration of Data Encoding in

Parameterized Quantum Circuits

5.1 Introduction

In this chapter, we present our main results from the perspective of quantum divergence

between the average encoded quantum state and the maximally mixed state with respect

to the width and depth of the encoding PQCs. A cartoon illustration summarizing our

main result is depicted in Fig. 5.1. We show that for the common PQC-based encoding

strategies with a fixed width, the average encoded state is close to the maximally mixed

state at an exponential speed on depth.

The main content of this chapter was published in NeurIPS 2022, titled “Concentration of

Data Encoding in Parameterized Quantum Circuits” [145], and the remainder is scheduled

as follows: in the remainder of this section, we introduce some related works and necessary

background. In Sec. 5.2, we introduce the main results of data encoding concentration,

which includes a warm-up case that consists of only Ry rotation gates, a specific case that

consists of only Ry rotation and CNOT gates, and general case which consists of U3 gates

and arbitrary entangling gates. In Sec. 5.3, we present some applications of these encoded

states in quantum supervised learning, such as quantum classification and quantum state

discrimination. Several numerical experiments are conducted to verify the main results

87
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Classical data Quantum data
PQC Encoding AverageAveragage

Figure 5.1: Cartoon illustrating the concentration of PQC-based data encoding. The
average encoded quantum states concentrate on the maximally mixed state at an expo-
nential rate on the encoding depth. This concentration implies the theoretical indistin-
guishability of the encoded quantum data.

on both synthetic and public data sets in Sec. 5.4. Lastly, in Sec. 5.5, we conclude some

future discussions about data encoding.

5.1.1 Related Work

Ref. [66] derived generalization bounds of PQC-based data encoding, which mainly de-

pends on the total number of circuit gates, while we derive quantum divergence bound

that depends on the width and depth of PQCs. The works [73, 146] explored the effects

of data encoding from the perspective of data re-uploading. [147] studied the robustness

of data encoding for quantum classifiers. Data encoding strategies with discrete features

were proposed for variational quantum classifiers [148].

5.1.2 Background

5.1.2.1 Quantum Divergence

Similar to Kullback-Leibler divergence in machine learning, we use quantum divergence

to quantify the difference between quantum states or quantum data. Two widely-used

quantum divergences are quantum sandwiched Rényi divergence [149, 150]

D̃α(ρ‖σ) ≡ 1

α− 1
log Tr

[
σ

1−α
2α ρσ

1−α
2α

]α
(5.1)
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and the Petz-Rényi divergence [151]

Dα(ρ‖σ) ≡ 1

α− 1
log Tr

[
ρασ1−α

]
, (5.2)

where α ∈ (0, 1)∪(1,∞) and the latter has an operational significance in quantum hypoth-

esis testing [152–154]. In this chapter, for the purpose of analyzing quantum encoding, we

focus on the Petz-Rényi divergence with α = 2, i.e.,

D2(ρ‖σ) = log Tr
[
ρ2σ−1

]
, (5.3)

which also plays an important role in training quantum neural networks [155] as well as

quantum communication [156]. Throughout this chapter, when we mention the quantum

divergence, we mean the Petz-Rényi divergence D2 if not otherwise specified; log denotes

log2 if not otherwise specified.

5.1.2.2 Parameterized Quantum Circuit

In general, a parameterized quantum circuit [74] has the form U(θ) =
∏

j Uj(θj)Vj , where

θ is its parameter vector, Uj(θj) = e−iθjPj/2 with Pj denoting a Pauli gate, and Vj denotes

a fixed gate such as Identity, CNOT and so on. In this chapter, PQCs are utilized as

both data encoding strategies and quantum neural networks. Specifically, when used for

data encoding, an n-qubit PQC takes a classical input vector x as its parameters and acts

on an initial state |0〉⊗n to obtain the encoded state |x〉. Here, |0〉⊗n is a 2n-dimensional

vector whose first element is 1 and all other elements are 0.

5.2 Main Results

5.2.1 A Warm-up Case

For quick access, we first consider one of the most straightforward PQC-based data en-

coding strategies, i.e., consisting of Ry rotations only, cf. Fig. 5.2. It can be viewed as a

generalized angle encoding. For a classical input vector x with nD components, the output
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|0〉 Ry(x1,1) Ry(x1,2) · · · Ry(x1,D)

|0〉 Ry(x2,1) Ry(x2,2) · · · Ry(x2,D)

· · · · · · · · ·
|0〉 Ry(xn,1) Ry(xn,2) · · · Ry(xn,D)

Figure 5.2: Circuit for the data encoding strategy with Ry rotations only.

Figure 5.3: An example of a binary data set with two classes of t-dimensional vectors x
and y. Here, it is assumed that each xj (or yj) obeys an independent Gaussian distribution
(IGD), i.e., xj ∼ N(μx,j , σ

2
x,j) (or yj ∼ N(μy,j , σ

2
y,j)), where these mean values (small red

cross symbols) range in [0, 2π) and form the green dotted lines. Note that the difference
between these two lines determines that they belong to different classes.

of this data encoding circuit is a pure state |x〉 ∈ C2n expanded in a 2n-dimensional Hilbert

space. We denote the density matrix of the output state by ρ(x) = |x〉〈x|. Assuming each

element of the input vector obeys an independent Gaussian distribution (IGD, see Fig. 5.3

for an intuitive illustration), we have the following theorem.

Theorem 5.1. Assume each element of an nD-dimensional vector x obeys an IGD, i.e.,

xj,d ∼ N(μj,d, σ
2
j,d), where σj,d ≥ σ for some constant σ and 1 ≤ j ≤ n, 1 ≤ d ≤ D. If

x is encoded into an n-qubit pure state ρ(x) according to the circuit in Fig. 5.2, then the

quantum divergence between the average encoded state ρ̄ and the maximally mixed state
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is upper-bounded as

D2 (ρ̄‖ ) ≤ n log
(
1 + e−Dσ2

)
, (5.4)

where ρ̄ is defined as ρ̄ ≡ E [ρ(x)].

This theorem shows that the upper bound of the quantum divergence between ρ̄ and

explicitly depends on the qubit number n and the encoding depth D under certain

conditions. By approximating Eq. (5.4) as

D2 (ρ̄‖ ) ≤ n log(1 + e−Dσ2
) ≈

⎧⎪⎨⎪⎩
n
(
1− σ2

2 ln 2D
)
, D ∈ O(1)

ne−Dσ2
, D ∈ Ω(poly log(n))

, (5.5)

we easily find that for a fixed n, the upper bound decays exponentially with D growing

in Ω(poly log(n)). This means that the average encoded state will quickly approach the

maximally mixed state with an arbitrarily small distance under reasonable depths.

To prove this theorem, we need the following lemma.

Lemma 5.2. Assume a variable x ∼ N(μ, σ2). Then

E [cos(x)] = e−
σ2

2 cos(μ); E [sin(x)] = e−
σ2

2 sin(μ). (5.6)

Proof. (Proof of Theorem 5.1.) Let ρ(xj) ≡ Ry(xj,1+ · · ·+xj,D) |0〉〈0|R†
y(xj,1+ · · ·+xj,D).

Then

ρ(x) = ρ(x1)⊗ ρ(x2)⊗ · · · ⊗ ρ(xn). (5.7)

Due to the independence of each ρ(xj), we have

ρ̄ = E [ρ(x)] = E [ρ(x1)]⊗ E [ρ(x2)]⊗ · · · ⊗ E [ρ(xn)] . (5.8)
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What’s more, for j = 1, . . . , n,

E [ρ(xj)] =
1

2
E

⎡⎣1 + cos (
∑

d xj,d) sin (
∑

d xj,d)

sin (
∑

d xj,d) 1− cos (
∑

d xj,d)

⎤⎦ (5.9)

=
1

2

⎡⎣1 + E [cos (
∑

d xj,d)] E [sin (
∑

d xj,d)]

E [sin (
∑

d xj,d)] 1− E [cos (
∑

d xj,d)]

⎤⎦ . (5.10)

We know
∑

d xj,d ∼ N(
∑

d μj,d,
√∑

d σ
2
j,d), and combining Eq. (5.10) with Lemma 5.2, we

have

∣∣∣∣∣∣E [ρ(xj)]
∣∣∣∣∣∣2
F
=

1

2
+

1

2
E2

[
cos (

∑
d

xj,d)

]
+

1

2
E2

[
sin (

∑
d

xj,d)

]
(5.11)

=
1

2
+

1

2

(
e−

∑
d σ2

j,d
2 cos(

∑
d

μj,d)

)2

+
1

2

(
e−

∑
d σ2

j,d
2 sin(

∑
d

μj,d)

)2

(5.12)

=
1

2
+

1

2
e−

∑
d σ2

j,d (5.13)

≤ 1

2
+

1

2
e−Dσ2

. (5.14)

Finally, from Eq. (5.8), we have

log Tr

(
ρ̄2 ·

(
I

2n

)−1
)

= log
(
2n‖ρ̄‖2F

)
(5.15)

= log

⎛⎝2n
n∏

j=1

∣∣∣∣∣∣E [ρ(xj)]
∣∣∣∣∣∣2
F

⎞⎠ (5.16)

≤ log

(
2n

(
1 + e−Dσ2

2

)n)
(5.17)

= n log(1 + e−Dσ2
). (5.18)

This completes the proof.

5.2.2 A Specific Case

In this subsection, we consider a specific case where the data encoding strategy is slightly

more complex. That is, some CNOT gates are inserted between Ry rotation gates. Here,
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|0〉 Ry(x1,1)

C1

Ry(x1,2)

C2

· · · Ry(x1,D−1)

CD−1

Ry(x1,D)

|0〉 Ry(x2,1) Ry(x2,2) · · · Ry(x2,D−1) Ry(x2,D)

· · · · · · · · ·
|0〉 Ry(xn,1) Ry(xn,2) · · · Ry(xn,D−1) Ry(xn,D)

Figure 5.4: Circuit for the data encoding strategy with D layers of Ry rotations and
D − 1 layers of CNOTs entanglement. Here Ci denotes a group of CNOT gates.

we also assume the IGDs have zero means.

Theorem 5.3. Assume each element of an nD-dimensional vector x obeys an IGD with

zero mean, i.e., xj,d ∼ N(0, σ2
j,d), where σj,d ≥ σ for some constant σ and 1 ≤ j ≤ n, 1 ≤

d ≤ D. If x is encoded into an n-qubit pure quantum state ρ(x) according to the encoding

circuit in Fig. 5.4, then the quantum divergence between the average encoded state ρ̄ and

the maximally mixed state is upper bounded as

D2 (ρ̄‖ ) ≤ n log(1 + e−Dσ2
). (5.19)

This theorem shows that the upper bound of the quantum divergence in this specific case is

the same as the one in the warm-up case. Therefore, the average encoded state under this

specific encoding strategy will also approach the maximally mixed state at an exponential

speed.

Proof. We first consider the case of two qubits as an example. The state after the first

column of Ry rotations becomes

ρ1 =

⎡⎣ cos2(
x1,1

2 ) cos(
x1,1

2 ) sin(
x1,1

2 )

cos(
x1,1

2 ) sin(
x1,1

2 ) sin2(
x1,1

2 )

⎤⎦⊗
⎡⎣ cos2(

x2,1

2 ) cos(
x2,1

2 ) sin(
x2,1

2 )

cos(
x2,1

2 ) sin(
x2,1

2 ) sin2(
x2,1

2 )

⎤⎦
(5.20)

=
1

4

⎡⎣1 + cos(x1,1) sin(x1,1)

sin(x1,1) 1− cos(x1,1)

⎤⎦⊗
⎡⎣1 + cos(x2,1) sin(x2,1)

sin(x2,1) 1− cos(x2,1)

⎤⎦ . (5.21)
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Since x1,1, x2,1 have 0 means, by combining it with Lemma 5.2, we have

E [ρ1] =
1

4

⎡⎣1 +A1,1 0

0 1−A1,1

⎤⎦⊗
⎡⎣1 +A2,1 0

0 1−A2,1

⎤⎦ , (5.22)

where we define Aj,d ≡ e−
σ2
j,d
2 for writing convenience. Also, because x1,1 and x2,1 are

independent of others, computing the expectation of ρ1 now has no influence on the cal-

culation of the expectation of the final state. We find that E [ρ1] is diagonal and so it is

when C1 is applied.

If we record C1E [ρ1]C
†
1 as follows

C1E [ρ1]C
†
1 ≡

⎡⎢⎢⎢⎢⎢⎢⎣
E1

E2

E3

E4

⎤⎥⎥⎥⎥⎥⎥⎦ , (5.23)

then the state after the second column of Ry rotations becomes

ρ2 = (Ry(x1,2)⊗Ry(x2,2))C1E [ρ1]C
†
1

(
R†

y(x1,2)⊗R†
y(x2,2)

)
. (5.24)

By combining Lemma 5.2 again, we have

E [ρ2] =
1

4

[
(1 +A1,2) (1 +A2,2)E1 + (1 +A1,2) (1−A2,2)E2

+ (1−A1,2) (1 +A2,2)E1 + (1−A1,2) (1−A2,2)E4

]
|00〉〈00|

+
1

4

[
(1 +A1,2) (1−A2,2)E1 + (1 +A1,2) (1 +A2,2)E2

+ (1−A1,2) (1−A2,2)E1 + (1−A1,2) (1 +A2,2)E4

]
|01〉〈01|

+
1

4

[
(1−A1,2) (1 +A2,2)E1 + (1−A1,2) (1−A2,2)E2

+ (1 +A1,2) (1 +A2,2)E1 + (1 +A1,2) (1−A2,2)E4

]
|10〉〈10|

+
1

4

[
(1−A1,2) (1−A2,2)E1 + (1−A1,2) (1 +A2,2)E2

+ (1 +A1,2) (1−A2,2)E1 + (1 +A1,2) (1 +A2,2)E4

]
|11〉〈11| . (5.25)
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We find that E [ρ2] is still diagonal. Then we can similarly derive that E [ρ3], E [ρ4], . . .,

up to E [ρD] are all diagonal. What’s more, if we think of every E [ρd] as a column vector,

then we have the following relations for 2 ≤ d ≤ D,

E [ρd] =

⎛⎝1

2

⎡⎣1 +A1,d 1−A1,d

1−A1,d 1 +A1,d

⎤⎦⊗ 1

2

⎡⎣1 +A2,d 1−A2,d

1−A2,d 1 +A2,d

⎤⎦⎞⎠Cd−1E [ρd−1] . (5.26)

Now we focus on the matrix in Eq. (5.26), i.e.,

RAj,d
≡ 1

2

⎡⎣1 +Aj,d 1−Aj,d

1−Aj,d 1 +Aj,d

⎤⎦ . (5.27)

It has the spectral decomposition

RAj,d
= 1 · u0u

†
0 +Aj,d · u1u

†
1 =

1√
2

⎡⎣1 1

1 −1

⎤⎦⎡⎣1
Aj,d

⎤⎦ 1√
2

⎡⎣1 1

1 −1

⎤⎦ , (5.28)

where u0 ≡ 1√
2

⎡⎣1
1

⎤⎦ and u1 ≡ 1√
2

⎡⎣ 1

−1

⎤⎦. Then
RA1,d

⊗RA2,d
=

(
1 · u0u

†
0 +A1,d · u1u

†
1

)
⊗

(
1 · u0u

†
0 +A2,d · u1u

†
1

)
(5.29)

= 1 · u00u
†
00 +A2,d · u01u

†
01 +A1,d · u10u

†
10 +A1,dA2,d · u11u

†
11, (5.30)

where u00 ≡ u0 ⊗ u0 and other terms are similarly defined.

From Eq. (5.22), we know E [ρ1] can be decomposed as

E [ρ1] =
1

2
(1 · u00 +A2,1 · u01 +A1,1 · u10 +A1,1A2,1 · u11) , (5.31)

and acting C1 means performing a permutation of the coefficients except the first one “1”.

For example, if C1 is just the CNOT gate, then

C1E [ρ1] =
1

2
(1 · u00 +A1,1A2,1 · u01 +A1,1 · u10 +A2,1 · u11) . (5.32)
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Next let us consider the D sequences

{
α
(d)
1 ≡ A2,d, α

(d)
2 ≡ A1,d, α

(d)
3 ≡ A1,dA2,d

}D

d=1
(5.33)

and another D sequences {pd}Dd=1 with each pd denoting a permutation of {1, 2, 3}. For

example, p1 may represent {p1,1 ≡ 2, p1,2 ≡ 3, p1,3 ≡ 1}. Then we rewrite each E [ρd] by

using these sequences and the relationships in Eq. (5.26),

E [ρ1] =
1

2

(
1 · u00 + α(1)

p1,1 · u01 + α(1)
p1,2 · u10 + α(1)

p1,3 · u11

)
(5.34)

E [ρ2] =
1

2

(
1 · u00 + α(1)

p1,1α
(2)
p2,1 · u01 + α(1)

p1,2α
(2)
p2,2 · u10 + α(1)

p1,3α
(2)
p2,3 · u11

)
(5.35)

· · · · · ·

E [ρD] =
1

2

(
1 · u00 +

D∏
d=1

α(d)
pd,1

· u01 +

D∏
d=1

α(d)
pd,2

· u10 +

D∏
d=1

α(d)
pd,3

· u11

)
. (5.36)

Further from Eq. (5.36), we have

∣∣∣∣∣∣E [ρD]
∣∣∣∣∣∣2
F
=

1

4

[
1 +

D∏
d=1

(
α(d)
pd,1

)2
+

D∏
d=1

(
α(d)
pd,2

)2
+

D∏
d=1

(
α(d)
pd,3

)2
]

(5.37)

≤ 1

4

[
1 +

D∏
d=1

(
α̃(d)
pd,1

)2
+

D∏
d=1

(
α̃(d)
pd,2

)2
+

D∏
d=1

(
α̃(d)
pd,3

)2
]
, (5.38)

where

{
α̃
(d)
1 ≡ e−

σ2

2 , α̃
(d)
2 ≡ e−

σ2

2 , α̃
(d)
3 ≡ e−σ2

}D

d=1

, and the inequality comes from σj,d ≥
σ. Furthermore, from the rearrangement inequalities for multiple sequences [157], we know

similarly ordered sequences provide the largest sum of products. Hence,

∣∣∣∣∣∣E [ρD]
∣∣∣∣∣∣2
F
≤ 1

4

[
1 +

D∏
d=1

(
α̃
(d)
1

)2
+

D∏
d=1

(
α̃
(d)
2

)2
+

D∏
d=1

(
α̃
(d)
3

)2
]

(5.39)

=
1

4

[
1 +

D∏
d=1

e−σ2
+

D∏
d=1

e−σ2
+

D∏
d=1

e−2σ2

]
(5.40)

=
1

4

(
1 + e−Dσ2

)2
. (5.41)
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|0〉 U3(x1,1)

Etg1

U3(x1,2)

Etg2

· · · U3(x1,D−1)

EtgD−1

U3(x1,D)

|0〉 U3(x2,1) U3(x2,2) · · · U3(x2,D−1) U3(x2,D)

· · · · · · · · · · · ·
|0〉 U3(xn,1) U3(xn,2) · · · U3(xn,D−1) U3(xn,D)

Figure 5.5: Circuit for the data encoding strategy with D layers of U3 gates and D− 1
layers of entanglements. Here, each xj,d represents three elements xj,d,1, xj,d,2, xj,d,3, and
each Etgi denotes an arbitrary group of entangled two-qubit gates, such as CNOT or CZ,
where 1 ≤ j ≤ n, 1 ≤ d ≤ D, 1 ≤ i ≤ D − 1.

Finally, we have

log Tr

(
ρ̄2 ·

(
I

22

)−1
)

= log

(
22 ·

∣∣∣∣∣∣E [ρD]
∣∣∣∣∣∣2
F

)
(5.42)

≤ 2 log
(
1 + e−Dσ2

)
. (5.43)

This completes the proof for the case of two qubits. However, due to all the derivations

can be directly extended to the multi-qubit case, we say this theorem is valid for the

arbitrary-qubit case.

5.2.3 General Case

Next, we consider the general PQC-based data encoding strategies shown in Fig. 5.5, where

a column of U3 gates and a column of entangled gates spread out alternately.

Theorem 5.4. (Data Encoding Concentration) Assume each element of a 3nD-

dimensional vector x obeys an IGD, i.e., xj,d,k ∼ N(μj,d,k, σ
2
j,d,k), where σj,d,k ≥ σ for

some constant σ and 1 ≤ j ≤ n, 1 ≤ d ≤ D, 1 ≤ k ≤ 3. If x is encoded into an n-qubit

pure state ρ(x) according to the circuit in Fig. 5.5, the quantum divergence between the

average encoded state ρ̄ and the maximally mixed state is upper-bounded as

D2 (ρ̄‖ ) ≤ log(1 + (2n − 1)e−Dσ2
). (5.44)
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This theorem shows that, when employing general PQC-based encoding strategies, we

could also have an upper bound of the quantum divergence D2 (ρ̄‖ ) which explicitly

depends on n and D. By approximating the upper bound in Eq. (5.44) as follows

D2 (ρ̄‖ ) ≤ log
(
1 + (2n − 1)e−Dσ2

)
≈

⎧⎪⎨⎪⎩
n− σ2

ln 2D, D ∈ O(poly log(n))

(2n − 1)e−Dσ2
, D ∈ Ω(poly(n))

, (5.45)

we observe similarly that for some fixed n, the upper bound decays at an exponential

speed as D grows in Ω(poly(n)). In addition, according to our proof analysis, even if each

U3 gate is replaced by a U2 gate containing only two different kinds of Pauli rotations

or even a U1 gate with only one proper Pauli rotation, we still get similar bound as Eq.

(5.44). Therefore, we conclude that as long as D grows within a reasonable scope, the

average of the quantum states encoded by a wide family of PQCs will quickly concentrate

on the maximally mixed state. Unlike the warm-up and the specific cases, the proof for

this theorem is quite non-straightforward due to the tricky entangled gates.

Proof. In this proof, we consider the U3(xj,d,1, xj,d,2, xj,d,3) gate as Rz(xj,d,3) · Ry(xj,d,2) ·
Rz(xj,d,1), which is one of the most commonly used ones. Of course, other forms of U3

gate are similar.

Outline of Proof. 1) Decomposing initial state. Firstly, we decompose the initial

state according to Pauli bases; 2) Vectors transition. Then by taking the corresponding

coefficients as a row vector, we state that each action of a group of entangled gates Etgi

or a column of U3 gates is equivalent to multiplying the previous coefficient vector by a

transition matrix; 3) Bound by singular value. Finally, we get the upper bound by

investigating the singular values of these transition matrices.
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1) Decomposing initial state. The state after the first column of U3 gates becomes

ρ1 =
1

2

⎡⎣ 1 + cos(x1,1,2) e−ix1,1,3 sin(x1,1,2)

eix1,1,3 sin(x1,1,2) 1− cos(x1,1,2)

⎤⎦⊗ 1

2

⎡⎣ 1 + cos(x2,1,2) e−ix2,1,3 sin(x2,1,2)

eix2,1,3 sin(x2,1,2) 1− cos(x2,1,2)

⎤⎦
⊗ · · · · · · ⊗ 1

2

⎡⎣ 1 + cos(xn,1,2) e−ixn,1,3 sin(xn,1,2)

eixn,1,3 sin(xn,1,2) 1− cos(xn,1,2)

⎤⎦ .

(5.46)

Now we define ρ1 ≡ ρ1,1 ⊗ ρ1,2 ⊗ · · · ⊗ ρ1,n, where

ρ1,j ≡ 1

2

⎡⎣ 1 + cos(xj,1,2) e−ixj,1,3 sin(xj,1,2)

eixj,1,3 sin(xj,1,2) 1− cos(xj,1,2)

⎤⎦ . (5.47)

And from Lemma 5.2, we have

E [ρ1,j ] =
1

2

⎡⎣ 1 +Aj,1,2 cos(μj,1,2) Aj,1,3e
−iμj,1,3Aj,1,2 sin(μj,1,2)

Aj,1,3e
iμj,1,3Aj,1,2 sin(μj,1,2) 1−Aj,1,2 cos(μj,1,2)

⎤⎦ , (5.48)

where we define Aj,d,k = e−
σ2
j,d,k
2 for writing convenience. Here we note that due to all

xj,d,k’s being independent of each other, calculating the expectation of ρ1,j in advance does

not affect the following computations. Next we decompose E [ρ1,j ] according to the Pauli

bases, i.e., I, Z,X, Y ,

E [ρ1,j ] =
1

2
I +

Aj,1,2 cos(μj,1,2)

2
Z +

Aj,1,3 cos(μj,1,3)Aj,1,2 sin(μj,1,2)

2
X

+
Aj,1,3 sin(μj,1,3)Aj,1,2 sin(μj,1,2)

2
Y. (5.49)

Then from Eq. (5.46), we could derive that E [ρ1] =
⊗n

j=1 E [ρ1,j ] can also be decomposed

in accordance with various tensor products of Pauli bases. Therefore, studying the state

after the gate Etg1 could be transferred to what performance it will be when entangled

two-qubit gates act on the tensor products of Pauli bases.

2) Vectors transition. Here, we focus on the two widely employed two-qubit entangled

gates CNOT and CZ, and the calculations are concluded in Table 5.1. The results in the
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Pauli bases Apply CNOT Apply CZ

I ⊗ I I ⊗ I I ⊗ I
I ⊗ Z Z ⊗ Z I ⊗ Z
I ⊗X I ⊗X Z ⊗X
I ⊗ Y Z ⊗ Y Z ⊗ Y

Z ⊗ I Z ⊗ I Z ⊗ I
Z ⊗ Z I ⊗ Z Z ⊗ Z
Z ⊗X Z ⊗X I ⊗X
Z ⊗ Y I ⊗ Y I ⊗ Y

X ⊗ I X ⊗X X ⊗ Z
X ⊗ Z -Y ⊗ Y X ⊗ I
X ⊗X X ⊗ I Y ⊗ Y
X ⊗ Y Y ⊗ Z -Y ⊗X

Y ⊗ I Y ⊗X Y ⊗ Z
Y ⊗ Z X ⊗ Y Y ⊗ I
Y ⊗X Y ⊗ I -X ⊗ Y
Y ⊗ Y -X ⊗ Z X ⊗X

Table 5.1: The transition table for tensor products of Pauli bases when applying CNOT
or CZ gates.

table show that the transitions are closed for tensor products of Pauli bases. Here we note

that other entangled two-qubit gates will have a similar effect.

Next, we consider the effects of applying the gate U3(x1, x2, x3) = Rz(x3)Ry(x2)Rz(x1) to

four Pauli matrices. And the results of the calculations are as follows:

E
[
U3 · I · U3†

]
= I (5.50)

E
[
U3 · Z · U3†

]
= pzzZ + pzxX + pzyY (5.51)

E
[
U3 ·X · U3†

]
= pxzZ + pxxX + pxyY (5.52)

E
[
U3 · Y · U3†

]
= pyzZ + pyxX + pyyY, (5.53)
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where

pzz = A2 cos(μ2) (5.54)

pzx = A2 sin(μ2)A3 cos(μ3) (5.55)

pzy = A2 sin(μ2)A3 sin(μ3) (5.56)

pxz = −A2 sin(μ2)A1 cos(μ1) (5.57)

pxx = A2 cos(μ2)A1 cos(μ1)A3 cos(μ3)−A1 sin(μ1)A3 sin(μ3) (5.58)

pxy = A2 cos(μ2)A1 cos(μ1)A3 sin(μ3) +A1 sin(μ1)A3 cos(μ3) (5.59)

pyz = A2 sin(μ2)A1 sin(μ1) (5.60)

pyx = −A2 cos(μ2)A1 sin(μ1)A3 cos(μ3)−A1 cos(μ1)A3 sin(μ3) (5.61)

pyy = −A2 cos(μ2)A1 sin(μ1)A3 sin(μ3) +A1 cos(μ1)A3 cos(μ3). (5.62)

Here, xk, Ak, μk are the abbreviations for xj,d,k, Aj,d,k, μj,d,k, respectively.

Now we record Eqs. (5.50)-(5.53) as a matrix T , which we call transition matrix, i.e.,

T ≡

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0

0 pzz pzx pzy

0 pxz pxx pxy

0 pyz pyx pyy

⎤⎥⎥⎥⎥⎥⎥⎦ . (5.63)

By carefully calculating Eqs. (5.50)-(5.63) again, we also have

T =

⎡⎣1 0 0 0

0 1 0 0

0 0 A1 cos(μ1) A1 sin(μ1)

0 0 −A1 sin(μ1) A1 cos(μ1)

⎤⎦⎡⎣1 0 0 0

0 A2 cos(μ2) A2 sin(μ2) 0

0 −A2 sin(μ2) A2 cos(μ2) 0

0 0 0 1

⎤⎦⎡⎣1 0 0 0

0 1 0 0

0 0 A3 cos(μ3) A3 sin(μ3)

0 0 −A3 sin(μ3) A3 cos(μ3)

⎤⎦ , (5.64)

where the three matrices correspond to the effects of applying Rz(x1), Ry(x2) and Rz(x3),

respectively.

If we further record an arbitrary input ρin ≡ α1I + α2Z + α3X + α4Y as a row vector

πin =
[
α1 α2 α3 α4

]
, then applying the gate U3(x1, x2, x3) to ρin will result in the
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output ρout ≡ β1I + β2Z + β3X + β4Y , where

πout ≡
[
β1 β2 β3 β4

]
=

[
α1 α2 α3 α4

]
⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0

0 pzz pzx pzy

0 pxz pxx pxy

0 pyz pyx pyy

⎤⎥⎥⎥⎥⎥⎥⎦ = πinT. (5.65)

This is a fundamental relationship in this proof, which can be easily verified in multi-qubit

and multi-depth cases. Hence, we could rewrite each E [ρd], 0 ≤ d ≤ D, as follows

E [ρ0] ←→ π0 = ⊗n
j=1

[
1
2

1
2 0 0

]
(5.66)

E [ρ1] ←→ π1 = π0 · ⊗n
j=1Tj,1 · Ẽtg1 (5.67)

· · ·
E [ρd] ←→ πd = πd−1 · ⊗n

j=1Tj,d · Ẽtgd (5.68)

· · ·
E [ρD−1] ←→ πD−1 = πD−2 · ⊗n

j=1Tj,D−1 · ẼtgD−1 (5.69)

E [ρD] ←→ πD = πD−1 · ⊗n
j=1Tj,D, (5.70)

where each Tj,d represents that this transition matrix is constructed based on the gate

U3(xj,d,1, xj,d,2, xj,d,3) and each Ẽtgi means rearranging the elements of the previously

multiplied row vector, which is equivalent to the effect after applying Etgi, 1 ≤ i ≤ D− 1.

Here, please note that we omit the possible negative sign described in Table 5.1, because

in the following proof, it has no influence.

From the fact that Tr
(
P 2
i

)
= 2, Tr (PiPj) = 0, where Pi, Pj denote different Pauli matrices,

and combining the relationship in Eq. (5.70), we have

Tr (E [ρD])
2 = 2n · πD (πD)


 . (5.71)
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What’s more, we also find that every ⊗n
j=1Tj,d and Ẽtgi always have an element 1 in the

top left corner, i.e.,

⊗n
j=1Tj,d ≡

⎡⎣1
Td

⎤⎦ , Ẽtgi ≡
⎡⎣1

Ei

⎤⎦ , (5.72)

where Td,Ei ∈ R(4n−1)×(4n−1) and 1 ≤ d ≤ D, 1 ≤ i ≤ D − 1. Therefore,

Tr (E [ρD])
2 = 2n · πD (πD)


 (5.73)

= 2n · π0
⎡⎣1

T1E1T2E2 · · ·TD

⎤⎦⎡⎣1
T

D · · ·E


2 T


2 E



1 T



1

⎤⎦ (π0)

 (5.74)

= 2n ·
[

1
2n π̊0

]⎡⎣1
T1E1T2E2 · · ·TDT



D · · ·E


2 T


2 E



1 T



1

⎤⎦⎡⎣ 1
2n

π̊

0

⎤⎦ (5.75)

=
1

2n
+ 2n · π̊0T1E1 · · ·TD−1ED−1TDT



DE



D−1T



D−1 · · ·E


1 T


1 π̊



0 , (5.76)

where π̊0 means that the row vector π0 removes the first element.

3) Bound by singular value. Next, in order to further calculate it, we need to prove

first the following two Lemmas.

Lemma 5.5. Given a Hermitian matrix H ∈ Cn×n with all its eigenvalues no larger than

λ, and an n-dimensional vector x, then

x†Hx ≤ ‖x‖22λ, (5.77)

where ‖ · ‖2 denotes the l2-norm.

Proof. Assume H has the spectral decomposition

H =

n∑
i=1

λiuiu
†
i , (5.78)
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then x can be uniquely decomposed as x =
∑n

i=1 αiui with
∑n

i=1 |αi|2 = ‖x‖22. Finally,

we have

x†Hx =
n∑

i=1

|αi|2λi ≤
n∑
i

|αi|2λ = ‖x‖22λ. (5.79)

Lemma 5.6. Given a Hermitian matrix H ∈ Cn×n with all its eigenvalues no larger than

λ, and an arbitrary matrix Q ∈ Cn×n with all its singular values no larger than s, then

the largest eigenvalue of QHQ† is no larger than s2λ.

Proof. The largest eigenvalue of QHQ† can be computed as λmax ≡ maxx x†QHQ†x,

where x denotes a unit vector. Assume Q has the singular value decomposition

Q = USV † =
n∑

i=1

siuiv
†
i =

[
u1 u2 · · · un

]
⎡⎢⎢⎢⎢⎢⎢⎣
s1 0 0 0

0 s2 0 0

0 0
. . . 0

0 0 0 sn

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
v†
1

v†
2

...

v†
n

⎤⎥⎥⎥⎥⎥⎥⎦ (5.80)

and x =
∑n

i=1 αiui with
∑n

i=1 |αi|2 = 1, then

x†QHQ†x = x†USV †HV SU †x =
[
α†
1s1 α†

2s2 · · · α†
nsn

]
V †HV

⎡⎢⎢⎢⎢⎢⎢⎣
α1s1

α2s2

· · ·
αnsn

⎤⎥⎥⎥⎥⎥⎥⎦ . (5.81)

Consider V †HV as a new Hermitian matrix and SU †x as a new vector x̃, then all the

eigenvalues of V †HV are still no larger than λ and the square of the l2-norm of x̃ is

computed as

‖x̃‖22 =
n∑

i=1

|αi|2s2i ≤
n∑

i=1

|αi|2s2 = s2. (5.82)
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From Lemma 5.5, we have

x†QHQ†x ≤ ‖x̃‖22λ ≤ s2λ. (5.83)

As x is arbitrary, we can obtain that λmax ≡ maxx x†QHQ†x is no larger than s2λ as

well.

Now, let us investigate the singular values of Tj,d. From Eq. (5.63), we know it always has

the trivial biggest singular value 1. The second-biggest singular value sm can be derived

from

s2m = max
u

u†

⎡⎢⎢⎢⎣
pzz pzx pzy

pxz pxx pxy

pyz pyx pyy

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
pzz pxz pyz

pzx pxx pyx

pzy pxy pyy

⎤⎥⎥⎥⎦u, (5.84)

where u ∈ C3 denotes a unit column vector. From Eq. (5.64), we derive that

[
pzz pzx pzy

pxz pxx pxy

pyz pyx pyy

]
=

[
1 0 0

0 A1 cos(μ1) A1 sin(μ1)

0 −A1 sin(μ1) A1 cos(μ1)

][
A2 cos(μ2) A2 sin(μ2) 0

−A2 sin(μ2) A2 cos(μ2) 0

0 0 1

][
1 0 0

0 A3 cos(μ3) A3 sin(μ3)

0 −A3 sin(μ3) A3 cos(μ3)

]
(5.85)

=

[
1 0 0

0 A1 cos(μ1) A1 sin(μ1)

0 −A1 sin(μ1) A1 cos(μ1)

][
cos(μ2) sin(μ2) 0

− sin(μ2) cos(μ2) 0

0 0 1

][
A2

A2A3 0

0 0 A3

][
1 0 0

0 cos(μ3) sin(μ3)

0 − sin(μ3) cos(μ3)

]
, (5.86)

hence,

⎡⎣pzz pzx pzy

pxz pxx pxy

pyz pyx pyy

⎤⎦⎡⎣pzz pxz pyz

pzx pxx pyx

pzy pxy pyy

⎤⎦ = Q

⎡⎣ cos(μ2) sin(μ2) 0

− sin(μ2) cos(μ2) 0

0 0 1

⎤⎦⎡⎣A2
2

(A2A3)
2 0

0 0 A2
3

⎤⎦⎡⎣cos(μ2) − sin(μ2) 0

sin(μ2) cos(μ2) 0

0 0 1

⎤⎦Q
,

(5.87)

where Q ≡
[

1 0 0

0 A1 cos(μ1) A1 sin(μ1)

0 −A1 sin(μ1) A1 cos(μ1)

]
has the largest singular value 1.

From Lemma 5.6, we deduce that the largest eigenvalue of the matrix in Eq. (5.87) is

max
{
A2

2, A
2
3

}
, which is no larger than e−σ2

. Further combining Eq. (5.84), we infer that

sm is no larger than e−
σ2

2 , i.e., the second-biggest singular value of each Tj,d is no larger

than e−
σ2

2 . What’s more, we could derive that their tensor product ⊗n
j=1Tj,d also has the
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trivial largest singular value 1 and the second-largest singular value which is no larger than

e−
σ2

2 .

From the definition of Td in Eq. (5.72), we declare that the largest singular value of each

Td is no larger than e−
σ2

2 . Let’s go back to the following formula in Eq. (5.76) to continue

estimating Tr (E [ρD])
2, i.e.,

π̊0T1E1 · · ·TD−1ED−1TDT


DE



D−1T



D−1 · · ·E


1 T


1 π̊



0 . (5.88)

Since the largest eigenvalue of TDT


D is no larger than e−σ2

, and each Ei, defined in Eq.

(5.72), is a unitary matrix, by repeatedly applying Lemma 5.6, we obtain that largest

eigenvalue of T1E1 · · · TDT


D · · · E


1 T


1 is no larger than e−Dσ2

. Furthermore, from Eq.

(5.66) and the definition of π̊0, we know π̊0 has 4n − 1 dimensions, where 2n − 1 elements

are 1
2n and the others are 0. Hence, ‖π̊0‖22 = 2n−1

22n
. Combining these with Lemma 5.5, we

have

π̊0T1E1 · · ·TD−1ED−1TDT


DE



D−1T



D−1 · · ·E


1 T


1 π̊



0 ≤ ‖π̊0‖22e−Dσ2

=
2n − 1

22n
e−Dσ2

. (5.89)

Go further, and we have, together with Eq. (5.76),

Tr (E [ρD])
2 =

1

2n
+ 2n · π̊0T1E1 · · ·TD−1ED−1TDT



DE



D−1T



D−1 · · ·E


1 T


1 π̊



0 (5.90)

≤ 1

2n
+ 2n · 2

n − 1

22n
e−Dσ2

(5.91)

=
1 + (2n − 1) e−Dσ2

2n
. (5.92)

Finally, we have

log Tr

(
ρ̄2 ·

(
I

2n

)−1
)

= log
(
2n · Tr (E [ρD])

2
)

(5.93)

≤ log
(
1 + (2n − 1)e−Dσ2

)
. (5.94)

This completes the proof of Theorem 5.4.

Without stopping here, we also analyze some generalizations of Theorem 5.4.
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(I) From Eqs. (5.84)-(5.87), we find that removing the matrix Q will have no influence

on the final result. Hence, we directly generalize that if there is only one column of RzRy

or RyRz gates in each layer, we will get the same upper bound. In fact, according to our

proof method, we infer that as long as there are two different kinds of rotation gates in

each encoding layer, this upper bound is valid.

(II) What is the result for the case with only Ry rotation gates in each encoding layer?

Since each Td has the largest singular value 1, it is not suitable for the above proof.

However, through analyzing the transition rule in Table 5.1, we find that the largest

singular value of Td−1Ed−1Td is still no larger than e−
σ2

2 , which means every two encoding

layers have the same effect as above with one layer. Therefore, the final upper bound

can be changed to log
(
1 + (2n − 1)e−
D

2
�σ2

)
. Since it has the same trend as the original

bound, it has no impact on our final analysis.

The average encoded state ρ̄ in Theorem 5.4 is built on infinite data samples, but in

practice, we do not have infinite ones. Therefore, we provide the following helpful corollary.

Corollary 5.7. Assume there are M classical vectors {x(m)}Mm=1 sampled from the distri-

butions described in Theorem 5.4 and define ρ̄M ≡ 1
M

∑M
m=1 ρ(x

(m)). Let H be a Hermitian

matrix with its eigenvalues ranging in [−1, 1], then given an arbitrary ε ∈ (0, 1), as long

as the encoding depth D ≥ 1
σ2 [(n+ 4) ln 2 + 2 ln (1/ε)], we have

∣∣∣Tr [H (ρ̄M − )]
∣∣∣ ≤ ε (5.95)

with a probability of at least 1− 2e−Mε2/8.

This corollary implies that for a reasonable encoding depth D and a number of samples M ,

the practical average encoded state ρ̄M will also be infinitely close to the maximally mixed

state with a high probability. The proof is mainly derived from Hoeffding’s inequality [158]

and the relationships between quantum divergence and trace norm.
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Proof. Let ρ̄ ≡ E
[
ρ
(
x(m)

)]
, then we have

∣∣∣Tr [H (
ρ̄M − I

2n

)] ∣∣∣ = ∣∣∣Tr [H (
ρ̄M − ρ̄+ ρ̄− I

2n

)] ∣∣∣ (5.96)

≤
∣∣∣Tr [H (ρ̄M − ρ̄)]

∣∣∣+ ∣∣∣Tr [H (
ρ̄− I

2n

)] ∣∣∣, (5.97)

where the inequality is due to triangle inequality.

Now we first consider the first term in Eq. (5.97). Since

1

M
Tr

(
Hρ(x(1))

)
, . . . ,

1

M
Tr

(
Hρ(x(M))

)
(5.98)

are i.i.d. and −1
M ≤ 1

M Tr
(
Hρ(x(m))

) ≤ 1
M , through Hoeffding’s inequality [158], we have

P

(∣∣∣ M∑
m=1

1

M
Tr

(
Hρ(x(m))

)
− E

[
Tr

(
Hρ(x(m))

)] ∣∣∣ ≤ t

)
≥ 1− 2e−

Mt2

2 . (5.99)

From the fact that

M∑
m=1

1

M
Tr

(
Hρ(x(m))

)
= Tr (Hρ̄M ) and E

[
Tr

(
Hρ(x(m))

)]
= Tr (Hρ̄) , (5.100)

we obtain

∣∣∣Tr (Hρ̄M )− Tr (Hρ̄)
∣∣∣ ≤ ε

2
(5.101)

with a probability of at least 1− 2e−
Mε2

8 .

Next, we consider the second term in Eq. (5.97). Since the eigenvalues of H range in

[−1, 1], we obtain

∣∣∣Tr(H

(
ρ̄− I

2n

)) ∣∣∣ ≤ ∣∣∣∣∣∣ρ̄− I

2n

∣∣∣∣∣∣
tr
≤ 2

√
1− F

(
ρ̄,

I

2n

)
, (5.102)

where ‖ · ‖tr denotes the trace norm and the second inequality is from the Fuchs–van de

Graaf inequalities [159], i.e., 1−√
F (ρ, ρ′) ≤ 1

2‖ρ− ρ′‖tr ≤
√

1− F (ρ, ρ′). By combining

the upper bound in Theorem 5.4 with the fact that − logF (ρ, ρ′) ≤ D2(ρ, ρ
′) [151], we
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have

F

(
ρ̄,

I

2n

)
≥ 1

2D2(ρ̄‖ I
2n )

≥ 1

1 + (2n − 1)e−Dσ2 (5.103)

≥ 1

1 + (2n−1)ε2

2n+4

(5.104)

≥ 1

1 + 2nε2

16·2n
(5.105)

=
16

16 + ε2
, (5.106)

where in Eq. (5.104) we use the condition D ≥ 1
σ2 [(n+ 4) ln 2 + 2 ln (1/ε)]. By inserting

Eq. (5.106) into Eq. (5.102), we can get

∣∣∣Tr(H

(
ρ̄− I

2n

)) ∣∣∣ ≤ 2

√
1− 16

16 + ε2
=

2ε√
16 + ε2

≤ ε

2
. (5.107)

Bringing Eqs. (5.101) and (5.107) into Eq. (5.97), we complete the proof of Corollary

5.7.

5.3 Applications in Quantum Supervised Learning

In this section, we show that the concentrated quantum states encoded by the above PQC-

based data encoding strategies will severely limit the performances of quantum supervised

learning tasks. To this end, we use the following necessary definition.

Definition 5.8. (Data Set) The K-class data set D ≡ {(x(m),y(m))}KM
m=1 ⊂ R3nD ×RK

totally has KM data samples, including M samples in each category. Here, suppose

elements in the same entry of all input vectors from the same category are sampled from

the same IGD with a variance of at least σ2 and each x(m) is encoded into the corresponding

pure state ρ(x(m)) according to the circuit in Fig. 5.5 with n qubits and D layers of U3

gates. The label y(m) is a one-hot vector that indicates which of the K classes x(m) belongs

to.
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5.3.1 Quantum Classification

Quantum classification, as one of the most significant branches in quantum machine learn-

ing, is widely studied nowadays. More details about the introduction of quantum classifiers

are referred to Subsec. 2.4.2. In general, a quantum classifier aims to learn a map from

input to label by optimizing a loss function constructed through QNNs to predict the label

of an unseen input as accurately as possible. Now, we demonstrate the performance of a

quantum classifier on the data set D defined in Def. 5.8.

In this chapter, the loss function is defined from the cross-entropy loss with softmax

function [16]:

L (θ;D) ≡ 1

KM

KM∑
m=1

L(m) with L(m)
(
θ; (x(m),y(m))

)
≡ −

K∑
k=1

y
(m)
k ln

ehk∑K
j=1 e

hj
,

(5.108)

where y
(m)
k denotes the k-th element of the label y(m) and

hk

(
x(m),θ

)
= Tr

[
HkU(θ)ρ(x(m))U †(θ)

]
, (5.109)

which means the Hermitian operator Hk is finally measured after the quantum neural

network U(θ). Here, each Hk is chosen from tensor products of various Pauli matrices,

such as Z⊗I, X⊗Y ⊗Z and so on. By minimizing the loss function with a gradient descent

method, we could obtain the final trained model U(θ∗) with the optimal or sub-optimal

parameters θ∗. After that, when provided a new input quantum state ρ(x′), we compute

each h′k with parameters θ∗ according to Eq. (5.109), and the index of the largest h′k is

exactly our designated label.

However, all these graceful expectations can only be established on gradients with relatively

large absolute values. On the contrary, gradients with significantly small absolute values

will cause a severe training problem, for example, the barren plateau issue [44]. Therefore,

in the following, we investigate the partial gradient of the cost defined in Eq. (5.108) with

regard to its parameters. The results are exhibited in Proposition 5.9.
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Proposition 5.9. Consider a K-classification task with the data set D defined in Def.

5.8. If the encoding depth D ≥ 1
σ2 [(n+ 4) ln 2 + 2 ln (1/ε)] for some ε ∈ (0, 1), then the

partial gradient of the loss function defined in Eq. (5.108) with respect to each parameter

θi of the employed QNN is bounded as

∣∣∣∂L (θ;D)

∂θi

∣∣∣ ≤ Kε (5.110)

with a probability of at least 1− 2e−Mε2/8.

From this proposition, we observe that no matter what QNN structures are selected, the

absolute gradient value can be arbitrarily small with a very high probability for the above

data set D, provided that the encoding depth D and the number of data samples M are

sufficiently large. This vanishing of the gradients will severely restrict the trainability of

QNNs. Moreover, if before training U(θ) is initialized to satisfy certain randomness, such

as unitary 2-design [123], then each hk in Eq. (5.109) will concentrate on 0 with a high

probability, thus the loss in Eq. (5.108) will concentrate on lnK. This concentration of loss

is also verified through numerical simulations, as presented in Sec. 5.4. This phenomenon,

together with Proposition 5.9, implies that large encoding depth will significantly hinder

the training of a quantum classifier and probably lead to poor classification accuracy.

Proof. From the chain rule, we know

∂L (θ;D)

∂θi
=

1

KM

KM∑
m=1

∂L(m)

∂θi
=

1

KM

KM∑
m=1

K∑
l=1

∂L(m)

∂hl

∂hl
∂θi

. (5.111)

We first calculate ∂L(m)

∂hl
as follows

∂L(m)

∂hl
=

∂
∑K

k=1 y
(m)
k

(
ln

∑K
j=1 e

hj − hk

)
∂hl

=

⎧⎪⎪⎨⎪⎪⎩
∑K

k=1 y
(m)
k

ehl
∑K

j=1 e
hj
, l �= k∑K

k=1 y
(m)
k

(
ehl

∑K
j=1 e

hj
− 1

)
, l = k

(5.112)
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Since ehl/
∑K

j=1 e
hj ∈ (0, 1) and y(m) is one-hot, we can get its upper bound as |∂L(m)

∂hl
| ≤ 1.

Next, from the parameter-shift rule [98], we calculate ∂hl
∂θi

as follows

∂hl
∂θi

=
1

2

[
Tr

(
HlU(θ+π

2
)ρ(x(m))U †(θ+π

2
)
)
− Tr

(
HlU(θ−π

2
)ρ(x(m))U †(θ−π

2
)
)]

, (5.113)

where θ+π
2
means adding π

2 to θi and keeping the others unchanged, and θ−π
2
is similarly

defined. If we define

H̃l ≡ 1

2

[
U †(θ+π

2
)HlU(θ+π

2
)− U †(θ−π

2
)HlU(θ−π

2
)
]
, (5.114)

then together with Eqs. (5.111)-(5.113), we could bound the gradient as

∣∣∣∂L (θ;D)

∂θi

∣∣∣ ≤ ∣∣∣ 1

KM

KM∑
m=1

K∑
l=1

∂hl
∂θi

∣∣∣ = ∣∣∣ 1

KM

KM∑
m=1

K∑
l=1

Tr
(
H̃lρ(x

(m))
) ∣∣∣ (5.115)

≤
K∑
l=1

∣∣∣ 1

KM

KM∑
m=1

Tr
(
H̃lρ(x

(m))
) ∣∣∣ (5.116)

=

K∑
l=1

∣∣∣ 1

KM

KM∑
m=1

K∑
k=1

y
(m)
k Tr

(
H̃lρ(x

(m))
) ∣∣∣ (5.117)

≤
K∑
l=1

1

K

K∑
k=1

∣∣∣ 1

M

KM∑
m=1

y
(m)
k Tr

(
H̃lρ(x

(m))
) ∣∣∣ (5.118)

≤
K∑
l=1

1

K

K∑
k=1

ε. (5.119)

Here, it could be easily verified that the eigenvalues of H̃l (defined in Eq. (5.114)) range

in [−1, 1] and Tr(H̃l) = 0. Then from Corollary 5.7, we could bound Eq. (5.118) as Eq.

(5.119), i.e., for any ε ∈ (0, 1), provided that the encoding depth D ≥ 1
σ2 [(n + 4) ln 2 +

2 ln (1/ε)], we have |∂L(θ;D)
∂θi

| ≤ Kε with a probability of at least 1 − 2e−Mε2/8. This

completes the proof of Proposition 5.9.

5.3.2 Quantum State Discrimination

Quantum state discrimination [106] is a central information-theoretic task and finds ap-

plications in various topics such as quantum cryptography [160], quantum error mitiga-

tion [161], and quantum data hiding [162]. It aims to distinguish quantum states using a



Chapter 5. Concentration of Data Encoding in Parameterized Quantum Circuits 113

positive operator-valued measure (POVM), a set of positive semi-definite operators that

sum to the identity operator. Here, we have to seriously note that in quantum state

discrimination, we can only measure each quantum state once, instead of measuring re-

peatedly and calculating the expectations as shown in quantum classification.

In general, perfect discrimination (i.e., a perfect POVM) can not be achieved if quantum

states are non-orthogonal. A natural alternative option is by adopting some metrics such

as the success probability so that the optimal POVM could be obtained via various kinds

of optimization ways, e.g., Helstrom bound [163] and semi-definite programming (SDP)

[164]. Recently, researchers also try to train QNNs as substitutions for optimal POVMs

[107, 165].

Next, we demonstrate the impact of the encoded quantum states from the data set D

defined in Def. 5.8 on quantum state discrimination. Our goal is to obtain the maximum

success probability psucc by maximizing the success probability over all POVMs with K

operators:

psucc ≡ max
{Πk}k

1

K

K∑
k=1

Tr [Πkρ̄k,M ] with ρ̄k,M ≡ 1

M

KM∑
m=1

y
(m)
k ρ(x(m)), (5.120)

where y
(m)
k denotes the k-th element of the label y(m) and {Πk}Kk=1 denotes a POVM,

which satisfies
∑K

k=1Πk = I.

Proposition 5.10. Consider a K-class discrimination task with the data set D defined

in Def. 5.8. If the encoding depth D ≥ 1
σ2 [(n+ 4) ln 2 + 2 ln (1/ε)] for a given ε ∈ (0, 1),

then with a probability of at least 1 − 2e−Mε2/8, the maximum success probability psucc is

bounded as

psucc ≤ 1/K + ε. (5.121)

This proposition implies that as long as the encoding depth D and the data numbers M

are large enough, the optimal success probability psucc could be arbitrarily close to 1
K

with a remarkably high probability for the data set D. This nearly blind-guessing success

probability shows that the concentration of the encoded quantum states in the data set
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|0〉 Ry(x1) • Ry(x4d+1) · · · U3(θ1,5,9) • Ry(θ4l+9) 〈Hk〉

|0〉 Ry(x2) • Ry(x4d+2) · · · U3(θ2,6,10) • Ry(θ4l+10)

|0〉 Ry(x3) • Ry(x4d+3) · · · U3(θ3,7,11) • Ry(θ4l+11)

|0〉 Ry(x4) • Ry(x4d+4) · · · U3(θ4,8,12) • Ry(θ4l+12)

×(D − 1) ×LQNN

Figure 5.6: Circuits for data encoding (before the barrier line) and quantum neural
network (after the barrier line) in the 4-qubit case. Here the input x ∈ R4D and d ∈
[1, D− 1]. The QNN totally has LQNN + 1 layers with parameters θ ∈ R4LQNN+12, where
the first layer U3 gates consists of 12 parameters. After QNN, there are K expectations
{〈Hk〉}Kk=1 for K-classification tasks.

D will lead to the failure of state discrimination via POVM. As POVMs are the most

general kind of measurements one can implement to extract classical information from

quantum systems [79], we conclude that the above different classes of encoded states are

indistinguishable from the perspective of quantum information. The proof of Proposition

5.10 could be derived straightforwardly by combining Eq. (5.120) with Corollary 5.7.

5.4 Numerical Experiments

Previous sections demonstrated that the average encoded state will concentrate on the

maximally mixed state under PQC-based data encoding strategies with large depth. These

encoded states theoretically cannot be utilized to train QNNs or distinguished by POVMs.

In this section, we verify these results on both synthetic and public data sets by choos-

ing a commonly employed strongly entangling circuit [60], which helps to understand the

concentration rate intuitively for realistic encoding circuits. All the simulations and opti-

mization loop are implemented via Paddle Quantum1 on the PaddlePaddle Deep Learning

Platform [126].

1https://github.com/paddlepaddle/Quantum
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(a) Encoding Strategy in Fig. 5.2 (b) Encoding Strategy in Fig. 5.6

Figure 5.7: Exponential decay of quantum divergence D2(ρ̄0|| ) vs. encoding depth
under different qubit cases for the synthetic data set. Here, there are one million data
samples for calculating average encoded state ρ̄0 for class 0 at each point in numerical
lines. And the upper-bounds come from (a) Theorem 5.1, (b) Theorem 5.4, respectively.

5.4.1 On Synthetic Data Set

5.4.1.1 Data Set

The synthetic two-class data set
{
(x(m),y(m))

}M

m=1
is generated following the distributions

depicted in Fig. 5.3, where each x
(m)
j ∼ N(μj , σ

2
j ) for 1 ≤ j ≤ t and y(m) denotes a one-hot

label. Here, we assume all means come from two lines, i.e., μj = 2π
16 (j − 1) mod 2π for

class 0 and μj =
2π
16 (16− j) mod 2π for class 1, and all σj ’s are set as 0.8. Note that the

same variance is selected for both classes to facilitate the demonstration of the experiment.

Other choices of σj ’s would have similar effects.

5.4.1.2 Results

We first verify our two main upper bounds given in Theorems 5.1 and 5.4 by encoding the

nD-dimensional inputs that belong to the same class into n-qubit quantum states with D

encoding depths under the encoding strategies illustrated in Figs. 5.2 and 5.6, respectively.

Here, n is set as 2, 4, 6 and D ∈ [1, 14]. The results are displayed in Fig. 5.7, from which we

can intuitively see that the divergences decrease exponentially on depth. Specifically, from

Fig. 5.7(a), we know the upper bound in Theorem 5.2 is tight, which is also easily verified

from our proof. From Fig. 5.7(b), we learn that the upper bound in Theorem 5.4 is quite
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(a) (b)

(c)

Figure 5.8: Numerical results for synthetic data sets under the encoding strategy in
Fig. 5.6. In all qubit cases, (a) the test accuracy of QNN (or (b) the maximum success
probability of POVM) will eventually decay to 50% or so with the depth growing; (c) In
the 4 qubit case, for instance, the training losses of QNN do not decrease and stay at
about ln 2 in the training process when the depth becomes large enough.

loose, which suggests that the real situation is much worse than our theoretical analysis.

We also notice in Fig. 5.7(b) that for this strongly entangling encoding strategy, the larger

the qubit number is, the faster the divergence decreases. This unexpected phenomenon

reveals the possibility that specific structures of encoding circuits may lead to more severe

concentrations for larger numbers of qubits and is worthy of further studies.

Next, we examine the performance of QNNs and POVMs by generating 20k data samples

for training and 4k for testing under the encoding strategy in Fig. 5.6, where half of

the data belong to class 0, and the others belong to class 1. The QNNs are designed

according to the right-hand side of Fig. 5.6, where the number of layers LQNN is set

as n + 2, the finally measured Hermitian operators are set as H1 = Z and H2 = X
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on the first qubit, and all parameters θ are initialized randomly in [0, 2π]. During the

optimization, we adopt the Adam optimizer [133] with a batch size of 200 and a learning

rate of 0.02. In the POVM setting, we directly employ semi-definite programming [164] to

obtain the maximum success probability Psucc on the training data samples. The results

are illustrated in Fig. 5.8. We observe that both the test accuracy of the QNNs and the

maximum success probability Psucc of the POVMs eventually decay to about 0.5 as the

encoding depth grows, indicating that the classification abilities of both the QNNs and the

POVMs are no better than random guessing. In addition, the training losses of QNNs in

Fig. 5.8(c) gradually approach ln 2 as the depth grows and finally do not go down anymore

during the whole training process, which implies that the concentration of this data set

on the maximally mixed state would limit the trainability of QNNs as we predicted in

Sec. 5.3.1. All these results are in line with our theoretical expectations.

5.4.2 On Public Data Set

5.4.2.1 Data Set and Preprocessing

The handwritten digit data set MNIST [134] consists of 70k images labeled from ‘0’ to ‘9’,

each of which contains 28 × 28 gray-scale pixels valued in [0, 255]. In order to facilitate

encoding, these images are first resized to 4 × 4 and then normalized to values between

0 and π. Finally, we select all images corresponding to two pairs of labels, i.e., (2, 9)

and (3, 6), for two binary classification tasks. For each task, there are about 12k training

samples and 2k testing samples, and each category accounts for half or so.

5.4.2.2 Results

Here we mainly consider the performance of QNN on this data set because POVMs are

generally not suitable for prediction. These 16-dimensional preprocessed images are first

encoded into n-qubit quantum states with encoding depth D and then fed into a QNN (cf.

Fig. 5.6 again). We set n as 2,3,4,6,8 and D as 8,6,4,3,2 accordingly. The settings of QNN

are almost the same as those used in the synthetic case, except for a new learning rate

of 0.05. From Fig. 5.9(a), we see that the average state of each digit class concentrates
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(a) (b)

(c)

Figure 5.9: Numerical results of QNN for MNIST data set under the encoding strategy
in Fig. 5.6. (a) The curves for the quantum divergence between the averaged encoded
state ρ̄ of each handwritten digit and the maximally mixed state decrease exponentially
on depth. (b) The test accuracy reduces rapidly with a larger encoding depth; (c) In the
case of classifying digits 3 and 6, when the depth is large (e.g., 8), it is difficult to keep
the training loss away from ln 2 in the training process.

on the maximally mixed state at an approximately exponential speed on depth, which is

consistent with our main result. Furthermore, the outcomes in Figs. 5.9(b) and 5.9(c)

also confirm the incapability of training of QNNs, provided that the classical inputs are

encoded by a higher depth PQC.

5.5 Discussion

We have witnessed both theoretically and empirically that for usual PQC-based data

encoding strategies with higher depth, the average encoded state concentrates on the
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maximally mixed state. We further showed that such concentration severely limits the

capabilities of quantum classifiers for practical tasks. Such limitation indicates that we

should pay more attention to methods encoding classical data into PQCs in quantum

supervised learning.

This chapter suggests that the distance between the average encoded state and the maxi-

mally mixed state may be a reasonable metric to quantify how well the quantum encoding

preserves the features in quantum supervised learning. The result on the encoding con-

centration also motivates us to consider how to design PQC-based encoding strategies

better to avoid the exponentially decayed distance. An obvious way this chapter implies

might be to keep the depth shallow while accompanied by a higher width. Still, it will

render poor generalization performance [67] as well as the notorious barren plateau issue

[44]. Therefore, it will be desirable to develop nontrivial quantum encoding strategies to

guarantee the effectiveness and efficiency of quantum supervised learning as well as quan-

tum kernel methods [14, 68, 75]. Recent works on data re-uploading [73, 146, 166] and

pooling [67, 72] of quantum neural networks may provide potential solutions for improving

quantum encoding efficiency.





Chapter 6

Conclusion and Future Directions

In this chapter, we summarize the contributions of this thesis, and give potential future

research directions that can be further explored.

6.1 Conclusion

In this thesis, we explored the applications of parameterized quantum circuits in machine

learning, focusing on the research of PQC’s capabilities in different applications and PQC’s

limitations on quantum machine learning.

Specifically, in Chapter 3, we proposed a VSQL framework that used the concept of ob-

taining the classical shadows to do classification tasks. This framework mainly uses a local

PQC similar to a convolution operation to extract information features and then feeds the

obtained features into the classical fully-connected neural network to complete classifica-

tion. Compared with the general methods using global PQCs to extract hidden features,

VSQL can achieve similar or even higher accuracy in some quantum state classification

tasks and handwritten digit recognition tasks, but it has fewer parameters. Moreover,

because local PQC is simpler and easier to implement, VSQL can bring less noise. In

addition, VSQL could also avoid barren plateau problems as long as the dimensions of

the shadow circuit are small enough. Finally, another advantage of local PQC is that we
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can design the entanglement structure according to the hardware topology connectivity of

quantum computers at the current stage.

In Chapter 4, we proposed the QSANN architecture, which introduces the classical self-

attention mechanism into the quantum neural network. Motivation mainly comes from

two aspects: on the one hand, most of the existing models for quantum natural language

processing are based on syntax analysis, so it requires complicated pre-processing, and

is challenging to extend to larger datasets; On the other hand, among classical models

employing word-embedding technique [58], the models based on self-attention mechanism

have achieved excellent results. In addition, we proposed Gaussian projected quantum

self-attention, which is better than the commonly used inner product self-attention, to

demonstrate potential quantum advantages. In general, the former may be able to dig

out some hidden correlations between words, while the latter cannot. Through numerical

experiments on some small-scale and medium-scale datasets, we find that QSANN is sig-

nificantly superior to the existing syntactic parsing-based models and slightly superior to

the classical self-attention neural networks under the same conditions. Since QSANN can

run on existing quantum computers with a medium noise scale, it is a potential quantum

natural language processing model in the future.

In Chapter 5, we have seen theoretically and experimentally that for the PQC-based data

encoding strategy, the average encoded state will concentrate on the maximally mixed

state and converge exponentially with the increase of depth. We further show that these

encoded quantum states employing PQC-based encoding strategies will severely limit the

classification ability of the quantum classifiers for downstream tasks, including quantum

classification and quantum state discrimination. Finally, we also analyzed how defining

and finding a good quantum encoding strategy is urgent. And the quantum divergence

provided in this chapter may be a good indicator to measure the encoding scheme.

6.2 Future Directions

Quantum machine learning, as a hot research topic in quantum AI, has broad research and

application prospects. Many related applications and corresponding research directions
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have emerged in recent years. Now we briefly introduce some research directions that this

thesis can inspire.

We know that VSQL aims at supervised learning tasks, so it is worth exploring how it

performs in some unsupervised learning tasks, such as clustering. In addition, it is worth

looking forward to seeing whether VSQL can be applied and how effective it is in some

learning tasks of generative and online models. In terms of architecture design, such as

how the specific design form of shadow circuit in VSQL affects the performance of the

overall model, how the features extracted from the quantum computers and the following

neural network parts can be better connected to make the model optimal, etc. Regarding

model complexity, can the parameter amount in VSQL be further decreased, and is there

a lower bound? What is the expressibility of VSQL, and is there an upper bound? Along

this line, a possible method to further reduce the model complexity of VSQL is proposed

[167].

In addition to text classification, the performance of QSANN in other quantum natural

language processing tasks is also worth exploring, such as machine translation, question-

answering systems, etc. In terms of model design, QSANN is just a simple attempt, and

many advanced technologies have not been used, such as positional encoding and multi-

head attention. It will be interesting to explore the performance of the improved version

of QSANN with these technologies in natural language processing tasks. In addition,

GPQSA proposed in QSANN also needs to be tested by more experiments. Although we

argue that it is more effective than general self-attention based on inner product, we still

do not know how effective it is. Exploring other forms of self-attention to show quantum

advantages is also an urgent matter in the QNLP field. Or more generally, exploring the

QNLP model with quantum advantages is urgent. In terms of model complexity, it is

fascinating to explore the QNLP model with higher accuracy and lower parameters.

From Chapter 5, we know that the distance between the average encoded state and the

maximally mixed state will directly affect the classification ability of the downstream quan-

tum classification model. Therefore, it will be an essential direction to design indicators

to measure the quality of quantum encoding strategies according to this quantum diver-

gence. That is because there are few guiding works on developing PQCs, and most PQCs
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are general circuits designed based on engineering experience. These circuits not only have

a large number of parameters but also have problems such as a lack of expressibility and

barren plateaus. Chapter 5 suggests we should try to use some shallow circuits with many

qubits when designing encoding circuits, but these circuits have apparent disadvantages.

Therefore, developing some nontrivial quantum data encoding strategies in the NISQ era

has become a very urgent research direction, even as important as the research direction of

designing the architectures of QNNs. Recently, the research on data re-uploading encoding

strategy is a good direction, but the substantial effect needs further to be explored. In

addition, there are also research directions based on quantum kernels. Although quantum

kernel is the most likely direction to realize quantum advantages, PQC-based kernels still

need further review.
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[76] Vojtěch Havĺıček, Antonio D. Córcoles, Kristan Temme, Aram W. Harrow, Abhinav

Kandala, Jerry M. Chow, and Jay M. Gambetta. Supervised learning with quantum-

enhanced feature spaces. Nature, 567(7747):209–212, Mar 2019.



Bibliography 133

[77] Edward Farhi and Hartmut Neven. Classification with Quantum Neural Networks

on Near Term Processors. arXiv:1802.06002, pages 1–21, Feb 2018.

[78] Robin Lorenz, Anna Pearson, Konstantinos Meichanetzidis, Dimitri Kartsaklis, and

Bob Coecke. Qnlp in practice: Running compositional models of meaning on a

quantum computer. arXiv preprint arXiv:2102.12846, 2021.

[79] Michael A. Nielsen and Isaac Chuang. Quantum Computation and Quantum Infor-

mation. American Journal of Physics, 70(5):558–559, May 2002.

[80] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward

networks are universal approximators. Neural networks, 2(5):359–366, 1989.

[81] Jean-Luc Brylinski and Ranee Brylinski. Universal quantum gates. In Mathematics

of quantum computation, pages 117–134. Chapman and Hall/CRC, 2002.

[82] Henry W Lin, Max Tegmark, and David Rolnick. Why does deep and cheap learning

work so well? Journal of Statistical Physics, 168(6):1223–1247, 2017.

[83] Andrew G Taube and Rodney J Bartlett. New perspectives on unitary coupled-

cluster theory. International journal of quantum chemistry, 106(15):3393–3401, 2006.

[84] Philip Krantz, Morten Kjaergaard, Fei Yan, Terry P Orlando, Simon Gustavsson,

and William D Oliver. A quantum engineer’s guide to superconducting qubits.

Applied Physics Reviews, 6(2):021318, 2019.

[85] Kenneth Wright, Kristin M Beck, Sea Debnath, JM Amini, Y Nam, N Grzesiak,

J-S Chen, NC Pisenti, M Chmielewski, C Collins, et al. Benchmarking an 11-qubit

quantum computer. Nature communications, 10(1):1–6, 2019.

[86] Maria Schuld. Supervised quantum machine learning models are kernel methods.

arXiv preprint arXiv:2101.11020, 2021.

[87] Scott Aaronson. Read the fine print. Nature Physics, 11(4):291–293, Apr 2015.

[88] Edwin Stoudenmire and David J Schwab. Supervised learning with tensor networks.

Advances in Neural Information Processing Systems, 29, 2016.



134 Bibliography

[89] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines.

Advances in neural information processing systems, 20, 2007.

[90] Jakob S Kottmann, Mario Krenn, Thi Ha Kyaw, Sumner Alperin-Lea, and Alán

Aspuru-Guzik. Quantum computer-aided design of quantum optics hardware. Quan-

tum Science and Technology, 6(3):035010, 2021.

[91] Mario Krenn, Manuel Erhard, and Anton Zeilinger. Computer-inspired quantum

experiments. Nature Reviews Physics, 2(11):649–661, 2020.

[92] Mario Krenn, Jakob S Kottmann, Nora Tischler, and Alán Aspuru-Guzik. Concep-

tual understanding through efficient automated design of quantum optical experi-

ments. Physical Review X, 11(3):031044, 2021.

[93] Jakob S Kottmann, Abhinav Anand, and Alán Aspuru-Guzik. A feasible ap-

proach for automatically differentiable unitary coupled-cluster on quantum com-

puters. Chemical science, 12(10):3497–3508, 2021.

[94] Joonho Lee, William J Huggins, Martin Head-Gordon, and K Birgitta Whaley. Gen-

eralized unitary coupled cluster wave functions for quantum computation. Journal

of chemical theory and computation, 15(1):311–324, 2018.

[95] Hsin-Yuan Huang, Michael Broughton, Masoud Mohseni, Ryan Babbush, Sergio

Boixo, Hartmut Neven, and Jarrod R McClean. Power of data in quantum machine

learning. Nature communications, 12(1):1–9, 2021.

[96] Song Cheng, Jing Chen, and Lei Wang. Information perspective to probabilistic

modeling: Boltzmann machines versus born machines. Entropy, 20(8):583, 2018.

[97] Jonathan Romero, Ryan Babbush, Jarrod R McClean, Cornelius Hempel, Peter J

Love, and Alán Aspuru-Guzik. Strategies for quantum computing molecular energies

using the unitary coupled cluster ansatz. Quantum Science and Technology, 4(1):

014008, 2018.

[98] K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii. Quantum circuit learning. Phys-

ical Review A, 98(3):032309, Sep 2018.



Bibliography 135

[99] Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation,

10(2):251–276, 1998.

[100] James Stokes, Josh Izaac, Nathan Killoran, and Giuseppe Carleo. Quantum natural

gradient. Quantum, 4:269, 2020.

[101] David Wierichs, Christian Gogolin, and Michael Kastoryano. Avoiding local minima

in variational quantum eigensolvers with the natural gradient optimizer. Physical

Review Research, 2(4):043246, 2020.

[102] Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and Jürgen

Schmidhuber. Natural evolution strategies. The Journal of Machine Learning Re-

search, 15(1):949–980, 2014.

[103] Artur Garcia-Saez and Jordi Riu. Quantum observables for continuous control of

the quantum approximate optimization algorithm via reinforcement learning. arXiv

preprint arXiv:1911.09682, 2019.

[104] Matteo M Wauters, Emanuele Panizon, Glen B Mbeng, and Giuseppe E Santoro.

Reinforcement-learning-assisted quantum optimization. Physical Review Research,

2(3):033446, 2020.

[105] Ken M Nakanishi, Keisuke Fujii, and Synge Todo. Sequential minimal optimization

for quantum-classical hybrid algorithms. Physical Review Research, 2(4):043158,

2020.

[106] Joonwoo Bae and Leong Chuan Kwek. Quantum state discrimination and its ap-

plications. Journal of Physics A: Mathematical and Theoretical, 48(8):083001, Feb

2015.

[107] Hongxiang Chen, Leonard Wossnig, Simone Severini, Hartmut Neven, and Masoud

Mohseni. Universal discriminative quantum neural networks. Quantum Machine

Intelligence, 3(1):1–11, 2021.

[108] Andrew Patterson, Hongxiang Chen, Leonard Wossnig, Simone Severini, Dan

Browne, and Ivan Rungger. Quantum State Discrimination Using Noisy Quantum

Neural Networks. arXiv:1911.00352, Nov 2019.



136 Bibliography

[109] Maria Schuld and Nathan Killoran. Quantum Machine Learning in Feature Hilbert

Spaces. Physical Review Letters, 122(4):040504, Feb 2019.

[110] Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-

Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen, Jakob S Kottmann,

Tim Menke, et al. Noisy intermediate-scale quantum algorithms. Reviews of Modern

Physics, 94(1):015004, 2022.

[111] Guangxi Li, Zhixin Song, and Xin Wang. Vsql: Variational shadow quantum learning

for classification. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 35, pages 8357–8365, 2021.

[112] Weikang Li and Dong-Ling Deng. Recent advances for quantum classifiers. Science

China Physics, Mechanics & Astronomy, 65(2):1–23, 2022.

[113] Bob Coecke, Mehrnoosh Sadrzadeh, and Stephen Clark. Mathematical foundations

for a compositional distributional model of meaning. arXiv preprint arXiv:1003.4394,

2010.

[114] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

2016. http://www.deeplearningbook.org.

[115] Ashish Kapoor, Nathan Wiebe, and Krysta Svore. Quantum perceptron models. In

Advances in Neural Information Processing Systems, pages 3999–4007, 2016.

[116] Maria Schuld and Francesco Petruccione. Quantum ensembles of quantum classifiers.

Scientific Reports, 8(1):2772, Dec 2018.

[117] Amandeep Singh Bhatia, Mandeep Kaur Saggi, Ajay Kumar, and Sushma Jain.

Matrix Product State–Based Quantum Classifier. Neural Computation, 31(7):1499–

1517, Jul 2019.

[118] Eric R. Ziegel, E. L. Lehmann, and George Casella. Theory of Point Estimation.

Technometrics, 41(3):274, Aug 1999.
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